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Abstract

We introduce properties of metric spaces and, specifically, finitely generated groups with word metrics,
which we call coarse coherence and coarse regular coherence. They are geometric counterparts of the
classical algebraic notion of coherence and the regular coherence property of groups defined and studied
by Waldhausen. The new properties can be defined in the general context of coarse metric geometry
and are coarse invariants. In particular, they are quasi-isometry invariants of spaces and groups. The
new framework allows us to prove structural results by developing permanence properties, including the
particularly important fibering permanence property, for coarse regular coherence.
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1. Precursors of coarse coherence

Let A be an associative ring. All the modules over A we consider are left A-modules.

Definition 1.1. A presentation of an A-module E is an exact sequence

F2 → F1 → E → 0

with both F1 and F2 free A-modules. It is a finite presentation if the free modules are
finitely generated. More generally, a projective resolution of E is an exact sequence

· · · −→ Pn −→ · · · −→ P2 −→ P1 −→ E −→ 0,

where all Pi are projective A-modules. The projective resolution is of finite type if the
projective modules are finitely generated. It is called finite if there is a number n such
that the modules Pi = 0 for i > n.

A module is said to be of type FP∞ or have finite projective dimension if it has a
projective resolution of finite type. The ring A has finite global dimension if there is a
number n such that every finitely generated A-module has a finite projective resolution
of length n.
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The ring A is called coherent if every finitely presented A-module is of type FP∞.
A coherent ring A is called regular coherent if each projective resolution of finite
type over A is chain homotopy equivalent to a finite projective resolution. Restricting
further, a regular Noetherian ring is a regular coherent ring which is Noetherian in
the usual sense—a submodule of any finitely generated module over A is finitely
generated.

The most important regular Noetherian ring for applications in geometric topology
is the ring of integers Z.

Definition 1.2 (Waldhausen [14]). A group Γ is regular coherent if the group algebra
R[Γ] is regular coherent for any choice of a regular Noetherian ring R.

The collection X of regular coherent groups includes free groups, free abelian
groups, torsion-free one-relator groups, fundamental groups of submanifolds of the
three-dimensional sphere, along with their various amalgamated products and HNN
extensions, and so, in particular, the fundamental groups of submanifolds of the three-
dimensional sphere. Waldhausen used this property to compute the algebraic K-theory
of regular coherent groups.

Two remarks regarding Waldhausen’s regular coherence are in order.

(1) The regular coherence property seems to be very special: simply constructing
individual nonprojective finite-dimensional modules over group rings is hard.

(2) The collection X is not well understood structurally beyond the portion identified
by Waldhausen. For example, it is unknown whether X is closed under products.
While all groups in X are necessarily torsion-free, it is unknown if there is a
torsion-free group outside it.

Waldhausen asked if a weaker property of the group ring would suffice in his
argument (see, for example, the paragraph after the proof of Theorem 11.2 in [14]).
This paper is a response to that question.

A weakening of regular coherence (weak regular coherence) was introduced in
[2, 3, 6, 8] with essentially the same goal as Waldhausen’s, which was a computation
of the K-theory of weakly regular coherent groups. However, in contrast with the
situation for X, the class of weakly regular coherent groups is known to be very
large. It includes groups that admit a finite classifying space and have straight finite
decomposition complexity and so, in particular, groups that have finite asymptotic
dimension. The notion of weak coherence is more technical to define; we do that in
Section 4. Unfortunately one realises quickly that even though the notion of weak
regular coherence can be verified for a large family of groups, it is not amenable to
proving structural permanence results.

The goal and structure of the paper. Our goal is to define a genuinely coarse
geometric property of metric spaces that ensures that finitely generated groups with
word metrics that have this property also have the weak regular coherence property.
Then we show that the class of coarsely regular coherent groups Y is closed under
many natural geometric operations. This collection of results has became known as
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permanence properties [10] in the literature. For example, invariance of Y under finite
products is a simple consequence of the results in this paper.

