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Summary

Various spatial autocorrelation statistics have been widely used both in theoretical population

genetics and to study the spatial distribution of diploid genotypes in many plant and animal

populations. However, previous simulation studies have considered only diallelic loci. In this paper,

we use a large number of space–time simulations to characterize for the first time the parametric

and statistical values of Moran’s I-statistics for converted individual genotypes as well as for join-

count statistics. A wide range of levels of dispersal and numbers of alleles and allele frequencies

are modelled and the results reveal the different general effects of each of these factors on these

statistics. We also examine the range of appropriate sampling designs and sizes for which predicted

values can be interpolated for specific sampling schemes for any given population genetic field

survey. Numbers of alleles and allele frequencies each affect some statistics but not others. The

results indicate generally low standard deviations. The results also develop precise and efficient

methods of estimating gene dispersal, based on the various autocorrelation measures of standing

spatial patterns of genetic variation within populations. The results also extend these methods to

loci with multiple alleles, typical of those studied through modern molecular methods.

1. Introduction

Most populations have substantial spatial structure:

limits to the distances that individuals (or propagules)

disperse result in consanguineous matings by prox-

imity, and consequently the build-up of genetic

isolation by distance within populations. Isolation by

distance among discrete populations has been studied

analytically both in terms of consanguinity coefficients

(e.g. Male! cot, 1950) and in terms of inbreeding

coefficients (e.g. Wright, 1943). However, even in

discrete systems, with two-dimensional space, ana-

lytical methods lead to closed forms only as the

distances become large, whereas results for short

distances are expressed in terms of Bessel functions

(Male! cot, 1950). The situation for models for spatial

distributions within populations (which are not equi-

valent to models of discrete populations) occupying

two spatial dimensions is yet more complex, even in

terms of probabilities of identity by descent between

two genes or for covariances of gene frequencies,

where for example diffusion approximations fail

* Corresponding author.

(Felsenstein, 1975). Moreover, to quantify structure

more fully in terms of the distribution of diploid

genotypes, neither measure, separately or in com-

bination, is sufficient for complete characterization.

Gillois (1966) has demonstrated that a large number

of additional measures are required, making the

situation further intractable analytically. Thus there is

no analytical theory for the spatial distributions of

diploid genotypes within populations.

Instead, stochastic space–time simulations can be

employed. Sokal and colleagues (Sokal & Wartenberg,

1983; Sokal et al., 1989) have examined such

simulations extensively, using Moran’s I-statistics

calculated for gene frequencies among subpopu-

lational quadrats of 25 individuals each. It was recently

shown that a popular experimental measure, based on

individual genotypes converted into gene frequencies

(Heywood, 1991), has very different properties and

values (Epperson, 1995a). This is an extreme example

of a more general critical effect of the size of quadrats

on the values of Moran’s I (Epperson & Li, 1996).

This popular method converts the diploid genotype at

each location into the values 0, 0±5 or 1±0 according to

the numbers (none, one, two) of a particular allele
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that were carried in the genotype, and then for each

allele Moran’s I-statistics are calculated for the

numerical values. Sets of other spatial autocorrelation

statistics known as join-count statistics provide more

detailed measures of spatial distributions because they

are expressed in terms of all the different combinations

or pairs of diploid genotypes (in this respect they are

analogous to the measures of Gillois). In this paper we

characterize the statistical properties of Moran’s I-

statistics for converted genotypes and join-count

statistics for multiallelic loci under isolation-by-

distance processes.

Spatial autocorrelation statistics have become

widely used for characterizing the actual genetic

structure of populations of various species. Most

experimental studies that survey the genetic structure

within a population produce maps of locations of

sampled individuals and their diploid genotypes at

various loci, determined through various molecular or

biochemical assays. Starting with such maps of

genotypes, in order to minimize subsequent loss of

information it is possible to calculate either join-count

statistics or Moran’s I-statistics for genotypes con-

verted to numeric values, rather than combine data

into arbitrary quadrat areas, which results in a loss of

statistical power corresponding approximately to

decreasing sample size by a multiple equalling the

number of individuals per quadrat (Epperson & Li,

1996). Spatial autocorrelation studies based on in-

dividual genotypes have been highly successful and

these studies continue to increase in number (reviewed

in, for example, Epperson, 1993; Peakall & Beattie,

1995; Shapcott, 1995; Real & McElhany, 1996;

Leonardi et al., 1996). Moreover, spatial statistics

have been successful even in populations where

structure is very weak, whereas, in the same popu-

lations, analyses of F
st

often failed to detect significant

spatial structure (e.g. Bacilier et al., 1994).

Parametric values of join-count statistics and

Moran’s I-statistics for individual genotypes have

been examined (Epperson, 1995a, b), and recently we

studied the statistical values of join-count statistics

under appropriate sampling schemes for diallelic loci

(Epperson & Li, 1997). The results showed that there

were low standard deviations, and that join-count

statistics could be used to estimate dispersal based

solely on standing spatial distributions in actual

populations. These statistics constitute the most

detailed characterization of spatial structure to date.

They take on a role complementary to summary

measures in experimental studies. Individual genotype

measures of spatial autocorrelations and summary

measures are not mutually exclusive choices, since

both have relative advantages and disadvantages.

Summary measures have advantages in that fewer

statistics need be reported and they require smaller

corrections for multiple tests, and this becomes

increasingly important as the numbers of alleles and

loci are increased (e.g. Bertorelle & Barbujani, 1995;

Michalakis & Excoffier, 1996). However, summary

measures of pairwise genetic similarity (or distance)

suffer from the fact that they are not directly related

to a priori kinship coefficients, and what is measured

is relatedness always relative to the existing popu-

lation. This has been an issue since the initial attempts

by Morton and colleagues (Morton, 1973). Moreover,

they lose the advantage for standard spatial auto-

correlation statistics, which can be distribution-free.

On the other hand, spatial autocorrelation statistics

based on pairs of individual genotypes have

advantages in that less information is lost, and more

detailed expectations can be obtained under different

models and different kinds of structures may be

detected. Moreover, under the randomization hy-

pothesis spatial autocorrelation methods require no

assumptions about the underlying generative process.

