Hölder continuous paths and hyperbolic toral automorphisms

M. C. IRWIN

Department of Pure Mathematics, Liverpool University, Liverpool, L69 3BX, England

(Received 8 January 1985 and revised 5 November 1985)

Abstract. Let $f: T^n \to T^n$ $(n \ge 3)$ be a hyperbolic toral automorphism. Let A be the set of $\alpha > 0$ such that there is a Hölder continuous path of index α in T^n with 1-dimensional orbit-closure under f. We prove that $\alpha_0 = \sup A$ can be expressed in terms of the eigenvalues of f, and that $\alpha_0 \in A$ if and only if $\alpha_0 < 1$.

1. Introduction

When Smale asked whether or not a hyperbolic toral automorphism can have a 1-dimensional (compact) invariant set, one natural response was to consider the orbit-closure of paths in the torus. Franks [2] and Mañé [8] proved that if a path is smooth enough then its orbit-closure is at least 2-dimensional. In fact, all rectifiable paths have this property [8]. In contrast, Hancock [3], [4] and Przytycki [9] answered Smales's question for tori of dimension ≥ 3 by showing how to construct C^0 -paths with 1-dimensional orbit-closure. (Bowen [1] also obtained the answer, but by a different route. Smale himself had given a negative answer for T^2 .)

There is a number that, to some extent, calibrates the gap between rectifiability and bare continuity, namely the Hölder index α of a Hölder continuous map. The purpose of the present paper is to locate the precise value of α at which the possibility of paths with 1-dimensional orbit-closure ceases. This is given by the following theorem:

THEOREM 1. For $n \ge 3$, let $f: T^n \to T^n$ be a hyperbolic toral automorphism. Let α_0 be the maximum of $\log |\mu|/\log |\lambda|$ for all pairs λ and μ of (complex) eigenvalues of f for which the ratio is ≤ 1 . Then

- (i) if $\alpha_0 < 1$ there are α -Hölder paths in T^n with 1-dimensional orbit-closure for $\alpha = \alpha_0$ but for no greater α ;
- (ii) if $\alpha_0 = 1$ there are α -Hölder paths in T^n with 1-dimensional orbit-closure for every $\alpha < 1$.

Since $\alpha = 1$ is essentially the case of rectifiable paths, Mañé's result completes the picture.

The paper is in two parts. In §§ 2-4, we construct α -Hölder paths with 1-dimensional orbit-closure for $\alpha = \alpha_0 < 1$ and $\alpha < \alpha_0 = 1$. In § 5 we prove that they

do not exist for $\alpha > \alpha_0$. We have already made a start on the first part in [7], which dealt with the case of automorphisms of T^3 with real eigenvalues. (Since no power of such an automorphism can have repeated eigenvalues [7], this is precisely the case $\alpha = \alpha_0 < 1$.)

When I had completed writing this paper, I received a preprint of a paper by Mariusz Urbański, now published as [10], which performs a similar investigation in terms of the capacity of the image set rather than the Hölder index of the map. In his theorem 1, Urbański proves that if $f: T^n \to T^n$ is as above and if a curve in T^n has capacity $\langle 2-\alpha_0 \rangle$ then its orbit-closure under f has dimension ≥ 2 . This immediately gives some restriction on the Hölder index with which a path can have 1-dimensional orbit-closure, and, in fact, it is quite easy to modify his proof to give the above result that the index can be at most α_0 . (However, I am grateful to the referee for pointing out that I have actually proved rather more than this: see theorem 11 below.) Urbański's theorem 2 deals with the existence of paths with 1-dimensional orbit closure (and higher dimensional analogues). His theorem has more general statement but, in our terms, he proves that there exist such paths with capacity $\leq 2 - \alpha_0 + \varepsilon$, for any positive ε . The Hölder continuous paths in theorem 1 above have such a capacity, with $\varepsilon = 0$ in the case $\alpha_0 < 1$. Also, in the case $\alpha_0 < 1$, we prove that we can always find such paths that are simple (without self-intersections). In the case $\alpha_0 = 1$, one may prove that the paths that Urbański constructed are α -Hölder for α arbitrarily near 1. Both Urbański's paper and the present one make heavy use of techniques of Przytycki [9] to control the topological dimension of sets.