We start by defining the general nonequivariant property of metric spaces called
coarse coherence in Section 2 and stating the main technical results. Section 3 contains
proofs of permanence results for coarse coherence. Finally, in Section 4, we define
coarse regular coherence, which is a property of groups. We relate this property to
weak regular coherence and finally state and prove theorems about coarse regular
coherence together with some immediate applications.

2. Definition of coarse coherence
Let X be a metric space and R a ring.

Definition 2.1. An X-filtered R-module is a covariant functor F : P(X)→ModR from
the power set of X ordered by inclusion to the category of R-modules and injective
homomorphisms. It will be convenient to view F as the value F(X) filtered by
submodules associated to subsets S ⊂ X. We will always assume that the value of
F on the empty subset is 0.

The notation S [r] stands for the metric r-enlargement of S in X. So, in particular,
x[r] is the closed metric ball of radius r centred at x.

(1) F is called lean or D-lean if there is a number D ≥ 0 such that

F(S ) ⊂
∑
x∈S

F(x[D])

for every subset S of X.
(2) F is called scattered or δ-scattered if there is a number δ ≥ 0 such that

F(X) ⊂
∑
x∈X

F(x[δ]).

(3) F is called insular or d-insular if there is a number d ≥ 0 such that

F(S ) ∩ F(U) ⊂ F(S [d] ∩ U[d])

for every pair of subsets S ,U of X.
(4) F is locally finitely generated if F(S ) is a finitely generated R-module for every

bounded subset S ⊂ X.

Remark 2.2. Being scattered is a consequence of being lean but not conversely.

Definition 2.3. An R-homomorphism f : F → F′ of X-filtered modules is controlled
if there is a fixed number b ≥ 0 such that the image f (F(S )) is a submodule of F′(S [b])
for all subsets S of X.

The filtered modules that are lean and insular form a category LI(X, R), where
the morphisms are the controlled R-homomorphisms. The category B(X,R) is the full
subcategory of LI(X,R) on the locally finitely generated objects. Basic properties of
this category can be found in [5, Section 3.1]. Note that the geometric features we
define here are independent of the assumption that R is Noetherian, which is used
throughout [5].
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Example 2.4. Given any ring R and any metric space X, one can consider a special
kind of filtration which goes back to the original geometric modules of Pedersen and
Weibel. The geometric modules are a collection of choices Fx which are free finitely
generated R-modules associated to each point x in X with the requirement that only
finitely many Fx are nonzero for x from a bounded subset S . The module F(X) =

⊕
Fx

is assigned the filtration given by F(S ) =
⊕

x∈S Fx. We denote the full subcategory of
geometric modules in B(X,R) by B(X,R).

Within LI(X, R) there is a special kind of morphism which was used in the
description of the exact structure in LI(X,R).

Definition 2.5. A homomorphism f is bicontrolled if, for some fixed b ≥ 0, in addition
to the inclusions of submodules f (F(S )) ⊂ F′(S [b]), there are further inclusions
f (F) ∩ F′(S ) ⊂ f F(S [b]) for all subsets S ⊂ X.

Here is a list of facts about lean and insular modules taken from [5, Section 3.1].

Theorem 2.6. Let
0→ E′

f
−−→ E

g
−−→ E′′ → 0

be an exact sequence of X-filtered R-modules, where f and g are bicontrolled.

(1) If the object E is lean, then E′′ is lean.
(2) If E is insular, then E′ is insular.
(3) If E is insular and E′ is lean, then E′′ is insular.
(4) If both E′ and E′′ are lean, then E is lean.
(5) If both E′ and E′′ are insular, then E is insular.

There are several viable conditions on X that enforce a version of the ‘missing’ item
in this theorem. All of them can be viewed as relaxations of the algebraic coherence
property when X is a group Γ with a word metric. In this case the filtered R-modules
are Γ-equivariant, thus becoming R[Γ]-modules, with the maps f and g being R[Γ]-
homomorphisms.

The first condition is the ‘missing’ item itself.

