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The Universal Enveloping Algebra of the
Schrödinger Algebra and its Prime
Spectrum

V. V. Bavula and T. Lu

Abstract. _e prime, completely prime, maximal, and primitive spectra are classiûed for the uni-
versal enveloping algebra of the Schrödinger algebra. _e explicit generators are given for all of
these ideals. A counterexample is constructed to the conjecture of Cheng and Zhang about non-
existence of simple singular Whittaker modules for the Schrödinger algebra (and all such modules
are classiûed). It is proved that the conjecture holds ‘generically’.

1 Introduction

In this paper, module means le� module, K is a ûeld of characteristic zero, K∗ ∶=
K ∖ {0}, N = {0, 1, 2, . . .} is the set of natural numbers, and N+ ∶= {1, 2, . . .}.
_e Schrödinger algebra s is a 6-dimensional Lie algebra that admits a K-basis
{F ,H, E ,Y , X , Z}, where the Lie bracket on s is as follows:

[H, E] = 2E , [H, F] = −2F , [E , F] = H, [H, X] = X ,
[H,Y] = −Y , [E ,Y] = X , [E , X] = 0, [F , X] = Y ,
[F ,Y] = 0, [X ,Y] = Z , [Z , s] = 0.

_e Lie algebra s is a semidirect product s = sl2 ⋉ H of Lie algebras where sl2 =
KF ⊕KH ⊕KE andH = KX ⊕KY ⊕KZ is the three dimensional Heisenberg Lie
algebra.

_e Schrödinger algebra plays an important role in mathematical physics. A clas-
siûcation of simple lowest weight modules of the Schrödinger algebra is given in [13].
_e fact that all the weight spaces of a simple weight module have the same dimen-
sion is proved in [17]. By using Mathieu’s twisting functor, a classiûcation of simple
weight modules with ûnite dimensional weight spaces over the Schrödinger algebra
is given in [11]. In [16], the author studied the ûnite dimensional indecomposable
modules of the Schrödinger algebra. _e BGG categoryO of the Schrödinger algebra
was considered in [12], and the simple non-singular Whittaker modules and quasi-
Whittaker modules were classiûed in [9, 18]. In [7], a classiûcation of simple weight
U(s)-modules is given.

_e primitive spectrum of U(s) Let S ∶= U(s) be the universal enveloping algebra
of the Schrödinger Lie algebra s. _e primitive ideals of U(s) with non-zero central
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_e Universal Enveloping Algebra of the Schrödinger Algebra 689

charge were described in [12]: Each such primitive ideal is the annihilator of a simple
highest weight U(s)-module with nonzero central charge, [12, Corollary 30]. In [12],
the author mentioned that “the problem of classiûcation of primitive ideals in U(s)
for zero central chargemight be very diõcult”. In [5], using the classiûcation of prime
ideals of the algebra A ∶= U(s)/(Z) ([5, _eorem 2.8]), a classiûcation of primitive
ideals of U(s) with zero central charge is given. In this paper, using a diòerent (ring
theoretic) approach, all the primitive ideals (including with zero central charge) are
classiûed and their generators are given explicitly; see_eorem 4.4.

_e prime, completely prime, andmaximal spectra of U(s) _eprime, complete-
ly prime, andmaximal spectra are classiûed for the universal enveloping algebra of the
Schrödinger algebra (_eorem 3.3 and Corollary 3.4). An explicit set of generators is
given for all of these ideals.

Existence of simple singularWhittaker A-modules It is conjectured that there is
no simple singular Whittaker module for the algebra A [18, Conjecture 4.2]. We con-
struct a family of such A-modules (Proposition 4.6). Furthermore,we classify all such
modules (_eorem 4.7 and _eorem 4.8). We also proved that the conjecture holds
‘generically’, i.e., for any non-zero central charge (Proposition 4.5).

2 The Centre of S and Some Related Algebras

In this section, we show that the localization SZ of the algebra S at the pow-
ers of the central element Z is isomorphic to the tensor product of algebras
K[Z±1]⊗U(sl2)⊗ A1; see (2.8). Using this fact, a short proof is given of the fact that
the centre of the algebra S is a polynomial algebra in two explicit generators (Propo-
sition 2.6). _e central element C was found in [15]; see also [1, 12]. _e fact that
the centre Z(S) of S is a polynomial algebra was proved in [12] by using the Harish-
Chandra homomorphism. In the above papers, it was not clear how this element was
found. In this paper, we clarify the ‘origin’ of C which is the Casimir element of the
‘hidden’ U(sl2), which is a tensor component in the decomposition (2.8).

_e n-th Weyl algebra An = An(K) is an associative algebra that is generated by
elements x1 , . . . , xn , y1 , . . . , yn subject to the deûning relation: [x i , x j] = 0, [y i , y j] =
0 and [y i , x j] = δ i j , where [a, b] ∶= ab − ba and δ i j is the Kronecker delta function.
_eWeyl algebra An is a simple Noetherian domain of Gelfand–Kirillov dimension
2n. Let U ∶= U(sl2) be the enveloping algebra of the Lie algebra sl2. _en the centre
of the algebraU is a polynomial algebra, Z(U) = K[∆], where ∆ ∶= 4FE +H2 +2H is
called the Casimir element of U . For an algebra R, we denote its centre by Z(R). For
an element r ∈ R, we denote by (r) the ideal of R generated by the element r.

An automorphism γ of S _e algebra S admits an automorphism γ deûned by

(2.1)
γ(F) = E , γ(H) = −H, γ(E) = F ,
γ(Y) = −X , γ(X) = −Y , γ(Z) = −Z .

Clearly, γ2 = idS.
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_e subalgebraH of S Let H be the subalgebra of S generated by the elements X,
Y , and Z. _en the generators of the algebraH satisfy the deûning relations

XY − YX = Z , ZX = XZ , and ZY = YZ .

SoH = U(H) is the universal enveloping algebra of the three dimensional Heisenberg
algebraH. In particular,H is aNoetherian domain ofGelfand–Kirillov dimension 3.
Let HZ be the localization ofH at the powers of the element Z, and let X ∶= Z−1X ∈
HZ . _en the algebraHZ is a tensor product of algebras

(2.2) HZ = K[Z±1]⊗ A1 ,

where A1 ∶= K⟨X ,Y⟩ is the (ûrst) Weyl algebra, since [X ,Y] = 1.

