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Introduction. 

White Dwarfs (WD) are one of the fields in stellar structure in 
which the so-called "input physics" is not yet completely clear today. 
In particular the equation of state (EOS) of WD affects directly one 
of the eminent problems in present day research of WD, namely is the 
"paucity" of low luminosity WD real? The reply depends in a sensitive 
way on the physical properties of the dense matter. For this reason 
we go in some detail into the physical problems of the "input physics". 
We distinguish between the problem of the interior-fully ionized matter 
and the envelope-partially ionized matter. Unfortunately space-time is 
not sufficient to cover in any detail the EOS of the envelope although 
this problem is extremely important to the evolution. 

Transport properties depend on the structural form of the matter. 
We describe the improvements in the electron conductivity but do not 
discuss the ion bulk viscosity which is also of interest to cooling, 
crystallizing WD's. 

Finally, we discuss several processes that may affect the 
theoretical luminosity function (LF). 

Energetics of cooling WD's. We follow closely Van Horn (1971) and 
Koester (1978). Let (pi,T) denote the present state of a WD and (p ,0) 
the final one. Evaluate all energies around the final state so 
that E-E°+AE where E°-E(p ,0) and AE«E(p.,T)-E°. The energies of the 
WD are: E . - the perfect electron gas contribution, E. - the class­
ical contribution of the ions. At high temperatures it Is 3/2kT per 
particle, at lower T it is the phonon contribution and at T=0 it is 
the zero point energy of the ions. E . - the contribution of the 
Coulomb interactions (Debye-Huckel [DH] at low P, bcc lattice at high 
P) together with all the corrections. Define now a-E coul/E grav and 
b«=E ion/E grav. It can be shown that: 

AeA/w,,; - *€,-.„ * tECouL -r*+3j8 AMfij™- + -iZ^MoMd) 

where 6=<P. /U. >, U. is the energy density of the ions. The 

last term is the thermal energy of the electrons and is sometimes 
called the "gravitational energy release". AEgrav depends only on 6p. 
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The first term can be written as: AE. =AE. +AE. _ where the 
ion ion.p ion,T 

first term is the change due to density only, while the second is due 
to temperature change only. The change in the binding energy then 
becomes: 
A£6;»J;»o - A S / . „ , T + *ecouL,T + X ^ <~^>//""> k T (2) 

The last term is small for massive WD's and is significant at low 
mass stars (̂ 10% at 0.3-0.4 MQ WD's). 

Equation of state for WD's interior. WD's occupy a certain region in 
the (p,T) plane. The high density limit is determined by general rel-
ativistic effects which become dominant at log pM.0 and by inverse 
g-decays which also become important at these densities. 

The maximal temperature attained by WD's depends on the pre WD 
evolution. It has been found that stellar cores with masses smaller 
than the Chandrasekhar limiting mass cannot ignite C12 and this means 
that WD's do not stay an appreciable length of time at T^(5-6)xl08 K. 

The (p,T) plane can be characterized from the EOS point of view by 
the following dimensionless parameters: 

§£_ _ Fermi energy 
kT Thermal energy 

m c a = e _ 5.93 = Electron rest mass energy 
kT TQ

 = Thermal energy 
'/3 

p (ze)2
 2 „ft z

2 i(» Electrostatic energy 
= Fk T * * Al/3 T?

 = Thermal energy 

A . ̂ E . = 2 2A0 £ - n 77Q 1 ^ - . Energy in Lattice vibrations 
A k T

 l"LW
 T "

 u-//y
 A T 7 Thermal energy 

The following definitions were used r=(3/4irn. ) is the average 
interparticle distance or the so-called radius of the ion sphere, 
n. is the ion number density.%=4iTnione

2/mion is the square of the ion 
plasma frequency and 6 is the Debye temperature of the solid at these 
physical conditions. 

The discussion of the EOS in the core is limited to elements with 
atomic weight greater than 4. Pycnonuclear reactions will not-allow 
the existence of lighter elements at these conditions. Also, present 
day evolutionary tracks towards WD pass through temperatures suffic­
iently high to burn H and He before the cooling towards dark WD's 
begins. 

Coulomb fluid. At the densities and temperatures found in the core of 
WD's the electrons are highly degenerate. At a density of the order 
of 106gm/cm3 the Fermi energy of the electrons is of the order of m c2. 
Thus electron interactions can be characterized by an energy of the 
order of iMeV. It is therefore very difficult to perturb the electrons 
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and they can be considered as a perfect Fermi gas. When the electrons 
have such high energies the ions will be fully ionized and we have ions, 
of charge Ze moving inside an extremely perfect electron sea. The 
interaction energy between ions and themselves are characterized by P 
which varies from 0.01 to ̂ 200. The ions hardly perturb the electrons 
(Ze2///*«*) . The electrons serve in this limit only to neutralize the 
system. The ions themselves are considered as classical particles be­
cause the thermal de Broglie wavelength X =(2iin2/m. kT) *«/"". The 
matter in the core can therefore be represented as a one component 
plasma (OCP). The Coulomb energy of an OCP depends only on the config­
uration of the ions. Our interest here is in the phase diagram of such 
a plasma and the EOS throughout the relevant regions in the (p^T) plane. 
In everyday physical conditions we typify a gas as the physical state 
in whichP«l ; namely, the kinetic energy of the particles is much 
greater than the interaction energy between them. The solid phase is 
characterized by/,>>l. Hence the physical state in the core of WD can 
be represented as a~ liquid. The problem of the theoretical model for 
liquids is that it is usually extrapolated from either extreme. 
Liquids with some short range order are described in terms which corres­
pond to an idealized solid and liquids with ion-ion collisions and with­
out short range order are described by extrapolating the gas model. In 
the lack of an appropriate model for such liquids numerical methods were 
resorted to, in particular the method of Monte-Carlo (MC), Molecular Dy­
namics and in some cases integral equations like the Percus-Yevick 
equation or the hypernetted chain one. 

The OCP poses some serious and special problems because of the 
infinite range of the interaction and the lack of any typical length. In 
usual materials the interaction contains a hard-core and has a minimum 
which defines some length. This length is important to the phase trans­
ition between the liquid and the solid. The problem is even more severe, 
it is questionable whether systems with a long range interaction 
possess a thermodynamic limit in the sense we know it. Let me mention 
similar problems in the statistical mechanics of stellar systems and the 
fact that various thermodynamical ensembles yield different points of 
instabilities. The thermodynamic limit of OCP was recently investigated 
by Lieb and Narnhofer (1975). They proved that a thermodynamic limit 
does exist. However, the free energy is not a convex function of the 
density and hence the compressibility can be negative and the grand can­
onical ensemble is not equivalent to the canonical one. 

