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ABSTRACT. We give an overview of the use of numerical simulations in the mod-
eling of turbulence in molecular clouds.

1. Introduction

Observations of spectral lines in molecular clouds reveal the existence of supersonic
motions whose origin has not been clarified. Scaling laws relating velocity disper-
sion and cloud size can be attributed to turbulent motions. The physical properties
of this turbulence and its feeding mechanisms are still unknown, but independent
observations seem to confirm the existence of very irregular and hierarchical struc-
tures. Magnetic fields are probably dynamically important in most of these objects.
They can help support the cloud against gravity and, through Alfvén wave turbu-
lence, give an alternative explanation for the observed molecular linewidths.

Numerical simulations have become an important tool for studying nonlinear
dynamics and are helpful in deciding between competing physical models of molec-
ular clouds. It is generally admitted that nonlinearities are at play in these media
and that they are in part the source of our lack of success in analytical model-
ing. In the absence of an adequate theory of turbulent flows, our understanding of
nonlinear complexity necessitates high resolution numerical simulations.

In this paper, we concentrate on homogeneous compressible flows, leaving aside
problems which lead to more physically elaborate modeling, including for example
radiative transfer.

We begin with a brief account of several basic concepts in turbulence. The next
Section of the review is devoted to the case of neutral two and three-dimensional
flows without self-gravity, discussing the general properties of supersonic turbu-
lence. In particular we will describe the structures observed in physical space, the
temporal evolution of large scale variables, and the scaling laws for the velocity cor-
relations. One of the most striking results that seems to persist in three dimensions
is the distribution of density in patches, within which it is filamentary and with
small fluctuations.
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The fourth Section is devoted to a brief account of recent numerical calculations
of compressible two-dimensional MHD flows, focusing on overall aspects for different
magnetic over kinetic energy ratios. A description will be given of the structures
that develop, namely current sheets and bubbles of density.

In the following Section we show, on the basis of phenomenological arguments
supported by two-dimensional numerical simulations, that supersonic turbulence
can slow down and even stop the gravitational collapse.

Before concluding, we discuss the limit of small Mach numbers, relevant for
both the large-scale interstellar medium and the sub-regions that develop within
a supersonic flow.

2. Basic Concepts and Tools in Turbulence

Turbulence, as a strongly nonlinear phenomenon, is still lacking a definitive theoret-
ical description, and a resort to a combination of theory, phenomenology, modeling,
experiments and observations is needed to progress. In that light, it may appear bold
to extend the analysis to more complex problems, involving coupling to rotation,
magnetic fields, compressibility, convection and self-gravity, to name a few. But
observational facts for one thing compel us in that direction. Also, and somewhat
paradoxically, the problems at hand may become simpler, in that small parameters
are introduced and at least some subsets become amenable to analytical treatment,
e.g. through multiple-scale analysis : low Mach number, fast rotation, or strong
magnetic fields.

The robustness of such regimes for the general case remains to be shown, and
numerical experimentation has certainly become a primary way of investigation.
Indeed some flows, for example at high magnetic Reynolds number RM = uoLo/n
where uo and Ly are characteristic velocity and length and 7 the magnetic diffu-
sivity, or at high rms Mach number M, = uy/c, where ¢, is the sound speed of
the medium, may not be feasible in the laboratory. Numerical experiments, on the
other hand, do not allow to reach very high Reynolds numbers because of limita-
tions in both memory and CPU time. Indeed, for a flow to be well resolved down
to the dissipation length £p = (v3/€)!/* where v is the kinematic viscosity, € the
rate of energy transfer and dissipation, and where a Kolmogorov energy spectrum
has been assumed, viz E(k) = €?/3k=3/3, the dynamics of the numerical simulation
te the ratio of the large—scale Ly to the smallest resolved scale Az must be of the
order of the Reynolds number itself (R*/4 in the incompressible case). In three di-
mensions, 10° modes will thus be needed to experiment on a flow with a Reynolds
number of ~ 100. Herein lies the fundamental limitation of numerical simulations.
By-passes exist. One can reduce the space dimensionality to two (cylindrical) or one
(spherical). Or one can decide that the precise way by which the flow dissipates the
energy is not fundamental and thus resort to a model of dissipation. Among such
methods, the more popular ones use the Euler equations (viscosity identically zero)
and add some ad-hoc dissipation in steep gradients and shocks in the compressible
regime (Woodward and Collela, 1984; Moretti, 1987). However, when dealing with
small-scale phenomena, such as the reconnection processes in current sheets that
may be at the origin of the heating of the solar corona, care must be taken in the
precise treatment of the internal structure of dissipative layers. In that case the
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spectral methods retain all their advantages (Gottlieb and Orszag, 1977) because
of their exponential precision for smooth flows.

