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Abstract

Let R be an integral domain and A a cellular algebra over R with a cellular basis {Cλ
S ,T | λ ∈ Λ and

S , T ∈ M(λ)}. Suppose that A is equipped with a family of Jucys–Murphy elements which satisfy the
separation condition in the sense of Mathas [‘Seminormal forms and Gram determinants for cellular
algebras’, J. reine angew. Math. 619 (2008), 141–173, with an appendix by M. Soriano]. Let K be the
field of fractions of R and AK = A

⊗
R K. We give a necessary and sufficient condition under which

the centre of AK consists of the symmetric polynomials in Jucys–Murphy elements. We also give an
application of our result to Ariki–Koike algebras.

2010 Mathematics subject classification: primary 16U70; secondary 16G30.
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1. Introduction

Jucys–Murphy elements were first constructed for the group algebras of symmetric
groups. The combinatorics of these elements allow one to compute simple
representations explicitly and often easily in the semisimple case. Then Dipper, James
and Murphy [3–7] did a lot of work on representations of Hecke algebras and produced
analogues of the Jucys–Murphy elements for Hecke algebras of types A and B. The
constructions for other algebras can be found, for example, in [12, 17]. In [4], Dipper
and James proved that the centre of a semisimple Hecke algebra of type A consists
of symmetric polynomials in Jucys–Murphy elements. A similar result for a Hecke
algebra of type A over the ring of Laurent polynomials Z[q, q−1] was proved by Francis
and Graham [8] in 2006. In [2], Brundan proved that the centre of each degenerate
cyclotomic Hecke algebra consists of symmetric polynomials in the Jucys–Murphy
elements. An analogous conjecture for Ariki–Koike Hecke algebras is open in the
nonsemisimple case.

Cellular algebras were introduced by Graham and Lehrer [11] in 1996, motivated by
previous work of Kazhdan and Lusztig [14]. The theory of cellular algebras provides
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a systematic framework for studying the representation theory of nonsemisimple
algebras which are deformations of semisimple ones. Many classes of algebras
from mathematics and physics are found to be cellular, including Hecke algebras of
finite type, Ariki–Koike Hecke algebras, q-Schur algebras, Brauer algebras, partition
algebras, Birman–Wenzl algebras and so on; see [9, 11, 19, 20] for details.

The fact that most of the algebras which have Jucys–Murphy elements are cellular
leads one to define Jucys–Murphy elements for general cellular algebras. In [16],
Mathas did some work in this direction. Goodman gave another abstraction of Jucys–
Murphy elements in [10]. One of Mathas’ results is that if a cellular algebra has a
family of Jucys–Murphy elements, then the symmetric polynomials in Jucys–Murphy
elements are central under certain conditions. Using the definition of Mathas, in this
note we investigate the relations between the centres and the Jucys–Murphy elements
of cellular algebras. Note that we also studied centres of symmetric cellular algebras
in [15].

Let R be an integral domain and A a cellular R-algebra with a cellular basis
{Cλ

S ,T | S , T ∈ M(λ), λ ∈ Λ}. Let K be the field of fractions of R and AK = A
⊗

R K.
Suppose that A is equipped with a family of Jucys–Murphy elements L1, . . . , Lm which
satisfy the separation condition [16]. We will give a necessary and sufficient condition
under which the centre of AK consists of the symmetric polynomials in Jucys–Murphy
elements. This condition is also a necessary condition for the centre of A consisting
of the symmetric polynomials in Jucys–Murphy elements. Moreover, by this result,
we prove that the centres of Ariki–Koike Hecke algebras consist of the symmetric
polynomials in Jucys–Murphy elements in the semisimple case. The proof is different
from Ariki’s in [1] and Ram’s in [18].

We start with a quick review of the results under the separation condition in [16].
Then we prove the main result in Section 3. Finally, we give an application of our
result by Ariki–Koike algebras in Section 4.

2. Cellular algebras and Jucys–Murphy elements

In this section, we first recall the definition of cellular algebras and then give a quick
review of the results under the so-called separation condition in Mathas’ paper [16].