Our next question is the shape of the phase diagram and is there 
a liquid-gas phase transition in an OCP. Recently Cesare et al (1973) 
have claimed to find a gas-liquid phase transition atHyvl. However, as 
has been shown by Lamb (1974)(L) they used wrong EOS and their "phase 
transition" is exactly their error. On the other hand, in a gas-liquid 
phase transition the compressibility (3P/3V)_ vanishes. The equation 
of OCP shows that the compressibility vanishes for/"*^l. 

We turn now to the liquid-solid phase transition. Consider first 
the limitn-^». The question is what is the lower bound for the elect­
rostatic energy. Onsager (1939) has shown that the lowest bound can be 
obtained if the point particles are smeared around the initial points. 
The best smearing is a uniform charge distribution - namely a sphere of 
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radius f*. Hence the lowest bound is given by -0.9N//* where N is the 
total number of particles. However, the ions are point particles. The 
crystal with the minimal Madelung energy is found to be the bcc crystal. 
We give in the table the values of the Madelung energy for the simplest 
crystals. Note how close the numbers are, in particular the relative 
difference between a bcc and an fee crystal is only 6xl0~5. Thus it 
would seem 

Table 1 

Madelung Energies of simple crystals, 
crystal Z^/ir kT 
fee -0.895874 
bcc -0.895929 
Wigner-Seitz sphere -0.9 

that at T=0 the OCP will arrange itself in a bcc lattice. However, it 
is plausible that the various corrections to the OCP will be different 
by more than the difference in the Madelung energies and the type of 
crystal formed (and its relevant frequencies) may change. This change, 
if it really happens, is not important to the energy content of the WD. 

Having established that the lowest energy state is a bcc crystal 
we expect a phase change at some finite value of f . Again, since the 
interaction under consideration does not possess a characteristic length 
we do not expect a phase change in the usual sense. Namely, the solid 
phase and the liquid phase resemble each other to a very large degree. 
The liquid possess a long range order and phonon spectrum which does not 
differ appreciably from that of the solid. Likewise, the densities of 
the liquid and the solid are alike since no dramatic change in the pack­
ing is expected. Also, the heat of melting will not be high. 

At very high densities ground state quantum oscillations will pre­
vent the formation of a crystal. Hence the phase transition line 
bounds and ends at a finite density. 

Coulomb liquid. Recent years have seen much progress beyond the init­
ial works of Kirzhnits (1960), Abrikosov (1961) and Salpeter (1961). 
In view of the difficulties encountered in analytic methods resort is 
made to the MC method developed by Metropolis et al.(1953), Molecular 
Dynamics and Percus-Yevick and the hypernetted chain (HNC) integral 
equations. The first MC calculation on OCP was carried out by Carley 
(1963) and Barker (1965) for/̂ 'V'l and were extended to a wide range of 
Tby Brush et al.(1966). Hubbard and Slattery (1971) extended the MC 
to include the screening effect. This effect is important for hydrogen 
and helium and will not be discussed here. Later Shaviv and Kovetz 
(1972)(SKI) and Hansen (1973)(H) have repeated the Brush et al.(1966) 
(BST) calculation with various assumptions. Recently the method of 
integral equations was applied to OCP, in particular by Cooper (1973), 
Springer et al.(1973) and Ng (1974) who have solved the HNC equation 
over a large range of H. 

The basic idea of BST is to take a system containing a small 
number of particles (say 32 to 500) immersed in a uniform neutralizing 
background. Periodic boundary conditions are used to imitate an 
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Infinite number of Interacting particles. The electrostatic energy 
between the Infinite periodic charges Is evaluated by means of the 
Ewald (1921) sums. The Ewald sum corrects the Ion-Ion Interaction 
Inside the cell for the effect of the distant particles. It Is easily 
shown that the effective Interaction resembles a spherically symmetric 
screened Coulomb potential plus a small contribution due to non-
isotropic slowly varying potential. The expressions for the potentials 
are still complicated and computer time consuming. Hence BST expanded 
the potentials into a Taylor series. H remarks that in spite of the 
fact that the sum in the unisotropic contribution converges very rapid­
ly and only summation of 5 nearest cells is needed to yield an accuracy 
of 1:10^, its calculation is very time consuming. Hence, he expanded 
the potential in Kubic harmonics and optimized the expansion so as to 
obtain a relative error in the isotropic part of less than 1%. 

SKI have tried a different tactic. They assumed the N ions to be 
in a sphere. For a given configuration of N ions in a sphere of radius 
R filled with a uniform charge -ZeN the energy is 

This expression takes into account the fact that the particles on the 
surface of this sphere feel only the interaction of the particles 
inside the sphere. This is obviously a source of an error in the method. 
However, the error in U varies like N ̂ '^ and is easily corrected for. 
The results SK obtained for N-100 and N=200 were used to extrapolate the 
value of U to N-H*>. The relative error in U should be less than 1%. 

The results are usually expressed in terms of the excess energy 
defined as: 

AU/*b~r= (UCOUL-L,^ - Ubcc)/»k T (4) 

where U ._-. and U, are the electrostatic energy of the Coulomb 
liquid and the bcc lattice respectively. Figure 1 shows 
the results obtained by the various investigators. While the total 
energies are very close to one another (^0.9pfor/~'»1) the energy 
excess shows deviations. The results obtained according to the HNC 
integral equation are also shown. 

It is of interest to understand the difference between the 
results and the implications on cooling WD's. In the MC method of BST 
and H a long range order is imposed on the system at all P, All 
functions are periodic with wavelength greater than L - tne size of 
the cell. SK do not assume a long range order. An examination of the 
results of SK indicates that the difference between N=100 and 200 is 
less than 1:103 forF>7S" and hence long range order has a small 
effect. 