Finally, one should expect only very slow progress in this experimental-numeri-
cal approach to turbulence : a factor two in resolution represents an eightfold in-
crease in memory and twice that in CPU time, to follow explicitly all time scales
involved. Some speed-up will come from hierarchical grids (Dorfi, 1982), from dy-
namical grid-tightening (Landman et al., 1990), and from heavy parallelisation of
codes on computers such as the successor to the Connection Machine (Boghosian,
1990).

The concept of a cascade of energy from the large—scale containing eddies to
the small-scale dissipative ones, in an energy—conserving way through the inertial
range, is well-known (Rose and Sulem, 1978; Leslie, 1973; Monin and Yaglom,
1971). Modifications to the Kolmogorov spectral index of this range to take into
account either magnetic fields (Iroshnikov, 1963; Kraichnan, 1965; Grappin et al.,
1983; Matthaeus and Zhou, 1989), or compressible effects (Moiseev et al., 1983) as
well as intermittency have been proposed.

Possibly less familiar is the concept of inverse cascade, from Lo to scales
larger than Lo. In incompressible MHD, an inverse cascade of magnetic helicity
HM = [a.b d®x where b =V x a with a the magnetic potential, leads to large-
scale helical magnetic fields (Horiuchi and Sato, 1989; Pouquet, 1990). Such mag-
netic helical structures may have been observed in the Sun (Berger, 1988) and in
molecular clouds (Heiles, 1987; see also the discussion in Scalo, 1990), but more
data analysis is needed (Heiles, private communication). Whether such large scales
will persist in a sustained supersonic flow is an open question. The precise mecha-
nism by which these instabilities grow and saturate can be recast in the framework
of multiple-scale analysis (Gilbert and Sulem, 1990).

Coherent structures in flows are pre-eminent, and their origin through an in-
verse cascade or more esoteric mechanisms (Nicolaenko and She, 1989) is unclear.
The topological approach to turbulent flows (Moffatt, 1989) may be a helpful way
to encompass the three-dimensionality of structures and also allow for a substan-
tial reduction in data storage and analysis (Perry and Chong, 1987), such as for
separated flows.

A consequence of the direct cascade of energy to the small scales is the added
dissipation that takes place in a turbulent flow. These effects are modelized through
turbulent transport coefficients, the precise computation of which still remains a
problem of current research (Dubrulle and Frisch, 1990). However, it has been
conjectured (Moffatt, 1985) that nonlinear interactions may be self-defeating, in the
sense that they themselves produce a flow in which they become negligible : Beltrami
flows in which the kinetic helicity H = [u-w d®x (with w = V x u_ the vorticity)
is maximal. In MHD, the flow could become either force—free (vanishing Lorentz
force), or fully correlated (normalized [u -b d*x maximal), or both. Numerical
evidence in two dimensions seems to corroborate these ideas in MHD, but the 3D
problem remains open.

Finally, mention should be made of chaos and intermittency, and the ensuing
spatial complexity of the flow with a possible fractal structure (see Scalo, 1990 for
a review in the context of molecular clouds and also Falgarone and Phillips, 1990).
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Low-dimensional dynamical systems exhibit complex behavior, with a transition
that is now well mapped. However, when the number of relevant modes increases
substantially, the concepts developed in the framework of chaos do not readily
apply. The difficulty may lie in the way to couple many temporal scales as well
as spatial scales. The wavelet technique (Combes et al., 1988) that combines local
spatial information and Fourier mode analysis has been recently applied to the
identification of structures in turbulent flows (Argoul et al., 1989; Farge et al., 1989;
Everson et al., 1990) and in galaxy counts (Slezak et al., 1990). This technique may
prove useful in the analysis of well-resolved maps of molecular clouds, the Taurus
cloud (from IRAS data) being a possible candidate (Henriksen, 1990).