Lemma 2.1 ([14, Lemma 14.6.5]) Let B be aK-algebra, let S = B ⊗ An be the tensor
product of the algebra B and theWeyl algebra An , and let δ be aK-derivation of S and
T = S[t; δ]. _en there exists an element s ∈ S such that the algebra T = B[t′; δ′]⊗ An
is a tensor product of algebras where t′ = t + s and δ′ = δ + ads .

_e subalgebra E of S LetE be the subalgebra of S generated by the elements X, Y ,
Z, and E. _en

E = H[E; δ](2.3)

is an Ore extension where δ is the K-derivation of the algebra H deûned by δ(Y) =
X , δ(X) = 0 and δ(Z) = 0. Let EZ be the localization of E at the powers of the
element Z. _en

EZ = HZ[E; δ] = (K[Z±1]⊗ A1)[E; δ],

where δ is deûned as in (2.3), in particular, δ(X ) = 0. Now, the element s = − 1
2ZX 2

satisûes the conditions of Lemma 2.1. In particular, the element E′ ∶= E + s = E −
1
2Z

−1X2 commuteswith the elements of A1. Hence,EZ is a tensor product of algebras

EZ = K[E′ , Z±1]⊗ A1 = K[E′]⊗HZ .(2.4)

In particular, E and EZ are Noetherian domains of Gelfand–Kirillov dimension 4.

_e subalgebra F of S Let F ∶= γ(E). _en F is the subalgebra of S generated by
the elements X ,Y , Z and F. Notice that the automorphism γ (see (2.1)) can be natu-
rally extended to an automorphism of SZ by setting γ(Z−1) = −Z−1 where SZ is the
localization of the algebra S at the powers of the element Z. Let FZ be the localization
of F at the powers of the central element Z and F′ ∶= γ(E′) = F + 1

2Z
−1Y 2 ∈ FZ . _en

FZ is a tensor product of algebras

FZ = K[F′ , Z±1]⊗ A1 = K[F′]⊗HZ ,(2.5)

where A1 is as above; see (2.2).

_e algebraA Let A be the subalgebra of S generated by the elements H, E ,Y , X,
and Z. _e algebraA is the enveloping algebra U(a) of the solvable Lie subalgebra a
of s with basis elements H, E ,Y , X and Z. _e algebraA is an Ore extension

A = E[H; δ](2.6)
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where δ is aK-derivation of the algebra E deûned by δ(E) = 2E , δ(Y) = −Y , δ(X) =
X and δ(Z) = 0. Let AZ be the localization of the algebra A at the powers of the
central element Z. _en

AZ = EZ[H; δ] = (K[E′ , Z±1]⊗ A1)[H; δ],

where δ is deûned as in (2.6), in particular, δ(X ) = X . _e element s = X Y − 1
2 =

Z−1XY − 1
2 satisûes the conditions of Lemma 2.1. In particular, the element H′ ∶=

H+ s = H+Z−1XY − 1
2 commuteswith the elements of A1 and [H′ , E′] = 2E′. Hence,

AZ is a tensor product of algebras

AZ = K[Z±1]⊗K[H′][E′; σ]⊗ A1 ,(2.7)

where σ is the automorphism of the algebra K[H′] such that σ(H′) = H′ − 2. In
particular,AZ is a Noetherian domain of Gelfand–Kirillov dimension 5.

Lemma 2.2 (i) Let E′ ∶= E − 1
2Z

−1X2, F′ ∶= F + 1
2Z

−1Y 2, and H′ ∶= H +
Z−1XY − 1

2 . _en the following commutation relations hold in the algebra SZ :

[H′ , E′] = 2E′ , [H′ , F′] = −2F′ , [E′ , F′] = H′ ,

i.e., the Lie algebra KF′ ⊕ KH′ ⊕ KE′ is isomorphic to sl2. Moreover, the subalgebra
U ′ of SZ generated by H′ , E′, and F′ is isomorphic to the enveloping algebra U(sl2).
Furthermore, the elements E′ , F′, and H′ commute with X and Y .

(ii) _e localization SZ of the algebra S at the powers of Z is SZ = K[Z±1]⊗U ′⊗A1 .

Proof (i) It is straightforward to verify that the commutation relations in the lemma
hold. _e fact that the elements E′ , F′, and H′ commute with the elements X and Y
follows from (2.4), (2.5), and (2.7), respectively. Let U be the universal enveloping
algebra of the Lie algebra sl2 = ⟨F′ ,H′ , E′⟩. _e algebra U ′ is an epimorphic image
of the algebra U under a natural epimorphism f ∶U → U ′. _e kernel of f , say p,
is a (completely) prime ideal of U , since U ′ is a domain. Suppose that p /= 0; we
seek a contradiction. _en p ∩K[∆′] /= 0 (it is known fact) where ∆′ is the Casimir
element of U ; see (2.9). In particular, there is a non-scalar monic polynomial P(t) =
tn+λn−1 tn−1+⋅ ⋅ ⋅+λ0 ∈ K[t] such that P(∆′) = 0 in SZ . _en necessarily ZnP(∆′) ≡ 0
mod SZ, i.e., (EY 2 + HXY − FX2)n ≡ 0 mod SZ, a contradiction, since S/SZ ≃
U(sl2 ⋉V2),where sl2 ⋉V2 is a semidirect product of Lie algebras and V2 = KX⊕KY
is an abelian 2-dimensional Lie algebra.

(ii) Using the deûning relations of the algebra S, we see that the algebra S is a skew
polynomial algebra S = A[F; σ , δ] where σ is the automorphism of the algebra A
deûned by σ(H) = H + 2, σ(E) = E , σ(Y) = Y , σ(X) = X, and σ(Z) = Z; and δ is
the σ-derivation of A given by the rule: δ(H) = δ(Y) = δ(Z) = 0, δ(E) = −H and
δ(X) = Y . _en, by (2.7) and statement 1,

SZ = AZ[F′; σ ′ , δ′] = (K[Z±1]⊗K[H′][E′; σ]⊗ A1)[F′; σ ′ , δ′](2.8)

= K[Z±1]⊗U ′ ⊗ A1

is a tensor product of algebras where σ ′ is an automorphism ofAZ such that σ ′(Z) =
Z , σ ′(H′) = H′ + 2, σ ′(E′) = E′ , σ ′(X) = X, and σ ′(Y) = Y ; and δ′ is a σ ′-derivation
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of the algebra AZ such that δ′(Z) = δ′(H′) = δ′(X) = δ′(Y) = 0 and δ′(E′) = −H′.
In particular, SZ is a Noetherian domain of Gelfand–Kirillov dimension 6.