Another problem with the periodic boundary conditions happens 
when a particle interacts with a very close image. In the bulk state, 
such a case does not happen because of mutual repulsion that prevents 
very short distances. There are MC methods in which such problems are 
avoided. 
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Finally, the number of particles chosen by BST and H is such that 
it corresponds to an integer number of bcc cells inside the basic cal­
culation unit. SK, who used spherical cells did not constrain the 
number of particles in the MC in this way. 

The HNC method, like to SKI, does not constrain the number of part­
icles and neglects all of the bridge graphs. It is not clear at the 
moment what is the effect of this neglect on U/NkT. 

In view of the above differences one finds in the literature sever­
al fits to the numerical results. H proposed the following expression: 

U nVZ( ^ec *2 g3 *» \ 

7Fr~ l r v v * (t>*+r) (b3+n)2/* fo+n)J (5) 

where a, = 0.895929 b. = 4.6664860 
DCC 1 

a2 - 0.11340656 b2 =13.675411 
a3 =-0.90872827 b3 = 1.8905603 

a. =-0.11614773 b. = 1.0277554 
4 4 

r-'k ~ 
This expression tends to U, +af for/-*00, namely the excess thermal 
energy goes as r''\ At the other extreme, the expression tends to 
the first term in the DH expansion (Bowers and Salpeter (I960)) 

SKI proposed a simpler expression namely 

u/„kT -ar^r'^ (7) 
which tends to the correct limits for/""-*0 and °». This formula was 
used for the interpolation between the calculated points of SKI. 

De Witt (1976) found that the following 4 parameter function 

\j/hlk~r = aT + hrs + c (8) 
fits H's data better than eq.(5) with a=-0.89461±3xl0~5, 
b=0.8165±8xl0~\ c=-0.5012±1.6xl0-lt and s=£. The basic idea of the 
fit is to find the asymptotic behaviour of the thermal part of the 
internal energy and according to this fit it behaves as T^for /T>oo 
However, this fit fails for^<l because it does not reduce to the DH 
limit. (In H's fit the/""-*» limit is adjusted to U. , which is not the 
case in De Witt's fit). 

Finally, the results of the HNC method can be fitted to 

(j/tikT = - 0.<?oo47o r + 0.26SH63 r'/z 

(9) 
•+ 0.07/9192£^n f + o. Of 3 7 9 19 

which again does not reduce to the correct limit for/~-K). 

The direct evaluation of CL. by means of the MC is possible but 
not advisable because of the large noise in the results. Consequent-
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ly, consistent thermodynamics is obtained by applying the analytic fits 
to the electrostatic energy. 

The Helmholtz free energy F is given by 

(10) 

so tha t 

and 

F/Nk~r = J(v(r>)/fskT)dr'/r' 
It o 

(P M/N k r) = (r/i) l(F/*k T)/?r = [j/sSkT ( 1 1 ) 

('J»k)c.«.m< ~r* *("/r"'V/»r. (12) CoUL orn& 

The compressibi l i ty i s given by 
Vkr /*kT --/-?(- C./Nk * WMT)twtnl <13) 
Here we included the idea l gas contr ibut ion to the compressib­

i l i t y kj - V(3P/3V)T. 

The Thomas-Fermi correct ion (TF). The TF correct ion i s the f i r s t 
correct ion for the fact that the e lec t rons a re a t t r ac t ed by the ions 
and the r e a l matter deviates from the idea l OCP. The correct ion i s 
generally small for elements with high Z - which explains why we l i m i t 
the discussion to elements heavier than He. SKI derived the following 
expression for the exchange term: 

FTp lvkT=-t££*»e (J"*' T ^ F ̂  ̂ r t f) (14) 
where V<xr(<fi) - / ( * * - * * a j W _ and the tilda denotes dimension-
less quantities defined„by ^ « ^ Z e / ^ , l/= V#**I* /3 and 
S/ay($) *=f($- $*ir)X(S\/» & is the Coulomb interaction 
potential that affects the electrons. The bar implies a canonical 
average. The various approximations used by different investigators 
boll down to estimates of g(r)°rvar(<j>) . SKI used the/">«> limit for 
the whole range, namely g(r) = *oer/lJS. The DH theory yields for/"-H) 
g(D = (/~/3)2. A simple interpolation formula for the whole range of 
Tis: 

g (r) = (10 t/ns-) r,/z /(/. 070 + r4/2). (i5) 
L used a phenomenological expression for FT_ namely 

FTF = -(st//l7S)(rzJp Z z)( 9/>/*y)fi (16) 
which is arranged to fit the T=0 EOS of Salpeter (1961). 

Quantum ionic correction. The quantum contribution to the ionic free 
energy can be obtained by perturbation theory (Landau and Lifshitz 
1958, §33) namely: 

Here U is the electrostatic energy of the ions. Generally, the 
two terms can be combined because 

(VU)2 = % VZU (18) 
L followed Landau and Lifshitz (1958) and assumed A=i. However, SKI 

-17-

https://doi.org/10.1017/S0252921100075679 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100075679


adopted the high/ limit namely the Wigner Seitz expression and hence 
VzU=0 (no net charge over an ion sphere). This is the source of the 
factor of 2 difference mentioned by L. The final expression found by 
SKI is 

Fcj/NkT = AZ h(r)/36. (19) 

Pollock and Hansen (1973)(PH) used the pair correlation function 
they obtained from the MC calculations to evaluate h(T). The Wigner- ,, 
Seitz approximation gives h(D=3 while for small r the DH gives h(r) <xr . 

This term is a perturbation expansion in powers of h or A. At 
very high densities A>1 and the expansion diverges. This region is 
important for the crystallization of heavy elements at high densities. 
More work has to be done in this case if the evolution of massive WD 
is to be followed. The contribution of this term can be extremely 
important. L remarks that if this term is ignored the T=0 solid C12 

melts at log p=6.49 instead of log p=10.7. 

The exchange effect. The contribution of the exchange term of the 
electrons to the total free energy of the plasma has been first studied 
in few limits (Zapolsky (1960), De Witt (1969). More recently Kovetz 
et al.(1972)(KLV) have extended the calculations to the partly degener­
ate semirelativistic regime and Jancovici (1978) extended the calcul­
ations to the near classical limit. KLV provided asymptotic express­
ions in the various limits and supplied numerical tables for the 
regions in between. 