D 2.1 [11, Definition 1.1]. Let R be a commutative ring with identity. An
associative unital R-algebra is called a cellular algebra with cell datum (Λ, M,C, i) if
the following conditions are satisfied.

(C1) The finite set Λ is a poset. Associated with each λ ∈ Λ, there is a finite set
M(λ). The algebra A has an R-basis {Cλ

S ,T | S , T ∈ M(λ), λ ∈ Λ}.
(C2) The map i is an R-linear anti-automorphism of A with i2 = id which sends Cλ

S ,T

to Cλ
T,S .

(C3) If λ ∈ Λ and S , T ∈ M(λ), then for any element a ∈ A, we have

aCλ
S ,T ≡

∑
S ′∈M(λ)

ra(S ′, S )Cλ
S ′,T (mod A(<λ)),
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where ra(S ′, S ) ∈ R is independent of T and where A(< λ) is the R-submodule of A
generated by {Cµ

S ′′,T ′′ | S
′′, T ′′ ∈ M(µ), µ < λ}. Applying i to the equation in (C3),

Cλ
T,S i(a) ≡

∑
S ′∈M(λ)

ra(S ′, S )Cλ
T,S ′ (mod A(< λ)).

Let R be an integral domain. Given a cellular algebra A, we will also assume that
M(λ) is a poset with an order ≤λ. Let M(Λ) =

⊔
λ∈Λ M(λ). We consider M(Λ) as a

poset with an order ≤ as follows.

S ≤ T ⇔

S ≤λ T, if S , T ∈ M(λ);

λ ≤ µ, if S ∈ M(λ), T ∈ M(µ).

Let K be the field of fractions of R and AK = A
⊗

R K. We will consider A as a
subalgebra of AK .

D 2.2 [16, Definition 2.4]. Let R be an integral domain and A a cellular
algebra. A family L1, . . . , Lm of elements of A is called a family of Jucys–Murphy
elements if:

(1) LiL j = L jLi, for 1 ≤ i, j ≤ m;
(2) i(L j) = L j, for j = 1, . . . , m;
(3) For all λ ∈ Λ, S , T ∈ M(λ) and Li, i = 1, . . . , m,

Cλ
S ,T Li ≡ cT (i)Cλ

S ,T +
∑
V<T

rLi (V, T )Cλ
S ,V (mod A(< λ)),

where cT (i) ∈ R, rLi (T, V) ∈ R. We call cT (i) the content of T at i. Denote
{cT (i) | T ∈ M(Λ)} by C (i) for i = 1, 2, . . . , m.

E 2.3. Let K be a field. Let A be the group algebra of the symmetric group S n.
Set Li =

∑i−1
j=1(i, j) for i = 2, . . . , n. Then Li, i = 2, . . . , n, is a family of Jucys–Murphy

elements of A.

D 2.4 [16, Definition 2.8]. Let A be a cellular algebra with a family of Jucys–
Murphy elements {L1, . . . , Lm}. We say that the Jucys–Murphy elements satisfy the
separation condition if for any S , T ∈ M(Λ), S ≤ T, S , T , there exists some i with
1 ≤ i ≤ m such that cS (i) , cT (i).

R 2.5. The separation condition forces AK to be semisimple (see [16]).

From now on, we always assume that A is a cellular algebra equipped with a family
of Jucys–Murphy elements which satisfy the separation condition. We now recall some
results of [16].

D 2.6 [16, Definition 3.1]. Let A be a cellular algebra with a family of Jucys–
Murphy elements {L1, . . . , Lm}. For λ ∈ Λ, S , T ∈ M(λ), define

FT =
∏

i

∏
c∈C (i),c,cT (i)

(Li − c)/(cT (i) − c)

and f λS ,T = FS Cλ
S ,T FT .
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Note that the coefficient of Cλ
S ,T in the expansion of f λS ,T is 1 for any λ ∈ Λ and

S , T ∈ M(λ), see [16, 3.3(a)]. Then Mathas proved the following theorems.