It is worth noting that the oft-cited issue of ap-

plicability of measures to modern molecular data,

such as DNA sequence data, is largely irrelevant in the

context of genetic structure within populations. Ewens

(1974) has shown that there is almost no additional

information in the infinite-sites mutation model (e.g.

DNA sequence data) compared with infinite-alleles

models (allele frequency data) when the product,

‘4Nu ’, of four times the mutation rate and the

population size, is less than 1±0. Most reported

populations have values an order of magnitude smaller

or yet less (Ewens, 1974).

Spatial structure in terms of Moran’s I-statistics for

converted diploid genotypes – statistics that have

become popular measures for field studies – have not

been characterized, and neither have any of the

statistics for loci with multiple alleles, which often is

the case in field studies, all the more so when modern

molecular markers are analysed. In the present paper

we conduct a massive simulation study, with a number

of space–time simulations an order of magnitude

greater, and a number of samples two orders of

magnitude greater than in previous studies. We use

sets of simulations designed to determine the general

effects of the number of alleles per locus and the allele

frequencies on the parametric and statistical values of

Moran’s statistics for converted genotypes and join-

count statistics. It is to be expected that spatial

distributions must depend on the number and fre-

quency of alleles, but the effects on spatial statistics

are not obvious. Moreover, we characterize for a

broad range of conditions the statistical values of join-

count statistics as measures of genetic structure for

multiallelic loci within populations. Because spatial

statistics depend on the actual spatial distribution

(which in turn varies widely with the distances

of dispersal) and the spatial orientation and size of

samples from that population, we use a wide range of

https://doi.org/10.1017/S001667239900378X Published online by Cambridge University Press

https://doi.org/10.1017/S001667239900378X


Measures of spatial structure 253

(five different) dispersal levels and six different arrays

of allele frequencies. Join-count statistics for the

diallelic case were studied earlier (Epperson & Li,

1997). In the present paper we also study Moran’s I-

statistic for converted genotypes for the diallelic case

and both types of statistics for multiple allele cases. By

considering a large number of combinations we can

examine the joint effects of dispersal, number of alleles

and allele frequencies, so that we can examine not

only the marginal effects but also any potential

interactions. For the multiallele cases we conducted

highly replicated sets of simulations (100 for each set,

or 3000 space–time simulations in total), and a wide

range of sampling schemes (7 different sampling

schemes for each simulation, or 21000 samples in

total), and similarly in addition 1300 simulations for

the various diallelic cases. Naturally, it is intractable

to consider all possible sampling schemes, and

numbers and frequencies of alleles, but our results can

be widely interpolated and extrapolated to specific

cases. These massive results essentially complete

analyses of autocorrelation statistics as parametric

and statistical values under isolation by distance

models and complete the framework for their appli-

cations for selectively neutral loci in field studies.

2. Methods

(i) Simulations

Each simulated population consisted of 10000 indi-

viduals with diploid genotypes, located on a 100¬100

square lattice. Each simulation was initialized with a

random distribution of diploid genotypes at an

arbitrary locus, in Hardy–Weinberg proportions. We

simulated a variety of sets with different numbers of

alleles (three, four or five). For each multiplicity of

alleles (and for each dispersal model, discussed below),

a set of simulations was conducted where each

simulation had equal initial frequencies of all alleles.

Allele frequencies changed very little during the course

of a simulation. In addition, three types of sets of

simulations where the frequencies of the alleles were

unequal were conducted (Table 1). Together, the sets

allowed contrasts that separate effects of allele

frequency per se from possible effects of number of

alleles. These contrasts capture the paramount features

Table 1. Models of unequal allele frequencies for

simulation sets with multiple alleles

Allele

1 2 3 4 5
0±1 0±3 0±6 — —
0±1 0±1 0±3 0±5 —
0±1 0±1 0±1 0±1 0±6

Table 2. Dispersal parameters in the �arious sets of

simulations with multiple alleles

Simulation dispersal modela

1 2 3 4 5

N
f

1 25 49 1 625
N

m
9 25 49 225 625

N
e

4±2 25±1 50±2 115±2 632±4

a N
f
and N

m
are the numbers of nearest female and male

individuals from which parents of an offspring are randomly
chosen, and N

e
is Wright’s neighbourhood size.

Table 3. The sample sizes in terms of sampled

indi�iduals for �arious sampling schemes from the

simulated populations with multiple alleles

Areaa

Porosityb 10000 5000 2500

1 10000 — —
1}4 — 1250 625
1}9 — 544 272
1}25 — 200 100

a The total number of individuals in the population that the
entire sample lattice covered.
b The proportion of total population individuals that were
sampled.

of the effects of numbers of alleles. We did not

consider cases with more than five alleles, in part

because this forces low allele frequencies. It has

already been established that when allele frequencies

decrease below about 0±2 to 0±1, the degree of

autocorrelation and scale of patches both decrease

even in a diallelic case (Epperson, 1995b). Other

details of the  simulation program, which

uses Monte Carlo methods to simulate stochastic

generations of life cycles, were described previously

(Epperson, 1990). All models were pure isolation by

distance, with no selection processes (Epperson, 1990).

We ran 100 simulations for each set, on a Sun

Sparcstation 20.

Sets with more than two alleles also varied according

to five dispersal models, which together represent a

very wide range of dispersal levels (Table 2). The five

dispersal models were a representative set of a more

continuous set of dispersal models simulated in earlier

studies for the simpler two-allele cases (Epperson &

Li, 1997). Either or both the female and male parents

of an offspring were chosen at random (using two

Uniform (0, 1) pseudorandom numbers to choose the

two coordinates for each parent) generally from one

of the nearest N
f

and N
m

(respectively) neighbours

including self. Thus, each individual within the group
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Table 4. Mean �alues of Moran’s I-statistics for indi�idual genotypes (standard de�iation in parentheses) for different dispersal models and sampling schemes.