Definition 2.7 (Coherence of metric spaces). A metric space X is coherent if in any
exact sequence

0→ E′
f
−−→ E

g
−−→ E′′ → 0

of X-filtered R-modules, where f and g are both bicontrolled maps, the combination
of E being lean and E′′ being insular implies that E′ is necessarily lean.

For example, it is shown in Grossman [9] that the real line with the standard metric
is a coherent metric space. It is likely that all groups from Waldhausen’s class X are
coherent. Grossman [9] also gives basic properties of coherence such as coarse, and
therefore quasi-isometry, invariance. It turns out however that for the most desired
permanence properties this notion is too restrictive.

The following definition isolates the most important property in terms of its
algebraic impact which also happens to be amenable to fibering permanence results.
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Definition 2.8 (Coarse coherence). A metric space X is coarsely coherent if in any
exact sequence

0→ E′
f
−−→ E

g
−−→ E′′ → 0

of X-filtered R-modules, where f and g are both bicontrolled maps, the combination
of E being lean and E′′ being insular implies that E′ is necessarily scattered.

We will use the notation C for the class of all coarsely coherent metric spaces.

There is a version of this condition for metric families. For this definition we use
the terminology from Guentner [10]. We find the notion of the total space of the family
especially convenient for our purposes.

Definition 2.9. A metric family {Xα} is simply a collection of metric spaces Xα. In all
situations in this paper, a metric family will be a collection of subspaces of a given
metric space, each equipped with the subspace metric. The total space X of the family
{Xα} is the disjoint union of the metric spaces Xα with the extended metric with values
∞ between points from Xα and Xβ for α , β.

Definition 2.10 (Coarse coherence for families). A metric family {Xα} is coarsely
coherent if the total space X of the family is coarsely coherent.

It might be instructive to spell out what this entails. The total space is coarsely
coherent if for a collection of exact sequences

0→ E′α
fα
−−−→ Eα

gα
−−−→ E′′α → 0

of Xα-filtered R-modules, where all Eα are D-lean, all E′′α are d-insular, all fα and gα
are b-bicontrolled maps for some fixed constants D, d, b ≥ 0, it follows that all E′α are
∂-scattered for some uniform constant ∂ ≥ 0.

When we say that a family is in C, we mean that the family is coarsely coherent.
This is definitely a stronger assumption than each space in the family being in C.

A map between metric spaces f : X→ Y is uniformly expansive if there is a function
φ : [0,∞)→ [0,∞) such that dY ( f (x1), f (x2)) ≤ φ(dX(x1, x2)) for all pairs of points x1,
x2 from X.

The following is the main permanence result of the paper.

Theorem 2.11 (Fibering permanence for coarse coherence). Assume that π : X → Y is
a uniformly expansive map with Y in C. If, for any r > 0 the family { f −1(y[r]) | y ∈ Y}
is in C, then X is in C.

The proof of this theorem will require establishing other permanence theorems,
which we do in the next section. There is a stronger theorem that can be formulated in
terms of families, which is a consequence of Theorem 2.11 and which has many other
permanence theorems as corollaries.
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3. Permanence properties and applications

Let us first introduce additional terminology from coarse geometry.
Two functions h1, h2 : X → Y between metric spaces are close if there is a constant

C ≥ 0 so that dY (h1(x), h2(x)) ≤ C for all choices of x in X. A function k : X → Y is a
coarse equivalence if it is uniformly expansive and there exists a uniformly expansive
function l : Y → X so that the compositions k ◦ l and l ◦ k are close to the identity maps.

An example of a coarse equivalence is the notion of quasi-isometry. This is simply
a coarse equivalence k for which the uniformly expansive functions for k and its
coarse inverse can be chosen to be linear polynomials. In geometric group theory,
it is very useful that any two choices for a finite generating set of a group produce
quasi-isometric word metrics.

The following are basic permanence properties of coarse coherence.

Theorem 3.1 (Coarse invariance of coarse coherence). If X and Y are coarsely
equivalent, then X is coarsely coherent if and only if Y is coarsely coherent.