Chaos, however, may be relevant in fully developed turbulence as well, for
example at stagnation points of the velocity and in the dynamo problem. In the
latter case, it was shown (Galloway and Frisch, 1986) that the emerging magnetic
structures are elongated. Numerical simulations (Meneguzzi et al., 1981) also point
to an intermittency of the magnetic field, but it is not clear whether this is a
dynamical effect or simply due to the proximity from the cross—over in the magnetic
Reynolds number, separating the non-magnetic from the magnetic regime. The
question of whether intermittency will steepen the I{olmogorov spectrum or not is
yet another open problem (Kraichnan, 1990). Intermittency may have been observed
in molecular clouds. Its origin may vary (fluid, MHD, gravitation, or a combination).
Falgarone and Phillips (1990) have shown that there is a systematic departure from
a Gaussian profile in the wings of molecular lines, that they relate to an intermittent
behavior. Indeed, Anselmet et al. (1984) and Gagne and Castaing (1990) have shown
that the probability distribution function of the velocity field from wind-tunnel
data, as well as for the derivatives of the velocity and for a passively advected
temperature, all have exponential wings with a Gaussian core. This is also the case
in numerical simulations of MHD (Biskamp, 1990).

3. Compressible Turbulence

With increasing resolution in the observations it appears that molecular clouds are
agitated by turbulent flows. Models assuming distinct clouds and quasi-equilibrium
should thus be modified to account for a more dynamical vision (Scalo 1990) as
suggested by observations exhibiting an enormous variety of structures with irregu-
larities at all scales, filaments, bubbles etc...(Bally et al. 1987, Bally 1989; Falgarone
1989, Fukui, 1990). A first step in this direction can be attempted by studying com-
pressible turbulence and the effect of the nonlinear advection term of the momentum
equation on the shaping of the flow. Although interstellar cloud turbulence certainly
includes magnetic fields, stellar energy sources, radiative cooling and gravitation,
nonlinear advection is a major common feature to take into account.
Homogeneous compressible turbulence has not been extensively studied, partly
due to the fact that the incompressible case remains unsolved. Analytical studies
pertain mostly to the weakly compressible regime, either concerning the acoustic
part of the flow (its generation (Lighthill, 1954), or statistical properties (Zakharov
et al., 1970)) or the extension of the incompressible phenomenology for small Mach
numbers (Moiseev et al., 1983). General arguments (Kraichnan, 1953) and closure
schemes (Chandrasekhar 1951a, Weiss 1979, Hartke et al. 1988, Marion 1988) have
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been developed which are restricted to the small Mach number regime (see also
Passot and Pouquet (1987) for a review).

Feireisen (1981) studied numerically the effect of a weak compressibility on
the statistics of 3D turbulent shear flows. Computations on homogeneous and tur-
bulent supersonic flows have been performed in both two dimensions and in three
dimensions for decay flows (Erlebacher et al., 1990; Passot and Pouquet, 1990, and
references therein) and forced flows (Kida and Orszag, 1990). Large-Eddy Simula-
tions (Erlebacher et al., 1987; Porter et al., 1990a) have also been implemented.

In the supersonic regime, a dominant feature is the presence of shocks which are
the major cause of dissipation. In the case of decaying turbulence, the flow remains
globally supersonic for short times (a few turnover times of the large-scale vortices)
whatever the initial value of the Mach number. However, the trace of an initially
supersonic flow is still visible at late times on hot spots of temperature (assuming no
radiative leaks) and entropy production. Dissipation is found to be similar for the
two and three dimensional cases during this first period of supersonic evolution, but
different in the subsequent part of the evolution. Whereas in 2D the Mach number
almost stabilizes at r.m.s. values of about .6, possibly due to a remnant of the
incompressible property of global squared vorticity conservation (Kraichnan and
Montgomery, 1979), in the 3D case it keeps decreasing due to the usual nonlinear
transfer of energy towards small scales.

When a strong pressure imbalance is present in the initial conditions it is found
that the compressive component of the kinetic energy and the internal energy both
oscillate periodically (in opposite phase) even for long times, indicating that large
scale, large amplitude sound waves are still free to propagate into the system, being
minutely influenced by the vortices interacting mostly with themselves. For rms
Mach numbers smaller than .3, the flow can be considered incompressible, the in-
teraction between rotational and compressive modes being weak, mostly consisting
of sound production by large-scale vortices. For larger Mach numbers the com-
pressive modes are fed more efficiently and contribute in a dominant way to the
small-scale kinetic energy because of the presence of strong shocks, the large scales
being mostly solenoidal. The ratio x of the compressive over total kinetic energy is
typically .2. The same transitional Mach number has been found in MHD.

