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Cone-Monotone Functions:
Differentiability and Continuity

Jonathan M. Borwein and Xianfu Wang

Abstract. We provide a porosity-based approach to the differentiability and continuity of real-valued

functions on separable Banach spaces, when the function is monotone with respect to an ordering in-

duced by a convex cone K with non-empty interior. We also show that the set of nowhere K-monotone

functions has a σ-porous complement in the space of continuous functions endowed with the uniform

metric.

1 Introduction

The fact that σ-directionally porous sets and porous sets arise naturally in the study of

differentiability of Lipschitz functions has been well illustrated by Preiss and Zajiceck

[6, 7]. It is our goal in this note to provide a σ-directional porosity-based approach to

the differentiability and continuity of cone-monotone functions on a Banach space X.

Cone-monotone functions have been considered by Ward, Chabrillac–Crouzeix,

and Saks on Rn [4, 10], Borwein, Burke, and Lewis [2] on separable spaces — for

K having non-empty interior. The key positive result is: Suppose X is separable and

K ⊂ X is a convex cone with non-empty interior. If f : X → R ∪ {+∞} is K-mono-

tone, then f is Gâteaux differentiable a.e. [2]. As shown in Borwein and Goebel [3],

if K has empty interior, almost anything can happen for K-monotone functions.

The paper is organized as follows. In Section 2, we illustrate that the class of cone-

monotone functions is significantly broad; it includes Lipschitz functions, quasicon-

vex functions, and marginal value functions. In Section 3, we give an alternative proof

to the differentiability theorem of cone-monotone functions on separable Banach

spaces (due to Borwein, Burke and Lewis [2]) using the notion of σ-directionally

porous sets. Section 4 deals with continuity, measurability, and extendibility of cone-

monotone functions. In Section 5, we discuss the relationships among upper hull,

lower hull, and the original monotone functions with regards to continuity and to

differentiability. Section 6 details an application to quasiconvex functions. In Sec-

tion 7, we show that the family of functions which are K-monotone functions on

some open subset is σ-porous in the space of continuous functions endowed with

the uniform metric. We conclude the paper with some open questions.

In the remainder of this introduction we give the basic notions and definitions

used in the sequel.
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Let X be a Banach space, let A ⊂ X be a non-empty open set, and let K ⊂ X be a

closed convex cone with int(K) 6= ∅. Here int(K) denotes the interior of K. We say

that f : A → R ∪ {+∞} is K-increasing on A if f (x + k) ≥ f (x) whenever x ∈ A,

x + k ∈ A and k ∈ K. We say that f is strictly K-increasing on A if f (x + k) > f (x)

whenever x+k, x ∈ A and k ∈ K \{0}. For x ∈ A, we define the one-sided derivatives

f +(x; v) := lim sup
t↓0

f (x + tv) − f (x)

t
, and f+(x; v) := lim inf

t↓0

f (x + tv) − f (x)

t
.

We note that both f +(x; · ) and f+(x; · ) are K-increasing whenever f is K-increasing.

When f +(x ; v) = f+(x ; v) is finite, we write

f ′
+(x ; v) = lim

t↓0

f (x + tv) − f (x)

t
.

The two-sided directional derivative f ′(x ; v) is defined by

f ′(x ; v) := lim
t→0

f (x + tv) − f (x)

t
.

We use f and f to denote the lower (semi-continuous) envelope and upper envelope

of f respectively. For a, b ∈ X, we let B(a, r) denote the open ball with center a and

radius r, and write a ≤K b if b − a ∈ K,

(a, b) := (a + int(K)) ∩ (b − int(K)), and [a, b] := (a + K) ∩ (b − K).

Definition 1 Let X be a Banach space and M ⊂ X.

(i) The set M is porous at a if there exists 1 > c > 0 such that for every ǫ > 0 there

is some point b ∈ X such that ‖b − a‖ < ǫ, B(b, r) ∩ M = ∅, and r > c‖b − a‖.
(ii) M is directionally porous at a if one can always use b = a + tv for some t ≥ 0 and

a fixed direction v ∈ X.

(iii) M is porous (resp. directionally porous) if it is porous (resp. directionally porous)

at all points of M.

(iv) The set M is σ-porous (resp. directionally σ-porous) if it is a countable union of

porous (resp. directionally porous) subsets of X.

We note that in Rn, porous sets and directionally porous sets are the same. We also

need the definition of Aronszajn null sets.

Definition 2 Let X be a separable Banach space and let 0 6= v ∈ X be given. We

define

(i) A(v) as the system of all Borel sets B ⊂ X such that B∩ (a + Rv) is Lebesgue null

on each line a + Rv, a ∈ X.

https://doi.org/10.4153/CJM-2005-037-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-037-5


Cone-Monotone Functions: Differentiability and Continuity 963

(ii) If {xn} is a finite or infinite sequence of nonzero elements in X, we denote by

A({xn}) the collection of all Borel sets A which can be decomposed as A =

⋃

An,

where An ∈ A(xn) for every n.

(iii) A set A ⊂ X is called Aronszajn null if for every given complete (i.e., densely

spanning) sequence (xn) in X, i.e.,

span{x1, x2, x3, . . . } = X,

the set A belongs to A({xn}).

Note that when X is separable, directionally porous sets are Aronszajn null [6].

2 Why K-Monotone Functions?

An easy but key observation is that Lipschitz functions decompose as a sum of lin-

ear and monotone functions (this may be viewed as a strong analogue of being of

bounded variation).

Proposition 1 Let A be a non-empty open subset of a Banach space X, and let f : A →
R be Lipschitz on A. Then there exists an element x∗ ∈ X∗ such that f + x∗ is K-mono-

tone on A with respect to some convex cone K with int(K) 6= ∅.

Proof We follow the idea from [2]. Fix v0 ∈ SX and φ ∈ X∗ such that φ(v0) = 1.
For ǫ > 0 small, when ‖v − v0‖ ≤ ǫ we have φ(v) ≥ 1/2. Then

φ(v) ≥ 1

2
≥ 1

2

1

1 + ǫ
(1 + ǫ) ≥ 1

2(1 + ǫ)
‖v‖,

for ‖v − v0‖ ≤ ǫ. Let K :=
⋃

l≥0 lB(v0, ǫ). By the homogeneity of φ, φ(v) ≥ C‖v‖
for v ∈ K and C = 1/(2(1 + ǫ)). Since f is Lipschitz, for x ∈ A, k ∈ K, for x + k ∈ A

we have

f (x + k) − f (x) ≤ L‖k‖ ≤ L

C
C‖k‖ ≤ L

C
φ(k).

