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Combining white box models, black box machines

and human interventions for interpretable decision

strategies

Gregory Gadzinski∗ Alessio Castello†

Abstract

Granting a short-term loan is a critical decision. A great deal of research has

concerned the prediction of credit default, notably through Machine Learning (ML)

algorithms. However, given that their black-box nature has sometimes led to unwanted

outcomes, comprehensibility in ML guided decision-making strategies has become

more important. In many domains, transparency and accountability are no longer

optional. In this article, instead of opposing white-box against black-box models, we

use a multi-step procedure that combines the Fast and Frugal Tree (FFT) methodology

of Martignon et al. (2005) and Phillips et al. (2017) with the extraction of post-hoc

explainable information from ensemble ML models. New interpretable models are then

built thanks to the inclusion of explainable ML outputs chosen by human intervention.

Our methodology improves significantly the accuracy of the FFT predictions while

preserving their explainable nature. We apply our approach to a dataset of short-term

loans granted to borrowers in the UK, and show how complex machine learning can

challenge simpler machines and help decision makers.

Keywords: fast and frugal trees, ensemble neural networks, Bayesian uncertainty,

partial dependence plots

“Machines can decide, but only humans can choose!”, Garry Kasparov.

1 Introduction

Short-term loans provide an important financial opportunity for consumers. In a recent

study, Deku et al. (2016), using information from almost 60.000 households in the UK,
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observed that barriers to essential financial services such as short-term loans can hinder both

economic and social development. The most common method used by lending institutions

and banks to decide whether to grant a loan uses credit scores: Credit Reference Agencies

collect historical financial data of consumers and sell them to lending institutions that apply

in-house developed algorithms to calculate an aggregate score. A cutoff model in then used

according to which all loan applicants with a score above a certain threshold are granted

the requested amount, while those with a score inferior to the threshold are denied the loan.

The accuracy of the estimation of clients’ probability of default is pivotal to the success of

lending institutions; indeed a minor change in the model can yield a marginal improvement

in the absolute performance, which eventually lead to a significant impact on the business

profits and savings (Crook, Edelman & Thomas, 2007; Derelioğlu & Gürgen, 2011). This

is the reason why a considerable number of techniques has been deployed to achieve higher

accuracy (Fu, Huang & Singh, 2021). Non parametric Machine Learning techniques

have been in use for decades (Harris, 2015; Lessmann, Baesens, Seow & Thomas, 2015)

and, more recently, ensemble strategies have been adopted by combining the decisions of

multiple classifiers to deliver a final aggregate output (Florez-Lopez & Ramon-Jeronimo,

2015). Ensemble methods trained from different initializations and/or different sets of the

training data have also been used for the computation of the variance of the predictions, and

then interpreted as its predictive uncertainty (Gadzinski & Castello, 2020).

Besides accuracy, the comprehensibility of the model is essential in loan applications:

increasingly lending institutions are required (by regulation) to justify their denial of a

credit (Hand, 2006; Tomczak & Zięba, 2015). Comprehensibility has different meanings,

ranging from explainability, i.e. the ability to explain a prediction in understandable terms;

to interpretability: the possibility to explain the whole model and the set of rules governing

it. The call for interpretability in decision strategies guided by Machine Learning (ML),

especially in contexts of high societal and human sensitivity, is getting more important

(Rudin, 2019): access to finance is, among others, an area in which the lack of interpretability

or, at least, explainability of predictive models can have severe consequences. If ML

based models have become more accurate, their non-interpretable nature (black-box) has

led to harm, or the suspicion of harm, resulting from unwanted outcomes (Varshney &

Alemzadeh, 2017) or biases (Fu et al., 2021). A gap has thus emerged between the research

in credit scoring that pushed accuracy to the limit, and practice-oriented needs that required

interpretable models (white-box) (Finlay, 2011).

However, accuracy and comprehensibility are two features that need to be balanced, i.e.,

an optimal equilibrium is required in the accuracy-interpretability trade-off (Chen & Cheng,

2013; Hayashi & Takano, 2020). Having said that, the number of ML models that are both

more accurate and interpretable has been rising recently, with a large strand of the literature

on artificial intelligence now focusing on explainability (Ribeiro, Singh & Guestrin, 2016).

Post-hoc information can be extracted from any ML models, using for example popular

approaches such as Partial Dependence Plots (PDP) and Accumulated Local Effects (ALE)
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(Apley & Zhu, 2020; Greenwell, 2017). Yet, since it can be challenging to understand the

complex relationships that a model has learned, the presentation of the results becomes

particularly important.

Our research aims at developing innovative combinations of existing tools with the

intention to help increase the accuracy of interpretable models. To achieve our goals, we

have developed a number of different visualization tools that assess both the main effects

of the individual predictor variables and their low-order interaction effects. Instead of

comparing white-box and black-box models (Olson, Delen & Meng, 2012), we combine

them; and therefore, by doing so, we address the issue of balancing interpretability and

accuracy. Moreover, our multi-step sequential methodology procedure is also an application

of human-machines interactions in the quest of better performance, following the work of

Licklider on “man-computer symbiosis” (Licklider, 1960). Thus, we propose a decision-

making framework for building augmented interpretable models, using human-computer

collaboration, in line with the concept of interpretable Decision Support System (iDSS)

introduced by Coussement et al. (2021). We apply our procedure to a dataset of short-term

loans granted to borrowers in the UK and test the performance of several competing models.

2 Literature review

Our research refers to several streams of academic investigation, we report in the following

the key findings in the various fields of relevance.

Scholars have identified a certain ambiguity between the terms explainability and in-

terpretability (Krishnan, 2020). In the remainder of this article, we adopt the following

definitions: Interpretability is the ability to demonstrate and understand the internal work-

ings of the model, i.e. how the model uses input features to make predictions (Barredo

Arrieta et al., 2020; Kraus & Feuerriegel, 2019; Lakshminarayanan, Pritzel & Blundell,

2017; Pintelas, Livieris & Pintelas, 2020). This may include understanding decision rules

and cutoffs, and the ability to manually derive the outputs of the model, e.g., if the loan

applicant has more than 10 years of experience within the same company, the loan is granted.