The opposite interaction consisting of the production of rotational modes by
the compressive ones has been observed in 2D during collisions of shocks or behind
curved shocks where entropy gradients are not colinear to temperature gradients
(Passot and Pouquet, 1987). It is intermittent and concentrated near the small
dissipative scales. This interaction takes the form of small vortices created ‘just
behind the shocks or during the process of a Kelvin-Helmotz instability developing
in contact discontinuities. It has not yet been observed in 3D.

The interaction between rotational and compressive modes is thus mostly con-
centrated in the large and small scales, the latter being only efficient for large Mach
numbers. Consequently the flow presents a dual nature, consisting of a weakly com-
pressible turbulence, retaining most of its characteristics of the incompressible case,
on which is superimposed sound and shock waves. This weak interaction can also be
observed when measuring spectra in 2D. The velocity correlation spectrum for the
rotational modes still presents an inertial range whose slope is close to -3, a value
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observed in the incompressible case. The compressive modes, being dominated by
shock waves, present a k~2 spectrum (Passot et al. 1988). Inertial ranges cannot
be observed in 3D due to a lack of resolution, although time averaging will help.
When visualizing the density field it appears that there are large patches in which
fluctuations are mild. The local rms Mach number is small but both mean velocity
and density may vary greatly between patches. The existence of such patches has
also been observed in the 3D case (Porter et al., 1990b) at late times.

A supersonic turbulent flow also presents striking filamentary structures both
in 2D and in 3D, but for possibly different reasons. In 2D the filaments observed on
the density field are strongly correlated to entropy fluctuations, created by heating
due to dissipation in shocks or vortex sheets. Being passively advected by the flow
(Bayly et al 1990) these fluctuations naturally form ribbons, and accumulate as
time evolves. These filaments pierce from one patch to the other, revealing once
more the dual nature of the flow (Passot et al., 1988). In 3D the filaments which
are observed at earlier times (Porter et al. 1990b) are more likely to be associated
to shock collisions and intersections, as well as over—compressions in shock bendings
or vortex tubes (Vincent and Meneguzzi, 1990). These filaments are striking in the
compression field, vorticity and density, and may be a locus of star formation.

The most striking difference between a 2D and a 3D compressible flow is in
the density contrast defined as Ap = pmaz/pPmin- Whereas in 2D Ap ~ 4, at similar
Reynolds and Mach numbers in 3D Ap ~ 100 (Passot and Pouquet, 1990).

When recasting all these results in the framework of molecular clouds dynamics,
several problems emerge. The most important is linked to the rate of dissipation of
supersonic turbulence, too high in comparison with estimated energy injection rates,
although the gravitational potential well is omnipresent. This problem may possibly
be alleviated by the presence of a magnetic field as discussed in the next Section.
The structures that obtain in such neutral flows are however not in contradiction
with observations and it will be interesting to see how they will be modified by
gravitation and magnetic fields.

4. Supersonic MHD Turbulence

This Section briefly reports on some recent calculations of supersonic magneto-
hydrodynamic flows. Homogeneous compressible MHD flows have attracted little
attention until very recently, previous works being mostly devoted to the study
of reconnection processes (see e.g. Ugai, 1988 and Sonnerup 1988). The growth of
correlations [ v-b d"x between the velocity field v and the magnetic field b which
occurs in the incompressible case (see e.g. Pouquet, 1990) has also been shown to
occur in compressible flows by Dahlburg and Picone (1988), and a study of turbu-
lent relaxation (dynamic alignment versus selective decay) has been undertaken by
Ghosh et al. (1988). Shebalin and Montgomery (1988) studied the pseudo-sound
generation in an isentropic flow and more recently, Dahlburg and Picone (1989) de-
scribed the influence of compressibility on the evolution of the Orszag-Tang (1979)
vortex. These works are dealing with 2D subsonic flows (thus with a high value of
the plasma f value, ratio of kinetic to magnetic pressure).

Even when studying the simple case of a conducting perfect gas in a two-
dimensional periodic box, we are faced with a large free-parameter space. It has
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been chosen here to concentrate on a comparative study of the overall aspects of a
supersonic flow when permeated with a random magnetic field at the same scale as
that of the velocity field but with differing magnitudes.

When shocks are present, kinetic energy dissipates into heat within a few non-
linear times. One of the goals of this work is to identify the regimes where strong
shocks are inhibited but where supersonic linewidths could nevertheless be observed.
Does this regime exist and does it correspond necessarily to a state of Alfvénic wave
turbulence as suggested by Falgarone and Puget (1986) and Lizano and Shu (1987)
? Does this require a smooth large-scale magnetic field ?