That is,
(

f − L

C
φ
)

(x + k) ≤
(

f − L

C
φ
)

(x).

whenever x, x + k ∈ A and k ∈ K. Hence ( f − L
C
φ) is −K-increasing.

Recall that a function f : X → R ∪ {+∞} is quasiconvex if the lower level set

Sλ( f ) = {x ∈ A | f (x) ≤ λ} is convex for every λ ∈ R.

Proposition 2 Assume f is quasiconvex and lower semicontinuous (l.s.c.) on a Ba-

nach space X. Suppose that Sλ has non-empty interior. Then for every a ∈ X with

f (a) > λ, there exist an open neighborhood V of a and a convex cone K with int(K) 6=
∅, such that f is K-monotone on V .
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Proof Consider c = a + α(a − b) with α > 0 and b ∈ int(Sλ). Choose ǫ > 0 such

that B(b, ǫ) ∈ Sλ, and define

K =

⋃

l≥0

l[B(b, ǫ) − c].

Since f is l.s.c. at a, there exists an open neighborhood V of a such that f (x) > λ
if x ∈ V and V ⊂ c + K. For x ∈ V, x + k ∈ V , there exists y ∈ B(b, ǫ) such that

x + k = ξx + (1 − ξ)y for some 0 < ξ < 1. We have

f (x + k) ≤ max{ f (y), f (x)} = f (x),

because f (y) ≤ λ and f (x) > λ. Hence f is −K-increasing on V .

As a final example, let f : X → R be bounded below and g : X → Y , where Y is a

Banach space partially ordered by a closed convex cone K. The optimal value function

V (p) for the inequality constraints minimization problem

min{ f (x) : g(x) ≤K p}

is −K-increasing on Y . When K has non-empty interior, and the Slater condition is

verified, i.e., there exists x̂ ∈ X such that −g(x̂) ∈ int(K), V (p) is moreover finite-

valued around 0.

3 Main Result

Let Q denote the rational numbers, and Q+ denote the nonnegative rationals. We

continue with a few preparatory results.

Lemma 3 Let f be a real valued function defined on a Banach space X and fix v1, v2 ∈
X. For k, l, m ∈ N and y, z ∈ R, the set A(k, l, m, y, z) of all x ∈ X verifying

(i)
f (x + tu) − f (x)

t
− y <

1

l
for ‖u − v1‖ < 1/m and 0 < t < 1/k,

(ii)
f (x + tu) − f (x)

t
− z <

1

l
for ‖u − v2‖ < 1/m and 0 < t < 1/k,

(iii)
f (x + s(v1 + v2)) − f (x)

s
− (y + z) >

3

l
occurs for arbitrarily small s > 0,

is directionally porous in X.

Proof Let x ∈ A(k, l, m, y, z). Choose 0 < s < 1/k such that

f (x + s(v1 + v2)) − f (x)

s
− (y + z) >

3

l
.
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We claim that

B(x + sv1,
s

m
) ∩ A(k, l, m, y, z) = ∅.

Indeed, for ‖h‖ < 1
m

, if x + sv1 + sh satisfies (ii), we have

(1)
f (x + s(v1 + h) + su) − f (x + s(v1 + h))

s
< z +

1

l
, for ‖u − v2‖ <

1

m
.

By (i),

(2)
f (x + s(v1 + h)) − f (x)

s
< y +

1

l
.

Adding inequalities (1) and (2), we get

f (x + s(v1 + h) + su) − f (x)

s
< y + z +

2

l
, for ‖u − v2‖ <

1

m
.

Taking u = v2 − h, we have

f (x + sv1 + sv2) − f (x)

s
< y + z +

2

l
.

This contradicts the choice of s.

Define

(3) A(v1,v2) :=
⋃

{A(k,l,m,y,z) | k, l, m ∈ N, y, z ∈ Q}.

Then by definition A(v1,v2) is σ-directionally porous in X.

Lemma 4 Assume that X is a Banach space and f : X → R is K-increasing, with

int(K) 6= ∅. For u, v ∈ int(K), define the sets

E := {x ∈ X | f ′(x ; u) and f ′(x ; v) exist and are finite},

S := {x ∈ E | f +(x ; d1u + d2v) ≤ f ′(x ; u)d1 + f ′(x ; v)d2 holds for all (d1, d2) ∈ R
2}.

Then the set E \ S is σ-directionally porous in X.

Proof (a) Let D be a countable dense subset in R2. We claim that

S :=
⋂

(d1,d2)∈D

E(d1,d2),

where E(d1,d2) := {x ∈ E | f +(x ; d1u + d2v) ≤ d1 f ′(x ; u) + d2 f ′(x ; v)}. Clearly, S is a

subset of the latter. We show the reverse inclusion. Given (d1, d2) ∈ R2, we may find

arbitrarily close (d̂1, d̂2) ∈ D such that d1 ≤ d̂1, d2 ≤ d̂2. Then

f +(x ; d1u + d2v) ≤ f +(x ; d̂1u + d̂2v) ≤ d̂1 f ′(x ; u) + d̂2 f ′(x ; v).
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Let (d̂1, d̂2) → (d1, d2) to obtain

f +(x ; d1u + d2v) ≤ d1 f ′(x ; u) + d2 f ′(x ; v).

(b) We show that for each (d1, d2) ∈ D, the set E \E(d1,d2) is σ-directionally porous.

First, by (3), A(d1u,d2v) is σ-directionally porous. We claim

E \ A(d1u,d2v) ⊂ E(d1,d2).

Indeed, for x ∈ E \ A(d1u,d2v), both f ′(x ; u) and f ′(x ; v) exist. For 1/l > 0, we have

f ′(x ; d1u) = d1 f ′(x ; u) < d1 f ′(x ; u) +
1

2l
,

f ′(x ; d2v) = d2 f ′(x ; v) < d2 f ′(x ; v) +
1

2l
.

