Topics in the theory of latin squares

Bohdan Peter Smetaniuk

This thesis deals with various aspects of latin squares. The following is a summary of our results.
I. First, a new construction on latin squares is introduced and its properties analysed. This construction forms the basis of most of the results in the thesis.
II. The Evans Conjecture on partial latin squares is shown to be true.
III. Let L_{n} denote the number of distinct latin squares of order n. It is shown that $L_{n} \geq n!L_{n-1}$. As a consequence, it can be immediately deduced that L_{n} is strictly increasing (not previously known). Another consequence of the inequality is that we can write $L_{n} \geq n!(n-1)!(n-2)!\ldots\left(n_{0}+1\right)!L_{n_{0}}$ for $n>n_{0}$ where n_{0} is the largest order for which the number of latin squares is known. This is a slight improvement on Hall's lower bound for L_{n} and so establishes a new lower bound for L_{n}.
IV. The number of latin squares with the property that cell (i, i) contains i for all i in the range $l \leq i \leq n-1$ is shown to be at least $L_{n} /(n!(n-1)!)$. This is shown to be relevant to two current unsolved

Received 5 October 1983. Thesis submitted to University of Sydney, April 1983. Degree approved August 1983. Supervisor: Dr Jennifer Seberry.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 $\$ 42.00+0.00$.
problems on the structure of latin squares.
V. The problem of completing partial frequency squares (the frequency square is a generalization of the latin square) is considered. It is shown that the problem of completing a partial frequency square can be transformed into the problem of completing partial latin squares. This will allow the current knowledge on completing partial latin squares to be used to obtain results on completing partial frequency squares.

Department of Pure Mathematics,
University of Sydney,
Sydney,
New South Wales 2006,
Australía,

