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Monte Carlo simulation II: measuring 
observables 

Regarding the lattice as merely an ultraviolet cutoff, we would like to use 
the Monte Carlo simulation technique for the calculation of some physical 
numbers characteristic of the continuum field theory. At the outset it is 
not clear how well this can be done with the rather limited lattices available. 
For believable results we must make the lattice spacing smaller than 
relevant hadronic scales and yet have the overall lattice larger than the scale 
of physics we are measuring. A lattice of order to sites in any given 
direction leaves little leeway in such an analysis. Furthermore, the 
renormalization group discussion of chapter 13 points out that we should 
expect an exponential dependence of the lattice spacing on coupling 
canstant. At best only a very narrow range of coupling can be useful in 
extracting physical numbers. 

To counteract this pessimism, we have the remarkable experimental fact 
that the scaling behavior predicted by asymptotic freedom appears in deep 
inelastic scattering experiments at the precociously low momentum 
transfers of order 2 Ge V (perkins, 1977). Thus our 10' site lattices may give 
interesting results for physics at energy scales down to a few hundred MeV, 
exactly where strong confinement forces should come into play. Thus we 
may hope to relate a few features of long- and short~distance quark 
dynamics. 

We should attempt to measure a quantity which has a finite continuum 
limit; that is, we must extract a physical observable. The average plaquette, 
which dominated the above Monte Carlo discussion, is proportional to the 
expectation value of the action density and is expected at the perturbative 
level to have ultraviolet divergences. The simplest physical observable for 
extraction from a Monte Carlo analysis is K, the coefficient of the linear 
long-range interquark potential. This may be found by measuring large 
Wilson loops and looking for the area law falloff discussed in chapter 9. 
Measuring distances in lattice units, one actually determines the dimen
sionless combination 0 2 K as a function of the bare coupling g~. If the linear 
potential survives the continuum limit, the weak coupling behavior of this 
combination should follow the prediction of the renormalization group as 
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discussed in chapter 13. 

a2K = (K/ A5)(Yog5)<-Ytlro) exp (-1/(Yog5» (1 +O(gm· (19.1) 

Conversely, verification of this behavior will provide strong evidence for 
the survival of the linear potential when the cutoff is removed. 

In general the behavior of a Wilson loop can be quite complicated. In 
addition to the area law piece dominant for large loops, there should be 
perimeter dependence from the self energies of the quark sources and yet 
further corrections from perturbative gluon exchange across the loop. As 
the coupling is reduced and the continuum limit approached, the perimeter 
piece should diverge and dominate for any fixed size loop. To eliminate 
this distraction, it is convenient to consider ratios of loops with different 
areas but the same perimeter. In particular, define (Creutz, 1980c) 

(/ J) = -In (W(/,J) W(/-I,J-I») 
X , W(J,J-l) W(J-l,J) , (19.2) 

where W(J, J) denotes the expectation of a rectangular Wilson loop of 
lattice dimensions J by J. In these quantities any perimeter dependence or 
constant factors in the loops will cancel. Whenever the loops are dominated 
by an area law, X(J, J) directly measures the string tension 

x-,>-a2K. (19.3) 

This occurs either when J and J are large or when the bare coupling is large. 
However, in the weak coupling limit gluon exchange should dominate and 
X will have a perturbative expansion 

X(J, J) = O(g5). (19.4) 

For example the weak coupling expression for the one-by-one loop implies 

(I I) = {3gUI6+0(g~), SU(2)} 
X , gU3+0(g~), SU(3). 

(19.5) 

Such a power behavior is in marked contrast to the essential singularity 
on the right hand side of eq. (19.26). To summarize, for strong coupling 
we expect all X(/, J) to become the area law coefficient but as g~ is reduced, 
smaller loops should give a X deviating from the true a2 K. Thus the curves 
of X(/, J) for all J and J should form an envelope along the curve of the 
string tension. For weak coupling this envelope should satisfy eq. (19.1). 