Because f +(x; · ) is continuous at d1u, d2v ∈ int(K) ∪ int(−K), for some δ > 0,

f +(x ; d1u + δu) < d1 f ′(x ; u) +
1

2l
,

f +(x ; d2v + δv) < d2 f ′(x ; v) +
1

2l
.

For some k ∈ N, when 0 < t < 1/k we have

f (x + t(d1u + δu)) − f (x)

t
< d1 f ′(x ; u) +

1

2l
,

f (x + t(d2v + δv)) − f (x)

t
< d2 f ′(x ; v) +

1

2l
.

Since d1u +δu−K, d2v +δv−K are neighborhoods of d1u and d2v respectively, there

exist m ∈ N such that

B(d1u, 1/m) ⊂ d1u + δu − K and B(d2v, 1/m) ⊂ d2v + δv − K.

By the K-monotonicity of f we have

f (x + th) − f (x)

t
< d1 f ′(x ; u) +

1

2l
for ‖h − d1u‖ <

1

m
,

f (x + th) − f (x)

t
< d2 f ′(x ; v) +

1

2l
for ‖h − d2v‖ <

1

m
.

Choose y, z ∈ Q such that

|y − d1 f ′(x ; u)| <
1

2l
, and |z − d2 f ′(x ; v)| <

1

2l
.

We have
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(i)
f (x + th) − f (x)

t
< y +

1

l
,

if ‖h − d1u‖ < 1/m and 0 < t < 1/k.

(ii)
f (x + th) − f (x)

t
< z +

1

l
,

if ‖h − d2v‖ < 1/m and 0 < t < 1/k.

Because x ∈ E \ A(d1u,d2v), we have

f (x + t(d1u + d2v)) − f (x)

t
< y + z +

3

l
for small t > 0.

Therefore, for small t > 0,

f (x + t(d1u + d2v)) − f (x)

t
− (d1 f ′(x ; u) + d2 f ′(x ; v))

=

[ f (x + t(d1u + d2v)) − f (x)

t
− (y + z)

]

+ (y − d1 f ′(x ; u)) + (z − d2 f ′(x ; v))

<
4

l
.

Hence f +(x ; d1u + d2v) ≤ d1 f ′(x ; u) + d2 f ′(x ; v).

Lemma 5 Assume that X is a Banach space and f : X → R is K-monotone, with

int(K) 6= ∅. Fix u, v ∈ int(K). Let

E := {x ∈ X | both f ′(x ; u) and f ′(x ; v) exist and are finite},

S := {x ∈ E | f ′(x ; d1u + d2v) = d1 f ′(x ; u) + d2 f ′(x ; v) for all (d1, d2) ∈ R
2}.

Then the set E \ S is σ-directionally porous in X.

Proof By Lemma 4, for

S1 := {x ∈ E | f +(x ; d1u + d2v) ≤ d1 f ′(x ; u) + d2 f ′(x ; v) for all (d1, d2) ∈ R
2}

the set E \ S1 is σ-directionally porous in X. Applied to − f , for

S2 := {x ∈ E | f+(x ; d1u + d2v) ≥ d1 f ′(x ; u) + d2 f ′(x ; v) for all (d1, d2) ∈ R
2},

the set E \ S2 is σ-directionally porous in X. When x ∈ S := S1 ∩ S2,

f ′(x ; d1u + d2v) = d1 f ′(x ; u) + d2 f ′(x ; v),

for all (d1, d2) ∈ R2.
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Proposition 6 Assume that X is a Banach space, and K ⊂ X is a closed convex cone

with int(K) 6= ∅. Let f : X → R be K-increasing. For ki ∈ int(K), 1 ≤ i ≤ n, define

Dn := {r1k1 + · · · + rnkn | ri ∈ Q
+ for 1 ≤ i ≤ n} \ {0},

En := {x ∈ X | f ′(x ; d) exists and is finite for all d ∈ Dn}.

Then the set En \ Sn is σ-directionally porous in X, where

Sn := {x ∈ En | f +(x; · ) = f+(x; · ) is finite and linear on span{k1, . . . , kn}}.

Proof By Lemma 5, for d1, d2 ∈ Dn, the set

S(d1, d2) := {x ∈ En | f ′(x ; rd1 + sd2) = r f ′(x ; d1) + s f ′(x ; d2) for (r, s) ∈ R2},

has En \ S(d1, d2) being σ-directional porous in X. Thus

Sn :=
⋂

{S(d1, d2) | d1, d2 ∈ Dn},

has En \ Sn being σ-directional porous in X. For x ∈ Sn, we will show that f+(x; · ) =

f +(x; · ) and is linear on span{k1, k2, . . . , kn}.
To see this, for l1, l2, . . . , ln ∈ R, choose nonzero rational numbers

l̂1 ≥ l1, . . . , l̂n ≥ ln.

As f +(x; · ) is K-increasing,

f +(x ; l1k1 + · · · + lnkn) ≤ f +(x ; l̂1k1 + · · · + l̂nkn).

Without loss of any generality, write

l̂1k1 + · · · + l̂nkn = l̂1k1 + · · · + l̂mkm − (−l̂m+1km+1 − · · · − l̂nkn),

where l̂1, . . . , l̂m ≥ 0, −l̂m+1, . . . ,−l̂n ≥ 0. As x ∈ Sn, we have

f +(x ; l̂1k1 + · · · + l̂nkn) = f ′(x ; l̂1k1 + · · · + l̂mkm) − f ′(x ; − l̂m+1km+1 − · · · − l̂nkn)

= l̂1 f ′(x ; k1) + · · · + l̂n f ′(x ; kn).

Then f +(x ; l1k1 +· · ·+lnkn) ≤ l̂1 f ′(x ; k1)+· · ·+ l̂n f ′(x ; kn). Letting l̂1 → l1, . . . , l̂n →
ln, we obtain

f +(x, l1k1 + · · · + lnkn) ≤ l1 f ′(x ; k1) + · · · + ln f ′(x ; kn).

Similarly, one may show

f+(x ; l1k1 + · · · + lnkn) ≥ l1 f ′(x ; k1) + · · · + ln f ′(x ; kn).