Deûnition 2.3 _e algebra U ′ is called the hidden U(sl2).

Corollary 2.4 Fract(S) ≃ Fract(A2(Q2)) where A2(Q2) is the secondWeyl algebra
over the ûeld Q2 = K(x1 , x2) of rational functions in two variables.

Proof _e statement follows from Lemma 2.2(ii).

_e centre of the algebra SZ Let ∆′ ∶= 4F′E′ + H′2 + 2H′ be the Casimir element
of U ′; then the centre Z(U ′) = K[∆′] is a polynomial algebra. Using the explicit
expressions of the elements F′ , E′, and H′ (see Lemma 2.2(i)), the element ∆′ can be
written as

∆′ = (4FE +H2 +H) + 2Z−1(EY 2 +HXY − FX2) − 3
4
.(2.9)

Let

(2.10)
C ∶= Z∆′ + 3

4
Z = Z(4FE +H2 +H) + 2(EY 2 +HXY − FX2),

C′ ∶= Z∆′ = C − 3
4
Z .

Lemma 2.5 Z(SZ) = K[Z±1 ,C].

Proof By (2.8),

Z(SZ) = Z(K[Z±1]) ⊗ Z(U ′)⊗ Z(A1) = K[Z±1]⊗K[∆′]
= K[Z±1 , ∆′] = K[Z±1 ,C].

Let U be the subalgebra of S generated by the elements Z, e ∶= ZE′, f ∶= ZF′,
and h ∶= ZH′. Since e = ZE − 1

2X
2, f = ZF + 1

2Y
2 and h = Z(H − 1

2 ) + XY , the
elements Z , e , f , h belong to the ideal (X) = (X ,Y , Z) of S. By the very deûnition of
U,UZ = K[Z±1]⊗U ′, i.e., the algebraU is a ‘Z-homogenized’ version ofU ′ ≃ U(sl2).
Since the algebraU ′ is the generalizedWeyl algebra (GWA)K[H′ , ∆′][E′ , F′; σ ′ , a′ =
1
4 (∆

′ − H′2 − 2H′)], where σ(H′) = H′ − 2 and σ(∆′) = ∆′; see [2], the algebras
U = K[Z , h,C′][e , f ; σ , α = 1

4 (ZC
′ − h2 − 2Zh)] and UZ = K[Z±1 , h,C′][e , f ; σ , α]

are GWAs, where σ(Z) = Z, σ(h) = h − 2Z and σ(C′) = C′.
Using the Z-grading of the GWA UZ = ⊕i∈ZUZ , i (where UZ , i = K[Z±1 , h,C′]v i

and v j = e j and v− j = f j for j ⩾ 0) and the fact that modulo (Z) the elements e , f ,
and h of U are equal to − 1

2X
2, 1

2Y
2 and XY , respectively, we have UZ ∩ S = U.

_e factor algebra S/(Z) _e set KZ is an ideal of the Lie algebra s and s/KZ ≃
sl2⋉V2 is a semidirect product of Lie algebraswhereV2 = KX⊕KY is a 2-dimensional
abelian Lie algebra. So,

S/(Z) ≃ U(s/KZ) ≃ U(sl2 ⋉ V2).
_e element c ∶= FX2 − HXY − EY 2 is in the centre of the algebra A ∶= U(sl2 ⋉ V2).
In fact, Z(A) = K[c]; see [5].
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_e centre of the algebra S _enextproposition shows that the centreofS is apoly-
nomial algebra in two variables.

Proposition 2.6 Z(S) = K[Z ,C] = K[Z ,C′].

Proof _e second equality is obvious. By Lemma 2.5, Z(S) = S ∩ Z(SZ) = S ∩
K[Z±1 ,C] ⊇ K[Z ,C]. It remains to show that Z(S) = K[Z ,C]. Suppose that this
is not the case; we seek a contradiction. _en Z−1 f (C) ∈ Z(S) for some non-scalar
polynomial f (C) ∈ K[C] (since Z−1 ∉ S). Hence, by (2.10),

0 ≡ f (C) ≡ f (c) mod SZ;
i.e., the element c is algebraic in U(sl2 ⋉ V2), a contradiction.

3 Prime, Completely Prime, and Maximal Ideals of S

_e aim of this section is to classify the prime, completely prime, andmaximal ideals
of the algebra S and to give their explicit generators (_eorem 3.3 and Corollary 3.4).
For an algebra R, let Spec(R) be the set of its prime ideals. _e set (Spec(R), ⊆) is

a partially ordered set (poset) with respect to inclusion of prime ideals. Each element
r ∈ R determines two maps from R to R, r⋅∶ x ↦ rx and ⋅r∶ x ↦ xr where x ∈ R. An
element a ∈ R is called a normal element if Ra = aR.

Proposition 3.1 ([6]) Let R be a Noetherian ring and let s be an element of R such
that Ss ∶= {s i ∣ i ∈ N} is a le� denominator set of the ring R and (s i) = (s)i for all
i ⩾ 1 (e.g., s is a normal element such that ker(⋅sR) ⊆ ker(sR ⋅)). _en Spec(R) =
Spec(R, s) ⊔ Specs(R) where Spec(R, s) ∶= {p ∈ Spec(R) ∣ s ∈ p}, Specs(R) =
{q ∈ Spec(R) ∣ s ∉ q} and
(i) the map Spec(R, s) → Spec(R/(s)), p ↦ p/(s), is a bijection with the inverse

q↦ π−1(q) where π∶R → R/(s), r ↦ r + (s);
(ii) the map Specs(R) → Spec(Rs), p ↦ S−1

s p, is a bijection with the inverse q ↦
σ−1(q) where σ ∶R → Rs ∶= S−1

s R, r ↦ r
1 ;

(iii) for all p ∈ Spec(R, s) and q ∈ Specs(R), p /⊆ q.