The exchange term becomes exponentially small in the non-degener­
ate limit. KLV found that 

F0, *-(«Ar)(<»ecyr*)(v/2c
3)(ir/f) exp^C^^c*)) (20) 

for 3»1 (extreme non-relativistic) and £«<0. (y contains the rest 
mass energy of the electrons). In spite of the fact that the exchange 
contribution decreases as the gas becomes classical, it has been shown 
by L that the relative contribution of the exchange is greatest along 
the boundary between the degenerate and non-degenerate regions. Cons­
equently although the contribution is absolutely only 0(6f/kT) in the 
non degenerate region it must be included for 6p ^ 0. 

The crystal state. The ionic crystal state, which corresponds to/-1-** 
has two major contributions to the free energy: (a) The Madelung 
energy, which is the energy of the ground state. (The bcc Madelung 
energy), (b) The thermal (phonon) part (Kovetz and Shaviv (1970)(KS)). 

The contribution of the phonons is calculated in the harmonic 
approximation, hence the free energy is given by 

r/nk r - z i$iujh +**('- **pC-pt*>h)) (2i) 
where OJ, is the circular frequency and is a function of the wave 
vector k and the excitation mode X. The average is carried out over 
the first Brillouin zone. With one exception ui, . is proportional to 
the ion plasma frequency. The exception is the longitudinal (plasmon) 
branch at long wavelengths k 1 > k _ 1 = r , where r is the 
screening radius. In this case we Tiave (Pines (1963)). 
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The magnitude of k depends on the density. A TF model yields; 

ks
z
c = s2 rne e* 2(*)/6f. (23) 

KS assumed the relativistic limit to apply and took X(X)=1. L 
applied the semi-relativistic TF model and obtained: 

M*)- <f>( 4-1)/(<**-<) j * - ' + /*'"e^* (24) 
Note that A(X)-*1 in the relativistic limit and to i in the non-

relativistic one. L has also shown that screening is important only 
at densities below log p=5.04, 5.65 and 6.25 for C12, Mg2** and Fe56 

respectively. 

KS applied the method of Cohen and Keffer (1955) based on ID, 
at 29 points in the first Brilouin zone. The values of u, were a&so 
calculated by Kugler (1969) and these were used by L. 

PH included for the solid the anharmonic contribution and 
obtained 

--«/fW^/./'-/.w^f/»fJ-'7rt//,a U5) 

where Ry is the Rydberg energy of the ion. It should be noted that 
the thermal energy constitutes only ^1% of the total internal energy 
of the solid. 

Estimated accuracy of the equation of state. The estimated accuracy 
in the electronic contribution at T=0 are given by Salpeter (1961). 
Little changes at the relatively low temperatures under discussion. 

The error in the ionic contribution is more sensitive to temp­
erature and density. Adding uncertainties of all possible sources 
we find a relative error in the free energy of the ions of the order 
of 1% or less. 

The phase transition. The conditions of phase equilibrium between 
the solid and the liquid are 

Sr 05/ T ) + \ (Ps, ~r) ~ P<* (fa ')+ % (P(> T) (26) 
and 

M« (Ps. ~T) * ZS*e (p's T) - /",•/ (Pf>, ~r) + Z/'e(ft>T) (27) 
where the subscripts i,e,l,s refer to ionic, electronic, liquid and 
solid respectively. The above equations determine p. and p as a 
function of T at the transition. SK assumed that P. , P., I< P and 

is 1.1 s 
6p=p -p.«p and obtained the following result for the density 

S X S 
difference 

The density at the phase transition itself is given by * 

t. (?r T] - A O" ^ (29) 
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where f. and f.. are the (ionic) free energy per ion. Note that 

(3P /3p)»(3P /3p) and that OPe/9p)_>Pe/p. The relative contrib-
2/3 

ution of ionic pressure is P^/Pg^Z a and hence 

fy/p ~ Z3/i * « 1 «- '37~ (30) 
The latent heat release during the phase transition i s given by 

? = T(4is - <-/J = V<4 - U,s . (31) 
It is of interest to try and derive the location of the phase tran­

sition by other criteria and not only by equating the Gibbs functions 
(or the free energies). Such a computer experiment was carried out by 
PH in the particular case of OCP. The idea is to start a MC calculation 
in which all particles are at their lattice points and to follow the 
evolution of 3 ^ — — 

* = 71 " # 7 - ~d~z— (32> 
where d is the nearest-neighbour distance in a bcc lattice, K are the 
instantaneous positions and the R. are the equilibrium positions of the 
N ions. 

PH find that forr>160 y2 remains bounded while for /~<135 y2 is not 
bounded. Hence they argue that/""-=135 is a lower bound to the melting 
point. This calculation was however carried out on the OCP in a period­
ic potential and without additional corrections. A completely differ­
ent criteria are the various empirical "melting" laws. The best one 
known is the Lindemann (1910) law which states that the solid melts 
whenever the parameter f exceeds some critical value. Van Horn (1968). 
and PH find for the OCP at the melting point of^=160 that Y=0.17 which 
agrees well with the value obtained for other types of fluids with r"n 

potential (Hoover et al.(1970)). Note however that Lindemann's law is 
based only on the properties of the "solid" and hence cannot be consid­
ered as a genuine phase transition. 

Some properties of the crystallization curves. If the classical OCP had 
been the dominant factor in crystallization then P would have been con­
stant along the phase transition line. However because of the various 
corrections which do not scale the same way as the classical Coulomb 
interaction we find deviations from the/~=const line. 

Over most of the region the solid and the liquid free energies are 
very close. Consequently the EOS must be known very accurately to det­
ermine /T.. An error of 0.1% in F changes /~M by ±10. L has shown that 
replacing the bcc Madelung energy by the Wigner-Seitz value (a change of 
only 10 2'3) changes /"", to 85! (as found by SK) . Generally when the 
crystallization occurs at high densities A=2.24 9/1>± and the crystal is 
in the Debye cooling region. Actually the "Debye cooling" has already 
started in the liquid before crystallization. 

The latent heat of melting is about kT, very similar to the latent 
heat of melting of ordinary solids. This small latent heat is a further 
indication to the very close similarity between the liquid and the solid. 
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Let us return for a second to the equation for the compressibility 
of the liquid. We find that for/^^l the compressibility vanishes which 
indicates that phase transition from gas to liquid could exist just at 
the place where Coulomb forces "take over". The MC calculations indic­
ate that at this place local order starts to appear in the liquid. How­
ever, as discussed previously U,(V,P and p are continuous functions 
throughout this region. 