T 2.7 [16, Theorem 3.7]. Let A be a cellular algebra with a family of Jucys–
Murphy elements {L1, . . . , Lm}. Let λ, µ ∈ Λ, S , T ∈ M(λ) and U, V ∈ M(µ). Then:

(1) f λS ,T f µU,V =

γT f λS ,V , λ = µ, T = U,

0, otherwise,

where γT ∈ K and γT , 0 for all T ∈ M(Λ);
(2) { f λS ,T | S , T ∈ M(λ), λ ∈ Λ} is a cellular basis of AK .

T 2.8 [16, Theorem 3.16]. Let A be a cellular algebra with a family of Jucys–
Murphy elements {L1, . . . , Lm}.

(1) Let λ ∈ Λ and T ∈ M(λ). Then FT is a primitive idempotent in AK . Moreover,
{FT | T ∈ M(λ)} is a complete set of pairwise orthogonal primitive idempotents
in AK .

(2) Fλ =
∑

T∈M(λ) FT is a central idempotent in AK for any λ ∈ Λ. Moreover,
{Fλ | λ ∈ Λ} is a complete set of central idempotents which are primitive in Z(AK).

(3) In particular, 1 =
∑
λ∈Λ Fλ =

∑
T∈M(Λ) FT and Li =

∑
T∈M(Λ) cT (i)FT .

3. Jucys–Murphy elements and centres of cellular algebras

In [16], Mathas gave a relation between the centre and Jucys–Murphy elements of
a cellular algebra.

P 3.1 [16, Proposition 4.13]. Let A be a cellular algebra with Jucys–
Murphy elements {L1, . . . , Lm}. Suppose that for λ ∈ Λ, there exist scalars cλ(i), for
1 ≤ i ≤ m, such that

{cλ(i) | 1 ≤ i ≤ m} = {cT (i) | 1 ≤ i ≤ m}

for any T ∈ M(λ). Then every symmetric polynomial in L1, . . . , Lm belongs to the
centre of AK .

In fact, the converse proposition also holds.

P 3.2. Let A be a cellular algebra with a family of Jucys–Murphy elements
{L1, . . . , Lm}. Suppose that every symmetric polynomial in L1, . . . , Lm belongs to the
centre of AK . Then for any λ ∈ Λ, there exist scalars cλ(i), 1 ≤ i ≤ m, such that

{cλ(i) | 1 ≤ i ≤ m} = {cT (i) | 1 ≤ i ≤ m}

for any T ∈ M(λ).

P. Suppose that there exist some λ ∈ Λ and S , T ∈ M(λ) such that

{cS (i) | 1 ≤ i ≤ m} , {cT (i) | 1 ≤ i ≤ m}.
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Then there exists a symmetric polynomial p such that

p(cS (1), . . . , cS (m)) , p(cT (1), . . . , cT (m)).

Note that Li =
∑

X∈M(Λ) cX(i)FX . Then

p(L1, . . . , Lm) =
∑

U∈M(Λ)

p(cU(1), . . . , cU(m))FU .

By Theorem 2.8(1), multiplying by FT on both sides, we get

p(L1, . . . , Lm)FT = p(cT (1), . . . , cT (m))FT .

The equality p(L1, . . . , Lm)FS = p(cS (1), . . . , cS (m))FS is obtained similarly.
On the other hand, since p(L1, . . . , Lm) ∈ Z(AK), then by Theorem 2.8(3)

p(L1, . . . , Lm) =
∑
λ∈Λ

rλFλ,

where rλ ∈ K. Multiplying by FT on both sides of this equation

p(L1, . . . , Lm)FT = rλFT .

The equation p(L1, . . . , Lm)FS = rλFS can be obtained similarly. Then

p(cT (1), . . . , cT (m)) = rλ = p(cS (1), . . . , cS (m)),

which is a contradiction. �

Now we are in a position to give the main result of this paper.

T 3.3. Let R be an integral domain and A a cellular R-algebra with a cellular
basis {Cλ

S ,T | S , T ∈ M(λ), λ ∈ Λ}. Let K be the field of fractions of R and AK =

A
⊗

R K. Suppose that A is equipped with a family of Jucys–Murphy elements
L1, . . . , Lm which satisfy the separation condition and all symmetric polynomials in
L1, . . . , Lm belong to the centre of AK . Then the following are equivalent.