Theorem 3.2 (Subspace permanence for coarse coherence). If X is a subspace of Y,
and Y is coarsely coherent, then X is coarsely coherent.

From Guentner [10, Lemma 6.1], the combination of the two statements is true if
and only if a different coarse geometric condition holds. We recall that a map k : X→ Y
is a coarse embedding if k is a uniformly expansive map which is a coarse equivalence
onto its image. In this situation, the uniformly expansive counterpart l : im(k)→ X is
called a coarse inverse. Now the combination of Theorems 3.1 and 3.2 is true if and
only if whenever Y is coarsely coherent and X coarsely embeds in Y , then X is coarsely
coherent, so it suffices to prove the latter statement.

Proof. Suppose that k : X→ Y is a coarse embedding controlled by the function `. We
assume that Y is coarsely coherent and that we are given an exact sequence

0→ E′X
f
−−→ EX

g
−−→ E′′X → 0

of X-filtered modules, where f and g are both b-bicontrolled, EX is D-lean and E′′X is d-
insular. We aim to show that E′X is scattered. Consider the Y-filtrations of the modules
induced by k as follows: EY (S ) = EX(k−1(S )). It follows that EY is `(D)-lean and E′′Y is
`(d)-insular. Also, f and g are bicontrolled as morphisms between Y-filtered modules.
We can conclude that E′Y is δ-scattered for some δ ≥ 0, since Y is coarsely coherent.
Now using the same kind of estimate, E′X is `(δ)-scattered. �

There are two types of natural filtrations that can be assigned to submodules of
filtered modules.

Definition 3.3. (1) Suppose that F is a filtered module and F′ is any submodule of F.
Then F′ can be given the canonical filtration F′(S ) = F(S ) ∩ F′. It is clear that if F is
an insular filtered module, then F′ is also insular.
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(2) Suppose that T is a subset of X. For any choice of a number D ≥ 0, one has
the submodules FT,D(S ) =

∑
x∈S∩T F(x[D]) for all S ⊂ X. They give a filtration of

FT,D =
∑

x∈T F(x[D]). It follows easily that FT,D is always a lean X-filtered module.
Notice that, as defined, both filtrations are X-filtrations.

We are ready to prove the fibering permanence theorem (Theorem 2.11).

Proof of Theorem 2.11. First, observe that in view of Theorem 3.2, we may assume
that π : X → Y is surjective. Given an exact sequence

0→ E′
f
−−→ E

g
−−→ E′′ → 0

of X-filtered R-modules, where f and g are b-bicontrolled maps, E is D-lean and E′′

is d-insular, we want to show that E′ is scattered. There is a Y-filtration of E′ given by
E′Y (T ) = E′(π−1(T )). It is easy to see that the exact sequence

0→ E′Y
f
−−→ EY

g
−−→ E′′Y → 0

of Y-filtered modules has the same properties with respect to the new filtrations: f
and g are bicontrolled, EY is lean and E′′Y is insular. This allows us to conclude that
E′Y is δY -scattered for some number δY ≥ 0, so every k ∈ E′Y is a sum k =

∑
ky, where

ky ∈ E′Y (y[δY ]) = E′(π−1(y[δY ])).
Suppose that ` is a uniform expansion control function for π. Let Ey be the

filtered module Eπ−1(y[δY +`(b)]),D, described in Definition 3.3(2), which is a lean module
containing f E′Y (y[δY ]). The kernel element ky is in the kernel of the restriction map
g : Ey → E′′Y (y[δY + 2`(b) + `(D)]). The image E′′y = g(Ey) is given the canonical
filtration induced from the insular filtration of E′′ which makes E′′y insular. By the
family assumption, we conclude that the kernel of g : Ey → E

′′
y is δ-scattered for a

constant δ ≥ 0 independent from y. So,

ky ∈
∑

x∈π−1(y[δY ])

E′(x[δ])

because of our assumption that π is surjective. Thus, E′ is δ-scattered. �

Straight finite decomposition complexity (sFDC) is a property of metric spaces
introduced by Dranishnikov and Zarichnyi [7]. The class of groups with sFDC is
remarkably broad. It includes groups with finite asymptotic dimension, all elementary
amenable groups and all countable subgroups of almost connected Lie groups.