Mixtures. The discussion so far was restricted to pure elements. In 
reality WD are composed of mixtures. While the most important constit­
uents are C12 and 016, small amounts of impurities with various Z are 
present as well. 

The question is how to treat the mixture. Shaviv and Kovetz 
(1976)(SK2) have analyzed the possible mode of crystallization and have 
shown that of the three possibilities: a mixture of macroscopic pure 
element grains, a lattice with sites randomly occupied by C*2 and 016, 
or an ordered lattice with a distribution determined by the number 
ratio, the first one is thermodynamically favored. Hence extensive 
thermodynamic quantities can be written as sums over the two constit­
uents. Equivalently average values of A * , Z and Z2/A can be used for 
the crystal phase. 

Consider now the liquid phase. Suppose the matter has two species 
with ionic charges Z. and Z„. Define the average charge by <Z> = 
=X1Z.+X2Z? where X. = n./n, n. is the number density of specie i and 

n - ln±. 

The linear DH theory yields for /""<<1 that the internal energy can 
be expressed as: ./ . 

(/•"-f (r<z«>) j r . e'/Fi-r • ?.(,/*r,) 3
(JJ) 

In the high flimit the Wigner Seitz ion-sphere yields: 

[/** . - *ir<Z>*<ZS/"> (34) 

Extensive HNC calculations by Hansen et al.(1977) have shown that 
the excess internal energy of mixing at constant T and charge density, 
namely . . tj 
AU(r<z>'x<) = U(r<z>\ x4)- x<v(r<z>\x<=<) 

-x3U(r<z>'\Xt=y) (34) 

1/3 is negligible compared to U(f<Z> ,X..). Hence the internal energy is 
given by the sum of the internal energies of the two species calculated 
with the appropriate parameter: 

u(r<z>*jX<) = x, U0 (r<^/3 zt
 3) f *i U. (r<z> 'z'3) (36> 

where U (D is the internal energy of the pure OCP. SK2 used a similar 
expression. 

The miscibility of the two fluids in the uniform background depends 
on the Gibbs free energy of mixing. An evaluation of the Gibbs free 
energy by Hansen et al.(1977) shows that the two fluids are always 
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miscible, In the limit r , /a « 1 where r - =(3/4irn ) is the 
elec o elec e 

electron sphere. Thus, no separation occurs under WD conditions. 

To summarize, to a very good approximation the thermodynamic 
properties of the mixture are additive (the solid and the liquid). 

The envelope equation of state. The EOS of the envelope is more compli­
cated than the EOS for the interior due to pressure ionization, species 
of different types (neutrals, molecules, ions, etc.) and complicated 
interaction between them. The exact EOS is very important for the cal­
culation of the adiabatic gradient and through it the extent of the con-
vective zone and opacity. ThisRin turn affects the central temperature 
and clearly the T ^T a (or LVT ) relation, where Te=effective temperature. 

Initial work on the structure of the outer layers of WD's assumed 
some simplified forms of the Saha equation which were intended for the 
calculations of the degree of ionization. Several prescriptions were 
used (Rouse 1964 , Stewart and Pyatt 1966 ) to correct the Saha equa­
tion so as to take into account pressure ionization, the disappearance 
of atomic bound states, etc. These models were used for calculations 
of stellar atmospheres models (cf.Bohm and Grenfell 1973 ). However, 
it has become clear in recent years (cf. Sweeney 1978 ) that the 
simple correction of the Saha equation (a) leads to thermodynamic 
inconsistencies (like negative adiabatic gradients or violation of the 
Maxwell equations) and (b) The Saha eq. is only an asymptotic expression 
and the degree of ionization cannot be cast into the form of the Saha 
equation over the entire (p,T) plane. 

In view of the above drawbacks the tendency in recent years is to 
try and derive the EOS in a consistent way (Graboske et al. 1975 , 
Fontaine et al. 1977 , Magni and Mazzitelli 1979 ). The £dea is_ to 
define.a model free energy of the system (containing H2»H„ ,H ,H ,e , 
He, He , He++ and metals) and minimize it. The model free energies 
assume model forces between any two species and do not derive the 
forces from first principles. 

Once all the interactions (which are themselves of course a con­
sequence of a given state) between all the constituents are given then 
the so called configurational free energy can be evaluated. Obviously, 
collective effects are ignored because only pair interactions are 
assumed. 

The internal part of the free energy demands the knowledge of the 
energy states. These can be calculated'assuming some screened potent­
ial (say DH potentials) as was done by Rogers et al. (1970)(cf. Lovelace 
and Masson (1962)). Note however that the number of particles in the 
Debye screening cloud is given by ^(3f€) 3/2 where 9=F , (n)/F, (n) is 
the correction of the screening radius for electron degeneracy. One 
has0-+-l for non-degenerate electrons and#-K) for degenerate electrons. 
For r ^ l t 9 M. there is not even one particle inside the Debye sphere and 
the description of the collective interaction in the form of a Yukawa 
potential is in question. 
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Even with this assumption it is impossible to carry out the pro­
cedure throughout the whole (p,T) plane. Several authors (cf.Grossman 
and Graboske 1971) have devised free energy models for the whole range. 
However, it is accurate in a narrow range and becomes increasingly in­
accurate outside it. Hence, different approaches (interactions) are 
assumed for low and high p and T. At high density most authors use 
some version of the hot TF model. This collective model is good for 
P/(X0«1 or p»19 gm/cc. At low density and high T the ideal gas app­
roximation plus small perturbations is used. 

These two limits cannot be extended so as to overlap each other 
because they both fail for F~ <X0 (interparticle distance ^ Bohr radius). 
Consequently interpolation between the limits is used. A consistent 
way to construct an interpolated EOS is to interpolate one thermodyn­
amic quantity, the behaviour of which is well established to be monot-
onic, and derive all others using thermodynamic identities. 

Of importance are the estimates of the accuracy in the EOS. The 
estimates are difficult to make since it is not a genuine perturbation 
expansion and we cannot estimate the next term. A possible way is to 
change one of the assumed interactions and find out the effect on 
P» Va.d» U, etc. It seems however, that the EOS is accurate to *v» factor 
of 2. The effect on the structure of the star is however greater. The 
structure line of low Te WD's envelopes run through most of the problem­
atic region in the (p,T) plane and accumulates the error over the whole 
envelope. Contrary to the situation in other stars where T is comp­
letely insensitive to the structure of the envelope, the central temp­
erature of WD is very sensitive to the structure of the envelope. The 
error in T may be greater than a factor of two for WD's with T <6000?K. 
A detailed analysis of the effects of EOS on the structure of wD is 
given by Fontaine et al.(1974). 