(1) The centre of AK consists of all symmetric polynomials in the Jucys–Murphy
elements.

(2) For any λ, µ ∈ Λ with λ , µ,

{cλ(i) | 1 ≤ i ≤ m} , {cµ(i) | 1 ≤ i ≤ m}.

To prove this theorem, we need the following two lemmas.

L 3.4. Let X1, X2, . . . , Xm be indeterminates over a field K and let {x1, . . . , xm}

and {y1, . . . , ym} be two families of elements in K. Suppose that there exists
some k ∈ K, such that p(x1, . . . , xm) = kp(y1, . . . , ym) for any symmetric polynomial
p(X1, X2, . . . , Xm) ∈ K[X1, X2, . . . , Xm]. Then {x1, . . . , xm} = {y1, . . . , ym}.
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P. Clearly, if p is a symmetric polynomial, then p2 is also a symmetric
polynomial. Then

(p(x1, . . . , xm))2 = (kp(y1, . . . , ym))2 = k(p(y1, . . . , ym))2.

Hence (k2 − k)(p(y1, . . . , ym))2 = 0. Then k2 − k = 0 since p is arbitrary. So we have
k = 0 or k = 1. If k = 0, then p(x1, . . . , xm) = 0 for any p. This is impossible. Then
k = 1. That is, p(x1, . . . , xm) = p(y1, . . . , ym) for arbitrary p. �

Let {k11, . . . , k1m}, . . . , {kn1, . . . , knm} be n families of elements in K and p a
symmetric polynomial. We will denote p(ki1, . . . , kim) by p(i).

L 3.5. Suppose that {k11, . . . , k1m}, . . . , {kn1, . . . , knm} are n families of elements
in a field K and X1, X2, . . . , Xm indeterminates. Let p′1(X1, X2, . . . , Xm), . . . , p′n
(X1, X2, . . . , Xm) ∈ K[X1, X2, . . . , Xm] be n symmetric polynomials such that∣∣∣∣∣∣∣∣

p′1(1) . . . p′1(n)
. . . . . . . . .

p′n(1) . . . p′n(n)

∣∣∣∣∣∣∣∣ , 0.

Then there exist n symmetric polynomials p1, . . . , pn such that∣∣∣∣∣∣∣∣∣∣∣
p1(1) p1(2) . . . p1(n)

0 p2(2) . . . p2(n)
. . . . . . . . . . . .
0 0 . . . pn(n)

∣∣∣∣∣∣∣∣∣∣∣ , 0.

P. The proof of the lemma follows from the facts that elementary row operations
do not change the determinant up to multiplication by ±1 and linear combinations of
symmetric polynomials are still symmetric polynomials. �

P  T. Since p(L1, L2, . . . , Lm) =
∑
λ∈Λ p(cλ(1), . . . , cλ(m))Fλ (see the

proof of [16, Proposition 4.13]), then (1)⇒ (2) is obvious.
We now prove (2)⇒ (1). Suppose that there are n elements in Λ. Without loss of

generality, extend the partial order on Λ to a total one and denote the elements in Λ by
1, 2, . . . , n.

If there exist symmetric polynomials p1, p2, . . . , pn such that∣∣∣∣∣∣∣∣∣∣∣
p1(1) p1(2) . . . p1(n)
p2(1) p2(2) . . . p2(n)
. . . . . . . . . . . .

pn(1) pn(2) . . . pn(n)

∣∣∣∣∣∣∣∣∣∣∣ , 0,

where pi( j) = pi(c j(1), c j(2), . . . , c j(m)), then by

p(L1, L2, . . . , Lm) =
∑
λ∈Λ

p(cλ(1), . . . , cλ(m))Fλ,
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any Fλ is a linear combination of symmetric polynomials in Jucys–Murphy elements.
Note that the algebra AK is semisimple and then {Fλ | λ ∈ Λ} is a basis of the centre
of AK ; thus the set of symmetric polynomials in Jucys–Murphy elements coincides
with Z(AK).