In figure 19.1 we plot X(J, I), for J up to four, as a function of g;;2 for 
the gauge group SU(2). At strong coupling the large loops have large 
relative errors but are consistent with X approaching the values from 
smaller loops. The graph also indicates the strong coupling limit for the 
string tension 

(19.6) 
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The weak coupling behavior of eq. (19.1) is shown as a band representing 
values of the parameter Ao in the range 

Ao = (1.3±O.2) x lO-sKi, SU(2). (19.7) 

This error is a purely subjective esti,mate. 
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Fig. 19.1. Extracting the string tension for 8U(2) (Creutz, 1 980c). 

Figure 19.2 shows the same quantities for the gauge group SU(3) on a 
64 site lattice (Creutz and Moriarty, 1982b). On this smaller lattice, only 
loops up to 3-by-3 were used. For this theory the strong coupling 
expansion gives 

aSK = In(3g~)+O(go2). (19.8) 

Note that the corrections for SU(3) begin in a lower order of the strong 
coupling expansion than for the SU(2) case in eq. (19.6). The weak 
coupling band for Ao is now 

Ao = (6.0± 1.0) x to-3Ki, SU(3). (19.9) 
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When first obtained, these small numbers were quite surprising, coming 
as they do from theories with no small dimensionless parameters. However, 
as discussed in chapter 13, the value of Ao is strongly dependent on 
renormalization scheme. There we quoted the results of Hasenfratz and 
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Fig. 19.2. Extracting the string tension for 8U(3) (Creutz and Moriarty, 1982b). 

Hasenfratz, relating the lattice Ao to the more conventional scale AR 
defined by the three-point vertex in Feynman gauge and at a given scale 
in momentum space 

AR = (57.5Ao, SU(2) } 

\ 83.5Ao' 8U(3). 

These large factors compensate the small numbers for Au. 

(19.10) 
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To compare these results with real experiments, we need some idea as 
to the expected value for K. This is provided by the string model (Goddard 
et al., 1973), wherein a rotating string gives rise to a Regge trajectory of 
particle states. The slope of this trajectory in terms of the string tension 
is 

(1.' = (271' K)-l. 

Using the phenomenological (1.' = 1.0 GeV-2, we find 

K! = 400 MeV = (14 tons)l. 

Combining this with eq. (19.9) and (19.10), we conclude 

AR = 200± 35 MeV. 

(19.11) 

(19.12) 

(19.13) 

The current phenomenological value for this parameter is rather uncertain 
but consistent with this value. Such a direct comparison should be regarded 
with some caution, however, because the above calculation does not take 
account of virtual quark effects. 

Despite its uncertainties, the above analysis is a rather remarkable, first 
principles calculation of a physical parameter relating opposite distance 
extremes. The scale A relates to short-distance scaling phenomena and K 
represents long-distance confinement effects. Their ratio is a number 
totally inaccessible to perturbative treatments. It characterizes the solution 
of a hopefully non-trivial four-dimensional field theory. 

A second number of interest for Monte Carlo analysis is the mass gap 
or correlation length of the theory. This was discussed as a possible order 
parameter in chapter 9. In the pure gluon theory this is the mass of their 
lightest bound state, often referred to as a • glue ball. ' In principle this 
quantity appears in a Yukawa law falloff of the correlation between two 
widely separated sources. Attempts to directly look for such correlations 
between plaquette operators have been plagued with statistical errors 
(Bhanot and Rebbi, 1981). Indeed, this correlation becomes swamped by 
the thermal fluctuations for a separation exceeding only a few lattice 
spacings. This problem can be circumvented with a combination of a 
variational method with the Monte Carlo analysis. For the plaquette
plaquette correlation at a short separation of only one or two sites, more 
than just exchange of the lightest state will be important. This means that 
a fit to a Yukawa law falloff will give an upper bound on the glueball mass. 
Using a linear combination of simple operators, for example loops of 
perimeter up to six links, and finding that combination that minimizes the 
falloff of the correlation with separation, one can improve the upper bound 
to a reliable estimate. Effectively, one is attempting to construct an 
operator which projects the desired state out of the spectrum. This analysis 
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is usually further simplified by projecting out states of zero momentum. 
This is easily accomplished with a sum over translations transverse to the 
correlation distance. 

