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Abstract

Recently we have developed a completely symmetric duality theory for
mathematical programming problems involving convex functionals. Here
we set our theory within the framework of a Lagrangian formalism which is
significantly different to the conventional Lagrangian. This allows various
new characterizations of optimality.

1. Introduction

A completely symmetric duality theory for mathematical programs involving
functionals has recently been given by Scott and Jefferson [4, 5]. This theory is
essentially an extension of generalized geometric programming to function spaces
and, as such, relies heavily on modern ideas of convexity. An alternative approach
to continuous programs, based on conjugate function theory, has been given by
Rockafellar [3] who embeds mathematical programs in a certain parameterized
family of closely related programs. In this paper we embed our theory in a
Lagrangian formalism taking the Lagrangian for the dual program as opposed to
that for the primal program as is conventional. It is shown that a saddle point
condition holds for this Lagrangian and this paves the way to determine five
equivalent characterizations of optimality for continuous convex mathematical
programs. An example involving a quadratic functional is given to illustrate the
theory.

Specifically we concentrate on linearly constrained functional programs. A
sequel to this paper will consider the case of non-linear convex constraints [6].
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38 C. H. Scott and T. R. Jefferson [2]

As a preliminary, we give the necessary ideas of convex analysis needed in this
paper.

2. Convexity

Let X and Y be real vector spaces in duality with respect to a certain real bilinear
function <•>')• We assume that X and Y have been assigned locally convex
Hausdorff topologies compatible with this duality, so that elements of each space
can be identified as continuous linear functional on the other. Then X and Y are
topologically paired spaces.

DEFINITION. The function g: X-*- [—oo, +co] is convex if its epigraph

epi(g) = {(x,p)\xeX, fieR, ^g{x)}

is a convex set in XxR.

DEFINITION. The set,

dom (g) = {x G X\ g(x) < + co}

is the effective domain of g.

DEFINITION. A convex function g on X is said to be proper if g(x)> — oo for all
xeX and g(x) < + oo for at least one xeX.

If g is a proper convex function, then dom (g) is a non-empty convex set and g
is finite there.

DEFINITION. A convex function g on X is lower semi-continuous (l.s.c.) if, for each
fieR, the convex level set

{xeXlgMZfi}

is a closed set in X.

DEFINITION. Let g be a proper convex function on X. Its conjugate function h on
Y is defined by

h(y) = sup «x , v> -g(x)) for all y e Y.
xeX

The function h is a l.s.c. convex function but not necessarily proper. However
if g is a l.s.c. proper convex function, then h is also l.s.c. proper convex and

g{x) = sup «x , y> - My)) for all xeX.

The conjugate functions by definition satisfy for xeA'and ye Y the conjugate
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inequality:

DEFINITION. An element ye Y is said to be a subgradient of the convex function g
at the point x if

g(x0) > g(x) + <*0 - x, y} for all x0 e X.

The set of all subgradients at x, denoted by dg(x) is a weak star-closed convex
set in X which may be empty. If dg(x) is non-empty, the convex function g(x) is
said to be subdifferentiable at x. If g is differentiable in the sense of Frechet, dg(x)
consists of a single point, namely, the gradient Vg(x) of g at x.

If g is a l.s.c. proper convex function on X, then

yedg(x)og(x)-h(y) = (x,y>.

In this paper we consider integrals of convex functions of the form

G(x)= f g(t,x(t))v(dt), xeJ?
JT

where g(t, x) is a l.s.c. proper convex function of x for each /. Here T is a measure
space with complete a-finite measure v and ££ is a real vector space of measurable
functions x from Tto a separable Hilbert space 2F and g: Tx J0"->-[—oo, +00].
g is termed a normal convex integrand if it satisfies the conditions:

(i) g(t, x) is a l.s.c. proper convex function on 3SP for each fixed t.
(ii) There is a countable collection £f of measurable functions x from T to MC

such that
(a) for each xe£f, g(t,x(t)) is measurable in t,
(b) for each /, SPf\ dom (g) is dense in dom (g), where

Normal convex integrands may be recognized from the following known
results [1]:

(i) Suppose g(t, x) = g(x) for all t, where g is a l.s.c. proper convex function on
2?. Then g is a normal convex integrand.

(ii) Let the function g(t,x) onTx.Jtf' have values in [—oo, +00] such that g(t,x)
is measurable in t for each fixed x and for each /, g(t, x) is a l.s.c. proper convex
function in x with interior points in its effective domain. Then g is a normal convex
integrand.
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DEFINITION. JSf is said to be decomposable if it satisfies the following conditions:
(i) £C contains every bounded measurable function from T to 24? which vanishes

outside a set of finite measure.
(ii) If xeSC and E is a set of finite measure in T, then j£? contains x&x where XB

is the characteristic function of E.

An important class of functions which are decomposable in this sense are the
Lp(0, T; Rn) spaces.