Neutrino energy losses. Theoretical calculations of cooling WD assume 
generally neutrino loss rates as derived from the hypothesis of a 
universal Fermi weak interaction,namely the V-A theory for weak inter­
actions. Extensive calculations and very useful expressions for the 
neutrino losses were given by Beaudet et al.(1967)(BPS). The neutrino 
processes which are found to be important for WD's are: photo, pair and 
plasma neutrinos. 

In the late sixties Weinberg (1967) and Salam (1968)(WS) have pro­
posed a unified theory of leptons which includes both weak and electro­
magnetic interactions. The unified theories, of which the WS one is a 
prototype, include a weak neutral current interaction which can change 
the matrix elements in the neutrino producing reactions. 

A physical point of interest is that the difference between the 
various theories are difficult to observe in the laboratory and hence 
it has been suggested that stellar evolution might help in this respect. 
Dicus (1972) has reevaluated the rate of some neutrino reactions in the 
new theory. The ratio of the energy losses rate as calculated according 
to the WS theory to that calculated by BPS according to the universal 
Fermi interaction depend on the coupling constants C„ and C.. The 
results can be summarized as follows: 
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q(palrf WS) 2 / / / ^ / c c 3 " ' / ^ T ^ 3* / a% 
Q(pair, BPS; V r o r r/f** K d ' 

- Cv
2 for io*</><'**}«/" , 7-< A / * 

- f(Cv
2+CA

2) for yo > /o 7<>~/cc , T > 6r'o7 « 

ffil0t°> ™L- kCy + CJ) for extreme re la t iv i s t l c elec. Q(photo, BPS) 2 Y " ' 

= -r (Cv +£~CA ) for non-relativist ic non-degenerate 

Q(plasma, WS 2 
Q(plasma, BPS) = V 

e* /T 
where C =i and C =i+ ^^l - ^ — . Here G Is the usual weak coupling 
constant, e the electron ̂charge and m the mass of the W-boson. The V-A 
theory values are recovered for C =C =1. These expressions refer to 
neutrino losses via electron neutrinos. In the WS theory emission of 
muon neutrinos cannot be ignored. The expressions for V energy losses 
are identical to y energy losses except for the replacement of Cv by 
Cv~l and C. by -C.. The total neutrino losses are given by the sum of 
the losses due to cioth types of neutrinos and due to all reactions. 
The question is the value of m . Present experimental indications are 

C„=1.4 (and C *i) and the present estimates are: 

Q(pair, WS) y 2 • Q(photo, WS) % . # Q(plasma, WS) ^ _ 
Q(pair, BPS) ~ ' Q(photo, BPS) = * ' Q(plasma, BPS) 

Thus, the new theory decreases the relative importance of the photo 
neutrinos relative to the pair and plasma neutrinos. However, the total 
neutrino loss increases. .Recently the role of the neutrino pair brems-
strahlung was evaluated in both theories. Contrary to the previous 
reactions the neutrino bremsstrahlung (e+Z-*e+Z+v+v) is not suppressed at 
high densities as the various v processes are . The brem­
sstrahlung neutrino reaction is important for WD with medium mass and 
above. 

The process of neutrino bremsstrahlung was first calculated by 
Gandel'man and Pinaev (1959) for non-relativistic electrons and was ex­
tended to relativistlc degenerate electrons by Festa and Ruderman (1969). 
Detailed numerical integrations over a wide range in the (p;T) plane were 
carried out by Cazzola et al. (1971)(see also De Zotti (1972)). More 
recently Flowers (1973) has studied extensively all the four neutrino 
reactions mentioned above and has included several effects, in partic­
ular many body effects. In addition Flowers considered the processes 
in the solid state. Thus the elastic scattering of electrons from the 
lattice are not suppressed as the density increases and neutrino brem­
sstrahlung on the static lattice becomes important when all other pro­
cesses have decayed. 

The effects of ion correlations may be quite high-up to a factor of 
6. Note that MC calculations show that already forP^3 the liquid phase 
shows a short range order and hence already at such a low /"" the ion corr­
elation must be taken into account. On the other hand, the extreme case 
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of / % 100 Is absolutely unimportant because all neutrino losses dec­
rease to very small values at this T compared to the photon energy loss. 

Dlcus et al.(1976) evaluated the effect of the WS theory on the 
neutrino rates and .found 

Q(bremss, WS) _ , 2 2. 
Q(bremss, BPS) " * ^V "*" UA ; 

over all the relevant range. The value of this ratio (including muon 
neutrino losses) is ̂  1.3. 

Electron conduction. The high heat conductivity by degenerate electr­
ons was established by Marshak (1941) and extended later to the case of 
semi-degenerate electrons by Mestel (1950) and Lee (1950). These class­
ical theories assume that the electron is scattered only by the ions and 
the ions behave independently of one another. This assumption gave rise 
to divergencies that were eliminated in a rather artificial way. 

Hubbard (1966) introduced the effect of ion correlation and derived 
the correct cutoff for the Coulomb potential between the ion and the 
scattered electron. The opacities derived by Hubbard are about a factor 
of two below the Marshak-Mestel-Lee values. Hubbard's results are essent­
ially that for f~<l the Debye length should be used as the cutoff para­
meter, while for r>20 the best cutoff length is Vi f . The values in 
the region l</"<20 may be obtained by interpolation. 

The effect of electron-electron scattering was analyzed extensively 
by Lampe (1968) and by Hubbard and Lampe (1969). This effect is exp­
ected to be small in strongly degenerate matter. However, Lampe (1968) 
discovered that at the core-envelope interface, where the degeneracy is 
not strong this effect changes the electron conductivity by up to 50%. 
Since this is the place where the temperature gradient in the star is 
determined, this effect is important for the L-T relation. 

Iben (1968) produced extensive tables of electron conductivity 
opacity assuming that the cutoff is given by the Debye screening radius. 
Iben (1968) has also examined the effects of uncertainties in the elect­
ron conductivity on the structure of the cores of red giants and found 
them to have very small effects. Finally, he suggested also an analytic 
approximation to the table which is easy to use on computers. 