Since f+(x; · ) ≤ f +(x; · ), we conclude that f +(x; · ) = f+(x; · ) and is linear on

span{k1, . . . , kn}.
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Lemma 7 Let X be a Banach space and K ⊂ X be a closed convex cone with int(K) 6=
∅. Suppose that D ⊂ X is dense. Then for every u ∈ X there exist un, vn ∈ D such that

un ≤K u ≤K vn, and un → u, vn → u in norm as n → ∞.

Proof As u±K has non-empty interior, and D is dense in X, we easily find un and vn.

The following result is Proposition 6.29 [1, p. 144]. We include it for completeness.

Lemma 8 Let F be an n-dimensional subspace of X, and let {yk}n
k=1 be a basis for F.

Let λn be the Lebesgue measure on F, and let A be a Borel subset of X such that λn(F ∩
(A + x)) = 0 for every x ∈ X. Then A ∈ A

(

{yk}n
k=1

)

.

We are now ready to prove our main result:

Theorem 9 Let X be a separable Banach space, K ⊂ X be a closed convex cone with

int(K) 6= ∅. Suppose that f : X → R is lower semicontinuous and K-monotone.

Then f is Gâteaux differentiable on X except for a Aronszajn null set.

Proof Without loss of generality, we assume that f is K-increasing (otherwise con-

sider −K). Let (xn) be a complete sequence in X. Because int(K) 6= ∅ and

span{x1, x2, x3, . . . } = X, we may take nonzero

{ki}∞i=1 ⊂ span{x1, x2, x3, . . . },

such that

{ki | i ∈ N} = K, and ki ∈ int(K) for i ∈ N.

Define

D :=

∞
⋃

n=1

{r1k1 + · · · + rnkn | ri ∈ Q
+ for 1 ≤ i ≤ n} \ {0}.

(a) Let d ∈ D. Because f is l.s.c., both f +( · , d) and f+( · , d) are Borel measurable.

Therefore, the set

Ed :=
{

x ∈ X | f +(x ; d) = f+(x ; d), f +(x ; − d) = f+(x ; − d) exist

and f ′
+(x ; − d) + f ′

+(x ; d) = 0
}

,

is Borel measurable. For n large, we have

d ∈ span{x1, x2, . . . , xn}.
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We claim that X \ Ed belongs to A
(

{xi}n
i=1

)

. To see this, we observe that for every

a ∈ X, the set X \ Ed intersect each line a + Rd in a set of null one-dimensional

Lebesgue measure. Write

F := span{x1, x2, . . . , xn}, χS(x) :=

{

1 if x ∈ S,

0 otherwise.

Let λn denote Lebesgue measure on F. For a ∈ X, we have

λn

(

F ∩ ((X \ Ed) + a)
)

=

∫

χF∩((X\Ed)+a) dλn

=

∫

λ1

(

[F ∩ ((X \ Ed) + a)] ∩ (u + Rd)
)

dλn−1(u) = 0.

By Lemma 8, we conclude that X \ Ed ∈ A
(

{xi}n
i=1

)

.

Now, the set defined by

E :=
⋂

d∈D

Ed = {x ∈ X | f ′(x ; d) is finite for all d ∈ D},

is Borel measurable and X \ E belongs to A
(

{xi}∞i=1

)

.

(b) Write Yn := span{k1, . . . , kn}. By Proposition 6, for

Sn := {x ∈ E | f +(x; · ) = f+(x; · ) is finite and linear on Yn},

the set E \ Sn is σ-directionally porous in X. Let S :=
⋂∞

n=1 Sn. Then E \ S is

σ-directionally porous in X, in particular, E\S ∈ A
(

{xi}∞i=1

)

. For x ∈ S, f +(x; · ) =

f+(x; · ) is finite and linear on Y :=
⋃∞

n=1 Yn. Since

Y ⊃ {ki | i ∈ N} − {ki | i ∈ N},

we have Y ⊃ K − K = X, i.e., Y is dense in X. Let x ∈ S. We will show that f is

Gâteaux differentiable at x. Take e ∈ Y ∩ int(K). Then f +(x ; e) is finite and

f +(x ; y) ≤ f +(x ; e) for y ≤K e.

Since {y ∈ X | y ≤K e} contains 0 as an interior point, by the Hahn–Banach

extension theorem, f +(x; · ) can be extended linearly from Y to X, denoted by λ.

That is, λ ∈ X∗ and f +(x ; y) = f+(x ; y) = λ(y) for y ∈ Y . For every u ∈ X, by

Lemma 7 there exist un, vn ∈ Y such that un ≤K u ≤K vn and un → u, vn → u in

norm. We have

f +(x ; u) ≤ f +(x ; vn) = λ(vn),

f+(x ; u) ≥ f+(x ; un) = f +(x ; un) = λ(un).

Let n → ∞ to obtain f+(x ; u) = f +(x ; u) = λ(u). Therefore, f is Gâteaux differen-

tiable at x ∈ S.
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We remark that in separable Banach spaces, Aronszajn null sets, Gaussian null sets,

and cubic null sets coincide [1, pp. 142–145] or [6]. Theorem 9 is an extension

to separable Banach spaces of the differentiability theorem concerning monotone

functions on Rn given by Chabrillac, and Crouzeix [4]. The following example shows

that Theorem 9 fails if int(K) = ∅.

Example 10 Let c0 be the space consisting of the sequences which converge to 0,

endowed with the uniform norm given by ‖x‖ := supn≥1 |xn|. Then c0 is a separable

Banach space (in fact an Asplund space). The closed convex cone c+
0 , i.e., the non-

negative sequences, has no interior, and c+
0 is not Aronszajn’s null. Define f : c0 → R

by f (x) =

√

‖x+‖. Then f is c+
0 -increasing. However, f is not Gâteaux differentiable

on −c+
0 . Indeed, for x ∈ −c+

0 , f (x) = 0. If x has xn = 0 for some n, then for t > 0,

f (x + ten) − f (x)

t
≥

√
t

t
→ ∞ as t ↓ 0.

If x has xn < 0 for all n, take tn = 2
√−xn, and h = (

√−xn), we have tn ↓ 0 and

f (x + tnh) − f (x)

tn

≥
√

xn + tnhn

tn

=

1

2
for all n.