THEOREM 1. Let ££ and CriC be topologically paired by means of the summable inner
product

<x,y>= ! x(t)y(t)rtdt) for all xe&, yejf
JT

and suppose S£ and CriT are decomposable. Let g be a normal convex integrand such
that g(t,x(t)) is summable in t for at least one xeS£ and h{t,y{t)) is summable in t
for at least one yejf. Then the functionals G onS? and H on JT, where

= f
JT

= [ h(t,y(t))n(dt)
T

are proper convex functions conjugate to each other. Here g and h are conjugate
functions as defined previously.

PROOF. See [2].

3. Duality

We consider the following functional program, termed the primal program.

Minimize G{x)
subject to implicit constraints xeC, where C<=JSf is closed and convex, and cone
condition x e ^ , where x is a non-empty closed convex cone in JSP.

In [4], we show that the above program has an associated dual program.

Minimize H(y)

subject to implicit constraints yeD^JT and the polar cone condition
where

and
D = {y G Y\ sup (<x, y} - G(x)) < + oo}.

xeC

At optimality, the following relations have been shown to hold:

G(x*)+H(y*) = 0, x*edH(y*), y*(=dG(x*).
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In fact [4] deals with subspaces rather than cones but the generalization is
straightforward.

For purposes of exposition, we define

<5 = G(x*).

4. Characterizations of optimality

We introduce a Lagrangian

(1)

which, although significantly different to the conventional Lagrangian for the
problem, has a saddle-point property. In particular, this is the Lagrangian for the
dual program treated as a maximization problem. We show this in the following
theorem.

THEOREM 2. If x* ex andy*eD, then

(i) x* is optimal for the primal program, and

(ii)O = inf L(x;y*)

if and only if(x*; y*) is a saddle point for the Lagrangian, that is,

L(x*;y)^L(x*;y*)^L(x;y*) forallyeD and xex.

In addition, the value of the saddle point

PROOF. Initially we show that (i) and (ii) imply that (x*; y*) is a saddle point for
the Lagrangian. By definition, we have that

Lix*;y) = <x*,yy-H(y)

<sup«x*,z>-/7(z))
zeD

= G(x*) by Theorem 1

= $ by definition

= influx; y*) by (ii)
xex

< Ux: v*) for all
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From the above, we see that

Ux*;y*)«Kx*) and G(x*)<L(x*; y*).

Hence we have that

and (x*; y*) is a saddle point for L.
Since the argument is reversible (the conjugate transform of a convex functional

is a symmetric operation), the theorem is proved.

COROLLARY 1.

sup
yeD

if and only if the following relations hold:

(i)jc*eC,

(ii) y* e 8G(x*) (subgradient condition).

PROOF. Straightforward from the proof of Theorem 2.

COROLLARY 2.

Ux*;y*)= influx; y*)
xex

if and only if the following relations hold:

(i) y* e x* (polar cone condition),

(ii) <x*, y*y = 0 (orthogonality condition).

Then, we have that
L(x*;y*) = -H(y*).

PROOF.

inf L(x; y*) = inf [<x,y*y-H(y*)]

*ex*= -H(y*) (2)foiy*ex

By hypothesis, equation (2) is equal to L(x*; y*).

Once again the argument can be reversed.

We are now in the position of being able to give five equivalent characterizations
of optimality. For x* ex and y*eD, these are:
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(1) x* is optimal for the primal program and

<D= iafL(x;y*).
xex

(2) (x*; y*) is a saddle point for the Lagrangian

that is L(x*;y)^L{x*,y*)^L(x,y*) for all yeD and

This is a consequence of the Theorem 2.

(3) x* eC, y*e 8G(x*), L(x*; y*) = inf L(x; y*).
xex

This is a consequence of Corollary 1.

(4) y*ex*, <x*,y*>=0, supL(x*; y) =L(x*,y*).
yeD

This is a consequence of Corollary 2.

(5) x*eC, y*e8G(x*), y*ex*, <**,;>*> = 0.

This is a consequence of Corollaries 1 and 2.

5. Example

Consider the following quadratic functional program.

Minimize G(x) = I f x2(t) v{dt)

subject to A(t)x(t)^b(t), v almost everywhere on T, where A(t) isnxm, b{t) are
given functions and xeL?\(),T; Rn]. This may be written as a primal program in
Section 3 as

minimize G(x)
subject to implicit constraints

x(t)eRn, *(t)e{b(t)}eRm,
and cone condition

X = l(x, <x) | (A(t) - /)) r^yA < 0, v almost everywhere on T .

Following the prescription in Section 2, the dual program is given by

Minimize H(y) = \ \ y2(t)i>(dt)+ f b(t)p(t)v(dt)
2JT JT

subject to implicit constraints

y(t)eRn, p(t)eRm
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and polar cone condition

X* = {(y,P)\y(t) = -<4Tz(O.j8(O = -z(/),z(O<0, v almost everywhere on 71}.

The subgradient condition relates the primal and dual variables at optimality by

The Lagrangian, defined by equation (1), is in this case

Ux;y)= [ x{t)y(t)v(dt)-\ f f(t)v(dt)- f
JT 2jT JT

since /•
<x,y>= x(t)y(t)v(dt) for.

JT
Hence, it is straightforward to obtain the five equivalent characterizations of

optimality as given in Section 3.
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