_e prime ideals (q, I′n) of S where q ∈ Q ∶= Max(K[Z]) ∖ {(Z)} and n ∈ N+
If q ∈ Q, then the element Z is a unit in the factor algebras K[Z]/q, and so Lq ∶=

K[Z]/q ≃ K[Z±1]/qZ . _en, by (2.8), the algebra
S/qS ≃ SZ/qSZ ≃ Lq ⊗U ′ ⊗ A1(3.1)

is a domain; i.e., the ideal qS is completely prime. For eachnatural number n ⩾ 1, there
exists a unique simple n-dimensional U ′-module V ′

n . Its annihilator I′n ∶= annU ′(V ′
n)

is a prime ideal of U ′ such that U ′/I′n ≃ Mn(K), the ring of n × n matrices over K.
_e Casimir element ∆′ = 4F′E′ +H′2 + 2H′ acts on V ′

n as the scalar λn ∶= n2 − 1, i.e.,
∆′ − λn ∈ I′n .

Lemma 3.2 Let q ∈ Max(K[Z]) ∖ {(Z)}, Lq = K[Z]/q and n ∈ N+.
(i) _e ideal (q, I′n) of the algebra S (see, (3.1)) is a maximal (hence, prime) ideal of

S and S/(q, I′n) ≃ Lq ⊗U ′/I′n ⊗ A1 ≃ Lq ⊗Mn(K)⊗ A1.
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(ii) _e ideal (q, I′n) is completely prime if and only if n = 1.
(iii) (q, I′n) ∩K[Z ,C′] = (q,C′ − λnZ), I′nSZ ∩K[Z ,C′] = (C′ − λnZ), where λn =

n2 − 1 and I′nSZ = K[Z±1]⊗ I′n ⊗ A1.

Proof (i) _e claim about the isomorphisms is obvious. _en statement (i) follows.
(ii) Statement (ii) follows from statement (i).
(iii) By (2.8),

(q, I′n)Z ∩K[Z±1 ,C′] = (q, I′n)Z ∩K[Z±1 , ∆′] = (q, ∆′ − λn)Z = (q, Z∆′ − λnZ)Z
= (q,C′ − λnZ)Z .

Hence, (q, I′n) ∩K[Z ,C′] = (q,C′ − λnZ), since K[Z ,C′]
(q,C′−λnZ) ≃

K[Z±1 ,C′]
(q,C′−λnZ)Z .

Now,

(C′ − λnZ) ⊆ I′nSZ ∩K[Z ,C′] = ⋂
q∈Q

(q, I′n) ∩K[Z ,C′] = ⋂
q∈Q

(q,C′ − λnZ)

= (C′ − λnZ),

and so (C′ − λnZ) = I′nSZ ∩K[Z ,C′].

_eorem 3.3 _e set of prime ideals of the algebra S and inclusions between primes
are given in the following diagram (where dotted line means all the inclusions between
height 1 and 2 primes):

(In , X)

(∆ − λn , X)(d, X)

(X)

(c, Z)(r, Z)

(Z)

(q, I′n)

I′n (C′ − λnZ ,q)

(C′ − λnZ) {(q)∣q ∈ Q} {(p)∣p ∈H1}

{(m)∣m ∈H2}

0

(3.2)

where n ∈ N+; λn = n2−1; q ∈ Q ∶= Max(K[Z])∖{(Z)}; r ∈ R ∶= Max(K[c]∖{(c)});
d ∈ D ∶= Max(K[∆]) ∖ {(∆ − λn), n ∈ N+}; H1 ∶= {p ∈ Spec(K[C′ , Z])∣ht(p) =
1} ∖ {E1 ∪ Q ∪ (Z)} where E1 ∶= {(C′ − λnZ)K[C′ , Z]∣n ∈ N+}; H2 ∶= {m ∈
Max(K[C′ , Z])∣Z ∉ m} ∖ {(C′ − λnZ , q)∣n ∈ N+ , q ∈ Q} and I′n ∶= S ∩ I′nSZ .
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Remark _e inclusions represented by the dotted line are easy to describe, as
they are precisely the inclusions between the primes of the polynomial algebra, e.g.,
(p) (m) if and only if (p) ⊆ (m) in S if and only if p ⊆ m in K[C′ , Z].

Proof Notice that A = S/(Z). _en by Proposition 3.1,

Spec(S) = Spec(A) ⊔ Spec(SZ),

where the sets Spec(A) and Spec(SZ) are identiûed with subsets of Spec(S) via the
following injections

Spec(A)Ð→ Spec(S), pz→ π−1(p) and Spec(SZ)Ð→ Spec(S), qz→ q ∩ S,

where π∶S → A, a ↦ a + (Z). So, Spec(A) = {P ∈ Spec(S)∣Z ∈ P} and Spec(SZ) =
{Q ∈ Spec(S)∣Z /∈ Q}. By (2.8), SZ = U ⊗ A1 where U ∶= K[Z±1] ⊗ U ′ and U ′ =
U(sl2)′. Since theWeyl algebra A1 is a central simple algebra, themap

Spec(U)Ð→ Spec(SZ), p↦ p⊗ A1 ,

is a bijection, and so we can write

Spec(SZ) = Spec(U).(3.3)

_e prime spectrum of the algebra Awas described in [5]. It comprises precisely the
prime ideals over (Z) in (3.2).

(i) For all m ∈ Max(K[C′ , Z]) such that Z ∉ m, the ideals (m) of S are completely
prime:
By the choice of themaximal idealm ofK[C′ , Z], the element Z of the ûeld Fm ∶=

K[C′ , Z]/m is not equal to zero. In particular, Z is a unit of Fm. _en, by (2.8),

S/(m) ≃ SZ/mSZ ≃ U(m)⊗ A1(3.4)

where U(m) ∶= U/mU ≃ Fm[H′][E′ , F′; σ ′ , a′ /= 0] is a generalized Weyl algebra
(GWA), which is a domain; see [2]. Now statement (i) is obvious.

(ii) Every nonzero prime ideal of S intersects non-trivially the centre of S:
Let P ∈ Spec(S) ∖ {0}. We can assume that Z ∉ P. _en PZ ∈ Spec(SZ) ∖ {0}.