Explainability refers to a mechanism that provides to humans (partial) information about

the workings of the model, such as identifying influential features, highlighting potential

relationships — such as the existence of a negative relationship between years of experience

and probability of defaulting on a loan — but without any structural guarantee.

The spectrum of interpretability ranges from heuristics (educated guess, trial and error,

take the best,. . . ) and standard decision trees, considered as the most interpretable ones,

to neural networks as the least explainable. Heuristics of particular interest are Fast and

frugal trees (FFT) (Martignon et al., 2005), in which variables are clearly identified and

considered individually in a sequential way. FFT are especially suitable for binary types of

decisions, e.g. should a certain client be extended the requested loan.
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In terms of interpretability, linear regressions come next: clearly identified independent

variables are given a specific weight and contribute to predicting the outcome.

The least interpretable decision strategies include ML based predictive models that

are used in a growing set of applications including high stakes domains such as criminal

justice, public policies, healthcare, access to finance and education (Burrell, 2016; Cabitza,

Rasoini & Gensini, 2017; Luo et al., 2019; Rudin, 2019; Waa, Schoonderwoerd, Diggelen

& Neerincx, 2020). Many current ML methods, such as neural networks (NN) and random

forests are black boxes: their predictive behavior is highly accurate, but also too complex

to be understandable, including to domain experts (Jang, 2019; Pintelas et al., 2020;

Subramania & Khare, 2011). Being able to understand and explain decisions based on ML

systems is thus a priority for data scientists and practitioners.

Rudin (2019) highlights the problems associated with using explainable systems — “ex-

planations are often not reliable, and can be misleading” — and urges data scientists to use

interpretable models instead. Indeed, a different approach to post-hoc explanations of black-

box models consists in building interpretable models, which provide their own explanations,

and are faithful to what the model actually computes (Kraus & Feuerriegel, 2019; Rudin,

2019). Interpretable models can be explained in their entirety in understandable terms to

a human as opposed to reverse engineering single decision outcomes. Interpretability also

offers a number of side benefits since it can be used to confirm other important features such

as fairness, unbiasedness, non-discrimination, privacy, reliability and robustness, causality,

usability and trustworthiness (Dwork, Hardt, Pitassi, Reingold & Zemel, 2012; Gilpin et

al., 2018; Hardt & Talwar, 2010; Topuz & Delen, 2021). It also allows to overcome the

natural distrust of humans towards automated predictive models (Dietvorst, Simmons &

Massey, 2015; Shin, 2020, 2021d), and determines whether humans are able to reap the full

benefits of ML or not (Jussupow, Spohrer, Heinzl & Gawlitza, 2021). A quite interesting

illustration of human-machine trust building processes is provided by the work of Donghee

Shin who studied extensively the interaction between humans and chatboxes (Shin, 2021c,

2022); among the key findings, the author mentions that causability and explainability play

a dual role in affecting trustworthiness and user behaviors (Shin, 2021a, 2021b).

In order to achieve interpretability, scholars have underlined the importance of starting

from simple, interpretable decision strategies and enrich them with more accurate processes

only if needed (Kraus & Feuerriegel, 2019). Interpretable models require sparsity (Bertsi-

mas, King & Mazumder, 2016): since humans can apparently process simultaneously no

more than three to seven cognitive entities, sparsity becomes an essential feature of inter-

pretability (Cowan, 2010; Miller, 1956). The analogue of sparsity when using classification

trees is a small number of nodes (Bertsimas & Dunn, 2017), an example of which are

heuristics and more specifically Fast and Frugal Trees — FFT — (Martignon et al., 2005).

Recently, to cope with the growing demand for more accuracy, professionals have

developed tools to help data scientists and practitioners understand better how machine

learning works. In other words, tools exist to help users providing post-hoc explanations
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for the predictions made by complex models; examples are, among others, the Local In-

terpretable Model-agnostic Explanations – LIME – (Ribeiro et al., 2016), the Shapely

Additive expPlanations – SHAP – (Lundberg & Lee, 2017), and more recently the Local

Interpretation-Driven Abstract Bayesian Network-LINDA-BN (Moreira et al., 2021). The

flexibility embedded in those methods allows working with any ML model, such as random

forests or deep neural networks. Once the information has been extracted from the fitted

model, it can be analyzed using exploratory data analysis techniques. Other popular ap-

proaches are the Partial Dependence Plots (PDP) and Accumulated Local Effects (ALE).

They are prediction-level interpretation methods that focus on explaining the average in-

fluence that features and/or interactions have on the model’s prediction (Apley & Zhu,

2020; Greenwell, 2017). Thus, they may highlight more complexity between variables with

possibly non-monotonic or non-linear features undetected by simpler models.

Another prerequisite for trustworthy decisions is stability: when models attempt to

answer scientific questions, notably when there is a large downside to incorrect predictions,

they must be robust to reasonable perturbations (Murdoch, Singh, Kumbier, Abbasi-Asl &

Yu, 2019). Unfortunately, many models are generally not immune to instability with respect

to small perturbations of the training data. Consequently, an aspect often neglected in the

literature is the uncertainty surrounding the estimation of interpretable models. Ensemble

methods have long provided a simple way to estimate uncertainty: they aggregate the

estimates of multiple baseline models, trained from various initial parameters and/or noisy

versions of the training data (Lakshminarayanan et al., 2017). The ensemble’s predictions

is then used to gauge the uncertainty surrounding the model predictions. Pearce et al.

(2020) proposed a modification to the usual ensembling methodology by incorporating

Bayesian behaviors. Their randomized Maximum-A-Posteriori (MAP) sampling estimators,

combined with prior estimates, as commonly used in Bayesian methods, achieve a high

degree of uncertainty accuracy.