2. Existence: strategy and preliminary results

Let f be a hyperbolic automorphism of $T^n = \mathbb{R}^n/\mathbb{Z}^n$. That is to say, $f: T^n \to T^n$ lifts to a linear automorphism $L: \mathbb{R}^n \to \mathbb{R}^n$ with no eigenvalues of modulus 1. Thus \mathbb{R}^n splits as a direct sum $E^u \oplus E^s$ of L-invariant subspaces such that the eigenvalues of $L|E^u$ and $L|E^s$ have modulus respectively >1 and <1. Let $\Pi: \mathbb{R}^n \to T^n$ be the quotient map. We make the standard identification $\mathbb{R}^n = \mathbb{R}^u \times \mathbb{R}^s$. We may assume that the product projection $\theta: \mathbb{R}^n \to \mathbb{R}^u$ restricts to an isomorphism ϕ of the unstable summand E^u onto \mathbb{R}^u . Finally, recall the definition of Hölder index: a map $g: X \to Y$ of metric spaces is Hölder continuous of index α $(0 < \alpha \le 1)$ at $x \in X$, or α -Hölder at x, if, for some constant C,

$$d_Y(g(x), g(x')) \leq Cd_X(x, x')^{\alpha}$$

for all $x' \in X$. We say that g is α -Hölder if, for some C, the inequality holds for all $x, x' \in X$. Notice that if X is compact and g is α -Hölder then g is β -Hölder for all $\beta < \alpha$.

Proving the existence part of theorem 1 is easier for n=3 than for n>3. This is because, by a theorem of Hirsch and Williams [5], invariant sets of f cannot be (n-1)-dimensional. Also, since it is well known that there are dense orbits in T^n , the only n-dimensional invariant set of f is T^n . Thus to prove that the orbit-closure of a (non-constant) path in T^3 is 1-dimensional, we have merely to prove that it is not the whole of T^3 , or, equivalently, that the orbit misses some non-empty open

subset of T^3 . We may assume that the unstable dimension u is 2 (otherwise replace f by f^{-1}). We take a small open neighbourhood N of 0 in \mathbb{R}^{μ} . Thus $\Pi \theta^{-1}(N)$ is a small open neighbourhood of the circle $\Pi \theta^{-1}(0)$ in T^3 . Now Π injectively immerses E^u densely in T^3 , and the intersection of E^u with $\Pi^{-1}\Pi\theta^{-1}(N)$ is the neighbourhood $\phi^{-1}(N+\mathbb{Z}^2)$ of the lattice $G=\phi^{-1}(\mathbb{Z}^2)$ in E^u . We start with a map $\gamma_0: I \to E^u$, where I = [0, 1] and make a sequence of perturbations to Lipschitz maps $\gamma_i : I \to E^u$, such that, for i > 0, $L^i \gamma_i(I)$ misses $\phi^{-1}(N + \mathbb{Z}^2)$. If we are careful enough, we can ensure that (γ_i) converges to a Hölder continuous map $\gamma: I \to E^u$ whose index is related to the eigenvalues of $L|E^{u}$ (this is achieved by keeping a tight control on the Lipschitz constants of γ_i). Moreover, we can arrange that for all i > 0, $L^i(\gamma)$ misses a rather smaller open neighbourhood $\phi^{-1}(N_1 + \mathbb{Z}^2)$ of G, where $0 \in N_1 \subset N$. Now $L^{i}\gamma(I) \rightarrow 0$ as $i \rightarrow -\infty$. If we start with $\gamma_{0}(I)$ sufficiently near 0, the negative half-orbit $O^-(\gamma(I))$ (that is to say $\bigcup \{L^{-i}\gamma(I): i \ge 0\}$) misses all of $\phi^{-1}(N_1 + \mathbb{Z}^2)$ except $\phi^{-1}(N_1)$. (In any case, it hits only finitely many components of the neighbourhood). Thus the orbit of $\Pi_{\gamma}(I)$ in T^3 misses the open set $\Pi_{\theta}^{-1}(N_1) \setminus \Pi_{\phi}^{-1}(N_1)$, and hence has 1-dimensional closure.