Therefore f is not Gâteaux differentiable at x. However, f is generically Fréchet dif-

ferentiable on c0 \ (−c+
0 ) because ‖x+‖ is convex.

More pathological examples concerning K-monotone functions when K has

empty interior can be found in [2, 3].

Example 11 (Singular functions on separable spaces) Assume that X is a separable

Banach space and K ⊂ X is a closed convex cone with K∩−K = {0} and int(K) 6= ∅.

Then there exists a continuous g : X → R such that g is strictly K-increasing and has

Gâteaux derivative ∇g = 0 throughout X except at points of a Aronszajn null set.

To see this, we take f : R → R, strictly increasing and continuous, such that

f ′(x) = 0 on R a.e. When X is separable, there exists x∗ ∈ K+ such that 〈x∗, k〉 > 0

for every k ∈ K\{0}. Indeed, because the dual ball BX∗(0) is weak∗ separable, we may

choose a countable weak∗ dense set {x∗n}∞n=1 in K+ ∩ BX∗(0), and let x∗ :=
∑∞

n=1

x∗
n

2n .
If 〈x∗, x〉 = 0 for some x ∈ K, then 〈x∗n , x〉 = 0 for each n ∈ N, and so 〈y∗, x〉 = 0

for every y∗ ∈ K+. Thus x ∈ K ∩ (−K), and so x = 0.

Define g : X → R by g(x) := f (〈x∗, x〉). Because f is strictly increasing, we have g

strictly K-increasing on X. For each k ∈ K and x ∈ X, the function h : R → R given

by

h(t) := g(x + tk) = f
(

〈x∗, x〉 + t〈x∗, k〉
)

,

is strictly increasing and h ′(t) = 0 a.e. on R. By Theorem 9, g is Gâteaux differen-

tiable on X with ∇g(x) = 0 except for an Aronszajn null set.
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4 Continuity, Measurability and Extendibility

The following result improves Theorem 6 [4] in which the authors showed that a

cone-monotone function f : Rn → R is continuous almost everywhere.

Proposition 12 Let X be a Banach space. Assume that the closed convex cone K ⊂ X

has int(K) 6= ∅ and f : X → R is K-monotone. Then

D := {x ∈ X | f is discontinuous at x},

is σ-directionally porous in X. When X is separable, D is Aronszajn null.

Proof Without loss of any generality, we assume that f is K-increasing. We have

D = {x ∈ X | f (x) < f (x)}. Write

S1 := {x ∈ X | f (x) < f (x)}, and S2 := {x ∈ X | f (x) < f (x)}.

We claim S2 is σ-directionally porous. The proof of the σ-directional porosity of S1

is similar. Write S2 =

⋃

p∈Q
Dp where

Dp := {x ∈ X | f (x) < p < f (x)}.

For x ∈ Dp, f (x) < p. For y ∈ x − int(K), f (y) ≤ f (x) < p. For every y ∈
x − int(K), f (y) ≤ f (x) < p, so y /∈ Dp. That is,

[x − int(K)] ∩ Dp = ∅.

Since this holds for each x ∈ Dp, Dp is directionally porous, and so S2 is σ-direction-

ally porous.

On the other hand, Proposition 12 fails if int(K) = ∅:

Example 13 For the Hilbert space l2 with norm ‖x‖ :=
√

∑∞
n=1 x2

n, the closed

convex cone l
+
2 , i.e., the set of nonnegative sequences, has no interior. We define

f (x) :=

{

1 if x ∈ l2 has infinitely many positive terms,

0 otherwise.

Then f is l+
2 -increasing. For x = (x1, x2, . . . ) ∈ l2, choose N large such that

√

√

√

√

∞
∑

i=N

x2
n < ǫ/2.
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Consider

y := (x1, . . . , xN ,
ǫ

22
,

ǫ

23
, . . . ) ∈ l2,

z := (x1, . . . , xN ,− ǫ

22
,− ǫ

23
, . . . ) ∈ l2.

Then ‖y − x‖ < ǫ and ‖z − x‖ < ǫ. It follows that f (y) = 1 and f (z) = 0. Since

ǫ > 0 is arbitrary, we conclude that f is not continuous at x. Thus, f is nowhere

continuous on X.

Another preparatory decomposition result is in order.

Proposition 14 Let X be a Banach space and K ⊂ X be a closed convex cone with

int(K) 6= ∅. Assume that f : X → R is K-monotone. Then for every r ∈ R, the level

set Sr := {x | f (x) ≤ r}, can be written as O∪T where O is open and T is directionally

porous. Hence f is Gaussian measurable when X is separable .

Proof Without loss of generality, we assume that f is K-increasing. Write

∂Sr = Sr \ int(Sr).

We show that ∂Sr is directionally porous. For x ∈ ∂Sr , we have x−int(K) open. Since

f is K-increasing, we know f (y) ≤ f (x) ≤ r for y ∈ [x − int(K)], so x − int(K) ⊂
int(Sr). This shows

[x − int(K)] ∩ ∂Sr = ∅,

so ∂Sr is directionally porous. When X is separable, a directionally porous set is

Gaussian null, so Sr is Gaussian measurable. Since this holds for every r, f is Gaussian

measurable on X.

We now discuss the extendibility of K-monotone functions. As usual, for a closed

convex cone K ⊂ X, its indicator function is defined by:

IK(x) :=

{

0 if x ∈ K,

+∞ otherwise.

Note that IK is K-decreasing.

Proposition 15 Let X be a Banach space and K ⊂ X be a closed convex cone. Assume

that f : A ⊂ X → R ∪ {±∞} is K-increasing. We define

g(x) := inf{ f (y) + IK(y − x) : y ∈ dom( f )} = inf{ f (y) : y ≥K x, y ∈ dom f },

h(x) := sup{ f (y) − IK (x − y) : y ∈ dom( f )} = sup{ f (y) : y ≤K x, y ∈ dom f }.
Then g and h satisfy

(i) g and h are K-increasing on X and g|dom( f ) = f = h|dom( f );
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(ii) g is the largest, and h is the smallest, K-monotone extension of f ;

(iii) if f is quasiconvex (resp. convex), then g is quasiconvex (resp. convex).

Proof (i) and (ii): Let k ∈ K. Since IK is K-decreasing, we have

g(x + k) = inf{ f (y) + IK(y − (x + k)) | y ∈ dom f }
≥ inf{ f (y) + IK(y − x) | y ∈ dom f } = g(x).

