
NO. I FORUM 99

Wallens, R. M. (1990). Flying Made My Arms Ache. Self-Publishing Association, Upton-on-
Severn.

KEY WORDS

1. Aircraft lighting. 2. Safety. 3. Approach and landing. 4. Human factors.

Position by Observation of a Single Body

Roy Williams

1. I N T R O D U C T I O N . Matti Ranta1 in his paper published in this Journal in May 1990
described a method of computing an observed position from the observation of a single
body around the time of culmination. His equations would suggest, however, that the
computation is valid at any time that the heavenly body is visible to the observer.

Let us start with Ranta's equation (10) in his paper which we here will label as
equation (1).

We will use the symbols:
a to denote altitude
<f> to denote latitude (—\u < <j> ^ J7r: North positive)
6 to denote longitude (o < 6 < M: East positive)
X to denote declination
A to denote m — GHA
Z to denote the azimuth
V to denote the velocity of the observer
y to denote the course made good by the observer
Q to denote dX/ it.

In this notation the equation is:

ia. [ dx\
— = Kcosy — cos (A — &)— cosZ
it \_ at]

f </y 1
+ Fsiny + sin(A-0)sin0 Qcos<f> sinZ. (1)

L dt J

2. GENERALIZATION OF THE METHOD OF RANTA1 . It would seem that at any
time other than the time of culmination we can just as well take a series of observations
of the altitude, a, of heavenly body and, after fitting a least squares function
approximation, <z(t), through the data points, we would differentiate to find a'(t0) at a
time, t0, which we would choose for finding an observed position. Substituting this value
of a'(t0) in equation (1) we could use this equation to find our first and subsequent
approximations to Zn combined then with equations (2) and (3) below to form an
iterative scheme for computing (A — 0) and <j> at time t0.

sin Z_ cos a
sin(A-0)n = S (2)

cosx

COSffl_ =
cosxcos(A-0)n
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Let us consider first that the observer is stationary, so that V= o in equation (i). The
equation then becomes:

da [ dx dA] I
— = sin (A — 6) sin <f> c o s ^ — sinZ—
dt [ dt dt\ \_

dx]
cos (A — 6)— cosZ.

dt\
(4)

If we express equation (4) in the form

we find

where

and

tan£=

Rs in (Z - i )= —
dt

[Rdt\

cos (A — 6)dx/dt

sin (A — 6) sin <j> dx/dt — cos <j>d\/dt

R2 = sin (A - (9) sin 0 — - c o s ^ — + cos (A -6)
[ dt dt\ I

dxi2

dt

the procedure would then be to take a series of observations a,, a2, ..., an at times t,,
t2, ...,£„, respectively, such that t, < t0 < tn, to fit a function approximation <x(t), from
which we can determine <x(t0), and differentiate to find oc'(to).

Using the values of oc(to) and tx'(t0) so found, we can compute the angle Z as above and
then the LHA (= A-6>) from

()
c o s X

Ranta1 uses a least squares quadratic polynomial approximation to determine a(t) and,
while this will work well at the time of culmination, it is not accurate enough in the
general case. For a stationary observer on the surface of the Earth the altitude, a, of a
heavenly body is given by the equation:

sin a = sin <f> sin x + cos (j> cos x cos (A — 8).

If we write / = sin a we should, therefore, be able to approximate to this with a
sinusoidal function of the form

y = A sin x + B cos x + C

where x = A — 6. The period of the trigonometric functions is the length of the
apparent day (the period elapsing between two successive transits of the observer's
meridian by the heavenly body). If the body is observed at times {tj with corresponding
altitudes {aj then we fit y to this data in the least squares sense so that:

is a minimum.
If we find the partial derivatives of S with respect to A, B and C then these are the

' normal' equations and furnish a set of linear equations (j) from which to determine the
A,B,C:

2 J COS XJ

( c o s Xj sin Xj

2 J COS X(

cos xt sin xi

sin2

sin xt

2 / I sisin x4 (s)

There are certain circumstances where the matrix defining the system (g) is singular or
nearly so. This occurs, for instance, at the time of culmination and again when the hour
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angle A — 8 (= x) and the altitude a (= sin"1 y) are both close to 4j°. In such cases we
will perhaps overcome this by using the least squares orthogonal polynomial
approximations as described by Forsyther.