Hence the key is to prove the existence of those n eligible polynomials. Clearly,
there exists a symmetric polynomial p1 such that p1(1) , 0,

For any 1 ≤ i < n, assume that there exist symmetric polynomials p′1, p′2, . . . , p′i
such that ∣∣∣∣∣∣∣∣

p′1(1) . . . p′1(i)
. . . . . . . . .

p′i(1) . . . p′i(i)

∣∣∣∣∣∣∣∣ , 0.

Then by Lemma 3.5, there exist symmetric polynomials p1, . . . , pi such that∣∣∣∣∣∣∣∣∣∣∣
p1(1) p1(2) . . . p1(i)

0 p2(2) . . . p2(i)
. . . . . . . . . . . .
0 0 . . . pi(i)

∣∣∣∣∣∣∣∣∣∣∣ , 0.

Suppose that for any symmetric polynomial p,

d :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1(1) p1(2) . . . p1(i) p1(i + 1)
0 p2(2) . . . p2(i) p2(i + 1)
. . . . . . . . . . . . . . .
0 0 . . . pi(i) pi(i + 1)

p(1) p(2) . . . p(i) p(i + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Then p(i + 1) = k1 p(1) + k2 p(2) + · · · + ki p(i), where k j ∈ K is independent of p for
j = 1, . . . , i. Note that pi p is also a symmetric polynomial, and we have

pi p(i + 1) = k1 pi p(1) + k2 pi p(2) + · · · + ki pi p(i).

Assume that pi(i + 1) , 0. Then pi(i + 1)p(i + 1) = ki pi(i)p(i), or p(i + 1) = kp(i),
where k ∈ K is independent of the choice of p. This implies that p(i + 1) = p(i) by
Lemma 3.4, which is a contradiction. Then pi(i + 1) = 0. That is, ki pi(i)p(i) = 0. Since
pi(i) , 0 and p is arbitrary, then ki = 0. Repeating this process similarly, we have k j = 0
for j = 1, . . . , i and then p(i + 1) = 0. But this is impossible for p is arbitrary. Then
there exists a symmetric polynomial p such that d , 0. This implies that the eligible n
polynomials exist and the proof is complete. �

C 3.6. Let R be an integral domain and A a cellular algebra. Suppose that A
is equipped with a family of Jucys–Murphy elements which separate A. If the centre of
A consists of symmetric polynomials in Jucys–Murphy elements, then

{cλ(i) | 1 ≤ i ≤ m} , {cµ(i) | 1 ≤ i ≤ m},

for arbitrary λ, µ ∈ Λ with λ , µ.
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4. An application to Ariki–Koike Hecke algebras

In this section, we prove that the centre of a semisimple Ariki–Koike Hecke algebra
(q , 1) consists of the symmetric polynomials in Jucys–Murphy elements. This is a
new proof, different from Ariki’s in [1] and Ram’s [18].

Firstly, we recall some notions of combinatorics. Recall that a partition of n is a
nonincreasing sequence of nonnegative integers λ = (λ1, . . . , λr) such that

∑r
i=1 λi = n.

The diagram of a partition λ is the subset [λ] = {(i, j) | 1 ≤ j ≤ λi, i ≥ 1}. The elements
of λ are called nodes. Define the residue of the node (i, j) ∈ [λ] to be j − i. For
any partition λ = (λ1, λ2, . . .), the conjugate of λ is defined to be a partition λ′ =
(λ′1, λ

′
2, . . .), where λ′j is equal to the number of nodes in column j of [λ] for

j = 1, 2, . . . . For partitions, the following lemma is clear.

L 4.1. Let λ and µ be two partitions of n. Then λ = µ if and only if all residues of
nodes in [λ] and [µ] are the same.

Given two partitions λ and µ of n, write λ D µ if

j∑
i=1

λi ≥

j∑
i=1

µi, for all i ≥ 1.

This is the so-called dominance order.
A λ-tableau is a bijection t : [λ]→ {1, 2, . . . , n}. We say that t is a standard λ-

tableau if the entries in t increase from left to right in each row and from top to
bottom in each column. Denote by tλ (respectively, tλ) the standard λ-tableau, in
which the numbers 1, 2, . . . , n appear in order along successive rows (respectively,
columns). The row stabilizer of tλ, denoted by S λ, is the standard Young subgroup of
S n corresponding to λ. Let Std(λ) be the set of all standard λ-tableaux.