Theorem 3.4. A metric space X with sFDC is coarsely coherent.

Proof. The proof of the main result from [8] applies literally and verifies coarse
coherence of the metric space. �

It is known that a metric space with finite asymptotic dimension has sFDC.

Corollary 3.5. A metric space X with finite asymptotic dimension is coarsely
coherent.

https://doi.org/10.1017/S0004972718000977 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000977


[8] Coarse coherence of metric spaces 429

The following simple corollary to Theorem 2.11 shows that coarse coherence of
finitely generated groups is preserved by group extensions.

Corollary 3.6. Let π : G→ H be a surjective homomorphism from a finitely generated
group G. We assume that the groups are given word metrics with respect to finite
generating sets and that the kernel K is given the subspace metric. If K is coarsely
coherent and H is coarsely coherent, then G is coarsely coherent.

Proof. If S is a finite generating set for G, π(S ) can be used as a finite generating set
of H, and the resulting word metric space is known to be coarsely coherent by quasi-
isometry invariance of coarse coherence. The isometric action of G on H is transported
from the left action of G on itself, so the action is by isometries. In this situation, the
quasi-stabilisers Wr(e) from the proof of [1, Theorem 7] are π−1(e[r]) = K[r]. Since
K is coarsely equivalent to K[r], we see that π−1(e[r]) is coarsely coherent for any r
and so all π−1(x[r]) are coarsely coherent by quasi-isometry invariance. This means
that for a fixed r > 0 the family {π−1(x[R])}x∈X is uniformly coarsely coherent. So, G is
coarsely coherent by applying the fibering permanence theorem (Theorem 2.11). �

Using more of the recent technology developed by Kasprowski et al. in [11], we can
deduce many other permanence properties for coarse coherence. As a consequence,
coarse coherence is preserved under many other group-theoretic constructions.

First, we observe that Theorem 3.2 together with the subspace permanence from
Theorem 3.2 confirms the following general fibering permanence property of coarse
coherence. For the sake of brevity we do not review the extension of uniformly
expansive maps of metric families. The details can be found in [11].

Theorem 3.7. Assume that π : X → Y is a uniformly expansive map with Y in C. If,
for any uniformly bounded subfamily B of Y, the family f −1(B) is necessarily in C,
then X is in C.

Remark 3.8. The remarkable sequence of Theorems 5.4, 5.6, 5.8, 5.10 and 5.12
from [11] establishes a number of permanence properties as formal consequences
of Theorem 3.7 for a collection of metric families C which also contains all metric
families with finite asymptotic dimension. We have seen that this is so for coarse
coherence from Corollary 3.5. The new properties that follow are finite amalgamation
permanence, finite union permanence, union permanence and limit permanence. We
refer to [11] for the precise definitions and details.

4. Coarse regular coherence
In this section, we define the new property coarse regular coherence of finitely

generated groups and leverage our permanence theorems for coarse coherence to the
class of coarsely regular coherent groups. We also recall the notion of weak regular
coherence from [3, 6, 8] and explain its relationship to this paper.

In the rest of this section, R will be a commutative Noetherian ring.
Let Γ be a finitely generated group with a word metric. There is an isometric action

of Γ on itself by left multiplication.
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Definition 4.1. A Γ-filtered R-module is Γ-equivariant or simply a Γ-module if
F(γS ) = γF(S ) for all choices of γ ∈ Γ and S ⊂ Γ.