Repeating this analysis for several values of coupling gives the functional 
dependence of the correlation length measured in lattice units. As with the 
string tension, one can check for the exponential dependence predicted by 
the renormalization group. The coefficient of this behavior gives the 
glueball mass in units of the lattice parameter Ao. The use of operators 
with certain discrete lattice symmetries readily generalizes the method to 
extract the mass of the lightest state with a given set of quantum numbers. 

Several groups have developed this technique for the pure SU(2) and 
SU(3) theories (Berg, Billoire, and Rebbi, 1982; Berg and Billoire, 1982ab; 
Ishikawa, Schierholz and Teper, 1982). For the lightest state with SU(3) 
these authors find 

m/Ao = 300-350. (19.14) 

In physical units this represents 700-1000 Me V, an experimentally in
triguing value, although the effects of mixing with normal quark states are 
unknown. Going on to other quantum numbers, the above authors suggest 
extremely rich physics in the 1-2 GeV range. 

We now come to a third physical parameter which is relatively easy to 
extract from the Monte Carlo analysis but more difficult to compare with 
real experiments. In chapter 3 we noted that a finite time length for the 
lattice permitted the study of finite physical temperatures in the physical 
quantum system. Thus using a four-dimensional lattice which is smaller 
in one direction than the others enables us to study the quantum statistical 
mechanics of pure non-Abelian gauge fields. Actually, the time dimension 
of the lattice may be varied in a combination of two ways, one by reducing 
the number of sites in that direction and the other by changing the timelike 
lattice spacing by means of a different coupling on timelike plaquettes, as 
used in the Hamiltonian discussion of chapter 15. 

The interest in such finite temperature studies is the expectation of a real 
phase transition (Polyakov, 1978; Susskind, 1979). At low temperatures 
we should have the quark-confining vacuum with thermal fluctuations 
producing a dilute ideal gas of glue balls. At high temperatures, however, 
the vacuum can fill with a spaghetti offlux tubes. In such a pasta, an extra 
flux tube from an odd quark would quickly become lost. Thus we expect 
a transition to an unconfined phase in which quarks can wander freely 
away from each other. 

We can regard our finite time system as representing the classical 
statistical mechanics of a three-dimensional slab of link variables. The 
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deconfining transition corresponds to the spontaneous breaking of a global 
symmetry in this model. Consider a spacelike hypersurface passing 
between the sites of the slab, and consider multiplying each link variable 
that passes through this surface by an element from the center of the gauge 
group, for example - 1 for SU(2). Any plaquette must pass through the 
hypersurface an even number of times, equally in the two possible 
directions, and the extra factors will cancel. The action for the statistical 
system thus has a global symmetry under the center of the gauge group. 

To monitor this symmetry, one can define Wilson loops with a net 
winding number in the timelike direction on the periodic lattice. The 
simplest such loop is just the trace of the product of all timelike links 
associated with a particular three-space position. In our toroidal geometry, 
such a loop is actually a straight line, a 'Wilson line'. These loops must 
each pass through the spacelike hypersurface an odd number of times and 
are thus not invariant under the global symmetry. We thus have an order 
parameter in the sense that a signal for the deconfining transition is the 
appearance of a spontaneous 'magnetization' with such loops. 

A quarklike source on the lattice would produce a periodic world line 
along one of these loops. For an isolated quark, the product of link 
variables along this world line gives the gauge field interaction with the 
source. A vanishing expectation value for the loop is indicative of an 
infinite energy for an isolated quark in the confined phase. "In contrast, a 
fini te 'magnetization' represents the self energy of the quark in interaction 
with the gauge field soup. 

To see that such a transition might well be expected, temporarily 
consider the extreme case of a one time-site lattice. The 'Wilson line' 
degenerates into the trace of the one timelike link at any given site. This 
link variable essentially degenerates into a spinlike variable. Indeed, for 
an Abelian group these 'spins' decouple from the spacelike loops and 
become a nearest-neighbor spin model in the three space dimensions. Such 
models in general have ferromagnetic transitions. For the non-Abelian case 
there remains a coupling the timelike and spacelike links, and we are left 
with a spin-gauge model with a global symmetry which can break 
spontaneously. 