New characteristic times appear in the evolution of an MHD flow. Certainly one
of the most important is the Alfvén time T, = L/V, where L is a characteristic scale
and V, is the Alfvén speed By/\/4mp which governs the propagation of transverse
waves in the direction of the magnetic field By in an average density field p. There
are also characteristic times based on the speed of the compressive waves which
propagate into the system (i.e. the slow and fast magneto-acoustic waves). For
reasons of simplicity we will classify the flows with respect to their character (sub or
super-sonic and sub or super—Alfvénic), comparing the rms velocity with the sound
speed and the Alfvén speed respectively. This defines in turn the Mach number M,
and the Alfvénic Mach number M,¢. The Alfvén speed is based on the rms magnetic
field since no mean field is considered here.

Before describing the new numerical simulations on supersonic MHD flows, it
will be useful for the discussion to recall some properties of discontinuities in a
compressible magnetic fluid. Beside transverse waves which are non—compressive
and remain smooth, there are also magneto-acoustic waves which can steepen into
shocks. Transverse shocks and contact layers (examples of which are current sheets)
are not formed by steepening but have to result from topology, breaking of equi-
librium, etc.... Current sheets can be present regardless of the properties of the
velocity field. They do not propagate and in contrast to pure hydrodynamical con-
tact discontinuities, there cannot be a non-zero component of the magnetic field
perpendicular to the plane of the discontinuity, in which case only jumps in den-
sity and entropy are allowed. Thus in 2D the center of a current sheet is a neutral
line. These discontinuities are known to dissipate through various mechanisms, in
particular because they are subject to internal instabilities, such as the tearing
mode.

In contrast, the dissipation in a shock is only due to molecular transport coef-
ficients and depends on its strength as measured by the entropy or pressure jump.
Weak shocks necessarily propagate at the velocity of the corresponding linear wave.
Stationary shocks in a medium of zero mean velocity are then moderately strong and
we want to discuss their existence in some particular cases. In absence of magnetic
fields, their existence requires a supersonic flow. Numerical simulations in two di-
mensions (Passot and Pouquet, 1987) indicate that a supersonic velocity fluctuation
produces strong shocks that dissipate rapidly until the rms Mach number attains
values close to .6. It thus seems that within a factor of two the above mentioned
criterion gives good approximations for the upper bound Mach number compatible
with small dissipation. We refer here only to dissipation due to shocks, leaving aside
the dissipation due to the cascade of eddies in the three-dimensional case or due to
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current sheets. In three dimensions, indeed, the Mach number may drop to substan-
tially lower values (Porter et al., 1990b) due to the usual turbulent eddy viscosity. In
the presence of a magnetic field, shocks propagate anisotropically. It is particularly
true for slow shocks which propagate efficiently only in a cone centered on the local
direction of the magnetic field. It will be useful to consider two limit cases of shocks.
In the first one corresponding to the propagation perpendicular to a constant mag-
netic field, slow shocks degenerate into contact discontinuities and the existence of
fast shocks requires the velocity of the fluid V' to be greater than /B2 /(47p) + 2.
In the case of the propagation parallel to the magnetic field, the pure gas limit is
recovered but the evolutionary conditions are different since in presence of small
perturbations transverse waves can be induced by the longitudinal magnetic field.
In particular for strong shocks, the flow has to be super—Alfvénic behind the shock.
What is important to point out is the general trend that in the presence of a mag-
netic field the strength of the shocks is reduced. A shock propagating in a medium
permeated with a magnetic field parallel to its plane can eventually degenerate into
a sound wave if the strength of the magnetic field increases beyond a critical value
(Ferraro and Plumpton, 1966, p. 105). From the preceding discussion, it seems also
that a sub—Alfvénic (but possibly supersonic) flow will develop less strong shocks
and it is also generally admitted that turbulence is inhibited by magnetic fields.

The following description of some of our numerical simulations reveals indeed
this tendency, but points out to some other interesting features of a magnetic tur-
bulent flow. The three runs presented now are for decaying two-dimensional flows,
starting with a rms Mach number of unity, with excursions up to 2. The velocity
field has most of its energy at a length scale L = m corresponding to one-half
the computational box. Both the usual and magnetic Prandtl numbers are unity,
v = 5/3 and the Reynolds number is 150. All primitive variables are initialized
randomly. We define y = E¢/E", with E¢ + E®* = E" the kinetic energy decom-
posed into its solenoidal E° and compressive E° components. Initially, x = 15%,
a deliberate choice since we want to start our computation in a fully compressible
regime.