Now for x ∈ dom f , we have g(x) = f (x). By definition, for x ∈ dom f , we have

g(x) ≤ f (x). But for y − x ∈ K, f (y) ≥ f (x) so f (y) + IK (y − x) ≥ f (x). This gives

g(x) ≥ f (x). Hence g|dom f = f . Assume l is an extension of f and K-increasing. We

show that g ≥ l. Since l is K-increasing, we have

l(x) ≤ l(y) + IK(y − x), so,

l(x) ≤ f (y) + IK(y − x) for y ∈ dom f .

By definition, we have l(x) ≤ g(x). Hence g is the largest K-increasing extension of f .

The claims for h are verified similarly.

(iii): Let f be quasiconvex. We show that g is quasiconvex. Assume g(x), g(z) ≤ α.

For ǫ > 0, there exist x̂ and ẑ such that

f (x̂) + IK(x̂ − x) ≤ g(x) + ǫ, and f (ẑ) + IK(ẑ − z) ≤ g(z) + ǫ.

This gives x̂ ≥K x and ẑ ≥K z. For 0 ≤ λ ≤ 1 we have λx̂+(1−λ)ẑ ≥K λx+(1−λ)z,

and f (λx̂ + (1 − λ)ẑ)) ≤ max{ f (x̂), f (ẑ)}. Then

g(λx + (1 − λ)z) ≤ f (λx̂ + (1 − λ)ẑ) ≤ max{g(z), g(x)} + ǫ,

so g(λx + (1 − λ)z) ≤ α + ǫ. Since ǫ is arbitrary, we have g(λx + (1 − λ)z) ≤ α.

Hence g is quasiconvex. Similarly, one can prove that g is convex when f is convex.

5 Upper Hull, Lower Hull and Robust Continuity

When f : X → R is K-monotone with int(K) 6= ∅, the continuity and differentiabil-

ity of f is closely related to the continuity and differentiability of its upper or lower

hull. The following is a generalization of Chabrillac and Crouzeix [4] from Rn to

general Banach spaces.

Proposition 16 Let X be a Banach space and K ⊂ X be a closed convex cone with

int(K) 6= ∅. Suppose that f : X → R ∪ {±∞} is K-monotone and f (a) is finite. Then

(i) f is continuous at a if and only if f (resp. f ) is continuous at a. In particular,

f (a) = f (a) (resp. f (a) = f (a)) whenever f (resp. f ) is continuous at a.

(ii) f is continuous at a if and only if for some e ∈ int(K) the function φ : R →
R ∪ {±∞} given by φ(t) := f (a + te) is continuous at t = 0.
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(iii) f is Gâteaux differentiable at a if and only if f (resp. f ) is Gâteaux differentiable

at a.

(iv) If f is Gâteaux differentiable at a, then it is also Hadamard differentiable (i.e.,

uniformly on norm-compact sets) at a.

Proof Without loss of any generality, we assume that f is K-increasing.

(i): Fix a ∈ X. Let e ∈ int(K). For ǫ > 0, the set (a − ǫe, a + ǫe) is a neighborhood

of a. We have

f (a − ǫe) ≤ f (a) ≤ f (a + ǫe), and f (a − ǫe) ≤ f (y) ≤ f (a + ǫe),

for y ∈ (a − ǫe, a + ǫe). Hence, if f is continuous at a, then f is continuous at a, so

f (a) = f (a). Conversely, assume f is continuous at a. For ǫ > 0 and e ∈ int(K), we

have

f (a − ǫe) ≤ f (a) ≤ f (a + ǫe), and f (a − ǫe) ≤ f (y) ≤ f (a + ǫe),

for y ∈ (a − ǫe, a + ǫe). Hence f is continuous at a. The arguments for f are similar.

(ii): Assume φ is continuous at t = 0. We have

f (a − ǫe) − f (a) ≤ f (y) − f (a) ≤ f (a + ǫe) − f (a),

for y ∈ (a − ǫe, a + ǫe). Since the latter is a neighborhood of a and ǫ > 0 is arbitrary,

we conclude that f is continuous at a. The other direction is obvious.

(iii): Assume f is Gâteaux differentiable at a. By (ii), f is continuous at a, so f (a) =

f (a) by (i). Fix u ∈ X. For ǫ, t > 0, e ∈ int(K), since a + tu − tǫe ∈ int(a + tu − K)

we have

f (a + tu − tǫe) − f (a)

t
≤ f (a + tu) − f (a)

t
≤ f (a + tu) − f (a)

t
.

Let t → 0. We obtain

〈∇ f (a), u − ǫe〉 ≤ f+(a; u) ≤ f +(a, u) ≤ 〈∇ f (a), u〉.

Let ǫ ↓ 0. We have f ′
+(a; u) = 〈∇ f (a), u〉.

Now assume that f is Gâteaux differentiable at a. By (ii), f is continuous at a, so

f (a) = f (a). Fix u ∈ X. Take ǫ, t > 0 and e ∈ int(K). We have

f (a + tu) − f (a)

t
≤ f (a + tu) − f (a)

t
≤ f (a + tu + tǫe) − f (a)

t
.

Let t ↓ 0. We have

〈

∇ f (a), u〉 ≤ f +(a; u) ≤ f
+

(a; u) ≤ 〈∇ f (a), u + ǫe
〉

.
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Let ǫ → 0. We have

f
′

+(a; u) = 〈∇ f (a), u〉.

Thus f is Gâteaux differentiable at a. The arguments for f is similar.

(iv): Recall that f is Hadamard differentiable at a if, for each v ∈ X, whenever tn ↓ 0

and vn → v in norm, we have

lim
tn↓0,vn→v

f (a + tnvn) − f (a) − tn〈 f ′(a), v〉
tn

= 0.

Assume that f is Gâteaux differentiable at a. Choose ǫ > 0 and e ∈ int(K). For n

sufficiently large, we have ±(vn − v) + ǫe ∈ int(K), and so

f (a + tn(v − ǫe)) − f (a)

tn

≤ f (a + tnvn) − f (a)

tn

≤ f (a + tn(v + ǫe)) − f (a)

tn

.