We have been discussing this deconfining transition in the pure glue 
theory without dynamical quarks. Remarkably, the plasma of flux tubes 
is sufficiently complicated that it can screen a source carrying a non-trivial 
representation of the gauge group center. This can never be accomplished 
with a finite number of gluons, each of which is in the adjoint representation 
and blind to the center. Note the contrast with an adjoint source, which 
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would be screened in both phases. In the full theory with quark loops, 
quark pairs can always be 'popped' from the vacuum to screen any source. 
In this case it is unclear what to use for an order parameter, although 
presumably the existence of the deconfining transition is stable to the 
introduction of dynamical quarks. 

Several groups have used these 'Wilson lines' to locate the critical 
temperatures for the pure SU(2) and SU(3) deconfining transitions 
(McLerran and Svetitsky, 1981; Kuti, Polonyi and Szlachanyi, 1981; 
Engels, Karsch, Satz and Montvay, 1981; Kajantie, Montonen and 
Pietarinen, 1981). Varying the bare coupling and the number of time sites, 
one can compare the dimensionless product of the lattice spacing and the 
critical temperature with the renormalization group prediction, in analogy 
to the string tension and mass gap analysis. For SU(3) the observed 
transition temperature is T,jAo ~ 90 (19.15) 

or in physical units 1'c ~ 200 MeV. (19.16) 

A peculiar feature of this number is its relative smallness in comparison 
to the glueball mass estimates. As we are considering the quarkless theory, 
the lightest states above the vacuum have energies large compared to 
eq. (19.16). This means that just below the transition temperature the 
vacuum is quite empty, only a low density of isolated glueballs are excited 
by thermal fluctuations. 

An interesting unsettled question is the order of this transition (Svetitsky 
and Yaffe, 1982). For SU(2) the symmetry being broken is Z2 and 
presumably the transition is second order in analogy to the Ising model. 
However, for SU(3) we have a Za symmetry and the situation is less clear. 
Mean field theory for Za systems typically predicts first-order transitions 
(problem 1 of chapter 14). As three dimensions is above the critical 
dimensionality for discrete symmetry breaking, this prediction must be 
considered seriously. Indeed, the simple Za spin model, the three-state 
Potts (1952) model, does exhibit a first-order transition in three dimensions, 
although the latent heat is quite small (Blote and Swendsen, 1979). Current 
Monte Carlo studies of the SU(3) deconfining transition are not yet able 
to determine its order. This question may have some relevance to the 
evolution of the very early universe. 

Temperatures of the order in eq. (19.16) may be experimentally attainable 
for short times in heavy ion collisions. The relevance of the above 
calculations for this case is unclear for two reasons. First, such experiments 
entail a high quark density, and in the above discussion we considered the 
pure glue theory. Secondly, this temperature is above, although not by a 
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large factor, a hypothetical maximum temperature of order 140MeV 
where large numbers of pions would begin to be produced, consuming 
further kinetic energy forced into the system (Hagedorn, 1970). Indeed, 
other phase transitions related to pionic physics and/or chiral symmetry 
breaking may occur well before deconfinement is attained (Kogut et al., 
1982). In any case, temperatures in the few hundred MeV range promise 
rich physics for future experimental studies. 

Up to this point our discussion of Monte Carlo simulation has avoided 
the question of Fermion fields. This is a rapidly evolving subject and 
therefore the remainder of this chapter is likely to soon be obsolete. The 
essential difficulty with including quarks in a numerical treatment is that 
the corresponding path integral is not an ordinary sum, but rather an 
intricate linear operation from the space of anticommuting variables into 
the complex numbers. Indeed, the exponentiated action is an operator and 
cannot be directly compared with real random numbers. 