The geometrical technique of constructing maps γ_i with the required properties depends on the eigenvalues of L. For $\alpha_0 < 1$ (as in [7]) we take $\phi^{-1}(N)$ to be a diamond with axes in the directions of the two eigenspaces (the 'strongly unstable' and 'weakly unstable' directions). Starting with γ_0 mapping onto a straight line segment in the strongly unstable direction, we are able to make all perturbations in the weakly unstable direction, and to finish with γ an embedding onto the graph of a function from one eigenspace to the other. In the case $\alpha_0 = 1$ the situation is not so straightforward, since we are forced to perturb in many different directions. This time $\phi^{-1}(N)$ is a Euclidean disc (after some linear change of coordinates in E^u) and we work with maps γ_i that map I onto polyhedral paths in E^u . We carefully control the minimum segment length of the paths, in order to control the Lipschitz constants of the maps.

For the general case $n \ge 3$, we again suppose $u \ge 2$ and construct a sequence of maps $\gamma_i : I \to E^u$, tending to a limit γ , such that the orbit-closure of $\Pi \gamma(I)$ is 1-dimensional In fact the paths γ_i and γ are all constructed in a 2-dimensional L-invariant subspace V of E^u , where the eigenvalues of $L \mid V$ are related by $\log |\mu|/\log |\lambda| = \alpha_0$. The construction of γ_i is made much more complicated by our efforts to control the dimension of the orbit-closure of $\Pi \gamma(I)$. The control-technique that we use is due to Przytycki [9]. As for n = 3, the dimension of the closure of $O^-(\Pi \gamma(I))$ causes no problems, because $f^{-i}\Pi \gamma(I) \to \Pi(0)$. We try to ensure that locally the dimension of the closure of $O^+(\Pi \gamma(I))$ is at most 1 in the unstable direction and 0 in the stable direction.

We take a coordinate system in \mathbb{R}^u such that its (u-2)-coordinate planes denoted X_j , say, are transverse to $\phi(V)$. We arrange that, for each X_j , $L^i\gamma(I)$ misses some small neighbourhood of $\Pi^{-1}\Pi\theta^{-1}(X_j)$ for all i>0. This implies that the orbit-closure of $\Pi\gamma(I)$ has dimension ≤ 1 in the unstable direction, basically because the complement of the neighbourhood in E^u has an open cover of bounded mesh and order 1 (for the notions of *mesh* and *order*, see [6]).

To control dimension in the stable direction, we arrange that $L^i\gamma(I)$ misses a neighbourhood of $\Pi^{-1}\Pi(B^u(0,l)+\partial P)$, where P is a parallelepiped in E^s such that $\Pi(B^u(0,l)+\text{int }P)$ covers T^n . Here $B^u(0,l)$ is the ball with centre 0 and radius l in E^u . Roughly speaking, locally, in the stable direction, the complement of a number of copies of ∂P has an open cover of finite mesh and order 0, and this leads to the dimension of the orbit-closure of $\Pi\gamma(I)$ being locally 0 in the stable direction.