When n → ∞, we obtain

lim sup
tn↓0,vn→v

f (a + tnvn) − f (a)

tn

≤ 〈∇ f (a), v + ǫe〉,

lim inf
tn↓0,vn→v

f (a + tnvn) − f (a)

tn
≥ 〈∇ f (a), v − ǫe〉.

Letting ǫ → 0 to obtain

lim
tn↓0,vn→v

f (a + tnvn) − f (a)

tn

= 〈∇ f (a), v〉.

An upper semicontinuous function k : X → R is called topologically robust upper

semicontinuous on X if k(x) = lim supy∈D,y→x k(y) for every x ∈ X, where D is the

set of points at which k is continuous.

Proposition 17 Let X be a Banach space and K ⊂ X be a closed convex cone with

int(K) 6= ∅. Suppose that f : X → R is K-monotone. Then f and f are K-monotone

and f is topologically robust upper semicontinuous.

Proof Without loss of generality, we assume f is K-increasing. Let k ∈ int(K) and

x ∈ X. The set x + k − int(K) is a neighborhood of x, and f (x + k) ≥ f (y) for every

y ∈ (x + k − int(K)). It follows that

f (x + k) ≥ f (x + k) ≥ f (x),

so f (x + k) ≥ f (x). For arbitrary k ∈ K, we take kn ∈ int(K) such that kn → k. Then

f (x + k) ≥ lim sup
n→∞

f (x + kn) ≥ f (x).
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Hence f is K-increasing. The proof for f being K-increasing is similar.

For x ∈ X, x+K has non-empty interior. Since f is u.s.c., there exists y ∈ int(x+K)

arbitrarily near by x such that f (y) ≥ f (x) and f is continuous at y. Then

f (x) ≤ lim sup
y∈D,y→x

f (y) ≤ lim sup
y→x

f (y) = f (x).

Hence f is topologically robust u.s.c.

Proposition 16(iii), (iv), Proposition 17, and Theorem 9 conspire to show that:

Theorem 18 Let X be a separable Banach space, K ⊂ X be a closed convex cone

with int(K) 6= ∅. Suppose that f : X → R is K-monotone. Then f is Hadamard

differentiable on X except perhaps at points of an Aronszajn null set.

6 Continuity and Differentiability of Quasiconvex Functions

In this section, we apply earlier results to quasiconvex functions. For a convex set C ,

we denote by dim(C) the dimension of the affine hull of C . Let f : Rn → R ∪ {±∞}
be a quasiconvex function. Following Crouzeix [5], we define λ as the value such that

dim(Sµ( f )) < n ≤ dim(Sλ( f )), whenever µ < λ < λ.

Theorem 19 Assume f : Rn → R is l.s.c. and quasiconvex. Then

(i) f is continuous except for a σ-porous set;

(ii) f is Fréchet differentiable except for a Lebesgue null set.

Proof Consider the sets

A := {x ∈ R
n | f (x) < λ},

B := {x ∈ R
n | f (x) = λ},

C := {x ∈ R
n | f (x) ≤ λ}.

Now A =

⋃∞
n=1 An where

An :=
{

x ∈ R
n | f (x) ≤ λ − 1

n

}

.

Because f is l.s.c. and quasiconvex, An is closed convex set with empty interior. By

[7, Theorem 2], An is porous, so A is σ-porous. For the boundary of B, denoted by

∂B, we note that ∂B ⊂ (∂A ∪ ∂C). Because the distance function associated with a

convex set is not differentiable at any boundary point, by [7, Theorem 1], ∂A and ∂C

are σ-porous. On C , the possible discontinuity points and the possible non-Fréchet
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differentiability points of f are a subset of A ∪ ∂A ∪ ∂C , which is σ-porous. For

x ∈ Rn \C , f (x) > λ, when λ < λ < f (x), the set Sλ( f ) has non-empty interior. By

Proposition 2, there exists a neighborhood V containing x such that f is monotone

with respect to a convex cone with non-empty interior.

For (i), on Rn \ C , we apply Proposition 12. For (ii), on Rn \ C , we apply Theo-

rem 18.

While (ii) is given in [5], (i) appears to be new.

7 Porosity Results for the Class of K-Monotone Functions

Our first result concerns nowhere K-monotone functions in C(A), the continuous

functions defined on A. Here A is a nonempty open subset of separable Banach

space X. On C(A) we define ‖ f − g‖∞ := sup
x∈A

| f (x) − g(x)|,

ρ( f , g) := min{1, ‖ f − g‖∞} for f , g ∈ C(A).

As usual, (C(A), ρ) is a complete metric space.

Theorem 20 Let X be a separable space. Assume that K ⊂ X is a convex cone with

int(K) 6= ∅ and K ∩ (−K) = {0}. In C(A), the set

{ f : f ∈ C(A) is not K-monotone on any open subset of A},

has a σ-porous complement in C(A).

Proof Choose l+ ∈ X∗ such that l+(k) > 0 for every k ∈ K \ {0} (see Example 11).

Fix k ∈ K such that 0 < l+(k) < 1/4. Define

IO := { f ∈ C(A) : f is K-increasing on open set O}.

We show that IO is porous in C(A). For this, we need α > 0 such that for every

1 > r > 0, f ∈ C(A), there exists h2 ∈ C(A) such that

B(h2, αr) ⊂ B( f , r) \ IO.

For given f ∈ IO, choose δ > 0 and x0 ∈ O such that x0 + δk ∈ O and f (x0 + δk) −
f (x0) < r/8. Define

h1(x) := min{ f (x0) − r

4
− r

2δ
l+(x − x0), f (x)},

h2(x) := max
{

h1(x), f (x) − r

2

}

.
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We have ‖h2 − f ‖∞ ≤ r/2 < 1, so ρ(h2, f ) ≤ r/2. Since f is K-increasing on O, for

x ∈ (x0 + K) ∩ O, we have

f (x0) − r

4
− r

2δ
l+(x − x0) ≤ f (x0) ≤ f (x), so

h1(x) = f (x0) − r

4
− r

2δ
l+(x − x0) for x ∈ (x0 + K) ∩ O.