By (3.3), we have to show that every nonzero prime ideal of the algebra U intersects
non-trivially the centreK[Z±1 ,C′] of U. Let T = K[Z±1 ,C′] ∖ {0}. _en the GWA

T−1U = K(Z ,C′)[H′][E′ , F′; σ ′ , a′]

is simple, by [2] (since the group ⟨σ ′⟩ acts freely on the maximal spectrum of the
Dedekind domainK(Z ,C′)[H′] and the element a′ is irreducible inK(Z ,C′)[H′]).
Now statement (ii) is obvious.

Let V(Z) = {p ∈ Spec(K[Z ,C′])∣Z ∈ p}. _e map Spec(K[Z ,C′]) ∖ V(Z) →
Spec(K[Z±1 ,C′]), p ↦ pZ , is a bijection with the inverse q ↦ K[Z ,C′] ∩ q. We
identify the two sets above via the bijection p↦ pZ .

(iii) For every p ∈ Spec(K[Z ,C′]) ∖ V(Z), the ideal (p) is a completely prime ideal
of S:
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By [12], the algebra S is a freemodule over its centre. Hence, (p) = S ∩ (p)Z , and
so

S/(p) = S

S ∩ (p)Z
⊆ SZ

(p)Z
≃ U/pU⊗ A1 .(3.5)

_e GWA U/pU is a domain, hence so are the algebras U/pU ⊗ A1 and S/(p). Now
statement (iii) follows.

Let P /= 0 be a prime ideal of S such that Z ∉ P. _e nonzero prime ideal PZ of SZ
is equal to P⊗ A1, where P is a nonzero prime ideal of U. _en P′ ∶= K[Z ,C′] ∩ P is
a nonzero prime ideal of the polynomial algebra K[Z ,C′] that does not contain the
element Z.
(iv) If P′ is a maximal ideal of K[Z ,C′] such that P′ ∈ Spec(K[Z ,C′]) ∖ V(Z), then
either P′ ∈ {(C′ − λnZ , q)∣n ∈ N+ , q ∈ Q} and in this case P = (C′ − λnZ , q) or
P = (q, I′n) = (C′ − λnZ , q, I′n) ∈ Max(S), or, otherwise, P = (P′) is a maximal ideal
of S:

In the ûrst case, the ideal P contains the prime ideal (C′ − λnZ , q) of the algebra
S, by statement (i). By (3.4),

S/(C′ − λnZ , q) ≃ Lq ⊗U ′/(∆′n − λn)⊗ A1 .

Hence, either P = (C′ − λnZ , q) or, otherwise, P = (q, I′n) = (C′ − λnZ , q, I′n) ∈
Max(S).

In the second case, by (3.4), the factor algebra S/(P′) ≃ U(P′)⊗A1 is simple, since
the GWA

U(P′) ≃ FP′[H′][E′ , F′; σ ′ , a′]
is simple, by the description of ideals in [2]. (Since a′ = 1

4 (∆
′ −H′(H′ + 2)) is a

polynomial of degree 2 in the variable H′, theGWAU(P′) is not simple if and only if
H′(H′ + 2) − ∆′ = (H′ + µ)(H′ + µ − 2n) for some µ ∈ FP′ and n ∈ N+ .

Hence, µ = n + 1 and ∆′ = −µ(µ − 2n) = n2 − 1 = λn . Since C′ = Z∆′, we have
C′ − λnZ = Z−1(∆′ − λn) ∈ P′, and so P′ = (C′ − λnZ , q) for some q ∈ Q). _erefore,
P = (P′) is amaximal ideal of S.
(v) For all n ∈ N+, I′n ∈ Spec(S):

_e statement follows from the fact that (I′n)Z = I′nSZ is aprime ideal of the algebra
SZ .
Clearly, (C′ − λnZ) ⊆ I′n ⊆ (q, I′n) and (C′ − λnZ) ⊆ (C′ − λnZ , q) ⊆ (q, I′n) for all

n ∈ N+ and q ∈ Q.
It remains to consider the case when P′ is not a maximal ideal of K[Z ,C′], i.e.,

ht(P′) = 1 and P′ /= (Z). We assume that these two conditions hold till the end of the
proof.
(vi) If q ∶= K[Z] ∩ P′ /= 0, then q ∈ Q and P = (q):
Clearly, (q) ⊆ P and (q) ∈ Spec(S) by statement (iii). Now statement (vi) follows

from (3.1) and the fact that every nonzero ideal of the algebra Lq ⊗ U ′ intersects its
centre Lq[∆′] = Lq[C′] non-trivially.
(vii) IfK[Z] ∩ P = 0, then either P ∈ {(C′ − λnZ), I′n ∣n ∈ N+} or, otherwise, P = (P′)
where P′ ∈H1:
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Let Γ be the ûeld of fractions of the commutative domain Λ = K[Z ,C′]/P′. Clearly,
Γ = S−1Λ where S = K[Z] ∖ {0}. By (3.5),

S/P′S ⊆ SZ/P′SZ = Λ[H′][E′ , F′; σ ′ , a′]⊗ A1 ⊂ Γ[H′][E′ , F′; σ ′ , a′]⊗ A1 .

Using a similar argument as in the proof of statement (iv), we see that the GWA
Γ[H′][E′ , F′; σ ′ , a′] is not simple if and only if C′ − λnZ ∈ P′ for some n ∈ N+, i.e.,
P′ = (C′ − λnZ). If P′ = (C′ − λnZ), then

Γ[H′][E′ , F′; σ ′ , a′] = K(Z)[H′][E′ , F′; σ ′ , a = 1
4
( λn −H′(H′ + 2))]

≃ K(Z)⊗U ′/(∆′ − λn).

So, either P = (C′ − λnZ) or, otherwise, P = I′n since the ideal I′n is the only proper
ideal of U ′ that contains the element ∆′ − λn . If P′ /= (C′ − λnZ) for all n ∈ N+
then P′ ∈H1 and S−1(P/(P′)) = 0 by the simplicity of theGWA Γ[H′][E′ , F′; σ ′ , a′].
Hence, P = (P′) by the choice of S and P′. So, we have proved that the picture (3.2)
represents all the prime ideals of S. _e inclusions in (3.2) are obvious apart from
I′n ⊆ (X). _e latter follows from the explicit description of generators of the ideal In
(see [3, Section 4]) and the facts that SZ = UZ ⊗ A1 = ⊕i , j⩾0UZX iY j , the elements
X ,Y , Z , e , f and h belong to (X) and UZ ∩ S = U.