In this article, we suggest and test a new decision strategy that integrates the consider-

ations described above: starting from simple, interpretable models, we enrich them with

ML explainable outputs, and then quantify the uncertainty surrounding these predictions

using ensemble methods. To do so, we also make use of human-machines collaboration

(Licklider, 1960). A fundamental assumption behind human-computer symbiosis is that

computers and humans have different problem-solving capabilities, and their combination

yields better performance. We highlight our procedure in the process control framework

depicted in Figure 1.

3 Method

Here, instead of comparing white-box and black-box models (Olson et al., 2012), we

combine them; and therefore, by doing so, we address the issue of balancing interpretability

and accuracy. As shown in Figure 1, we start from Fast and Frugal Trees that ensure
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Main requirement: 

interpretability

Main aim: accuracy of the 

decision

Fast and Frugal Trees
• Best Fast and Frugal Tree (FFT)

• Interpretability, at poten!ally sub-op!mal accuracy

NEED TECHNIQUE ACHIEVEMENT

Es!ma!on of Machine 

Learning models with 

variables selected by FFT

Machine Learning ensemble 

models

• Es!ma!on of heterogeneous Bayesian Neural Network 

ensemble models

• Higher degree of uncertainty accuracy

Computa!on of the first and 

second order effects of 

variables

Par!al Dependence Plot

Accumulated Local Plots

• New measures of the impact of variables

• Visualiza!on of uncovered interac!ons of variables

• Selec!on of most discriminant interac!ons of dyads of 

variables

Op!miza!on of benefit-cost 

ra!o in search of be$er 

decision tree models

Human decision on relevance of 

ensemble PDP/ALP outputs 

• Reordering of variables in FFT

• Defini!on and crea!on of new branches and nodes to 

augment ini!al FFT

Increase accuracy of final 

interpretable models Augmented decision trees
• Augmented interpretable decision trees

• Evalua!on of accrued performance

Figure 1: Human-machines process control framework.

interpretability thanks to their sparsity and simplicity. Then, we deploy Machine Learning

ensemble models, limited to the variables selected by our FFT, to both reassess the dynamics

between dependent and independent variables, and estimate accurately the uncertainty of

the impact of each variable. In order to visualize the marginal effect that a feature has on

the predicted outcome of the ML models, we use Partial Dependent Plots and Accumulated

Local Effects. We then investigate the magnitude of the interaction of dyads of variables

and represent them using bi-dimensional Partial Dependence Plots: among the assumptions

behind the use of decision trees is the presumed independence between variables; yet, second

order effects may and often do exist. Our methodology allows the selection of the most

significant interactions between variables and their graphical representation. At this stage,

based on the interpretation of the plots obtained, we can first decide if a reshuffling of

the order in which the variables are analyzed in the FFT could yield better performance.

Moreover, we may choose which new branches should be added to the initial decision tree

in order to make it more accurate. To ensure interpretability and ease of execution, we allow

for a maximum of one additional branch per node.

3.1 Interpretable methods

The spectrum of interpretable methods ranges from simple heuristics and decision trees,

where information is deliberately truncated, to linear regressions where all the variables

as well as their relationships are clearly identified and given a specific weight. Parpart

et al. (2018) argue that heuristics are extreme variations of Bayesian learning models and
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outperform more complex models only when the heuristic specification is close enough to

the data generating process. Brighton et al. (2015) have stressed that under an environment

of high uncertainty (i.e. where little is known about causal processes and observations are

sparse), simpler methods are generally less prone to instability, thus turning the bias-variance

trade-off in their favor.

3.2 Fast and frugal trees

One of the most succinct forms of decision trees is the Fast-and-Frugal Tree (FFT) (Mar-

tignon, Katsikopoulos & Woike, 2008; Martignon et al., 2005). FFTs impose restrictions on

the size and shape of the selected trees by having an exit branch at every node; consequently,

they make decisions faster on average than standard trees.

Figure 2 shows a FFT restricted to have only 2 nodes and illustrates how it classifies

individuals as being solvent or not. The first node selected by the FFT corresponds to the

seniority of the loan applicant in her current job. The FFT implies that if the applicant

has occupied the current position for 5 years or less, the loan should not be granted; if it

is higher than 5 years, a decision cannot be reached and we move on to assess the next

node. The second cue refers to the historical record of default: if the loan applicant has

ever defaulted, the loan is not granted, otherwise the FFT classifies it as good borrower.

When the algorithm chooses the most significant variables, i.e., ranks the cues and

optimize their thresholds, it does so by maximizing a statistic that is related to accuracy.

For instance, one can balance sensitivity (percentage of cases with correct hit rates) and

specificity (percentage of cases rejecting false alarms), the so-called weighted accuracy,

which in turn influences the well-known confusion matrix (Figure 3).

Formally,

sensitivity =
ℎ8

ℎ8 + <8
(1)

specificity =
2A

2A + 5 0
(2)

Accuracy =
ℎ8 + 2A

ℎ8 + 5 0 + <8 + 2A
(3)

weighted accuracy (wacc) = F · sensitivity + (1 − F) · specificity (4)

Where F is a parameter between 0 and 1 that specifies how sensitivity is weighed relative

to specificity.

Although overall accuracy is an important measure, it can be misleading; in the case of

imbalanced datasets, algorithms can have a high overall accuracy without being very useful

when they do not distinguish between positive and negative cases. In decision tasks where

sensitivity is more important than specificity (like granting a loan to an insolvent borrower),

wacc could be calculated with a value of w larger than 0.5. In cases where both measures

are deemed equally important, the sensitivity weight is simply set to 0.5; the so-called bacc.
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Figure 2: Visualization of a restricted FFT object with two variables (Phillips et al., 2017).