Recall that, in the n=3 case, we made $L^i\gamma_i(I)$ miss a neighbourhood of G, but that there was the possibility that later perturbations of γ_i into γ might affect this property. We got round this by making the total contribution of the later perturbations so small that the fact that $L^i\gamma_i(I)$ missed the original neighbourhood of G forced $L^{i}\gamma(I)$ to miss a rather smaller one. In the general case, the situation is more complicated because, instead of the single set G, we now have $2s + \frac{1}{2}u(u-1)$ sets that we would like to miss, namely 2s sets of the form $\Pi^{-1}\Pi(B^u(0, l) + Q_i)$, where Q_i are the (s-1)-dimensional faces of the parallelepiped P, and the $\frac{1}{2}u(u-1)$ sets $\Pi^{-1}\Pi\theta^{-1}(X_i)$. We make $2s+\frac{1}{2}u(u-1)$ perturbations in going from $L^i\gamma_{i-1}$ to $L^i\gamma_i$ each one to avoid a neighbourhood of one of the sets. Speaking very roughly, we can make the neighbourhoods as large as we like in the Q_i case, and as small as we like in the X_i case. We choose the neighbourhood-size to decrease so rapidly with j that, once we have missed the neighbourhood of a given set, all subsequent perturbations leading to $L^i \gamma_i$ and all subsequent perturbations leading from $L^i \gamma_i$ to $L^i\gamma$ are comparatively small in total, and so $L^i\gamma(I)$ misses a rather small neighbourhood of the given set. Of course there is a danger that, for example, perturbations of $L^{i+1}\gamma_i$ to miss large neighbourhoods in the course of obtaining $L^{i+1}\gamma_{i+1}$ may affect the way that $L^i \gamma_i(I)$ misses small neighbourhoods. However, this will not be the case if L is a sufficiently powerful expansion on V. We can always achieve this by replacing L by some large power of L. This is a useful trick, and we employ it on several occasions. Notice that replacing f by some power of f affects neither the ratio of logarithms of eigenvalues nor the dimension of the orbit-closure of a given subset of T^n .

We need a couple of preliminary results. The first shows how to obtain a Hölder continuous map as the limit of a sequence of Lipschitz maps.

LEMMA 2. Let X and Y be metric spaces, with X compact, and let $\gamma_i: X \to Y$ $(i \ge 0)$ be a sequence of maps converging uniformly to $\gamma: X \to Y$. Given $\lambda > \mu > 1$, A > 0 and B > 0, suppose that, for all $i \ge$ some i_0 ,

- (i) γ_i is Lipschitz with constant $A\lambda^i/\mu^i$;
- (ii) $d(\gamma, \gamma_i) \leq B/\mu^i$, where

$$d(\gamma, \delta) = \sup \{d(\gamma(x), \delta(x)) : x \in X\}.$$

Then γ is α -Hölder, with $\alpha = \log \mu / \log \lambda$.

Proof. Exercise, or see the penultimate paragraph of [7].

Recall that the norm ||L|| of a linear automorphism $L: \mathbb{R}^n \to \mathbb{R}^n$ is the sup of $\{||L(x)||: x \in \mathbb{R}^n, ||x|| = 1\}$ and the so-called 'minimum norm' m(L) is its inf. Thus $||L^{-1}|| = 1/m(L)$.

LEMMA 3. Let L be a linear automorphism of \mathbb{R}^2 with eigenvalues λ and μ satisfying $|\lambda| = |\mu| = \rho$, say. Then:

- (i) given $\sigma < \rho$, $m(L') \ge \sigma'$ for sufficiently large r;
- (ii) given $\tau > \rho$, $||L^r|| \le \tau^r$ for sufficiently large r.

Proof. Immediate from the formula $\lim_{r\to\infty} ||L^r||^{1/r}$ for the spectral radius.

3. Existence: the case $\alpha_0 < 1$

Recall that in explaining our strategy for proving the existence part of theorem 1 for general n, we said that we would need to make a sequence of perturbations to make $O^+(\gamma(I))$ miss neighbourhoods in V of a sequence of $2s + \frac{1}{2}u(u-1)$ sets (or, equivalently, $\gamma(I)$ miss the negative half-orbit of the neighbourhoods). In the case $\alpha_0 < 1$, each neighbourhood is a family of diamonds, and we shall isolate the construction of all perturbations leading to the map γ as a lemma. For the purposes of this lemma, let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map of the form