Also shown are the rates of rejection of the null hypothesis

Sampling scheme Wright’s neighbourhood sizes

Porositya Areab Size 4±2 8±4 12±6 25±1 25±1 50±2 83±7 125±7 115±2 230±4 316±2 632±4 Random

1 1 10000 0±45 0±38 0±25 0±20 0±15 0±12 0±07 0±05 0±04 0±03 0±01 0±01 ®0±000
(0±02) (0±03) (0±03) (0±04) (0±03) (0±03) (0±02) (0±02) (0±02) (0±01) (0±01) (0±01) (0±006)
0±96 1±00 1±00 1±00 1±00 1±00 1±00 0±99 0±96 0±96 0±49 0±32 0±09

4 1 2500 0±33 0±31 0±22 0±18 0±14 0±11 0±07 0±05 0±04 0±03 0±01 0±01 0±000
(0±03) (0±03) (0±04) (0±04) (0±03) (0±04) (0±03) (0±03) (0±02) (0±02) (0±01) (0±01) (0±010)
1±00 1±00 1±00 1±00 1±00 1±00 1±00 0±91 0±86 0±66 0±17 0±13 0±01

9 1 1089 0±26 0±25 0±18 0±16 0±13 0±10 0±06 0±05 0±03 0±02 0±01 0±01 ®0±002
(0±03) (0±04) (0±04) (0±05) (0±03) (0±04) (0±03) (0±03) (0±02) (0±02) (0±02) (0±02) (0±017)
1±00 1±00 1±00 1±00 1±00 0±98 0±83 0±71 0±49 0±34 0±08 0±11 0±07

25 1 400 0±16 0±17 0±13 0±12 0±09 0±08 0±05 0±04 0±03 0±02 0±01 0±01 ®0±001

(0±04) (0±04) (0±05) (0±05) (0±04) (0±05) (0±04) (0±04) (0±03) (0±03) (0±03) (0±03) (0±027)
1±00 1±00 0±97 0±93 0±85 0±74 0±47 0±37 0±25 0±17 0±08 0±07 0±07

4 0±5 1250 0±33 0±30 0±22 0±17 0±14 0±10 0±06 0±04 0±03 0±02 0±01 0±01 ®0±001

(0±04) (0±05) (0±05) (0±05) (0±04) (0±04) (0±03) (0±03) (0±02) (0±02) (0±02) (0±01) (0±013)
1±00 1±00 1±00 1±00 1±00 0±99 0±90 0±71 0±50 0±37 0±15 0±06 0±05

9 0±5 544 0±26 0±24 0±17 0±15 0±12 0±09 0±06 0±04 0±03 0±02 0±01 0±00 ®0±004
(0±05) (0±06) (0±06) (0±06) (0±05) (0±04) (0±04) (0±03) (0±03) (0±03) (0±02) (0±02) (0±024)
1±00 1±00 1±00 1±00 0±98 0±87 0±57 0±41 0±31 0±17 0±05 0±09 0±08

25 0±5 200 0±16 0±16 0±12 0±11 0±09 0±07 0±04 0±03 0±02 0±02 0±00 0±01 ®0±000
(0±06) (0±06) (0±07) (0±07) (0±06) (0±06) (0±05) (0±04) (0±04) (0±04) (0±04) (0±04) (0±041)
0±95 0±93 0±74 0±73 0±64 0±51 0±24 0±17 0±12 0±12 0±07 0±05 0±11

4 0±25 625 0±33 0±29 0±20 0±15 0±12 0±08 0±05 0±03 0±02 0±02 0±01 0±00 ®0±004
(0±06) (0±06) (0±06) (0±07) (0±05) (0±04) (0±03) (0±03) (0±03) (0±02) (0±02) (0±02) (0±019)
1±00 1±00 1±00 1±00 0±95 0±81 0±63 0±41 0±19 0±14 0±03 0±05 0±03

9 0±25 272 0±25 0±22 0±16 0±13 0±11 0±07 0±04 0±03 0±01 0±01 0±00 0±00 ®0±007
(0±07) (0±08) (0±07) (0±07) (0±06) (0±05) (0±04) (0±04) (0±04) (0±03) (0±04) (0±04) (0±033)
1±00 1±00 0±96 0±83 0±82 0±56 0±34 0±16 0±10 0±05 0±08 0±09 0±06

25 0±25 100 0±15 0±14 0±10 0±09 0±07 0±06 0±02 0±02 0±01 0±01 ®0±01 0±00 ®0±001

(0±07) (0±09) (0±09) (0±09) (0±07) (0±08) (0±06) (0±05) (0±06) (0±06) (0±06) (0±05) (0±058)
0±70 0±65 0±57 0±42 0±28 0±29 0±14 0±08 0±08 0±08 0±09 0±06 0±06

a The porosity of the sample design.
b The proportion of the total population actually sampled under a given sample design.
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Fig. 1. Correlograms of SNDs for simulations with
different levels of dispersal for the case of three alleles
with unequal frequencies, for the total number of joins
between unlike genotypes, for dispersal models : 1, circles
(N

e
¯ 4±2) ; 2, squares (N

e
¯ 25±1) ; 3, triangles (N

e
¯ 50±2) ;

4, crosses (N
e
¯115±2) ; 5, asterisks (N

e
¯ 632±4). SNDs

are calculated based on full sampling.

of size N
f
and N

m
had an equal chance of being the

female or male parent, respectively. This may be

considered unrealistic for many species, in which the

probability of dispersal decays with distance. How-

ever, it is justified by the fact that the form of the

dispersal curve has very little effect on spatial

structure; rather it is the standardized neighbourhood

size that matters (e.g. Rohlf & Schnell, 1971). In total,

3000 (6¬5¬100) space–time simulations were run for

loci with multiple loci. A total of 1300 simulations

were run for diallelic loci with a more continuous

range of dispersal parameters (see Table 4).