The top panel shows the frequencies of negative and positive criterion classes. The middle

panel contains the FFT with icon arrays displaying the accuracy of cases classified at each

node.

hi 
Hits

1 
Positive

0 
Negative

1 
Positive

fa 
False Alarms

0 
Negative

mi 
Misses

cr 
Correct 

Rejections

Decision 
Prediction

Criterion 
Truth

Figure 3: A 2x2 confusion matrix used to evaluate a decision algorithm from Phillips et al.

(2017).

In this article, we use the FFTrees toolbox written in the R Language by Phillips et

al. (2017) and choose their ifan optimization algorithm as our benchmark. As explained
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by the authors, the ifan optimization algorithm assumes independence between cues and

uses a brute-force method to optimize the decision thresholds and directions for each cue,

ranking them from the most significant to the least significant (Phillips et al., 2017). After

creating a set of several trees with different exit structures, these trees are then pruned

to remove non-discriminant nodes; the tree with the highest accuracy measure is finally

selected. Figure 4 describes the different steps of the algorithm with the use of the bacc

measure (for more details, the reader should refer to the original article).

Classifica�on threshold and direc�on for each cue; individually and

independently

Cue ranking in terms of highest accuracy (bacc). If the cue is a factor, the

threshold is one or more factor levels

Brute-force: genera�on of all possible trees using all permuta�ons of exit

structures to a maximum of predefined number of levels (default 4)

Tree size reduc�on through removal of nodes containing less than a

certain threshold of the cases in the training data (default 10 %)

Selec�on of the tree with the highest balanced accuracy

Figure 4: ifan algorithm, adapted from Phillips et al. (2017).

3.3 Ensemble randomized maximum-a-posteriori estimators

The purpose of this section is to explain how we use machine learning and notably neural

networks to reassess the links between the explanatory variables and the dependent variable:

the loan default. In the realm of classification predictions, recent studies have shown that

ensemble learning methods generally outperform individual classifiers in modelling credit

risk (Lessmann et al., 2015; Papouskova & Hajek, 2019). While there is nowadays a wide

range of schemes available to researchers, ensembles of classifiers follow the same general

principle: they imply training a set of individual (base) models for the same task, and then

combine their decisions following pre-defined criteria. The ensemble superior performance

is a direct consequence of the bias-variance trade-off: a combination of forecasts, i.e.
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adding complexity, implies a smaller error variance than any of the individual methods if

base classifiers are both accurate enough and diverse. Incidentally, one can use the error

variance of the ensemble to estimate uncertainty. Diversity in ensembles can be achieved

in different ways, by averaging over bagged (Random Forest), boosted (Extreme Gradient

Boosting or XGBoost) or randomized multiple models (Lakshminarayanan et al., 2017).

Recently, Bayesian inference has attracted much attention despite earlier evidence that

it did not produce enough diversity (Sun, Li, Huang & He, 2014). The estimation of

the distribution as opposed to a point estimate became state-of-the-art for estimating the

so-called predictive uncertainty (Gal & Ghahramani, 2016). More recently, Pearce et al.

(2020) uses a Maximum-A-Posteriori (MAP) estimator combined with appropriate priors,

as commonly used in Bayesian methods, and argue that they achieve a high degree of

uncertainty accuracy. The authors refer to this family of procedures as randomized MAP

sampling. We now give some details on this methodology.

Starting from the maximization of the posterior density:

\̂"�% (G) = 0A6<0G\ 5 (\, G) (5)

where \ is a vector of NN parameters

The loss function defined by Pearce et al. (2020) during the NN training is proportional

to the negative log likelihood with a L2 regularization penalty added to prevent overfitting.

Thus, for classification, cross-entropy is minimized using the following loss function:

!>BB2;0BB, 9 =
1

#

#∑

==1

2∑

2=1

H=,2 log Ĥ=,2 +
1

#
‖Γ

1

2 ∗ (\ 9 − \0, 9 )‖
2

2
(6)

where H2 is the class label for our two classes (default, non-default), and Γ is a diagonal

square matrix. The subscript j represents one instance of the ensemble of M neural networks,

with 1 ≤ j ≤ M.

However, customized losses can be also implemented, notably to mirror the FFT analysis,

so that one can use a loss function that combines specificity and sensitivity.

!>BB2;0BB, 9 = 1 − (F ∗ sensitivity + (1 − F) ∗ specificity) +
1

#
‖Γ

1

2 ∗ (\ 9 − \0, 9 )‖
2

2
(7)

The parameters minimizing the loss function can be interpreted from a Bayesian per-

spective as randomized maximum-a-posteriori (MAP) estimates with a normal prior. The

challenge comes in setting the anchor noise distribution, \0, 9 ∼ # (0, Σ0). It is interesting

to note that the first term in equations (6) and (7) pulls solutions toward the likelihood

distribution, whilst the second term anchors them to their prior draw. Hence, the relative

strength of each is managed by the regularization matrix, which must be then fine-tuned

in order to provide enough diversity while preserving some notion of prior. Notably, the

prior variance-covariance matrix Σ0 is key in defining the amount of certainty present in the

NNs. The higher the predictive variances, the higher the diversity. No studies have been
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conducted on the optimization of those parameters. Thus, for consistency, the variances of

the neural network parameters are set equal to the variance of the dependent variable. We

use the following network architecture: 2-hidden layers NN containing 64 hidden units with

ReLU and sigmoid nonlinearities, estimated 10 times with randomly distributed anchored

parameters1.

4 Explainable machine learning

As stated above, explainable machine learning refers to a post-hoc explanation of a predicted

output whereby the predictions are made without implicitly knowing the mechanisms behind

which the models work. Nonetheless, these approximations remain useful in assessing if

one should trust a prediction and/or identify why a feature should not be used.