The case without magnetic field is analogous to the one described in the previ-
ous Section, developing numerous elongated shocks. When taking initially a random
magnetic field at the same scale and such that the ratio r,, = E™/E" of the mag-
netic over kinetic energy is equal to .9, the shocks are already completely absent
although the flow is not yet sub—Alfvénic. It has to be mentioned however that the
compressibility of the flow measured by the ratio x is enhanced, attaining values
of 30% or 1.5 times the peak value of the neutral case. Density fluctuations are
also higher. This is due to the increase in the total pressure gradients induced by
the presence of the magnetic field. We see at this point that the effect of the mag-
netic field on the velocity will depend on its scale and not only on its magnitude,
the smoothing mechanism being valid only if the field is at a scale larger than or
comparable to that of the velocity.

Increasing the magnitude of the ratio r,, to 3.45 and leaving all other parame-
ters constant, the aspect of the flow changes drastically. The smoothing mechanism
does not persist when increasing the magnetic field strength, leaving its scale con-
stant; indeed the initial desequilibrium in pressure is large enough to produce shocks
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Figure 1: (top) magnetic potential, (middle) magnetic
current, (bottom) density, at ¢t = 1.5 for a flow with an
initial Mach number of 1 and r,,, = 3.45.
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Figure 2: (top) density, (middle) temperature, (bottom)
vorticity, at t = 2.5 for a flow with an initial Mach number
of 2, and r,, = 1.7.
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although the flow is now sub—Alfvénic. In a short time, violent processes occur whose
dynamics is mostly governed by the magnetic field. There is initially a large transfer
of energy from magnetic to kinetic. Shocks form and current sheets develop near
X-type neutral points, releasing a large quantity of heat. This heat causes the fluid
to expand, producing bubbles. When growing, these bubbles form circular shocks
which smooth out rapidly while expanding. The discontinuities present in this flow
have therefore a shape very different from the neutral case. Shocks are thin but
much shorter, their life time being also much smaller as we could predict. Current
sheets are more long-lived and thicker than shocks since they arise from a topologi-
cal and not a dynamical constraint; they have a certain amount of magnetic flux to
dissipate which can be quite large. We show in Figure 1 the vertical component of
the magnetic potential (top), the current density (middle) and the density (bottom)
for the lower half of the flow at ¢ = 1.5. The current sheet, corresponding to the
magnetic X—point (hyperbolic neutral point), is thicker than the filamentary struc-
tures observed both in the current and the density, associated with angular points of
the potential. The bubbles in density correspond to previous current structures, and
the thinner compressions to the magnetic shocks. The Joule heating mechanism,
more important in MHD shocks than in current sheets, is now able to decorrelate
efficiently the temperature field from the density thus increasing the strength of

(VpxVp)
Lpx Vo)

the baroclinic term responsible for vorticity production; vorticity is also

created by the purely magnetic term leading for example to quadrupolar structures
centered on the current sheets, as in the incompressible case. Thus, a polytropic
approximation becomes questionable when the Alfvén time is shorter than the char-
acteristic radiative cooling time. Ambipolar diffusion will also provide an efficient
dissipation mechanism.

Reconnection is seen to be more efficient than in the incompressible case. Cur-
rent sheets are broken and dissipated rapidly by e.g. tearing modes, when high-
speed flows converge onto it (fast reconnection). This is clearly observed in a sim-
ulation of the Orszag—Tang vortex performed at Mach one, with constant-initial
pressure. In this case, the lateral (as opposed to central) current sheets are the
strongest. This is due to the combined action of the centrifugal force (not compen-
sated by the initial pressure) and the periodic boundary conditions which direct a
flow onto the sheet and enforce reconnection in an intrinsic dynamical way.

Similar results obtain when other runs with initially smaller scales and/or
higher Mach numbers are performed. In a run with an initial Mach number M = 1.8
and with r,, = 1.7, the Mach number is equal to .46 after ten turn—over times, as
opposed to .4 when starting with M = 1. The ratio x = 48% is much larger in the
high Mach number case, and yet the flow appears smooth at that Reynolds number
(computation on a 2562 grid). In Figure 2, we show the density (top), temperature
(middle) and vorticity (bottom) for the higher half of the flow at ¢t = 2.5 for the
Mach 2 run. We see both the bubbles linked to current and thin structures in the
density, we see the decorrelation between density and temperature, and we see the
breaking of the vorticity in small often roundish quadrupoles.