3. EXPERIMENTAL RESULTS. In the absence of observed data, we can test the
computational procedure by using the values of the altitude of the Sun given in Davis's
Tables3. These tables are intended to give the values of the true altitude of the Sun
(correct to the nearest one minute of arc) at intervals of eight minutes, but the tables
are very old and some of the entries are not, in fact, correct to the nearest minute. We
have corrected any entry from Davis that we found to be wrong and we have then applied
the trigonometric least squares approximation to this corrected data.

TABLE I. SUN ALTITUDES V. LATITUDE AND HOUR ANGLE

Latitude

3°°
35°
4°°
4S°

5°°
SS°

349°

77° 56'
74° 39'
70° 38'
66° 15'
61° 40'
J6° S9'

347°

76° 27'

73° 3 i '
69° 46'
66° 35'
61° 09'
J6° 3J'

Hour

345°

;4" 53'
72° 16'
68° 48'
64° So'
60° 34'
j6° 07'

angle (A)

343°

73° '7 '
70° 57'
67° 45'
64° OO'

59° SS'
SS° 36'

34>°

7i° 39'
69° 34'
66° 38'
63° 06'
59° 11'
55° 01'

339°

69° S9'
68° 09'
6j° 26'
62° 08'
58° 24'
54° H '

On the bridge of an ocean-going cargo ship in good observing conditions one would
normally expect the readings from the sextant to give altitudes at better accuracy than
one minute. The common form of the sextant used by seagoing navigators is usually read
to c i of a minute and, although one might not expect the altitudes always to be accurate
to that level, it might not be unreasonable to expect accuracy to o-2 of a minute. Using
the spherical cosine formula we have therefore compiled a second table of altitudes
correct to o-2 j of a minute in order to test the application of the Forsythe polynomials
to our least squares approximation. The Forsythe polynomials did not give such good
results when the data was expressed to the level of accuracy of one minute but gave
acceptable results at the level of accuracy of o-2£ minutes.

For the purposes of testing the procedure of computing the position of an observer
we have sited the observer on the Greenwich Meridian (longitude o°) and at latitudes
ranging from 300 to $5° North.

Example. June 10 1990— 1100 GMT. Declination 23-0117 °N. Rate of change of
declination 0-001597 °/hour. Hour Angle 3450 99' . Rate of change of Hour Angle
— 14-998 "/hour. Longitude o°.

The picture presented by the data of Table 1 is the ' static ' picture — the declination of
the Sun is kept fixed. Allowance for the effect upon the rate of change of altitude by the
rate of change of declination is made by the added term:

sin <p cos x~ cos 0 sin # cos (A — 6)\(dx

cos a / \ dt

The results from the computation using the above data from Table 1 are shown below
in Table 2.

Table 3 corrects the altitudes of the Sun given in Table 2 to 02 £ of a minute.
Table 4 shows the results from using the Forsythe polynomials on the data in Table 3.
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TABLE 2. TABLE I RESULTS MODIFIED FOR RATE OF CHANGE OF DECLINATION

Latitude
True

altitude
Computed

altitude
True
rate

Calculated
rate

Hour
angle Longitude

30°

35°
4°°
45°
50°

SS°

7J0167
723749
68-88^4
648996
606192
j6i{62

7£-oi8o
723724
68-88^8
648971
606192

56i577

11-8401

95632
75 '74
5'893°
4-6322

36416

118377

95662

75J94

58964
4-62^6

36575

H°
•4°
•4°
H°
H°
H°

498'
505'
503'
507'
48-7'

54'o'

o° 0-3'

o° 0-4'

o°o-2'

o° 06'

0° 14'

o° 3-9'

E
W
W
W
E
W

TABLE 3. CORRECTED SUN ALTITUDES

Latitude

Hour angle (A)

349" 347" 345° 343° 34>" 339°

30°

35°
4°°
45°
50°

SS°

77°
74°
70°

66°

6 i °

56°

56?