Examples of such post-hoc interpretations are Partial Dependence Plots (PDP) and

Accumulated Local Effects (ALE). A PDP plot shows the marginal effect that one feature

has on the predicted outcome of a ML model (Greenwell, 2017). Like simple regression

models, which average over the excluded explanatory variables, partial dependence works

by averaging the ML output over the marginal distribution of all the features in a given set

L. By using the marginal probability density, the partial dependence function provides a

description of the nature of the variation of the predicted output for a chosen value(s) of a

feature. As defined by Friedman (2001):

5̂;,%�% (G;) = �G\; [ 5̂ (G)] =

∫
5̂ (G; , G\;)?\; (G\;)3G\; (8)

Where G; denote the subset of predictors excluding G; , and where ?; (G;) denotes the marginal

distribution of G; .

Thus, a PD plot is the plot of the ‘main effects’ dependence 5̂;,PDP (G;) on the fitted

model 5̂ (G; , G\;)

The crucial point in a Partial Dependence model is that its computation requires extrap-

olation beyond the envelope of the training data. This is both time consuming and may be

highly inaccurate when there are none or few data points or/and when the variables are highly

correlated. To cope with the lack of precision resulting from the extrapolation, one may

use conditional density instead of the marginal density. However, the so-called Marginal

Plots still suffer from the omitted variable bias problem because they ignore (marginalize)

the other features, leading to the inclusion of both direct and indirect effects.

In a nutshell, as long as the assumption of independence between the features is valid,

PDP and Marginal Plots are reliable indicators of the effect of X’s on Y. However, if the

independent variables are correlated, both methods suffer from their own biases and then

become unreliable indicators. To alleviate this shortcoming, Apley et al. (2019) proposed

1In the context of our study, we have tried different configurations of parameters that did not change the

results significantly.

608

https://doi.org/10.1017/S1930297500003594 Published online by Cambridge University Press

http://journal.sjdm.org/vol17.3.html
https://doi.org/10.1017/S1930297500003594


Judgment and Decision Making, Vol. 17, No. 3, May 2022 White box, black box

the so-called Accumulated Local Effects (ALE). The authors use the following function:

6̂ 9 ,�!� (G 9 ) =

∫ G 9

G<8=, 9

E[ 5̂ 9 (G 9 , G\ 9 ) |G 9 = I 9 ]3I 9 (9)

Where

5̂ 9 (G 9 , G\ 9 ) =
m 5̂ 9 ((G 9 , G\ 9 ))

mG 9
(10)

represents the local effect of G 9 on f (.) at
(
I 9 , G 9

)
, calculated as the weighted average

across all values in G 9 with weights given by the conditional density instead of the marginal

density, in order to avoid the extrapolation that is required in PD plots. In equation (9),

the accumulation of the partial derivative over the local range of features (from xmin,j to xj)

gives the underlying global effect of the feature on the prediction. The use of the derivative

isolates the effect of the feature of interest and thus removes the effect of correlated features.

For the actual computation, a grid of local intervals over which one computes the paired

differences in the prediction is used. Hence, equation (9) represents the changes in the

function f (.) as the variable x changes from the lower bound of the local interval to its

upper bound.

Finally, the centered ALE main effect is then defined as:

5̂ 9 ,�!� (G 9 ) = 6̂ 9 ,�!� (G 9 ) −

∫
6̂ 9 ,�!� (I 9 )? 9 (I 9 )3I 9 (11)

Equation (11) centered the ALE on zero, hence the function can be interpreted as the global

partial effect of the feature (at a certain value) compared to the average prediction.

5 Data and results

In order to assess the validity of our approach, we apply it to a dataset of short-term loans

granted to borrowers in the UK over several years until 2020. The processes of estimation

and visualization can be generalized to any datasets. The information we have concerns

4445 loans granted to individual customers who had no previous records with the lending

organization. Access to these data was granted by a senior executive in the industry; our

collaboration is governed by a Non Disclosure Agreement, under which we can only share

the results of the various statistical analyses performed.

To describe each loan, we have a set of 13 independent variables (see Table A1 in

the Appendix), which include both demographic descriptors (employment, age, etc.) and

economic information (income, assets, debts, etc.). The dataset also includes one dependent

binary variable recording the default on the loan.

In the remaining of this section, we apply the methodology described in the Methodology

section to the dataset of short-term loans.
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5.1 Fast and frugal tree with ensemble PDP

The dataset was divided into two subsets: a training set (80% of observations) for finding

the optimal parameters, and an independent test set (20% of observations), displayed in

the following figures. We apply the ifan algorithm of the standard Fast and Frugal Tree

developed by Phillips et al. (2017). Figure 5 displays the tree with the best “balanced

accuracy” (bacc), i.e. the trade-off between sensitivity (percentage of cases with correct hit

rates) and specificity (percentage of cases rejecting false alarms).

The overall accuracy statistics in the testing data are visible in the bottom panel from

both the confusion matrix and the Receiver Operating Characteristic (ROC) curve. The

ROC curve illustrates the trade-off between sensitivity (sens) and specificity (spec) of

different algorithms, namely, 10 models coming from the FFT as well as 5 other competing

models: the standard decision tree (CART), using the rpart package (Breiman, Friedman,

Olshen & Stone, 2017); the logistic regression (LR), using the stats package (Phillips et

al., 2017); the L2 regularized regression (RLR), using the glmnet package (J. Friedman,

Hastie & Tibshirani, 2010); the random forest algorithm (RF), using the random Forest

package (Breiman, 2001); and the Support Vector Machine (SVM) algorithm, using the

default methodology in Karatzoglou et al. (2006). The numbers represent the rank order of

the FFT algorithms performance in terms of their wacc values.

The best tree (the one maximizing the bacc) selects only five cues (out of a maximum

of six allowed by the algorithm) defining for each leaf, a threshold and a decision, finally

divided between good hits and false alarms. For instance, the first cue refers to the seniority

of the loan applicant in her current job. The FFT implies that if the applicant has occupied

the current position for five years or more, the loan should be granted. The testing data

show that out of the 404 applicants with more than 5-year seniority, 354 paid back the loan

and 50 defaulted. However, some nodes and decisions are more inconclusive. For instance,

the third node that classifies a remaining application with no fixed job as “Bad”, gives rather

weak results as it manages to capture barely more than 50% of defaulted loans. Having said

that, if the FFT is aimed at maximizing the bacc measure (73%), we must note that it also

performs relatively well in terms of overall accuracy (see Equation (3)), achieving similar

testing results (acc: 74%) compared to the competing FFT model which maximizes overall

accuracy (testing results acc: 74%)2.