For a fixed positive integer m, an m-multipartition of n is an m-tuple of partitions
which sum to n. Let

λ = ((λ11, λ12, . . . , λ1i1 ), (λ21, λ22, . . . , λ2i2 ), . . . , (λm1, λm2, . . . , λmim ))

be an m-multipartition of n; we denote λ j1 + λ j2 + · · · + λ ji j by n jλ for 1 ≤ j ≤ m.
A standard λ-tableau is an m-tuple of standard tableaux. We can define tλ similarly.

Let R be an integral domain, q, u1, u2, . . . , um ∈ R and q invertible. Fix two positive
integers n and m. Then an Ariki–Koike algebra Hn,m is the associative R-algebra with
generators T0, T1, . . . , Tn−1 and relations

(T0 − u1)(T0 − u2) · · · (T0 − um) = 0,

T0T1T0T1 = T1T0T1T0,

(Ti − q)(Ti + 1) = 0, for 1 ≤ i ≤ n − 1,

TiTi+1Ti = Ti+1TiTi+1, for 1 ≤ i ≤ n − 2,

TiT j = T jTi, for 0 ≤ i < j − 1 ≤ n − 2.
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Denote by Λ the set of m-multipartitions of n. For λ ∈ Λ, let M(λ) be the set of standard
λ-tableau. Then Hn,m has a cellular basis of the form {mλ

st
| λ ∈ Λ, s, t ∈ M(λ)}. See [6]

for details.
Let Li = q1−iTi−1 · · · T1T0T1 · · · Ti−1. Then L1, L2, . . . , Ln is a family of Jucys–

Murphy elements of Hn,m. If i is in row r and column c of the jth tableau of t, then
mλ
st

Li ≡ u jqc−rmλ
st

. If [1]q · · · [n]q
∏

1≤i< j≤m
∏
|d|<n(qdui − u j) , 0 and q , 1, then the

Jucys–Murphy elements separate M(Λ). These statements were proved in [13].
Denote Hn,m ⊗R K by Hn,m,K . The following result was proved in [1, 18]. We give

a new proof here.

T 4.2 [1, 18]. The centre of Hn,m,K is equal to the set of symmetric polynomials
in the Jucys–Murphy elements if [1]q · · · [n]q

∏
1≤i< j≤m

∏
|d|<n(qdui − u j) , 0 and q , 1.

P. That the algebra Hn,m,K satisfies the conditions of the Proposition 3.1 was
pointed out in [16]. By Theorem 3.3, we only need to show that for any λ, µ ∈ Λ

with λ , µ, {cλ(i) | 1 ≤ i ≤ n} , {cµ(i) | 1 ≤ i ≤ n}. Note that we can obtain these two
sets using tλ and tµ, respectively.

Case 1. There exists 1 ≤ j ≤ m such that n jλ , n jµ. Then by the separation condition,
the number of elements of the form u jqx is n jλ in {cλ(i) | 1 ≤ i ≤ M} and is n jµ in {cµ(i) |
1 ≤ i ≤ M}, where x ∈ Z. This implies that {cλ(i) | 1 ≤ i ≤ M} , {cµ(i) | 1 ≤ i ≤ n}.

Case 2. n jλ = n jµ for all 1 ≤ j ≤ m. Then there must exist 1 ≤ s ≤ m, such that the
partition of ns in λ is not equal to that in µ since λ , µ. Denote the partitions by λs

and µs. Then the residues of λs and µs are not the same. Now by Lemma 4.1 and the
separation condition, the set of all the elements of the form usqx in {cλ(i) | 1 ≤ i ≤ M}
is different from that in {cµ(i) | 1 ≤ i ≤ n}. �

R 4.3. If q , 1, then [1]q · · · [n]q
∏

1≤i< j≤m
∏
|d|<n(qdui − u j) , 0 if and only if

Hn,m,K is semisimple. See [1] for details.
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