The extension of the new theory of Hubbard and Hubbard and Lampe 
to relativistic and semi-degenerate electrons was carried out by Canuto 
(1970) and Canuto and Solinger (1970) and by Kovetz and Shaviv (1973). 
However, there seems to be an error in Canuto's reduction of the trans­
port equation. In particular, the results do not reduce to those of 
Hubbard at low Fermi energies, nor do they have the correct dependence 
on temperature and density. 

Kovetz and Shaviv (1973), who derived the correct relativisic Boltz-
mann equation, obtained the electron conductivity in two limits where 
simple analytic expressions for the pair correlation function is avail­
able. Thus, they derived the electron conductivity in the limit/~"«l 
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using the DH theory and in the limit f">75 using the results from simple 
cubic lattice. 

Now, since the behaviour of the pair correlation function is known, 
at least numerically, for allf's no interpolation between the two 
limits is required. 

More recently Flowers and Itoh (1976) have re-evaluated the trans­
port properties of dense matter. They added the effects of impurities 
and dislocations which influence critically the transport coefficients. 
The impurities and dislocations limit the transport of heat by providing 
very efficient scattering mechanisms for electrons and phonons. The 
contribution of the impurities to the thermal resistance is very sensit­
ive to the concentration and varies like (AZ)2 X where X is the average 
concentration of the impurities and AZ is the departure of the charge 
of the impurities from the Z of the most abundant species. 

Stevenson and Ashcroft (1974) and Minoo et al.(1976) have revised 
the Hubbard (1966) and Hubbard and Lampe (1969) results with improved 
ionic structure factors and electron-ion interaction. While their 
results are mainly relevant to hydrogen and helium they can easily be 
extended to higher ionic charges so as to take into account the finite 
value of r . They usually find the conductive opacity to be a factor of 
two lower than the value obtained by Hubbard and Lampe (1969). The 
electron conduction is important in those regions which are not easily 
tractable to analytic methods. Thus, the electron conductivity in the 
solid core is so high that the core is practically isothermal. On the 
other hand, the opacity in general and the conductive opacity in 
particular are very important at the core-boundary, where T^SxlO5,^^, 
p^lO. Here pressure ionization is not complete,f^1 and the assumption 
of OCP is not a very good one. The very same remark is appropriate to 
the radiative opacity. 

Radiative opacity. The radiative opacity depends on the physical state 
of the plasma. The knowledge of the "physical state" is equivalent 
(almost) to the knowledge of the EOS. Hence all problems in the EOS 
affect the uncertainties in the radiative opacities. A recent review by 
Carson (1976) covers the general problems of opacity calculations and 
hence we discuss here briefly only those effects which are character­
istic to the dense plasma found in WD's. 

Electron scattering is affected by (classical) electron correl­
ations. The reduction in the electron scattering opacity due to corr­
elations was calculated by Diesendorf (1970), Diesendorf and Ninham 
(1969). The reduction in the opacity is a function off". Forf"»l the 
reduction reaches a factor of 0.5 (for hydrogen) and M).7 for He (Aharoni 
and Opher, 1977, 1979). The reduction for heavier elements is smaller. 

The dispersion relation for electromagnetic waves in plasma is 
w^/lp+c1^"2 where Up, u and k are the ion plasma frequency, the wave 
frequency and the wave number respectively. Since Up cannot be ignored, 
the integrand in the Rosseland mean should contain (1-il^/ui2) and the 
integration should start at u)=i2,,̂ 0. Cox (1965) ignored this factor in 
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the integrand but included it in the range of integration. The effect 
is a monotonic function of A. For A^l the corrections are a.10% (in­
crease) to the scattering opacity and 2.5% (increase) to the absorption 
opacity (Watson (1969, 1970) Aharoni and Opher (1979)). While Cox (1965) 
estimated the effect ot be 0(A3) for the scattering and 0(A5) for X 
Kramers opacity, Aharoni (1979) has shown that it is 0(A2). 

The progenitor mass, birth function and luminosity function. The class­
ical assumption made in the construction of the theoretical LF is that 
all WD's have the same mass and hence are formed from main sequence (MS) 
stars of the same (average) mass. Furthermore, a constant birth rate is 
assumed. The WD's observed in the solar neighborhood belong to the disk 
population. The crucial point is that the cooling time down to a lum­
inosity of 10 5L„ is of the same order as the age of the disk and hence 
the above assumptions call for correction factors. D'Antona and 
Mazzitelli (1978) tried to investigate the effect of these assumptions 
on the LF. 

Assume nM_(MM_)£)d M^„ is the birth rate of MS stars with masses in 

the range (MM_,MM_+dMM_). These stars live on the MS and in the post MS 

phase for T M (M^) years and become WD's. In the approximation assumed 
here T depends only on the total mass at the MS phase. The newly 
formed WD's cool from high L to low L in time Tun(Mt_iL). MS stars with 

masses (MMsiMMs+dMMs) yield WD's with masses (M^M^+dM^) . The 

function ̂ ^"Mrjn^^Mq) *s known today very poorly. The number of WD's 

with mass (^^jT^M^+dM—) and luminosity L at time t is given by 

Mw» (»**, 0 * n(««s>
l ~ *«s - *»*) ^ T T dJ**L *"*«' (37) 

The contribution to the LF of these stars is: * 

The observed LF is the integral over all masses, namely: 

Here M and M are the mass of the star born with the formation of 
the disk and now reaching luminosity L as a cooling WD, and the max­
imum of the MS star to produce a WD. Since we see only WD's that belong 
to the disk, suppose the age of the disk is T_, than 

W & ^ ) - 'IstrveJLF.J »(M„S>?*-?MS-r„»ffi?J%sW 
M-to dfo1L 

The LF has been evaluated in several approximations. The class­
ical approximation assumes n(M,t)= const, and Mtro(MM(,) = <MU_>, namely 
all stars produce the same WD. In this approximation we find 

The results for LF(T_,L) obtained recently by several authors 
based on (41) are given in figure 2. The application of the full ex­
pression for the LF results in changes shown in figure 2 as well. The 
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effect of these corrections depends on two questions:(a) to what extent 
is Debye cooling reached before IA10 4 L Q and (b) the details of the 
function Mrro"

M
UD(

M
MS) • When Debye coolxng is reached before IAIO-1*!© 

(a question which depends on the EOS in the envelope), the LF starts to 
bend downward already at L>10 ̂ -10 5L Q and the additional reduction in 
LF at these luminosities is modest. However, if Debye cooling is not 
reached before 10 5Lfl the effect can be quite large depending on the age 
of the disk. 