It is clear that a Γ-module has the structure of an R[Γ]-module. It turns out that
any R[Γ]-module can be given a Γ-filtration specific to a finite generating set in Γ as
follows. Given a left R[Γ]-module F with a finite generating set Σ, it is also an R-
module with the generating set Σ′ = {γσ ∈ F | γ ∈ Γ, σ ∈ Σ}. Now one can associate to
every subset S of Γ the left R-submodule F(S ) generated by γσ ∈ Σ′ such that γ ∈ S
and σ ∈ Σ. This gives a functor F : P(Γ)→ModR(F), from the power set of Γ to the R-
submodules of F, such that F(Γ) = F, F(∅) = 0 and, for a bounded subset T ⊂ Γ, F(T )
is a finitely generated R-module. This shows that F with the given filtration, which will
be denoted by FΣ, is a Γ-filtered R-module. It is easy to see that FΣ is Γ-equivariant,
so FΣ is a Γ-module. Clearly, FΣ is 0-lean by design.

As an example, a finitely generated free R[Γ]-module with a finite set of free
generators Σ can be given the structure of a Γ-module as above. In this case Σ′ = Γ × Σ.
It is easy to see that in this case the Γ-filtration is 0-lean and 0-insular. It follows from
Theorem 2.6 that images of idempotents of lean, insular, locally finitely generated
modules also have these three properties. This allows us to generate examples of such
modules from idempotents of free geometric modules. Examples of harder to construct
nonprojective lean, insular R[Γ]-modules can be found in the last section of [6].

Coarse coherence of the group Γ implies that the kernel of any R[Γ]-equivariant
surjection between finitely generated, lean, insular Γ-modules is finitely generated.
We refer to [3] for an explanation. So, we have the following consequence.

Theorem 4.2. Suppose that R is a commutative Noetherian ring and Γ is a finitely
generated group viewed as a metric space with respect to the word metric associated
to some fixed choice of a generating set. If Γ is coarsely coherent, then any finitely
generated Γ-module F has a resolution of finite type by finitely generated free Γ-
modules.

Proof. Given F, select a finite generating set Σ and consider the Γ-filtered module FΣ

as above. Now the R-submodule 〈Σ〉 generated by Σ has a free finitely generated R-
module Fe with a surjection onto 〈Σ〉. Similarly, all submodules 〈γΣ〉 have free finitely
generated R-modules Fγ isomorphic to Fe and surjections onto each 〈γΣ〉 which serve
as components of a Γ-equivariant surjection

⊕
γ∈S Fγ → F. By the coarse coherence

of Γ, the kernel of this surjection is finitely generated and is, in fact, lean when given
the canonical filtration as a submodule of the free geometric Γ-module

⊕
Fγ. This

allows us to iterate the construction inductively to produce a resolution of F of finite
type. �

Now here finally is the definition.

Definition 4.3 (Coarse regular coherence). A finitely generated group Γ is coarsely
regular coherent relative to a ring R if every R[Γ]-module F which is lean, insular and
locally finitely generated when viewed as a Γ-filtered R-module has a finite projective
resolution over R[Γ]. It is called simply coarsely regular coherent if it is coarsely
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regular coherent relative to any regular coherent ring of finite global dimension. We
will use the notation Y for the class of all coarsely regular coherent groups.

Now let us address the relationship of coarse coherence to weak coherence.

Definition 4.4. A Γ-module F has an admissible presentation if there is an exact
sequence

F2 → F1 → F → 0,

where F1 and F2 are finitely generated free Γ-modules and the homomorphism
f : F2 → F1 is bicontrolled.

Definition 4.5 (Weak regular coherence). A finitely generated group Γ is weakly
coherent relative to R if every Γ-module with an admissible presentation has a
projective resolution of finite type over R[Γ]. It is weakly regular coherent relative to
R if every Γ-module with an admissible presentation has a finite projective resolution
over R[Γ]. We define Γ to be simply weakly coherent, respectively weakly regular
coherent, if Γ is weakly coherent, respectively weakly regular coherent, relative to any
regular Noetherian ring of finite global dimension.

Weak regular coherence was introduced and studied in [2, 3, 6, 8].

Theorem 4.6. Coarse coherence of a group implies weak coherence. Coarse regular
coherence implies weak regular coherence.

The proof follows from the next two lemmas.