Let L be the prime ideals over (Z) including (Z) andR = Spec(S)∖{L ∪{0}}.
By Proposition 3.1, none of the ideals ofL contains an ideal ofR. _e containments
of prime ideals in Spec(A) = L are described in [5]. Straightforward arguments show
that there are no more new containments from R to L .

_e next corollary classiûes all the maximal and completely prime ideals of the
algebra S.

Corollary 3.4 (i) We have that Max(S) = {(r, Z), (d, X), (In , X), (q, I′n), (m) ∣
n ∈ N+ , r ∈ R, d ∈ D, q ∈ Q,m ∈ H2} , where R,D,Q and H2 are deûned in
_eorem 3.3.

(ii) _e set Specc(S) of completely prime ideals of S is equal to

Spec(S) ∖ {(In , X), (q, I′n) ∣ n ⩾ 2}.

Proof (i) Statement (i) follows from (3.2).
(ii) Statement (ii) follows from (3.1), Lemma 3.2,_eorem 3.3, and its proof.

4 The Primitive Ideals and a Classification of Singular Whittaker
Modules over the Schrödinger Algebra

In this section, K is an algebraically closed ûeld. _e aim of this section is to give a
classiûcation of primitive ideals of the algebra S (_eorem4.4), to prove the existence
of simple singular Whittaker S-modules (Proposition 4.6), and to classify all of them
(_eorem 4.7).
For λ ∈ K, let S(λ) ∶= S/S(Z − λ). _en S(0) ≃ A. If λ /= 0, then by (2.8),

S(λ) = SZ/SZ(Z − λ) = U ′
λ ⊗ A1(4.1)
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is a tensor product of algebras. _e algebraU ′
λ ,which is isomorphic to the enveloping

algebra U(sl2), is generated by the elements

H′
λ = H + λ−1XY − 1

2
, E′λ = E −

1
2
λ−1X2 , F′λ = F +

1
2
λ−1Y 2 .

_e elements H′
λ , E

′
λ , and F

′
λ are the canonical generators for the Lie algebra sl2

([H′
λ , E

′
λ] = 2E′λ , [H′

λ , F
′
λ] = −2F′λ , and [E′λ , F′λ] = H′

λ ; see Lemma 2.2 for details).
_e algebra A1 is theWeyl algebra which is generated by the elements λ−1X and Y .
So, S(λ) is a Noetherian domain of Gelfand–Kirillov dimension 5, and the ideal of S
generated by Z − λ is completely prime. Furthermore, Z(S(λ)) = K[∆′λ], where

∆′λ ∶= 4E′λF
′
λ +H′2

λ − 2H′
λ = (4FE +H2 +H) + 2λ−1(EY 2 +HXY − FX2) − 3

4

is the Casimir element of the algebra U ′
λ .

For any µ ∈ K, let S(λ, µ) ∶= S(λ)/S(λ)(∆′λ − µ). _e following lemma is a
simplicity criterion for the algebra S(λ, µ).

Lemma 4.1 Let λ ∈ K∗ and µ ∈ K.
(i) Z(S(λ, µ)) = K.
(ii) _e algebra S(λ, µ) is a simple algebra if and only if the algebra U ′

λ/(∆′λ − µ) is
simple if and only if µ /= n2 + 2n for all n ∈ N.

(iii) If µ = n2 + 2n for some n ∈ N, then S(λ, µ) has a unique proper two-sided ideal
that is the tensor product of the annihilator of the unique simple (n + 1)-dimen-
sional sl2-module and theWeyl algebra A1. _is ideal is an idempotent ideal.

Proof Statement (i) follows from (4.1). By (4.1), the algebra S(λ, µ) is simple if and
only if the algebra U ′

λ/(∆′λ − µ) is so. _en statements (ii) and (iii) follows from
[10, 4.9.22].

Primitive ideals of the algebra S Proposition 4.2 provides classiûcations of prime,
completely prime, maximal, and primitive ideals of the algebra S(λ) where λ /= 0, it
also gives explicit generators for them.

Let J(S(λ)) and J(U ′
λ) be the sets of ideals of the algebras S(λ) and U ′

λ , respec-
tively. _e sets J(S(λ)) and J(U ′

λ) are partially ordered sets (posets) with respect to
inclusion. Since the algebra A1 is a central simple algebra, themap

J(U ′
λ)Ð→ J(S(λ)), I z→ I ⊗ A1 ,

is an isomorphism of posets. We identify the posets J(U ′
λ) and J(S(λ)) via the map

above. As a result, the ûrst two equalities of Proposition 4.2 are obvious. Notice
that the set of completely prime ideals of the algebra U ′

λ is equal to Specc(U ′
λ) =

Spec(U ′
λ) ∖ {ann(Vn)∣n = 2, . . .} where Vn is a unique simple n-dimensional

U ′
λ-module. _e set of primitive ideals of U ′

λ is

Prim(U ′
λ) = Spec(U ′

λ) ∖ {0} = {ann(Vn) ∣ n = 1, . . .} ⊔ {(∆′λ − µ) ∣ µ ∈ K}.
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Proposition 4.2 Let λ ∈ K∗. _en

Spec(S(λ)) = Spec(U ′
λ), Max(S(λ)) = Max(U ′

λ),
Specc(S(λ)) = Specc(U ′

λ), Prim(S(λ)) = Prim(U ′
λ).

Proof Let B be an algebra. _en the tensor product of algebras B ⊗ A1 is a do-
main if and only if B is so. Hence, Specc(S(λ)) = Specc(U ′

λ). Clearly, Prim(U ′
λ) ⊆

Prim(S(λ)) and Prim(U ′
λ) = Spec(U ′

λ) ∖ {0} = Spec(S(λ)) ∖ {0}. Since
Spec(S(λ)) = Spec(U ′

λ) and 0 is not a primitive ideal of S(λ) (since Z(S(λ)) =
K[∆′λ]), wemust have Prim(U ′

λ) = Prim(S(λ)).