$$L(x, y) = (\lambda x, \mu y).$$

Let N be a positive integer. For $1 \le j \le N$, let $\{D_{jk}: k \in \mathbb{N}\}$ be a family of disjoint open diamonds in \mathbb{R}^2 with centre $P_{jk} = (x_{jk}, y_{jk})$, width $b_j > 0$ and height $2b_j$. That is to say,

$$D_{ik} = \{(x, y) \in \mathbb{R}^2 : 2|x - x_{ik}| + |y - y_{ik}| < b_i\}.$$

Given $\tilde{b_j}$ with $0 < \tilde{b_j} < b_j$, let \tilde{D}_{jk} be the open diamond with centre P_{jk} , width $\tilde{b_j}$ and height $2\tilde{b_j}$.

LEMMA 4. Suppose that, for all j,

- (i) $b_j \tilde{b_j} > 2 \sum_{r=j+1}^{N} b_r$;
- (ii) $\lambda > 2\mu$, and $\mu > 1$ is sufficiently large for

$$2\sum_{r=j+1}^{N}b_r+2\sum_{r=1}^{N}b_r(\mu-1)^{-1}< b_j-\tilde{b}_j;$$

(iii) the distance between two distinct diamonds D_{jk} and $D_{jk'}$ is $>4\sqrt{5}$ Nb_j. Then there exists a map $\gamma: I \to \mathbb{R}^2$, where I = [0, 1], which is α -Hölder, with

Then there exists a map $\gamma: I \ni \mathbb{R}$, where I = [0, 1], which is di-Holder, with $\alpha = \log \mu / \log \lambda$, and such that, for all j and k, $\gamma(I)$ does not intersect the negative half-orbit $O^-(\tilde{D}_{jk})$. Moreover we can always find γ of the form $\gamma(x) = (x, \delta(x))$, where $\delta: I \to \mathbb{R}$ is an α -Hölder map.

Proof. For all $i \ge 0$, let $D_{ijk} = L^{-i}(D_{jk})$ and $\tilde{D}_{ijk} = L^{-i}(\tilde{D}_{jk})$. Then D_{ijk} is an open diamond with centre

$$L^{-i}(P_{jk}) = P_{ijk} = (x_{ijk}, y_{ijk}),$$

say, width b_j/λ^i and height $2b_j/\mu^i$. Similarly for \tilde{D}_{ijk} . Let $\rho: I \to \mathbb{R}^2$ be any map of the form

$$\rho(t) = (t, \sigma(t)),$$

where $\sigma: I \to \mathbb{R}$ is Lipschitz. Notice:

Remark 1. If Lip $\sigma \le 2\lambda^i/\mu^i$ and if $\rho(I)$ has non-empty intersection with D_{ijk} then either (a) $x_{ijk} \in I$ and $\rho(x_{ijk}) \in D_{ijk}$, or (b) $x_{ijk} > 1$ and $\rho(1) \in D_{ijk}$, or (c) $x_{ijk} < 0$ and $\rho(0) \in D_{ijk}$.

Remark 2. If Lip $\sigma \le 2\lambda^i/\mu^i$ and if $\rho(I)$ has non-empty intersection with two distinct diamonds D_{ijk} and $D_{ijk'}$ then

$$|x_{iik} - x_{iik'}| \ge 4Nb_i/\lambda^i$$
.

Geometrically, since the edges of the diamond D_{ijk} have slope $2\lambda^i/\mu^i$, if $\rho(I)$ has secant slope $\leq 2\lambda^i/\mu^i$ and enters D_{ijk} , it either crosses the vertical axis of D_{ijk} or terminates short of this axis. This gives remark 1. For i=0, remark 2 is clear from (iii), since ρ has Lipschitz constant $\sqrt{5}$. Mapping by L^{-i} gives the general statement. We now prove the following:

SUBLEMMA 5. For all $i \ge 0$ and $0 \le j \le N$, there exists a map $\gamma_{ij}: I \to \mathbb{R}^2$ (with $\gamma_{iN} = \gamma_{(i+1)0}$) of the form $\gamma_{ij}(t) = (t, \delta_{ij}(t))$ such that:

- (i) δ_{ij} is Lipschitz with constant $(1+j/N)\lambda^i/\mu^i$ for all i, j;
- (ii) $\gamma_{ii}(I) \cap D_{iik}$ is empty for all i, k and j with $1 \le j \le N$;
- (iii) $0 \le \delta_{ii}(t) \delta_{i(i-1)}(t) \le 2b_i/\mu^i$ for all $t \in I$, i and j with $1 \le j \le N$.

Proof. The proof is by induction on the pair (i, j), ordered lexicographically. To start the induction, define $\delta_{00}(t) = 0$. Now suppose that $\delta_{i(j-1)}$ is defined, for some $i \ge 0$, $1 \le j \le N$. Let

$$S = \{k \in \mathbb{N}: \, \gamma_{i(i-1)}(I) \cap D_{iik} \neq \emptyset\}.$$

By remark 2, if $k, k' \in S$ with $k \neq k'$ then $|x_{ijk} - x_{ijk'}| \ge 4Nb_j/\lambda^i$. We obtain γ_{ij} from $\gamma_{i(j-1)}$ by a linear perturbation upwards on each interval

$$[x_{ijk}-2Nb_j/\lambda^i, x_{ijk}+2Nb_j/\lambda^i], k \in S,$$

the perturbation being just large enough to avoid D_{ijk} . To be precise, let $\tau_k(t)$ denote the y-coordinate of the point at which the line x=t intersects the top edge of D_{ijk} . We define the perturbation $\delta_{ij}(t) - \delta_{i(j-1)}(t)$ to be 0 if $|t - x_{ijk}| \ge 2Nb_j/\lambda^i$ for all $k \in S$, and to be

$$(1-w)(\tau_k(x_{ijk})-\delta_{i(j-1)}(x_{ijk}))$$

if $|t-x_{ijk}|=2wNb_j/\lambda^i$ for $w \le 1$, where $k \in S$ satisfies (a) of remark 1. We also have to allow for $\gamma_{i(j-1)}(I)$ terminating in D_{ijk} short of its vertical axis, as in (b) or (c) of remark 1. In these cases, we define $\delta_{ij}(t)-\delta_{i(j-1)}(t)$ to be respectively

$$(1-w)(\tau_k(1)-\delta_{i(j-1)}(1)),$$

where $1 - t = w(1 - x_{ijk} + 2Nb_j/\lambda^i)$ for $0 \le w \le 1$, and

$$(1-w)(\tau_k(0)-\delta_{i(j-1)}(0)),$$

where $t = w(x_{ijk} + 2Nb_j/\lambda^i)$ for $0 \le w \le 1$.

In the three cases (a), (b) and (c), (1-w) multiplies a positive number which is less than the height $2b_j/\mu^i$ of D_{ijk} , and so property (iii) of the sublemma holds. Also on each linear portion of $\gamma_{ij} - \gamma_{i(j-1)}$ there is a vertical increment lying between $-2b_j/\mu^i$ and $2b_j/\mu^i$ in a horizontal distance of $2Nb_j/\lambda^i$, and so $\gamma_{ij} - \gamma_{i(j-1)}$ is Lipschitz with constant $\lambda^i/N\mu^i$. We deduce (i) for γ_{ij} , using (i) for $\gamma_{i(j-1)}$. (N.b. If j=N, this also gives (i) for $\delta_{(i+1)0}$, since $\lambda/\mu>2$).

Finally, we have to check that our perturbation of $\gamma_{i(j-1)}(I)$ to avoid D_{ijk} does not produce an intersection of $\gamma_{ij}(I)$ with some other D_{ijk} , $k' \notin S$. But, if this were

the case, translating $\gamma_{ij}(I)$ slightly downwards would give it intersections with both D_{ijk} and $D_{ijk'}$ in a horizontal distance $<2Nb_j/\lambda^i$, which contradicts remark 2. This completes the proof of the sublemma.