Lemma 4.7. A module with an admissible presentation is lean, insular and locally
finitely generated with respect to the Γ-filtration. If Γ is a coarsely coherent group,
then, conversely, every lean, insular and finitely generated R[Γ]-module has an
admissible presentation.

Proof of Lemma 4.7. If F is the quotient of a boundedly bicontrolled homomorphism
F2 → F1 with the image I filtered by I(S ) = I ∩ F1(S ), then the filtration F(S ) =

F1(S )/I(S ) makes the quotient map F1 → F bicontrolled. It is known that boundedly
bicontrolled homomorphisms are balanced [4, Proposition 2.8], so the kernel K of this
quotient map is lean as the image of a lean module F2. Therefore, F is lean and insular
by parts (1) and (3) of Theorem 2.6 applied to the short exact sequence K → F1 → F.

Now suppose that F is a D-lean, insular, finitely generated R[Γ]-module. Since
the R-submodule F(e[D]) is finitely generated, there are a finitely generated free R-
module Fe and an R-linear epimorphism φe : Fe → F(e[D]). One similarly has an
epimorphism φγ : Fγ → F(γ[D]) using isomorphic copies Fγ of Fe. A new geometric
Γ-filtered module F1 is defined by assigning F1(S ) =

⊕
γ∈S Fγ, so F1 is a lean insular

Γ-module. There is an R[Γ]-homomorphism φ1 : F1 → F induced by sending F1(γ)
onto F(γ[D]) via φγ. This is a D-bicontrolled R-homomorphism. Since Γ is coarsely
coherent, the kernel K of φ1 is a scattered Γ-module. It is insular by Theorem 2.6(2).
One similarly constructs a filtered module F2 and a bicontrolled R[Γ]-homomorphism
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φ2 : F2 → K using the Γ-equivariant scattering of K. Since K is finitely generated over
R[Γ], F2 can be chosen to be finitely generated as well. The composition of φ2 and
the inclusion of K in F1 gives a bicontrolled ψ2 : F2 → F1 with the cokernel F, as
required. �

Lemma 4.8. If Γ is a coarsely coherent group, then every lean, insular, finitely
generated R[Γ]-module is of type FP∞.

Proof of Lemma 4.8. Applying the construction from the proof of Lemma 4.7 to
φ2 : F2 → K and proceeding inductively, one obtains a projective R[Γ]-resolution by
finitely generated R[Γ]-modules

· · · → Fn → Fn−1 → · · · → F2 → F1 → F → 0.

In this resolution, each homomorphism ψn : Fn → Fn−1 factors through an
epimorphism φn onto a scattered, insular Γ-submodule Kn−1 of Fn−1. �

To state the next theorem, which provides examples of coarsely regular coherent
groups, recall that Kropholler [12, 13] defined the class of groups LHF which
includes, in particular, all groups with finite K(Γ, 1).

Theorem 4.9. A coarsely coherent group that belongs to Kropholler’s hierarchy LHF
is coarsely regular coherent.

Proof. The main result of [8] was stated for weak regular coherence. From inspecting
the argument, it is evident that the key property of the syzygies analysed in the proof
is that they are scattered rather than lean. So, the argument applies verbatim under this
new assumption. �

Corollary 4.10. A finitely generated group with sFDC that belongs to Kropholler’s
hierarchy LHF is coarsely regular coherent.

Finally, we list some closure properties of the class Y.

Theorem 4.11. The class of coarsely regular coherent groups is closed under:

• passage to subgroups;
• passage to supergroups of finite index;
• extensions such as finite semi-direct products of groups, including finite direct

products;
• direct unions;
• amalgamated free products and HNN extensions.

Proof. The corresponding closure properties for LHF are in [12, Sections 2.2 and 2.4].
For the class C with the coarse coherence property, these are consequences of
Theorem 4.9 in conjunction with Theorem 3.7 and Corollary 3.5 as explained in
Remark 3.8. �

Note an elementary consequence of this fact: the family of regular coherent groups
that Waldhausen constructed in [14], which are essentially multiple amalgamated free
products and HNN extensions of finitely many copies of Z, are in Y.
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