Primitive ideals of the algebra S and their explicit generators _e primitive ideals
of the algebra A = S/(Z) were classiûed in [5,_eorem 2.10]; see_eorem 4.3 below.
For each of the primitive ideals an explicit set of generators is given. _e centre of the
algebra A is a polynomial algebra K[c] [5, Lemma 2.2.(1)] where c = FX2 − HXY −
EY 2. _e algebraU ∶= U(sl2) is isomorphic toA/(X) ≃ S/(Z , X), [5,Lemma 2.3.(2)].
_erefore, we can write Spec(U) ⊆ Spec(A) ⊆ Spec(S).

_eorem 4.3 ([5,_eorem 2.10]) We have

Prim(A) = Prim(U) ⊔ {Aq ∣ q ∈ Spec(K[c]) ∖ {0}} .

_e primitive ideals of S(λ) for λ /= 0 were described in [12, Corollary 30]: Each
of them is the annihilator of a simple highest weight modules.

_e next theorem together with _eorem [5, _eorem 2.10], gives an explicit de-
scription of the set of primitive ideals of S and their generators.

_eorem 4.4 Suppose that K is an algebraically closed ûeld. _en

Prim(S) = {(Z − λ, p) ∣ λ ∈ K∗ , p ∈ Spec(U ′
λ) ∖ {0}} ⊔ {(Z , q) ∣ q ∈ Prim(A)} .

Proof Since Z is a central element of S and K is algebraically closed, any primitive
ideal of S contains Z − λ for some λ ∈ K. Hence, Prim(S) = ⊔λ∈K∗ Prim(S(λ)) ⊔
Prim(A) = {(Z − λ, p) ∣ λ ∈ K∗ , p ∈ Prim(U ′

λ)} ⊔ {(Z , q) ∣ q ∈ Prim(A)}, as
required. Notice that Prim(U ′

λ) = Spec(U ′
λ) ∖ {0}.

SingularWhittaker S-modules Simple, non-singular, Whittaker modules of the
Schrödinger algebra were classiûed in [18]. It was conjectured that there is no simple
singularWhittakermodule for the Schrödinger algebra [18, Conjecture 4.2]. Proposi-
tion 4.6 shows that there exist simple singularWhittaker A-modules (these areWhit-
taker Schrödinger modules of zero level), hence the conjecture is not true, in general.
But we prove that the conjecture is true for Whittaker Schrödinger modules of non-
zero level.

Let R = S or S(λ) for some λ ∈ K and let V be an R-module. A non-zero element
w ∈ V is called a Whittaker vector of type (µ, δ) if Ew = µw and Xw = δw where
µ, δ ∈ K. An R-moduleV is called aWhittakermodule of type (µ, δ) ifV is generated
by aWhittaker vector of type (µ, δ). An R-module V is called a singular Whittaker
module if V is generated by aWhittaker vector w ∈ V of type (0, 0) and Hw ∉ Kw .
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Using the decomposition (4.1),we can give easily a classiûcation of simpleWhittak-
er S-module of non-zero level (i.e., the simpleWhittaker S(λ)-module where λ /= 0).

Whittaker S(λ)-modules where λ /= 0 Let µ, δ ∈ K. _e universal Whittaker
S(λ)-module of type (µ, δ) is W ∶= W(µ, δ) ∶= S(λ)/S(λ)(E − µ, X − δ). So, any
Whittaker S(λ)-module of type (µ, δ) is a homomorphic image ofW . By (4.1),

W = S(λ)
S(λ)(E′λ + 1/2λ−1X2 − µ, X − δ) = S(λ)

S(λ)(E′λ + 1/2λ−1δ2 − µ, X − δ)(4.2)

= U ′
λ/U ′

λ(E′λ + 1/2λ−1δ2 − µ)⊗ A1/A1(X − δ).

_e module WU ′

λ
∶= U ′

λ/U ′
λ(E′λ + 1/2λ−1δ2 − µ) is a Whittaker U ′

λ-module of
type (−1/2λ−1δ2 + µ). Note that A1/A1(X − δ) is a simple A1-module with
EndA1(A1/A1(X − δ)) = K, we call this module the Whittaker A1-module of type
(δ). For an algebra R, the set of isomorphism classes of simple R-modules is denoted
by R̂. If P is an isomorphism invariant property then R̂(P) is the set of isomor-
phism classes of simple R-modules that satisfy the propertyP . _e simpleWhittaker
U ′

λ-modules are easily classiûed. Namely, by (4.2), for λ /= 0,

Ŝ(λ)(Whittaker module of type (µ, δ)) =
Û ′

λ(Whittaker module of type (µ − 1/2λ−1δ2))⊗ Â1(Whittaker module of type (δ)),

i.e., when λ /= 0, each simple Whittaker S(λ)-module of type (µ, δ) is isomorphic
to the tensor product of a simpleWhittaker U ′

λ-module of type (−1/2λ−1δ2 + µ) and
the simple A1-module A1/A1(X − δ) and these two modules uniquely (up to isomor-
phism) determine theWhittaker module.

_e next proposition shows that there is no simple singular Whittaker S-module
of nonzero level; i.e., if λ /= 0, then all the simple Whittaker S(λ)-modules of type
(0, 0) are weight modules.

Proposition 4.5 If λ ∈ K∗, then there is no simple singular Whittaker S(λ)-module.

Proof By (4.2),W = U ′
λ/U ′

λE
′
λ⊗A1/A1X. Notice thatA1/A1X is a simpleA1-module

and EndA1(A1/A1X) = K. Hence, each simple factor module L of W is equal to
M ⊗ A1/A1X where M is a simple factor module of the U ′

λ-module U ′
λ/U ′

λE
′
λ . _en

by [18, _eorem 6.10.(i)], M is a (highest) H′
λ-weight U

′
λ-module; i.e., M is a simple

factor module ofU ′
λ/U ′

λ(H′
λ − µ, E′λ) for some µ ∈ K. _en L is a simple factor mod-

ule of U ′
λ/U ′

λ(H′
λ − µ, E′λ) ⊗ A1/A1X ≃ S(λ)/S(λ)(H + 1

2 − µ, E , X). Hence, L is a
weight module. _is completes the proof.

Recall that S(0) = A. Let W ∶= A/A(X , E), a le� A-module. _en any singular
Whittaker A-module is an epimorphic image of W. For any ν ∈ K∗, we deûne the
A-module

V(ν) ∶= A/A(X , E ,Y − ν) = ⊕
i , j∈N

KH iF j 1̄ where 1̄ = 1 + A(X , E ,Y − ν).