(ii) Statistical characterization of populations

As in previous studies, the spatial distributions of

genotypes during the period of the quasi-stationary

phase were characterized by computing the statistics

at generation 200 for each simulation run. Charac-

terizations of a single generation anywhere in the

range from about 50 to several thousand are adequate,

because during this period the simulated populations

exist in a quasi-stationary phase (e.g. Epperson, 1990),

and it is more meaningful to replicate over entire

simulations rather than over generations. Each simu-

lated population for loci with more than two alleles

was sampled in seven different ways (Table 3), which

have been shown to cover the range of possible

optimal strategies (Epperson & Li, 1997). Briefly,

based on simple arguments, the scale of sampling

should be constructed to cover an area containing

four to nine patches (especially critical for low to

moderate dispersal) to avoid, for example, sampling

single patches or areas between two patches (and

otherwise improve spatial stationarity at large scales),

yet include 10–20 individual sample points within each

patch. Thus, for example, sampling every individual

over an area is not efficient, because it requires

sampling very large numbers of individuals (unless

dispersal is large) ; instead a sampling grid should be

used. A larger set of sampling schemes was conducted

for the otherwise simpler diallelic cases (Epperson &

Li, 1997), and the ones chosen for the present study

avoided redundancy, which is unnecessary since we

may extrapolate by adjusting sample sizes (see below).

The sampling schemes varied according to the total

number of individuals in the population area sampled

and the proportion (for sake of brevity we term this

‘porosity ’) of the total number that were actually

sampled from the population of individuals covered

by a sample area. Thus a sample lattice was

superimposed onto a simulated population surface of

genotypes. Note that porosity affects the spatial scale

of sampling as well as the total size of the sample

(Table 3). For porosity equal to 1 all individuals in the

sample area were sampled. We omitted stochastic

location sampling, since this has virtually no effect

(Epperson & Li, 1996, 1997).

We calculated Moran’s I-statistic for the individual

genotypes. For each allele, the genotype at each

location was converted into the values 0, 0±5 or 1±0
according to the numbers (none, one, two) of that

allele that were carried in the genotype. For each allele

Moran’s I-statistics were calculated for the numerical

values.

For each of the seven samples for each of the

multiallelic simulations, pairs or ‘ joins ’ were classified

according to the two genotypes and with respect to

distances classes, D, in multiples of lattice units. To

reduce over 1 gigabyte of output to that which is most

useful, we focus on statistics for the joins between

identical homozygotes, among the many types of

joins in a multiallelic setting, and the total number

of unlike joins. For the former, the number of

joins between two identical homozygotes for allele

j for distance class D, n
jj
(D), was compared

with the expected number, u
jj
(D), and standard

deviation, SD
jj
(D), under the null hypothesis, H

!
, of

sampling pairs without replacement [u
jj
(D)¯W(D)

n
j
(n

j
®1)}2n(n®1) ; where n

j
is the number of indi-

viduals with genotype j, n is the total sample size, and

W(D) is the total number of all joins for distance class

D], and without regard to their locations. The

difference was standardized to form a test statistic,
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Table 5. Mean SND �alues for total unlike joins for �arious alleles for different le�els of dispersal (Wright’s

neighbourhood size, N
e
) and with different types of sampling (standard de�iations in parentheses)

Dispersal
Sampling strategy

Model Allele Porosityb 1 4 4 9 9 25 25
(N

e
) modela Areac : 1 0±5 0±25 0±5 0±25 0±5 0±25

4±2 3e ®108±2 ®25±9 ®17±4 ®12±1 ®7±9 ®4±6 ®3±0
(6±3) (3±4) (2±9) (2±6) (2±2) (1±6) (1±5)

4±2 3u ®95±5 ®23±0 ®15±4 ®10±9 ®7±1 ®4±0 ®2±6
4±2 4e ®133±3 ®31±2 ®20±9 ®14±7 ®9±7 ®5±6 ®3±8
4±2 4u ®110±6 ®26±1 ®17±9 ®12±5 ®8±5 ®4±7 ®3±2
4±2 5e ®152±1 ®34±7 ®23±4 ®16±1 ®10±5 ®6±0 ®4±0
4±2 5u ®123±3 ®29±1 ®19±0 ®13±7 ®8±7 ®5±0 ®3±0

25±1 3e ®38±0 ®11±4 ®6±9 ®6±5 ®3±7 ®3±2 ®1±8
(5±4) (3±0) (2±4) (2±3) (1±8) (1±7) (1±5)

25±1 3u ®35±0 ®10±2 ®6±8 ®5±7 ®3±6 ®2±4 ®1±5
25±1 4e ®44±7 ®13±0 ®8±2 ®7±3 ®4±5 ®3±3 ®1±9
25±1 4u ®41±5 ®12±5 ®8±0 ®7±1 ®4±5 ®3±3 ®2±1
25±1 5e ®50±7 ®14±9 ®9±2 ®8±4 ®5±2 ®4±0 ®2±6
25±1 5u ®48±5 ®14±1 ®8±8 ®8±0 ®4±8 ®3±6 ®2±0
50±2 3e ®20±0 ®6±1 ®03±7 ®3±5 ®1±9 ®1±7 ®1±1

(3±9) (1±9) (1±4) (1±7) (1±3) (1±2) (1±1)
50±2 3u ®19±5 ®5±7 ®3±5 ®3±6 ®2±2 ®1±9 ®1±1
50±2 4e ®23±2 ®6±6 ®3±8 ®3±7 ®2±0 ®2±0 ®1±2
50±2 4u ®23±2 ®6±7 ®4±1 ®3±8 ®2±4 ®1±8 ®1±0
50±2 5e ®26±1 ®7±7 ®4±7 ®4±5 ®2±7 ®2±2 ®1±4
50±2 5u ®27±3 ®8±2 ®4±7 ®4±8 ®2±7 ®2±5 ®1±3

230±4 3e ®5±6 ®1±6 ®0±8 ®1±0 ®0±4 ®0±6 ®0±1
(3±9) (1±9) (1±4) (1±7) (1±3) (1±2) (1±1)