In order to assess the selection of features and the corresponding thresholds found

by the best performing tree, we now move to visualizing the main effect of the individual

predictor variables and their low-order interaction effects thanks to the ensemble of NNs and

the Partial Dependence Plots as described previously. As stated above, for classification,

whereas the ML model outputs probabilities, the Partial Dependence Plot displays the

average prediction for the probability of default given the different values of each feature.

We run the ensemble of 10 independent NNs with different initialization parameters, and

2Results are not shown but available upon request.
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Figure 5: Visualization of an FFT with five variables (Phillips et al., 2017). The top panel

shows the frequencies of negative and positive criterion classes. The middle panel contains

the FFT with icon arrays displaying the accuracy of cases classified at each node. The

bottom panel shows the confusion matrix, and the FFT’s ROC classification performance.
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compute the PDP for each trained model. The influences of the five features selected by the

FFT on the probability of default is visualized in Figure 6.

Overall, the results are in line with those of the FFT, with the predicted probability of

default decreasing with variables turning more positive. The variable “Seniority” shows

the highest impact with the probability of default becoming as low as 10% for value of

“Seniority” beyond 30 years. The predicted probability decreases (only) by 1/3 when one

goes from zero to five years of experience, which makes the threshold given by the tree

a “bold” choice. Indeed, one will need to have 10 years of experience to decrease the

same probability by half compared to “no experience”. One must notice that there is little

uncertainty surrounding the estimates of the impact though. More uncertainty revolves

around the other variables, notably for the variables “Home” and “Job”. For instance, the

probability of defaulting does not go down significantly with the presence of a “fixed” job,

which is in line with the inconclusive results of the FFT testing sample in Figure 5. For

the variable “Savings”, the probability of default, starting from a high level for low rates

(as high as 85%), decreases sharply and takes acceptable levels (below 37.5% for positive

savings), before the threshold given by the tree is reached. This last result can explain

why the tree, which classifies consumers below this threshold as “Bad”, misses on many

non-defaulters.

5.2 Fast and frugal tree with ensemble ALE plots

As we have seen, the Partial Dependence Plots help us to achieve a finer analysis by showing

how the average prediction of the probability of default changes when a feature is changed.

If the feature for which we computed the PDP is not correlated with other features, assuming

sufficient data, then the PDP represents its influence. However, if the assumption of no

correlation is violated, the averages calculated by the PDP will most likely include data

points that are very unlikely to happen in reality. One can imagine that some features in

our dataset are correlated, and that therefore, the Accumulated Local Effects (ALE) may be

better at capturing whether W, X or Z is significantly relevant.

Figure 7 plots the ALE first-order effect of the selected five exogenous variables. It is

worth reminding that the ALE focuses on small "windows” around the feature, and shows

the centered average changes of predictions (not the predictions itself). For example in the

upper panel, the Seniority ALE estimate of 0.1, when the individual has no experience (or

almost none) in the company, means that the prediction of the probability is higher by 10%

compared to the average prediction. Overall, the signs of the coefficients are in line with

the PDP. “Seniority” and “Records” are the most impactful variables with the magnitude

of its influence growing steadily, even though the predictive uncertainty grows bigger for

extreme values. The contribution of categorical variables are more subdued, as reported by

the PDP (with lower uncertainty though), meaning that individual neural networks all agree

on the marginal added benefit of these variables.
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Figure 6: Visualization of the ensemble first-order Partial Dependence Plots. Each line

represents the partial dependence function of one trained neural network model. The y-axis

represents the average prediction of the probability of default (1 = default) and the x-axis

represents the values of the original independent variables. For the continuous variables,

the vertical line in red represents the threshold computed by the FFT in Figure 5.
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Overall, the ALE plots and the hierarchy that come with them is therefore a step towards

the creation of different interpretable models than the original FFT.

5.3 Fast and frugal tree with ensemble two variable PDP

In order to account for more complex dynamics across features, Figure 8 shows the Partial

Dependence of two variables at once for selected pairs. All possible pairs of exogenous

variables have been tested. For the sake of parsimony, we show only the ones that are most

relevant. As a general rule, one could implement a simple algorithm that would select only

the pairs such that the difference between the maximum and the minimum probabilities over

the parameters space is greater than a specified threshold. In our case, we selected the pairs

with a gap of at least 20%. Each graph below has been computed by averaging the results

of the 10 independent neural networks, showing the ensemble average impact.

These interactions show what the FFT has potentially neglected by taking into account

only one variable at a time, and making a decision at every node. For example, the first plot

shows that an applicant with 5 years of experience (threshold given by the tree) coupled

with no previous records of bad loans has twice as less chances of defaulting compared with

someone with the same experience but with a previous record of default. The remaining

plots also lead to similar conclusions for the other nodes of the tree. “Savings” seems to

interact well with “No Records”; a minimum amount of savings is needed for the absence of

previous default to have a significant decrease in the probability of a new default. Likewise,

as stated before, relying solely on the presence of a fixed job is misleading, its interaction

with “Savings” shows that having a fixed job has no positive effect unless savings levels

are positive. On the opposite, being the owner of a house does not provide a significant

additional boost to individuals with a fixed job.

These results are warning signals against making a decision too hastily with only one

variable in sight. Therefore, these interaction plots demonstrate which variables inside the

tree could be used in conjunction in order to discriminate further between the applicants

and improve the accuracy of the predictions. This is the object of the next section.