Clearly, V(ν) is a singular Whittaker A-module. _en next proposition shows that
V(ν) is a simple A-module. Hence, [18, Conjecture 4.2] does not hold in this case.
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Proposition 4.6 For any ν ∈ K∗, the module V(ν) is a simple singular Whittaker
A-module.

Proof We have to show that for any 0 /= v = ∑i , j∈N α i , jH iF j 1̄ ∈ V(ν)where α i , j ∈ K,
there exists an element a ∈ A such that av ∈ K∗1̄. If j > 0, then

Xv = ∑
i , j∈N

α i , j(−ν) j(H − 1)iF j−1 1̄ /= 0.

_erefore, 0 /= Xnv ∈ K[H]1̄ for some n ∈ N. So, wemay assume that v = ∑m
i=0 α iH i 1̄

where α i ∈ K,m ∈ N and αm /= 0. _en 0 /= (Y − ν)v = ∑m
i=0 α iν((H + 1)i −H i)1̄. By

induction on m, we have (Y − ν)mv ∈ K∗1̄, as required.

Classiûcation of simple singularWhittaker A-modules Consider the following
subalgebras of A: R = K[H][Y ; σ] where σ(H) = H + 1; T = K⟨F ,H,Y⟩; and A =
K⟨H, E , X ,Y⟩. Clearly, R ⊂ T , R ⊂ A and the le� ideal A(E , X) ∶= AE +AX of the
algebraA is an ideal ofA, i.e.,

A(E , X) = (E , X) and R ≃ A/(E , X).

Hence, every R-module is automatically anA-module. Moreover, R-modules are pre-
ciselyA-modules that are annihilated by the ideal (E , X). In particular, every simple
R-module is a simple epimorphic image of the A-module A/A(E , X) = A/(E , X),
and vice versa.

_e next theorem togetherwith _eorem4.8 gives a classiûcation of simple singu-
lar Whittaker A-modules.

_eorem 4.7 _e map R̂(K[H]-torsionfree) → Â(singularWhittaker), [M] ↦
[M̃ ∶= A ⊗A M] is a bijection with the inverse [M] ↦ [ker(XM) ∩ ker(EM)], and
M̃ =⊕i⩾0 F i ⊗M.

Proof (i) _e map [M] ↦ [M̃] is well deûned: Since A = ⊕i⩾0 F iA, we must
have M̃ = ⊕i⩾0 F i ⊗ M. Since M is a simple K[H]-torsionfree R-module (i.e., an
A/(E , X)-module), the A-module M̃ belongs to Â(singularWhittaker) provided it
is simple. Since Y is a normal element of the ring R and R/RY ≃ K[H], the map
YM ∶M → M, m ↦ Ym is an injection (since [M] ∈ R̂(K[H]-torsionfree)). Suppose
that V is a nonzero submodule of M̃; we aim to show that V = M̃. Fix a nonzero
element v = ∑n

i=0 F
im i of V (where m i ∈ M such that mn /= 0 and n is the least

possible). We claim that n = 0, otherwise, the element of V , Xv = ∑n
i=1 iF

i−1Ym i , is
nonzero. _is contradicts the choice of n since 0 /= Ymn ∈ M. So, V ∩M /= 0, and so
M ⊆ V and V = M̃, i.e., M̃ is a simple singular Whittaker A-module.

(ii) _e map [M] → [M̃] is a surjection: Let [N] ∈ Â(singular Whittaker). _en
N = AM where M ∶= ker(EN) ∩ ker(XN) is a nonzero K[H]-torsionfree R-module/
A-module. In particular, N = AN = ∑i⩾0 F iAM = ∑i⩾0 F iM (since A =⊕i⩾0 F iA).

Claim 1: _e map YM ∶M → M, m ↦ Ym is an injection. _e kernel M0 = ker(YM)
is an R-submodule/A-submodule of M. If M0 /= 0, then the A-module N = AM0 =
∑ F iM0 is annihilated by the ideal (X ,Y) of A (since XM0 = YM0 = 0 and (X ,Y) =
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AX + AY). So, N is a simple, highest weight sl2-module, but each such sl2-module is
K[H]-torsion. _is contradicts the fact that M is K[H]-torsionfree.
Claim 2: N = ⊕i⩾0 F iM. Suppose this is not true, i.e., u = ∑m

i=0 F
iu i = 0 for some

elements u i ∈ M such that um /= 0. Wemay assume that m is the least possible. _en
m ⩾ 1 and

0 = Xu =
m

∑
i=1

iF i−1Yu i = mFm−1Yum + ⋅ ⋅ ⋅ ,

a contradiction (since Yum /= 0, by Claim 1).
By Claim 2, N = M̃. Since N is a simple A-module, the R-module/A-module M

must be simple (by Claim 2). _e proof of statement (ii) is complete.
(iii) For all M ∈ R̂(K[H]-torsionfree), ker(EM̃)∩ ker(XM̃) = M: _is is obvious.
(iv) _emap [M]→ [M̃] is an injection: _is follows from statement (iii).
Now the theorem follows from the statements (ii)–(iv).

_e set R̂(K[H]-torsionfree)_e algebra R = K[H][Y ; σ] is a subalgebra of the alge-
bra B = K(H)[Y ; σ],which is a localization of R atK[H]∖{0}. _e algebra B is a (le�
and right) principle ideal domain. We denote by Irr(B) be the set of its irreducible
elements.

In [4], a classiûcation is given of simple modules over an arbitrary Ore extension
D[X; σ , δ],whereD is a Dedekind ring, σ is an automorphism and δ is a σ-derivation
of D. _e ring R is a very special case of such a ring.

_eorem 4.8 ([4], [5,_eorem 4.10]) We have

R̂(K[H]-torsion) = R̂(Y-torsion) = R̂/(Y) = {[R/R(H − ν,Y)]∣ν ∈ K},(i)

R̂(K[H]-torsionfree) = R̂(Y-torsionfree)(ii)

= {[Mb] ∣ b ∈ Irr(B), R = RY + R ∩ Bb} ,

where Mb ∶= R/R ∩ Bb; Mb ≃ Mb′ if and only if the elements b and b′ are similar (if
and only if B/Bb ≃ B/Bb′ as B-modules).

Another approach for classifying the simple R-modules was taken by Block [8].
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