This problem can be immediately (foolishly?) circumvented by first 
integrating out the anticommuting variables analytically. As discussed in 
the chapter on fermionic integration, this gives a determinant when the 
action is quadratic in the anticommuting variables, as is usually the case 
in practice. This leaves us with an ordinary integral over the gauge fields, 
to which straightforward Monte Carlo methods are in principle applicable. 
The main difficulty with this approach is that the determinant is of an 
extremely large matrix, the number of rows being the product of the 
number of sites with the ranges of the spin or index, the internal gauge 
symmetry index, and the flavor index. For interesting sized systems, this 
is a many-thou sand-dimensional matrix. As the time required to take a 
determinant of a matrix grows with the cube of its dimension, such direct 
calculations are prohibitively long. Furthermore, naively this determinant 
needs to be evaluated each time any gauge link is updated. Thus a 
simulation would seem to require evaluating an impossible determinant 
many thousands of times. 

The actual situation is somewhat better because of various tricks. The 
fermionic matrix has an enormous number of zero elements. Because the 
interaction is local, no elements directly couple distant sites. Changes in 
a link variable alter only a small fraction of the remaining matrix elements. 
Considering a Metropolis et af. (1953) type of algorithm with a small step 
size, one can confine oneself to study small changes in a small part of the 
matrix. This still requires the inverse of the matrix, but as the gauge 
interaction will have stochastic errors anyway, hopefully one does not need 
the exact inverse. Approximate methods based on iterative schemes 
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(Weingarten and Petcher, 1981), Monte Carlo simulation with extra boson 
fields (Fucito et al. 1981; Scalapino and Sugar, 1981), and random walks 
through the matrix (Kuti, 1982) for finding the inverses of large matrices 
are under active investigation. 

Despite these tricks, the fermionic problem is still extremely intensive 
in its demands on computer resources. An interesting approximation has 
been reasonably successful in approximately reproducing the hadronic 
spectrum (Hamber and Parisi, 1981; Weingarten, 1982; Marinari, Parisi 
and Rebbi, 1981). Instead of evaluating the determinant many times to 
allow it to feed back into the gauge field dynamics, this approximation 
considers the inversion of the fermionic matrix in a gauge field configur
ation obtained in a simulation of the pure quarkless theory. This 
determines how a quark would propagate in such a fixed background field. 
The basic approximation is the neglect of the feedback of the fermions on 
the gauge field. In perturbation theory, this amounts to the sum over all 
diagrams without any internal virtual quark loops. In a sense it represents 
the zero flavor limit. 

Taking the expectation value of products of the propagators, one can 
study the propagation of bound state combinations with various meson 
or baryon quantum numbers. Neglecting internal loops in such systems 
amounts to considering only valence quarks and ignoring • sea' quarks in 
the simple quark model. The experimental fact that a valence quark picture 
works fairly well suggests that the approximation may not be unreasonable. 
Internal loops are responsible for the (}) splitting from the p meson, a 
relatively small effect. From a less optimistic point of view, neglecting 
virtual quark pairs neglects the decay of the p meson. 

Mass estimates are obtained from the long-distance decrease of the 
meson and baryon propagators. The calculation begins with two para
meters, the bare quark mass and the bare charge, which becomes related 
to the lattice spacing via the renormalization group. Thus two masses must 
be used to set these bare parameters. One is usually taken as the pion mass 
and the other either the Regge slope or the p mass. The most surprising 
result of these calculations is the ability to obtain a pion considerably 
lighter than the other hadrons with their typical scale of order one GeV. 
The approximation shows a signal of chiral symmetry breaking with the 
pion as a Goldstone boson. Note that one usually regards such a particle 
as a coherent excitation on a vacuum which is a condensate of elementary 
constituent pairs. To see such an effect while neglecting quark loops in the 
pion propagator is quite remarkable. 

Several other predictions for observables should be available from this 
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valence approximation. One can consider the valence quark propagation 
through three point vertices to obtain information on magnetic moments, 
form factors, and decay rates. The main missing feature of the procedure 
lies in states where strong mixing with pure glue states is important, as 
expected to be the case for the 1/ and 1/' mesons. 

As mentioned earlier, Monte Carlo work with fermions is rapidly 
evolving. Hopefully the above discussion of the difficulties with fermionic 
integration will soon become obsolete as the approaches and computer 
technology improve. 

Problem 

1. Derive the connection between the Regge slope and the string tension 
(eq. 19.11). 
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