Common to all these runs is the fact that the ratio r,, increases with time
after an initial decaying transient and that the scale of the magnetic field seems to
diminish. Here it is important to note that the initial conditions of these runs are
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violent. For later times, the flow is gentler and discontinuities almost inexistent.
The dissipation is then much smaller. This is consistent with the observations on
the evolution of the strength and scale of the magnetic field. Finally, we note that,
in agreement with the results of Dahlburg and Picone (1988), the alignment factor
2V'2>_<1>,5<13§w7 increases, starting from .33 and rising to .6.

The properties of the spectra are also noteworthy. There is quasi—equipartition
between the solenoidal component of the kinetic energy and the magnetic energy in
the small scales, with a slight excess for the latter as for incompressible flows. On
the other hand, the correlation spectrum of the compressible part of the velocity
itself dominates in the small scales both the E° and E™ modes for sufficiently high
Mach numbers.

Summarizing these results, we can say tentatively that in sub—Alfvénic but still
supersonic flows, shocks are hindered. When the magnetic field is tangled, reconnec-
tion takes place, but this process dissipates less energy than would do shocks. If the
flow is perpendicular to the magnetic field (possibly due to gravitation), we could
imagine the flow to be less turbulent. Also, the formation of bubbles of density is
striking.

It is planned to study these dissipation mechanisms with different topologies
of the magnetic field and different initial conditions, trying to test the stability of
regimes consisting of nonlinear Alfvén waves.

Magnetic fields may play an essential role in the collapse of molecular clouds
(Mouschovias, 1987; Lada and Shu, 1990). The numerical treatment of a turbulent
MHD compressible flow undergoing gravitational collapse, is scanty (Dorfi, 1982;
Pouquet et al., 1990). In the next part we shall discuss the simpler case (although
still not resolved) of the interplay of gravitation with a compressible turbulence in a
barotropic flow. Works performed directly in the astrophysical context are reviewed
for example in Scalo (1988).

5. Turbulence and Gravitation

In molecular clouds, large scales are found to be relatively stable over times long
compared to the free-fall time of the cloud, whereas small scales are clumpy. The
generalization of the Jeans’ stability analysis to account for turbulent kinetic en-
ergy has been considered by Chandrasekhar (1951b), Sasao (1973), and by Bonaz-
zola et al. (1987); magnetic fields (Lizano and Shu 1987; Pudritz, 1990) have also
been taken into account. A phenomenological argument (Léorat et al. 1989,1990)
which encompasses the interaction between turbulent eddies, the phase coherence
of shocks, waves and gravitational collapse is briefly exposed below. It is confirmed
by numerical simulations assuming an isothermal flow and bidimensionality.
Gravitation acts directly on the compressive modes and competes with pres-
sure and turbulent dissipation. At a given scale, the comparative strength of these
processes can be evaluated by estimating their characteristic times. For turbulence,
the ratio r; = 74,/7f¢ of the transfer time of the compressible kinetic energy to-
wards small scales 74, to the free-fall time 7y is the relevant parameter to consider.
In the Jeans’ case where only pressure is considered, the relevant parameter is ob-
tained by replacing 74, by the acoustic time 7,. = £/c, where ¢, is the sound speed.
At small Mach number, the transfer time is obtained by considering sound wave
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coupling as in Zakharov et al. (1970). The parameter r, increases with scale and
eventually collapse will take place for a critical length, turbulence resulting in a
shift of the Jeans’ length towards larger scales (see also Chandrasekhar, 1951b).
However, ry is found to be very sensitive to the value of the Mach number
M. With increasing M, dissipation tends to occur mainly in shocks, with an equal
strength for all scales. The concept of inertial range and energy cascading becomes
meaningless and 7¢, must be modified accordingly. Taking the Burgers’ equation
limit, 7¢, is found independent of scale. Assuming a constant local mean density,
the parameter r, will thus also be scale-independent and reads in the simplest case

ry = Ttr/Tff = (L/LJ)CS/UC

where L is the Jeans’ length and u. the compressive component of the velocity at
scale L. There is a critical value 7, of order unity below which the flow becomes
stable. This leads plausibly to a global marginal equilibrium between turbulence
and collapse at all scales. This equilibrium can be broken at scales smaller than
the Jeans’ length, when local peaks in density are formed by turbulence, e.g. in
the vicinity of shocks. Large density enhancements can be expected in shocks when
radiative transfer is included (Zeldovich and Raizer, 1966), which will favor this kind
of local mechanism for collapse. Observations do support clumpiness of the medium
on a wide range of scales. An unmagnetized medium will have planar shocks, and
clumps might occur at their intersections, on filaments. Furthermore, in the MHD
case, bubbles form in the density leading to arched-like shocks. Also, shocks may
be unstable through a hernia-type effect.