It follows that

h1(x0 + δk) = f (x0) − r

4
− r

2
l+(k) > f (x0) − 3r

8
,

f (x0 + δk) − r

2
= f (x0 + δk) − f (x0) + f (x0) − r

2
<

r

8
+ f (x0) − r

2
= f (x0) − 3r

8
.

This shows that

h2(x0 + δk) = f (x0) − r

4
− r

2
l+(k), h2(x0) = f (x0) − r

4
.

Now for ‖g − h2‖∞ < αr, we have

g(x0 + δk) − g(x0) = (g − h2)(x0 + δk) − (g − h2)(x0) + h2(x0 + δk) − h2(x0)

≤ 2αr − r

2
l+(k) = r

(

2α − l+(k)

2

)

.

When 0 < α < l+(k)/4, we have g(x0 + δk) − g(x0) < 0, so g 6∈ IO. Moreover, when

ρ(g, h2) < αr we have ‖g − h2‖∞ < αr. Then

‖g − f ‖∞ ≤ ‖g − h2‖∞ + ‖h2 − f ‖∞ ≤ αr +
r

2
< r.

This shows B(h2, αr) ⊂ B( f , r) \ IO. Hence, IO is porous in C(A). When X is separa-

ble, take a countable dense set {xi} ⊂ A and rational numbers {ri} dense in (0,∞).

Define

S+
mn := { f ∈ C(A) : f is K-increasing on B(xn, rm)},

S−mn := { f ∈ C(A) : f is K-decreasing on B(xn, rm)}.

Then S+
=

⋃

S+
mn collects all functions which are K-increasing on some open subset

of A, and S+ is σ-porous. Similarly, S− =

⋃

S−mn collects all functions which are

K-decreasing on some open subsets of A, S− is σ-porous. Each f ∈ [C(A)\(S+∪S−)]

is nowhere K-monotone througout A.

Next, we consider strictly K-increasing functions in IK (A) where

IK(A) := { f ∈ C(A) | f is K-increasing on A},

is happily a complete subspace of (C(A), ρ).

The following result is essentially due to Rubinov and Zaslavski [9]. Here we take

the opportunity to improve their proof by using the metric ρ on IK (A).
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Theorem 21 Let X be a separable space, K ⊂ X be a closed convex cone with K∩−K =

{0} and int(K) 6= ∅. Then the set

{ f ∈ IK (A) : f is strictly K-increasing on A},

has a σ-directionally porous complement in (IK (A), ρ).

Proof By assumption, we may choose l ∈ X∗ such that l(k) > 0 for every k ∈
K \ {0}. Therefore, l is strictly K-increasing on A. The function f0 : X → R defined

by

f0(x) :=
2

π
arctan(l(x)) is strictly K-increasing on A,

and ‖ f0‖∞ ≤ 1. Define

An :=
{

(x, y) | x, y ∈ A, y − x ∈ K, f0(y) − f0(x) ≥ 1

n

}

, and

Fn :=
{

f ∈ IK (A) : there exists δ > 0 such that f (y) > f (x) + δ

for every (x, y) ∈ An.
}

We claim IK(A)\Fn is directionally porous in IK(A). Let f ∈ IK(A). For 0 < r < 1,

we set h := f + r
8

f0. Then

ρ(h, f ) = min
{

∥

∥

∥

r f0

8

∥

∥

∥

∞
, 1

}

≤ r/8.

For g ∈ IK (A) and ρ(g, h) ≤ αr, we have

ρ(g, f ) ≤ αr +
r

8
≤ r,

by requiring α < 7/8. Whenever (x, y) ∈ An, we have

g(y) − g(x) = (g − h)(y) − (g − h)(x) + h(y) − h(x)

≥ −2αr + f (y) − f (x) +
r

8
( f0(y) − f0(x))

≥ −2αr +
r

8n
= r(

1

8n
− 2α).

On setting α =
1

32n
, we have

g(y) − g(x) >
r

16n
whenever (x, y) ∈ An.

Therefore

B(h, r/(32n)) ⊂ B( f , r) ∩ Fn.
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Since this holds for every f ∈ IK(A) and 0 < r < 1, we conclude IK(A) \ Fn is

directionally porous.

Now define F :=
⋂∞

n=1 Fn. Then F has a σ-directional porous complement. Let

f ∈ F. Whenever y ≥K x and y 6= x, we have f0(y) − f0(x) > 1/n for some n. Since

f ∈ Fn, we have

f (y) − f (x) > δ for some δ > 0,

in particular f (y) > f (x). Hence f is strictly K-increasing on A.

8 Open Questions

To stimulate further study on K-monotone functions, we finish with two open ques-

tions.

The proof of Theorem 9 uses the separability of Banach space X and K having non-

empty interior. Preiss [8] has shown that Lipschitz functions f : X → R on β-smooth

Banach spaces X are densely β-differentiable. Lipschitz functions on Banach spaces

are K-monotone with K having non-empty interior by Proposition 1. This leaves us:

Conjecture 1 Let X be a Banach space with an equivalent β-smooth renorm and

K ⊂ X a closed convex cone with int(K) 6= ∅. Suppose that f : X → R is continu-

ous and K-monotone. Then f is β-differentiable on X densely.

And we should greatly appreciate an answer to:

Conjecture 2 There is a continuous f : l2 (or merely on c0) → R such that f is l+
2

(resp. c+
0 )-increasing but f is nowhere Gâteaux differentiable.
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[7] , Fréchet differentiation of convex functions in a Banach space with a separable dual. Proc.
Amer. Math. Soc. 91(1984), 202–204.

[8] D. Preiss, Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal. 91(1990), 312–345.

https://doi.org/10.4153/CJM-2005-037-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-037-5


982 J.M. Borwein and X. Wang

[9] A. M. Robinov and A. Zaslavski, Two porosity results in monotonic analysis. Numer. Funct. Anal.
Optim. 23(2002), 651–668.

[10] S. Saks, Theory of the Integral, English translation, Second edition, Stechert, New York, 1937.

Faculty of Computer Science

Dalhousie University

6050 University Avenue

Halifax, NS,

B3H 1W5

e-mail: jborwein@cs.dal.ca

Department of Mathematics and Statistics

Okanagan University College

Kelowna, BC

V1V 1V7

e-mail: xwang@ouc.bc.ca

https://doi.org/10.4153/CJM-2005-037-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-037-5