To prove lemma 4, we show that (γ_{ij}) converges to a limit γ which has the required properties. By (iii) of the sublemma, for all $(i', j') \ge (i, j)$,

$$0 \leq \delta_{i'j'}(t) - \delta_{ij}(t) \leq \left(\sum_{r=j+1}^{N} b_r + \left(\sum_{r=1}^{N} b_r\right) \sum_{m=1}^{\infty} 1/\mu^m\right) 2/\mu^i$$
$$\leq \left(\sum_{r=1}^{N} b_r\right) \left(\sum_{m=0}^{\infty} 1/\mu^m\right) 2/\mu^i,$$

which $\rightarrow 0$ as $i \rightarrow \infty$. Thus the limit δ of (δ_{ii}) exists and satisfies

$$0 \le \delta(t) - \delta_{ij}(t) \le \left(\sum_{r=i+1}^{N} b_r + \sum_{r=1}^{N} b_r (\mu - 1)^{-1}\right) 2/\mu^{i}.$$
 (1)

We write $\gamma(t) = (t, \delta(t))$. By (ii) of the sublemma, $\gamma_{ij}(I) \cap D_{ijk}$ is empty. The minimum vertical distance from \tilde{D}_{ijk} to the complement of D_{ijk} is $(b_j - \tilde{b}_j)/\mu^i$. By (1) and by hypothesis (ii) of the lemma, this is greater than the maximum vertical distance from $\gamma_{ij}(I)$ to $\gamma(I)$. Hence $\gamma(I) \cap \tilde{D}_{ijk}$ is empty. Finally, if we write $\delta_i = \delta_{iN}$ then δ is the limit of (δ_i) , δ_i is Lipschitz with constant $2\lambda^i/\mu^i$ and

$$\|\delta_i - \delta\| \le 2 \sum_{r=1}^{N} b_r (\mu - 1)^{-1} / \mu^i$$
.

Thus, by lemma 2, δ is α -Hölder. Hence γ is α -Hölder. This completes the proof of lemma 4.

We now prove the existence part of theorem 1 in the $\alpha_0 < 1$ case.

THEOREM 6. Let $f: T^n \to T^n$ and α_0 be as in theorem 1. If $\alpha_0 < 1$, then there is an embedded path that is α_0 -Hölder and has 1-dimensional orbit-closure.

Proof. We use the notation of the first paragraph of § 2. Since $\alpha_0 < 1$, the eigenvalues of f are all real. Let λ and μ be eigenvalues with $\alpha_0 = \log |\mu|/\log |\lambda|$. By taking a suitable (possibly negative) power of f, we may assume that all eigenvalues of f are positive and that $\lambda > \mu > 1$. Let V be the 2-dimensional eigenspace corresponding to λ and μ , and let $W = \phi(V)$. We may assume, after conjugating with an automorphism of \mathbb{R}^u with matrix in $GL_u(\mathbb{Z})$, that W is transverse to each coordinate (u-2)-plane of \mathbb{R}^u . (After possibly reordering the original coordinates of \mathbb{R}^u , we can choose generators of W of the form $(1,0,a_3,\ldots,a_u)$ and $(0,1,b_3,\ldots,b_u)$. If e_1,\ldots,e_u is the standard basis of \mathbb{R}^u , we can pick a new basis $(1,0,m_3,\ldots,m_u)$, $(0,1,n_3,\ldots,n_u)$, e_3,\ldots,e_u , where m_r and n_r are integers such that $m_r \neq a_n$, $n_r \neq b_n$ and

$$(m_r - a_r)(n_s - b_s) \neq (m_s - a_s)(n_r - b_r)$$

for all r, s with $3 \le r \le u$, $3 \le s \le u$ and $r \ne s$. The coordinate planes with respect to this new basis have the required transversality.)