230±4 3u ®5±7 ®1±6 ®1±0 ®0±9 ®0±6 ®0±5 ®0±3
230±4 4e ®6±7 ®2±0 ®1±0 ®1±3 ®0±7 ®0±6 ®0±5
230±4 4u ®7±0 ®1±9 ®1±1 ®1±3 ®0±7 ®0±7 ®0±3
230±4 5e ®7±6 ®2±2 ®1±3 ®1±5 ®0±7 ®9±8 ®0±4
230±4 5u ®8±7 ®2±5 ®1±3 ®1±6 ®0±7 ®0±9 ®0±5
637±4 3e ®1±1 ®0±6 ®0±4 ®0±2 0±0 ®0±1 ®0±0

(0±9) (1±0) (1±0) (0±9) (1±0) (1±1) (1±0)
637±4 3u ®1±4 ®0±3 ®0±2 ®0±1 ®0±1 0±0 0±1
637±4 4e ®1±2 ®0±4 ®0±1 ®0±4 ®0±3 ®0±2 ®0±2
637±4 4u ®1±2 ®0±4 ®0±2 ®0±2 ®0±0 ®0±1 ®0±0
627±4 5e ®1±5 ®0±2 ®0±0 ®0±1 ®0±0 ®0±2 0±1
637±4 5u ®1±7 ®0±7 ®0±2 ®0±4 ®0±1 ®0±2 0±0

a u denotes unequal allele frequency, e denotes equal.
b The porosity of the sample design.
c The proportion of the total population actually sampled under a given sample design.

SND
jj
(D)¯ (n

jj
(D)®u

jj
(D))}SD

jj
(D), which has an

asymptotic standard normal distribution under H
!
,

which is appropriate for the large samples typically

used in genetic studies (Cliff & Ord, 1981). These

statistics are completely free of assumptions about the

underlying distributions, which would not be the case

if they were based on sampling with replacement, in

which case the mean must be known and constant at

all locations, as was proved by Cliff & Ord (1981).

Positive values greater than 1±96 indicate statistically

significant excesses of a type of join at a distance, and

negative values indicate deficits. In addition, the total

number of joins between unlike genotypes was

computed, and a SND test statistic for H
!
was formed

for each distance class.

3. Results

(i) Moran’s I-statistics for indi�idual genotypes

Changes in the number of alleles and the allele

frequencies did not cause statistically significant

differences in Moran’s I-statistics (nor their standard

deviations and rates of rejection of the null hypothesis)

for individual genotypes. Thus we do not display all

the values, which can be obtained on request from the

authors. Instead, we focus on the 1300 simulations

(13000 samples) for the two-allele case, by examining

the statistical values of Moran’s I-statistics for

individual genotypes (Table 4). In almost all samples

the results are determined by the sample porosity or
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Fig. 2. Correlograms of SNDs for simulations with
different levels of dispersal for the case of three alleles
with unequal frequencies, for joins between like
homozygotes, for dispersal models : 1, diamonds (N

e
¯

4±2) ; 2, squares (N
e
¯ 25±1) ; 3, triangles (N

e
¯ 50±2) ; 4,

crosses (N
e
¯115±2) ; 5, asterisks (N

e
¯ 632±4). SNDs are

calculated based on full sampling.

distance class but not by the sample size. Only a small

decrease is observed for the smallest sample (n¯100).

A simple relationship is also seen in the effects of

sampling on the standard deviations. For an otherwise

identical scheme (i.e. same sample porosity), when

sample size (area) is decreased the standard deviation

is increased approximately by the square root of the

ratio. Statistical power, i.e. the observed rates of

rejection of the null hypothesis, is given in Table 4. In

all cases the values are close to those found by treating

the set means as a normal deviate with the observed

standard deviation and calculating the resulting

probability of I having values less than or equal to

zero. For all cases, Moran’s I-statistics for individual

genotypes have smaller statistical power than do

SNDs for the total number of unlike joins, and the

differences become large as the number of alleles

increases. The I-statistics generally have essentially

equivalent power to SNDs for like-homozygotes (see

below), although slightly greater for alleles with low

frequencies.

Increasing dispersal has a much stronger effect on

the mean values. Dispersal has relatively little effect

on the standard deviations. Thus dispersal regime

may be inferred from observed values in samples, with

a good degree of certainty.

(ii) Join-count statistics

Fig. 1 shows the SNDs for a typical case of the full

sampling situation (n¯10000, porosity¯1) for the

total number of unlike joins. As dispersal increases the

deficits become reduced. In the full sampling case, for

all but the highest amounts of dispersal (N
e
¯ 632±4)

the statistics have extremely high statistical power,

rejecting the null hypothesis nearly 100% of the time

(results not shown). Table 5 displays the SNDs for the

total number of unlike joins for distance class 1 for the

various sampling schemes. For most of the sample

schemes that are appropriate under field conditions

(e.g. porosity not equal to 1) the statistical power of

the SND test statistics also remains quite high. To

reduce these complicated tables we do not show the

statistical power in terms of the observed rates of

rejection of the null hypothesis. However, as for

Moran’s statistics, these rates were very close to the

values found by treating the set means as a normal

deviate with the observed standard deviation and

calculating the resulting probability of SND having

values crossing over zero. Thus the expected rejection

rates can be inferred from the tables. For example,

mean values approximately 1 standard deviation from

zero have a rate of rejection near one-third. Again,

allele number and frequencies had negligible effects on

standard deviations; thus only those for the three

alleles with equal frequencies are displayed in Table 5.

For each sample scheme (except porosity 25, quarter

population), the power was usually greater than 50%

and in many cases at or near 100%, for low to

moderate levels of dispersal (N
e
! 50). The values of

the standard deviations are virtually identical to those

for the corresponding two-allele cases (Epperson &

Li, 1997), as are the statistical powers or rates of

rejection of the null hypothesis. In general, the effect

of reducing sample size is to decrease a mean SND

(and its standard deviation) by the square root of the

ratio of sample sizes. For example, in Table 5 it is

evident that, for a given porosity, the values of SNDs

for the half-population (an area containing 5000

individuals) are close to o2 times smaller than those

for the total area. When the area is restricted to one-

quarter the SNDs are reduced by approximately one-

half, but slightly less apparently owing to stochastic

fluctuations (spatial non-stationarity over small fixed

areas). Naturally, the SNDs and their statistical power

are reduced as dispersal becomes quite large. Yet it is

remarkable that a moderate-size sample is likely to

detect structure even when N
e
" 200, despite the

classical claim that populations with this degree of

dispersal should behave as randomly mating popu-

lations (Wright, 1943).