The complications in the LF are not yet over. Studies of WD 
atmospheres seem to indicate that the masses of non-DA WD's are sys­
tematically smaller (MM).3M0 for DB's and DCs, Bues (1974,1976)) than 
those of DA's (0.7-0.8 M0 Wehrse (1975)). Hence the MWD

= M
W D(

M
M S) func­

tion may depend on composition giving DA's in one case and non^DA's in 
others. Several assumptions are possible. However, in view of the poor 
knowledge of this function and the intense work at present we leave this 
question at this point. 

Finally all calculations have assumed so far constant G. If, as 
suggested several times, G decreases with time the cooling time in­
creases (Vila 1976) and the paucity of low luminosity WD's will 
increase. 

The comparison between the theoretical and observational LF's. Kovetz 
and Shaviv (1976) repeated Weidemann's (1967) derivation of the observed 
LF of WD's and compared it with the theoretical one. The derivation of 
the LF was carried out under different assumptions to check the sensit­
ivity of the comparison to the theoretical assumptions. 

The conclusions of this work are that the LF is to a very good 
approximation given by log <|> = (0.44±0.08)M, down to m=15.5. Various 
assumptions change the constants slightly but less than the statistical 
error. 

The comparison with theory is not meaningful in the range at which 
an LaT a with constant a is valid, because the theoretical LF is then 
given §y: log $ (M.) = ^~'J M.+ const. If a»l the LF is insensitive 
to a, and hence all theoretical models will fit the observed LF equally 
well. 

When Debye cooling sets in the constant a varies quickly and the 
theoretical LF starts to deviate from a constant slope (in log LF, M, 
plane). Here however, the observational data is very controversial. 

We can conclude that the ages of cool WD's are increasingly un­
certain as the effective temperature decreases below M.0000 K. 

Accretion onto WD. The problem of accretion of interstellar gas onto 
WD has been examined recently by several authors (Castellani and 
Panagia 1971, Koester 1976, Truran, Starrfield, Strittmatter, Wyatt 
and Sparks 1977, Mazzitelli 1978). If accretion from interstellar 
matter is an important effect, then obviously several phenomena can 
happen: 
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(a) The minimal accretion rate will set a minimal luminosity to 
which WD can cool. 

(b) Accretion at sufficiently high rates can remove WD from the 
cooling sequence, set the WD on a "heating" sequence and 
confuse the LF. 

(c) Accretion can destroy the existence of unique compositions. 

The rate of accretion depends on the physical conditions in the accret­
ed gas. When the density is low and the cross-section for particle-
particle collisions is small, the interstellar gas behaves like indiv­
idual particles. The accretion rate in the single particle approxim­
ation was first derived by Eddington (1926) as 

Q.AA *' 

where E = —fl
 WJ> and E, . =V.gv2 are the gravitational and 

grav Afwj Kin 
kinetic energy per particle, v is the relative velocity between the WD 
and the gas at infinity and p is the density of the gas. 

On the other hand, the accretion rate in the fluid approximation 
is given by the Bondi (1952) interpolation formula: . 

^ -(nzrfifc) ****** & ic- + "">* W) 

where y is the adiabatic exponent of the gas, E , the thermal energy 
and Cm the speed of sound at infinity. The basic idea of Bondi is that 
fluid particles are deviated, get to the axis where their transverse 
momentum is destroyed by collisions and fall back onto the accreting 
object. The ratio between the two accretion rates does not depend on 
the density: . 

"22L *ff''» (*+ i t ] (44) 

However, the question whether the Eddington particle approximation is 
good or the Bondi fluid approximation is valid depends on the density 
(Shara 1977). The critical density is 

Consider the typical conditions in the interstellar medium,one 
finds n . =103cm 3 (assuming neutral H) . Consequently, accretion from 
the general interstellar medium should follow the Eddington expression. 
A similar result was derived by Koester (1976). Mazzitelli (1978) 
arrived at the same result from the following argument. The accretion 
rate does not destroy the composition differences between the various 
WD's. Hence the upper limit to the accretion rate by interstellar gas 
is 

where m is the mass in the atmosphere above optical depth of unity, 
Tr the gravitational settling time (about 1 year: Baglin 1971) and 
ZTT^» Z. „_ ,, are the heavy element abundances in the WD and the wD interstellar ' 
interstellar gas respectively. The substitution of typical values 
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(m <vlO MQ) yields M<10 HL in agreement with eq.(44)for tL/m ,,. 

Under these conditions L ^6x10 LQ and is completely negligible. 

The situation changes however if the WD collides with an inter­
stellar cloud. Here particle density can be n^400 cm 3 and the Bondi 
approximation begins to become valid. The validity of the Bondi approx­
imation is extremely important because the ratio m_/iL,»l and the 
whole picture changes. 

The fate of such a WD depends on the following time-scales: 
(a) the thermonuclear runaway time for a given envelope mass t , 
(b) the collision time x between the WD and an interstellar cloud, 
(c) the accretion time-scale T *X» m , /m . When T.,«T , T n, 

ace envel ace N c envel 
thermonuclear runaways will dominate and vice-versa. The problem is, 
however, that the time-scales are very close to one another. We find 
x„^5xl05 - 5xl06 years, T ^ (ir n , , R2 , v ) - 1 ^ 6xl08 years and 
N J * c cloud cloud J 

x . <\» 105-106 years. Hence, the exact fate is not clear and a single 
star nova explosion is possible. The next question is how many such 
events occur to a given WD during its 109-1010 years of cooling to 
10-lt-10~5 LQ. The calculation (Truran et al.1977) shows that a typical 
WD has a probability of M).l per cooling time to accrete enough material. 
When this happens the WD moves backwards on the "cooling sequence" until 
it burns all its hydrogen or becomes a nova. Subsequently the WD ret­
urns quickly to its previous location because the core does not absorb 
much energy. Hence the confusion to the LF is negligible at the present 
state of the observational material. 
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