5.4 Augmented trees

The aim of this section is to build new interpretable models in order to optimize the tradeoff

between interpretability and performance. Now, we want to keep the comprehensibility of

our initial FFT model by minimizing the number of changes made, while increasing the

performance of the initial tree.

From the analyses above, we can draw two lessons. Firstly, the sequence of variables

found by the FFT may not be optimal. Both the first order PDP and the ALE plots (and

in line with FFT results on the testing sample) point to the direction of a higher feature

importance of “Savings” compared to “Home” and “Job”, the latter becoming then the least

significant variable. A simple algorithm that ranks the variables given by the ALE plots and
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Figure 7: Visualization of the ensemble first-order Accumulated Local Plots. Each line

represents the Accumulated Local Effects (ALE) of one trained neural network model. The y-

axis represents the average prediction of the probability of default (1 = default) and the x-axis

represents the values of the original independent variables. For the continuous variables,

the vertical line in red represents the threshold computed by the FFT in Figure 5.
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Figure 8: Visualization of the ensemble Partial Dependence Plots for selected pairs of

variables. The axes represent the values of the original independent variables. The outputs

of the partial dependence function, i.e. the prediction of the probability of default, from the

10 neural network models have been averaged for each grid value.

reorders the tree according to that ranking is then implemented. Thus, we reconstruct the

initial FFT by simply shifting the order of our variables according to the hierarchy found by

the ALE plots, while keeping the initial thresholds. Thus, our first augmented tree simply

implies inverting the position of the variables “Home” and “Job”. Figure 9 shows the new

augmented tree following this change.

In a second step, we augment our model using the insights provided by the PDP second

order effects (Figure 8). In search of a parsimonious augmented model, we decided to keep

only the two most influential dyads of variables, namely the significant interactions between

“Seniority” and “Records”, as well as the relation between “Job” and “Savings”.3 The first

one concerns individuals with lower experience, i.e., applicants between 5 and 10 years;

3Other interactions studied in Figure 8 are already taken into account by the reordering of the variables.
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Figure 9: Visualization of the augmented FFT-1.

thus, we condition the approval of a loan to the absence of previous default. Moreover, we

also add a final node at the bottom of the tree by requiring a positive level of savings before

granting a loan to a fixed job applicant. Figure 10 shows the new augmented tree following

those changes.

5.5 Performance of competing models

We are now in a position to compare the accuracy of our two augmented trees with several

competing models. The original FFT and the standard decision tree (CART) will be our

benchmarks for individual classifiers. Moreover, to assess the gap between the individual

models and ensemble classifiers, we added traditional machine learning models like Logis-

tic Regression, Random Forest, Support Vector Machine, and XGBoosting. We also predict

default rates with the ensemble neural network (NN) models described in the Methodology.

The ensemble output is the equally weighted average of the predictions of the 10 hetero-

geneous models. All the methodologies presented below have been tested 100 times with

different training and testing samples. The outcome of all these classification models is then

summarized in a confusion matrix. From the latter, we compare the accuracy of the predic-

tions by computing several metrics on the testing samples. First, as a measure of absolute

performance, we use the percentage of correct predictions. Moreover, we complement this
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Figure 10: Visualization of the augmented FFT-2.

measure with the sensitivity (percentage of cases with correct default rates) and specificity

(percentage of cases with correct non-default rates) measures, having in mind that Type-1

error (granting a loan to an insolvent borrower), which is directly related to specificity, may

be have a different impact than Type-2 error (refusing a loan to a solvent borrower), which

is linked to sensitivity. The performances of the competing models are displayed in Table

1.

The best performing model, albeit by a small margin, is the logistic regression model

followed closely with the Ensemble NN, all with the full set of variables. This result echoes

previous findings on the outperformance of heterogeneous ensemble learning in Probability

of Default (PD) modelling (Papouskova & Hajek, 2019). In absolute terms, the logistic

regression model outperforms the simplest FFT by more than 6%, the CART models by 4%,

and outperform the two augmented trees by only 2.5%. One could argue that the marginal

gain is rather low though. This echoes the results in du Jardin (2018) who measured the

average gain calculated over 31 studies to be 2.4% with only 10 being statistically significant.

Table 2 shows the p-values following a test on the equality of proportions for each pair of

competing models. The best models (logistic and ensemble NN), are significantly better

than the FFT trees, the CART and SVM models; however, it is not significantly better

than the other methodologies, the augmented trees included. Our augmented trees are

significantly better than the FFT tree but do not significantly outperform the most complex

CART models.

Having said that, a closer look at the results indicates that the benchmark FFT does a
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Table 1: Model accuracy (%) by type of model, sorted from the lowest to the highest absolute

prediction. Bold highlights maximum of each column.

Model Absolute correct predictions % Sensitivity % Specificity %

FFT 72.6 76.1 63.5

SVM All 73.4 98.9 7.5

SVM 5 73.5 90.5 30.1

CART All 75.1 91.9 28.9

CART (5) 75.4 88.5 45.4

Augmented FFT-1 76.6 92.4 36.4

Augmented FFT-2 76.6 90.2 41.9

XGBoost All 76.7 87.6 49.2

XGBoost 5 76.8 87.7 48.7

Ensemble ML (5) 77.1 89.6 45.7

RF (5) 77.3 94.4 33.0

Logistic Regression (5) 77.7 91.2 43.0

RF All 78.1 89.6 48.5

Ensemble ML (All) 78.8 89.4 52.5

Logistic Regression All 79.1 91.5 47.0

Table 2: P-values of a test for the difference in two proportions (absolute correct predictions

in Table 1) Values are expressed in percentages.

Model

SVM

(All)

CART

(All)

CART

(5)

Augm.

FFT-1

Augm.

FFT-2

XG.

(All)

En. ML

(5)

RF

(All)

En. ML

(All)

Log.