The absolute values of the SNDs for the total

number of unlike joins consistently increase as the

number of alleles increases. In contrast, the SNDs for

the total number of unlike joins are essentially

independent of the allele frequencies. For almost

every dispersal model and every allele multiplicity,
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Table 6. Mean SND �alues for joins between identical homozygotes, for �arious alleles, for different le�els of

dispersal (Wright’s neighbourhood size, N
e
) and with different types of sampling (standard de�iations in

parentheses)

Dispersal
Sampling strategy

model Allele Porosityb 1 4 5 9 9 25 25
(N

e
) modela Allele Areac : 1 0±5 0±25 0±5 0±25 0±5 0±25

4±2 3e 1 63±2 15±2 9±9 7±2 4±6 2±7 1±7
(5±7) (3±0) (2±9) (2±4) (2±3) (1±7) (1±5)

3u 1 51±3 12±0 7±5 5±7 3±6 1±7 1±0
2 62±0 14±7 9±6 7±0 4±7 2±5 1±6
3 72±3 16±9 11±2 7±9 5±1 2±7 1±7

4e 1 59±2 13±7 9±2 6±5 4±5 2±2 1±5
4u 1 49±6 11±4 7±8 5±4 3±8 1±8 1±0

3 61±2 14±0 9±9 6±5 4±5 2±4 1±8
4 69±6 16±8 11±3 7±9 5±3 3±0 1±8

5e 1 57±1 13±5 9±2 5±9 3±8 2±5 1±7
5u 1 51±1 11±0 7±1 5±3 3±4 1±7 0±9

5 73±0 17±6 11±5 8±1 5±1 2±8 1±6
25±1 3e 1 23±5 6±5 3±8 4±0 2±3 1±6 0±9

(5±2) (2±6) (2±5) (2±1) (1±9) (1±4) (1±2)
3u 1 12±9 3±3 2±3 2±9 1±2 0±7 0±3

2 20±9 5±9 3±9 3±2 2±0 1±3 0±7
3 29±0 8±1 5±2 4±2 2±7 1±9 1±1

4e 1 20±4 5±8 3±9 2±9 1±7 1±3 0±9
4u 1 13±7 3±5 2±0 2±0 1±3 1±0 0±7

3 21±8 6±4 4±0 3±3 2±0 1±4 0±8
4 27±3 8±1 5±2 4±4 2±7 2±0 1±3

5e 1 18±4 5±5 3±0 2±6 1±6 1±5 0±7
5u 1 12±5 2±8 1±5 1±8 1±0 0±8 0±2

5 30±0 8±6 5±2 4±7 2±8 2±1 1±1
50±2 3e 1 12±0 3±8 2±2 2±2 1±1 1±1 0±5

(3±3) (2±1) (1±6) (1±7) (1±4) (1±5) (1±2)
3u 1 6±2 1±7 1±0 1±1 0±7 0±5 0±1

2 11±6 3±2 2±0 1±9 1±3 1±0 0±3
3 16±4 4±5 2±7 2±7 1±6 1±2 0±7

4e 1 9±8 2±7 1±4 1±4 0±6 0±6 0±2
4u 1 5±9 1±8 0±8 0±8 0±3 0±4 0±2

3 12±1 3±1 1±9 1±7 1±0 0±6 0±4
4 16±0 4±4 2±7 2±5 1±5 1±1 0±6

5e 1 9±2 2±9 1±5 1±5 0±7 0±7 0±3
5u 1 5±5 1±4 0±8 0±7 0±4 0±2 0±1

5 17±2 5±1 3±0 2±8 1±6 1±3 0±6
230±4 3e 1 3±3 1±1 0±8 0±7 0±2 0±1 0±0

(3±3) (2±1) (1±6) (1±7) (1±4) (1±5) (1±1)
3u 1 1±3 0±2 0±1 0±2 0±1 0±2 0±0

2 3±0 0±8 0±4 0±5 0±2 0±2 0±2
3 5±1 1±2 0±7 0±8 0±5 0±5 0±3

4e 1 3±0 0±6 0±4 0±6 0±4 0±3 0±1
4u 1 1±4 0±1 ®0±2 0±4 0±1 0±3 0±0

3 3±3 0±7 0±2 0±5 0±3 0±4 0±1
4 5±2 1±3 0±7 1±0 0±5 0±4 0±2

5e 1 2±4 0±6 0±3 0±6 0±4 0±4 0±1
5u 1 1±5 0±6 0±4 0±4 0±2 0±1 ®0±2

5 5±3 1±5 0±8 0±9 0±4 0±4 0±1
637±4 3e 1 0±7 0±5 0±3 0±1 ®0±1 ®0±1 ®0±0

(1±2) (1±1) (1±0) (1±1) (0±9) (1±0) (0±1)
3u 1 0±3 0±0 ®0±0 ®0±1 ®0±2 ®0±0 ®0±0

2 0±7 0±1 0±1 0±1 0±0 ®0±1 ®0±1
3 1±3 0±2 0±1 0±2 0±1 ®0±1 ®0±1

4e 1 0±4 0±1 ®0±0 0±1 0±1 0±0 0±0
4u 1 0±2 0±0 0±1 0±1 ®0±2 ®0±0 ®0±0

3 0±8 ®0±1 ®0±1 0±1 0±0 0±1 ®0±1
4 0±9 0±3 0±2 0±2 ®0±0 0±1 0±0

5e 1 0±6 0±0 ®0±1 ®0±2 ®0±3 0±0 ®0±2
5u 1 0±2 0±1 0±3 ®0±0 0±1 0±1 ®0±1

5 0±9 0±5 0±2 0±2 ®0±0 0±2 ®0±0

a u denotes unequal allele frequency, e denotes equal.
b The porosity of the sample design.
c The proportion of the total population actually sampled under a given sample design.
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values for all unequal allele frequencies are very close

to those for equal allele frequencies (Table 5). The

only substantial exception is the case of full sampling

in the model with very low dispersal, N
e
¯ 4±2, for

which SNDs for equal allele frequencies are sub-

stantially more negative than for unequal allele

frequencies.