Numerical simulations support the predictions based on the preceding phe-
nomenology, with 73 ~ 0.3 in two dimensions. Although the Reynolds numbers of
the computed flows are not large, and thus no complete inertial range is exhibited,
it has nevertheless been observed that the large scales of the flow tend to tear the
collapsing clumps into pieces and fragment them into stable entities. When the
value of ry is small enough, the gravitational collapse is stopped for at least ten
free-fall times. For larger values of rg, collapse occurs but strongly structured by
turbulence. Clumps tend to form on filaments of denser matter (Passot, 1987). Their
scale decreases with the Mach number and hierarchical structures are also found
when several Jeans’ masses are present in the cloud (Léorat et al., 1990). How-
ever, no successive fragmentation is observed, possibly due to a lack of numerical
resolution. The hierarchical structures observed are formed one at a time through
the influence of the turbulent velocity field; it happens also that small structures
are formed first before collapsing together. In three dimensions, the situation is
not clear. Chantry et al. (1990) find that density clumping tends to form initially
at hyperbolic points of the velocity, where the vorticity is weak, through the cen-
trifugal force. This effect is amplified when two vortices meet. However, as both
the Reynolds number and the Mach number are increased and vortex interactions
become embedded in a turbulent flow, the preceding coherent mechanism may be
swamped by shock formation and ensuing strong density contrasts in their vicinity.

Finally, when coupling gravity and MHD, one may conjecture that pressure
is modified by both the turbulent pressure, and the magnetic one (see also Pu-
dritz, 1990). A somewhat ad hoc modification of the phenomenological argument
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presented above is given in Pouquet et al. (1990).

6. Conclusion

It has been mentioned in Section II, that in a supersonic flow, there are regions
where density fluctuations as well as the local rms Mach number are small. It is
thus of interest to consider the limit of quasi-incompressible flows. This has been
studied rigorously for isentropic fluids (Klainerman and Majda 1981, 1982). Entropy
fluctuations should nevertheless be considered as soon as forcing or dissipative pro-
cesses are no longer negligible. We do not review this rather large subject but
rather discuss the observations of Armstrong et al. (1981). They have measured the
density fluctuations in the large scale interstellar medium, where the flow can be
considered quasi-incompressible and found that they exhibit a power law close to
k=5/3. Assuming a barotropic fluid, density fluctuations are correlated with pres-
sure fluctuations and thus should obey a k~7/3 law if a Kolmogorov-like cascade is
assumed. Recently Montgomery et al. (1987) and Matthaeus and Brown (1988) sug-
gested that the presence of a magnetic field in equipartition with the velocity field
could possibly explain a k~3/3 law. By systematically deriving the incompressible
limit for a gas whose equation of state depends on two thermodynamic variables,
Bayly et al. (1990) showed both analytically and numerically that a —5/3 law can
also be expected as soon as entropy fluctuations are non-negligible. The basis of the
argument is that when taking the incompressible limit two parameters have to be
taken to zero, namely the Mach number and the size of temperature fluctuations.
Depending on the relative size of these two parameters, different physical limits can
be identified. When the latter is larger than M?, the density and temperature both
obey at first order a passive scalar advection equation. This in turn can also explain
the filamentary structures as discussed in Section II at long times, with relatively
small density fluctuations within them.

Very few high resolution numerical simulations of compressible turbulence ex-
ist. Although turbulence per se is certainly still far from being solved, the results
described here may lead to some insight in the dynamics of the interstellar medium.
The overall aspect of the flow, when compared to observations, indicate that nonlin-
earities are certainly at play in the interstellar medium. Filaments are observed both
in molecular clouds and numerical simulations, with density clumps along them. In
the latter we saw three different occurrences for such structures, showing that they
are general patterns produced by nonlinear advection terms. Sheets also occur in
three dimensions, and bubbles obtain when strong magnetic fields reconnect. Fi-
nally, hierarchical structures appear with gravitational collapse. Virialisation of the
medium may end-up being a consequence of its dynamical evolution when few
density gradients occur and there is an equilibrium, albeit marginal, between tur-
bulence and collapse. Furthermore, nonlinear build—up of intermittent structures
and fractal behavior have been shown to take place in molecular clouds.
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