39{-'

38'
15'

40*'

58^'

76°

73°
69°

65°
6 i °

56°

26f
30^'

46'

3541'

094-'

34'

74°
72°
68°

64°
60°

56°

53i'
<
48J-'
50'

34'
07'

73°
70°

67°
64°
59°
SS°

17'

57'
45{-'
00I'

54!'
35|'

71°

69°
66°

63°

S9°

55°

39

34}
37|
0 6 '

" 4 -

69° 59r
68° 085-'

65° 26^'

62° 08'

58° 24?'

54° 24'

TABLE 4. RESULTS FROM FORSVTHE POLYNOMIALS

Latitude
True

altitude
Computed
altitude

True
rate

Computed
rate

Hour
angle Longitude

30°

35°
40°

45°
50°

SS°

7J0167

72-3749
68-8854

64-8996

606192

561 j62

75ol65
72375O
688869
648997
606188
56-1556

11-8401

95632

75174
58930
46322
3-6416

11-8280
9{6o£

75O42

59°«2
46147

3-637O

•4° 49-2'
14° 498'
14° 484'
14° 5i-4'
14° 46-6'
14° 49o'

0° 0 9 '
o° 0-3'
0° 17'
0= 13'

0° 3-5'
o° 11'

E
E
E
W

E
E

6. C O N C L U S I O N . In good observing conditions at sea, the kind of conditions which
would be necessary in any case for taking astronomical observations, the results above
should be achievable. Indeed, a good observer would expect altitudes to be of greater
accuracy than one minute of arc. Most micrometer sextants are read to o-i of a minute
of arc and all computations assume this accuracy. As they stand, most of the results for
the longitude found above would be very acceptable to an observer on an ocean passage.

We have not included an example in which allowance is made for the moving
observer. Sufficient to say that this should not significantly alter the method of
computation. The speed V in equation (1) is the speed of the observer in knots divided
by 60. The speed should be known to the nearest knot. If, after the computation is
complete, the speed made good from the last observed position differs from the
estimated speed by as much as a half a knot then a second approximation of the observed
position should be computed using this new estimate of the speed.

James N. Wilson4 also described a method of finding the position by observation of
a single body at the time of culmination. His method uses a graphical solution but this
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would be difficult to apply in the general case since the rate of change of altitude is
required to an accuracy of two decimal places and this would be difficult to attain
graphically.
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On the Two-Body Running Fix

Kenneth Gibson

If an observer can determine the altitudes of two bodies simultaneously, he can place
himself at one of two positions on the Earth's surface. This fact has been the basis for
several proposed methods for obtaining a fix without reference to a DR or assumed
position, the latest of which is due to Chiesa and Chiesa.1 Chiesa and Chiesa's procedure
is straightforward and elegant if the sights are simultaneous, or if the sights are not
simultaneous but the observer is stationary, but there seems to be a need for a simple
method of extending it to cover a running fix. Chiesa and Chiesa themselves proposed
transferring the geographical position of the first body before calculating the fix.
Williams2 questioned the accuracy of transferring the geographical position and, instead,
solved the problem by transferring the first position circle pointwise; his method is
sufficiently complex to require a computer, as he himself notes. Metcalf3 presented exact
equations for transferring the geographical position of a body and its associated circles
of altitude; however, application of Metcalf's equations assumes prior knowledge of the
observer's position. Brown's approach4 was to move the observer's DR on to the first
position circle before using it to advance the geographical position of the first body.
Based on his experience with Chiesa and Chiesa's method, Pepperday5 argued that
knowledge of a good DR position can be put to better use as part of a conventional
running fix using position lines deduced by the Marcq St Hilaire or the modified Sumner
method. Apparently, all users and advocates of Chiesa and Chiesa's method consider that
the calculations involved are complex enough to require a computer.1"6

Here, I present a simple solution for the two-body running fix without DR, which is
accurate whenever the usual simplifying assumptions of the Marcq St. Hilaire method
apply : namely, that the position lines are locally straight (equivalently, the azimuths are
effectively independent of position) and the surface of the Earth is locally flat. The
solution lends itself to an easy graphical construction, which will be described first.
Subsequently, I show how to obtain the same solution with a hand calculator, and
indicate how to find the position using Ageton's method of sight reduction and a time-
sight table or formula.
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