The SNDs for joins between identical homozygotes

are shown in Fig. 2 and Table 6. The values for alleles

with frequencies 0±3, 0±5 or 0±6 are virtually identical

among models with different numbers of alleles,

including the two-allele case (Epperson, 1995b ;

Epperson & Li, 1997). The values for low-frequency

alleles can be substantially smaller, indicating a strong

effect when allele frequencies are reduced to about 0±1.

Reductions of the same magnitude were observed in

the two-allele case. The values are nearly identical

regardless of the number of alleles. In sum, these

results indicate that changes in the number of alleles

affect the SNDs for the total number of unlike joins

only when N
e

is low to moderate and do not affect

SNDs for like homozygotes. Skewing of allele fre-

quencies has no effect unless a frequency is reduced to

about 0±1 or less, under which condition, the SNDs

for the corresponding joins between like homozygotes

are substantially decreased, whereas the SNDs for

total number of unlike joins are unaffected. These

results are consistent with the idea that low-frequency

effects are primarily reflected in similar patch struc-

tures and sizes of patches, only fewer patches of

homozygotes for alleles in low frequency. Only when

the allele frequency is about 0±1 or lower is the patch

size reduced. Again, allele number had negligible

effects on standard deviations; however, allele fre-

quency did have a small effect similar to the diallelic

case (Epperson & Li, 1997). Thus only those for the

three alleles with equal frequencies are displayed in

Table 6, and other values are available on request

from the authors.

It should be noted that the standard deviations

reported in the Tables 4, 5 and 6 combine statistical

variation with stochastic variation, except in the case

of full sampling which is subject only to stochastic

variation. Thus the standard deviations are appro-

priate for corresponding sampling schemes in real

populations. They may be interpreted as variances for

test statistics for the null hypothesis that the spatial

distribution of genotypes is that expected for a

selectively neutral locus subject to the given level of

dispersal, for samples of genotypes for a single locus.

4. Discussion

Our results demonstrate that both Moran’s I-statistics

for converted diploid genotypes and SND-statistics

have high statistical power, and low stochastic and

statistical variation, even when sample sizes are quite

small. Thus, autocorrelation statistics can be used in

experimental studies in a number of distinct fashions,

for loci with two to many alleles.

(i) Multiallelism and population structure

The patch structures observed for two-allele cases are

maintained in all the multiallele models studied. Thus

the dominant features of the spatial distributions are

maintained despite the fact that the distributions

themselves cannot be identical for loci with different

allele configurations. The stochasticity that drives the

formation of patches dominates over the initial

presence of multiple alleles within local areas in the

founding populations. Thus, it appears that some

emergent characterizations of population structure

based on two-allele models are robust to the existence

of as many as five alleles and possibly more. The

major effect of increasing numbers of alleles is an

indirect one in tending to skew allele frequencies away

from 0±5. The results indicate that if allele frequency is

reduced to about 0±2, then the SNDs remain

unaffected, and thus the number of patches of

concentration of that allele are reduced but the sizes of

patches are unchanged. If frequency is reduced further

to about 0±1 or less, the SNDs for joins between

identical homozygotes do become reduced, and have

smaller X-intercepts, indicating reductions in patch

sizes. The same effects of allele frequency were

observed in the two-allele case (Epperson, 1995b).

The SNDs for the total number of unlike joins do

not change with allele frequencies (except where

dispersal is extremely low, e.g. Wright’s neighbour-

hood size, N
e
, less than c. 5), as is also true in the two-

allele case. They do take moderately greater negative

values as the number of alleles is increased. The fact

that the SNDs for joins between homozygotes are

unchanged suggest this is apparently a purely stat-

istical phenomenon. The SNDs are test statistics

whose values may depend strongly on the numbers

of the various genotypes as well as their spatial dis-

tributions.

Moran’s I-statistics for genotypes converted into

allele frequencies were not affected by either the

number of alleles or the population allele frequencies,

in our extensive studies of two-, three-, four- and five-

allele models.

(ii) Values in samples

The most powerful test statistic, in all the sampling

schemes for all studied multiallelic models, is that for

the total number of unlike joins. In the two-allele

cases, the absolute magnitude of means and standard

deviations for the total number of unlike joins are

almost identical to those for the joins between identical

homozygotes, and the power (not shown) is nearly
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identical to that for Moran’s I-statistics for converted

genotypes. The observed increase in the SND for the

total number of unlike joins in the various sampling

schemes, resulting from increasing numbers of alleles,

is connected to the behaviour of the parametric values

discussed above.

The results provide precise predictions for analyses

of survey data for selectively neutral loci in natural

populations with a given dispersal level. First, we may

make any adjustments for the numbers and frequencies

as outlined just above. Then we note that unless

sample sizes are very small then Moran’s I-statistics

for converted genotypes are virtually unchanged from

the parametric values, but we must interpolate the

values of the SNDs in experiments by using the square

root of the ratio of experiment sample sizes relative to

the closest one found in the tables. The standard

deviations of both types of statistics must be inter-

polated also by the square root of the ratio in sample

sizes. Then by the approximation of treating the

adjusted SND as a normal variate with the adjusted

standard deviation, we may use the probability of

such a variate being less than or equal to zero (in the

case of negative means, we use instead greater than or

equal to zero) to obtain interpolated predicted values

of the probabilities of observing a significant value

fitted to specific experimental studies (see also

Epperson & Li, 1997).

The total number of unlike joins has the additional

advantage that a single statistic may be constructed

(for each distance class and for each locus) and thus

smaller Bonferroni-type corrections for multiple tests

are required. These corrections are very conservative,

yet must be employed in sets of multiple join-count

statistics or sets of multiple Moran’s I-statistics for

converted genotypes for multiallele loci, because the

relationships among different elements are unknown.