(All)

FFT 70.4 23.0 17.8 5.3 5.3 4.7 2.9 0.7 0.2 0.1

SVM (All) . 41.2 33.4 11.9 11.9 10.8 7.1 2.1 0.8 0.5

CART (All) . . 88.3 46.0 46.0 43.0 32.3 13.5 6.4 4.5

CART (5) . . . 55.4 55.4 52.1 40.0 17.8 8.8 6.3

Augmented FFT-1 . . . . 100.0 96.0 80.3 45.0 26.5 20.4

Augmented FFT-2 . . . . . 96.0 80.3 45.0 26.5 20.4

XGBoost (All) . . . . . . 84.1 48.0 28.7 22.3

Ensemble ML (5) . . . . . . . 61.3 38.7 30.8

RF (All) . . . . . . . . 72.0 60.7

Ensemble ML (All) . . . . . . . . . 87.7

Logistic (All) . . . . . . . . . .
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much better job at balancing sensitivity and specificity, which is not so surprising since

the FFT has been designed to weigh the two components equally. Some models perform

badly in terms of specificity, notably the two CART and SVM methodologies, as well as

the smaller version of the Random Forest model, which may be problematic in practice. In

that regard, the augmented trees also outperform the CART models by a significant margin,

while being below the FFT level. The ensemble NN fares a bit better than the augmented

trees, while being still significantly lower than the FFT tree.

6 Discussion

Given that our dataset is unbalanced, i.e., with more non-defaulters than defaulters (71%

vs. 29%), the outperformance of the different trees is then dependent upon the number of

negative or positive exits until the last node, or the so-called “rake”.4 From our benchmark

FFT, (3 positive exits vs. 3 negative exits), we showed that decreasing adequately the number

of negative exits, as Augmented FFT-1 does (4 positive exits vs. 2 negative exits), has an

immediate significant positive effect on the overall accuracy. However, as mentioned in

Phillips et al. (2017), positive (negative) rake trees exhibit high sensitivity (specificity) at the

expense of low specificity (sensitivity). Specificity is related to the Type-1 error (granting

a loan to an insolvent borrower) that may be more important than Type-2 error (refusing a

loan to a solvent borrower), which is in turn related to sensitivity. This pattern is visible

in Augmented FFT-1, which with a positive rake suffers from low specificity. By adding

another node in the latter and therefore partially rebalancing the relative number of exits,

Augmented FFT-2 is less biased and shows higher specificity (5 positive exits vs. 3 negative

exits) while maintaining a similar overall accuracy.

As explained in the Method section, one could modify the loss function in the NN

ensemble (as well as other ML methods) to accommodate higher specificity, and then

extract the new marginal contributions from the new ensemble models in search for new

augmented trees. Interestingly, implementing the loss function as in Equation (4), i.e.,

changing the loss function to combine specificity and sensitivity in the ensemble ML model

confirms the order of the variables given by our FFT benchmark model.5

Overall, the choice between the augmented trees and the competing models will be

eventually dictated by the criterion that is the most relevant for the user. Nevertheless, we

showed that, with much more simplicity than complex decision trees, a Fast and Frugal

Tree augmented by explainable ML outputs is a step closer towards breaking the tradeoff

between interpretability and performance.

4Having only positive exits would result in an overall accuracy of 71%.

5Results are not shown but available upon request.
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7 Conclusion

The ability to understand how credit score models work emerges as a critical issue: individu-

als claim their right to explanation for significant decisions, and legislators around the world

are granting this right as witnessed, for instance, by the Equal Credit Opportunity Act in the

US and the General Data Protection Regulation in the EU. Based on the premise that the

relationship between inputs and outputs of a machine-learning model, albeit accurate, can

never be perfectly specified, interpretable machine learning ought to close the gap between

misspecification and transparency. We have shown that if interpretable models are often

good at measuring feature importance, post hoc explainability methods of opaque models,

like PDP and ALE, are tools that equip decisions makers with a better understanding of

the dynamics between variables. Moreover, combining these tools with an ensembling

methodology provides an efficient and human friendly way to obtain Bayesian uncertainty

estimations of the interpretable model’s thresholds and coefficients.

Our work contributes to the development of decision strategies in complex, ill-structured

and dynamic conditions where the data characteristics involve complex interrelationships

among variables, with first and second order interaction effects. Our findings reveal the

complex influence of some variables on the probability of default of borrowers and the diffi-

culty sometimes to assess their discriminant nature solely using interpretable classification

tasks. In this article, we argue that highlighting first white-box models and then shedding

light on black-box models, in a sequential approach that holds the characteristics of sparsity

and explainability, is the future of machine learning interpretability.

Moreover, in the lending industry, decision makers have multiple, competing goals

since they need to maximize the return on their capital while avoiding defaults, where many

externalities can influence the probability of defaulting on the loan. Our methodology

echoes the work of Zhao et al. (2021) on the causal interpretation of black box models, and

thus opens the doors to the discovery of more structural models. However, considerable

domain knowledge and deliberation may be needed to achieve causality in the sense of

Pearl et al. (2018). Thus, we want to stress the importance of human intervention in

augmenting machine-based intelligence. Having said that, for scalability reasons, human

intervention should be called upon only when it is the most relevant; in our case, to interpret

the new insights provided by Machine Learning explainable outputs. We believe that the

ultimate objective of the interactions between humans and machines is to produce better

comprehensible and justifiable models, which could be eventually used in an automated and

actionable way by other human beings.

Indeed, in order to continuously improve the applicability and performance of our

methodology, our business counterpart committed to apply the model develop in this project

to a selection of real-life cases and share with us the results obtained.
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Appendix: List of Independent Variables

Default Default dummy variable

Seniority Job seniority (years)

Home Type of home ownership (3 dummies)

Time Time of requested loan

Age Client’s age

Marital Marital status (3 dummies)

Records Existence of negative records

Job Type of job (3 dummies)

Expenses Amount of expenses

Income Amount of income

Assets Amount of assets

Debt Amount of debt

Amount Amount requested of loan

Finrat Financial rating
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