A large number of simulations and sample schemes

were examined in this study. The sample schemes are

among the optimal ones examined in an earlier

analysis of the two-allele case, which included a

substantially wider range of sampling schemes

(Epperson&Li, 1997). These schemes also incorporate

some additional important general considerations for

sampling strategies (Epperson, 1993). The scale of the

sampling lattice should cover an area that is expected

to contain at least four to nine patch areas, in order to

avoid statistical fluctuations that might occur by

inadvertently sampling only within one patch or the

area between two patches. In addition, because genetic

samples typically contain only a few hundred to

several hundred sampled individuals, it follows that

the percentages of sampled individuals over the sample

area should be in the range of about 1}4 or 1}9 to

1}25, respectively. Complete census is very inefficient.

The standard errors are relatively small and for

estimates based on k loci they will be ok times

smaller. Multiple-locus studies are an important

strategy used in experimental studies. Using modern

molecular methods a large number of multiallelic

genetic loci may easily be assayed within natural

populations. The present results for multiallelic loci

follow those in our study for the diallelic case

(Epperson & Li, 1997). The present results may be

used to estimate the level of dispersal, in a way that is

more often feasible and more efficient than those

based on direct observations of movements. This can

be done by finding predicted values, by adjusting the

values in the tables for experimental sample size and

porosity (for the latter, approximate population

density may be easily estimated and the scale of the

sampling is generally known), for various levels of

dispersal, and matching these with the values observed

in the experiment. An example, using data from

Ipomoea purpurea, was presented in an earlier paper

(Epperson & Li, 1997). Even in the case where there is

only a single locus, with sample sizes of a few hundred

for low-to moderate-dispersal cases, or several hun-

dred to a thousand for high-dispersal cases, the

statistical power is high.

This work was supported in part by National Institutes
of Health grant GM48453 and McIntire-Stennis project
number 1774 to B.K.E.

References

Bacilier, R., Labbe, T. & Kremer, A. (1994). Intraspecific
genetic structure in a mixed population of Quercus
petraea (Matt.) Lelbl and Q. robur L. Heredity 73,
130–141.

Bertorelle, G. & Barbujani, G. (1995). Analysis of DNA
diversity by spatial autocorrelation. Genetics 140,
811–819.

Cliff, A. D. & Ord, J. K. (1981). Spatial Processes. London:
Pion.

Epperson, B. K. (1990). Spatial autocorrelation of genotypes
under directional selection. Genetics 124, 757–771.

Epperson, B K. (1993). Recent advances in correlation
studies of spatial patterns of genetic variations. E�olution-
ary Biology 27, 95–155.

Epperson, B. K. (1995a). Fine-scale spatial structure:
correlations for individual genotypes differ from those for
local genotypes. E�olution 49, 1022–1026.

Epperson, B. K. (1995b). Spatial distribution of genotypes
under isolation by distance. Genetics 140, 1431–1440.

Epperson, B. K. & Li, T.-Q. (1996). Measurement of genetic
structure within populations using Moran’s spatial auto-
correlation statistics. Proceedings of the National Academy
of Sciences of the USA 93, 10528–10532.

Epperson, B. K. & Li, T.-Q. (1997). Gene dispersal and
spatial genetic structure. E�olution 51, 672–681.

Ewens, W. J. (1974). A note on the sampling theory for
infinite alleles and infinite sites models. Theoretical
Population Biology 6, 143–148.

Felsenstein, J. (1975). A pain in the torus: some difficulties
with models of isolation by distance. American Naturalist
109, 359–368.

https://doi.org/10.1017/S001667239900378X Published online by Cambridge University Press

https://doi.org/10.1017/S001667239900378X


Measures of spatial structure 261

Gillois, M. (1966). Le concept d’identite! et son importance
en ge!ne! tique. Annales de GeUneU tique 9, 58–65.

Heywood, J. S. (1991). Spatial analysis of genetic variation
in plant populations. Annual Re�iew of Ecology and
Systematics 22, 335–355.

Leonardi, S., Raddi, S. & Borghetti, M. (1996). Spatial
autocorrelation of allozyme traits in a Norway spruce
(Picea abies) population. Canadian Journal of Forest
Research 26, 63–71.

Male! cot, G. (1950). Quelques schemas probabilistes sur la
variabilite! des populations naturelles. Annales de
l ’Uni�ersiteU de Lyon, Section A 13, 37–60.

Michalakis, Y. & Excoffier, L. (1996). A generic estimation
of population subdivision using distances between alleles
with special reference for microsatellite loci. Genetics 142,
1061–1064.

Morton,N. E. (1973).Kinship bioassay. InGenetic Structure
of Populations (ed. N. E. Morton), pp. 158–163.
Honolulu: University of Hawaii Press.

Peakall, R. & Beattie, A. J. (1995). Does ant dispersal of

seeds in Sclerolaena diacantha (Chenopodiaceae) generate
local spatial genetic structure? Heredity 75, 351–361.

Real, L. A. & McElhany, P. (1996). Spatial pattern and
process in plant–pathogen interactions. Ecology 77,
1011–1025.

Rohlf, F. J. & Schnell, G. D. (1971). An investigation of the
isolation by distance model. American Naturalist 105,
295–324.

Shapcott, A. (1995). The spatial genetic structure in natural
populations of the Australian temperate rain forest tree
Atherosperma moschatum (Labill) (Monimiaceae).
Heredity 74, 28–38.

Sokal, R. R. & Wartenberg, D. E. (1983). A test of spatial
autocorrelation analysis using an isolation-by-distance
model. Genetics 105, 219–237.

Sokal, R. R., Jacquez, G. M. & Wooten, M. C. (1989).
Spatial autocorrelation analysis of migration and selec-
tion. Genetics 121, 845–855.

Wright, S. (1943). Isolation by distance. Genetics 28,
114–138.

https://doi.org/10.1017/S001667239900378X Published online by Cambridge University Press

https://doi.org/10.1017/S001667239900378X