Consider \mathbb{R}^u as a cubical complex C with the integer lattice \mathbb{Z}^u as vertices. Let K be the complement of the (u-2)-skeleton of this complex, and let \mathcal{U} be the

open cover of K consisting of all open star neighbourhoods of barycentres of (u-1)and u-dimensional cubes of C in the barycentric first-derived simplicial complex
of C. Thus \mathcal{U} is a cover of mesh \sqrt{u} and order 1.

It is convenient to identify the subspace V with the plane \mathbb{R}^2 by an isomorphism such that the induced map $L: \mathbb{R}^2 \to \mathbb{R}^2$ has the form

$$L(x, y) = (\lambda x, \mu y),$$

and, renorming \mathbb{R}^u if necessary, we can assume that the identification is an isometry. Following Przytycki [9], we construct an s-dimensional parallelepiped P in E^s , with a vertex at 0 and (s-1)-dimensional faces Q_j , $1 \le j \le 2s$, such that the faces through 0 (given by $j = 1, \ldots, s$) generate subspaces Y_j of E^s with the property that

$$\Pi^{-1}\Pi(E^{u}) \cap Y_{i} = \{0\}. \tag{2}$$

(We can make such a construction because $\Pi^{-1}\Pi(E^u) \cap E^s$ is countable.) Let P have diameter d. Let $B^u(0, l)$ be the open ball in E^u with centre 0 and radius l, where l is large enough for Π to map the vector sum $B^u(0, l/2) + \text{int } P$ onto T^n . (This is possible since $\Pi(E^u)$ is dense in T^n .) For $1 \le j \le 2s$, let

$$b_j = 3^{2s-j} \cdot 2\sqrt{5} \ l$$
 and $\tilde{b}_j = 3^{2s-j}\sqrt{5} \ l$.

For $\varepsilon_j > 0$, let N_j^s be the open ε_j -neighbourhood of Q_j in E^s . For each point $q \in E^u$ such that $\Pi(q) \in \Pi(N_j^s)$ and $(q + B^u(0, l)) \cap V \neq \emptyset$, consider the centroid p of the open disc $(q + B^u(0, l)) \cap V$. Enumerate all such q and p as (q_{jk}) and (p_{jk}) , $k \in \mathbb{N}$. Notice that the diamond \tilde{D}_{jk} in \mathbb{R}^2 (= V), defined earlier in this section, contains the ball $(q_{jk} + B^u(0, l)) \cap V$, since the latter has radius $\leq l$. We choose ε_j so small that, for all $k \neq k'$, the distance from q_{jk} to $q_{jk'}$ is greater than $4(1 + \sqrt{5} N)b_j$, where $N = 2s + \frac{1}{2}u(u - 1)$. (It follows from (2) that we can do this.) The inequality guarantees that the diamonds D_{jk} and $D_{jk'}$ are disjoint, and that the distance between them is greater than $4\sqrt{5} Nb_j$.

Let X_j $(j=2s+1,\ldots,N)$ be the coordinate (u-2)-planes in \mathbb{R}^u . Then $\Pi^{-1}\Pi\theta^{-1}(X_j)\cap V$ is, by the transversality assumption, a subgroup of V isomorphic to \mathbb{Z}^2 , and we enumerate its points as (p_{jk}) , $k\in\mathbb{N}$. We pick, successively, positive numbers b_{2s+1},\ldots,b_N satisfying $b_j\leq b_{j-1}/3$ and so small that the distance between distinct diamonds D_{jk} and D_{jk} is at least $4\sqrt{5}$ Nb_{j} . Let $\tilde{b}_j=b_j/2$.

We have now arranged that conditions (i) and (iii) of lemma 4 hold for all j, k with $1 \le j \le N$, $k \in \mathbb{N}$. Replacing L by some positive power if necessary, we can assume that (ii) holds as well. (Since the power has the same E^s , E^u and V as L, this does not invalidate any of our previous work.) Thus, by lemma 4, there exists an α_0 -Hölder map $\gamma: I \to V$ such that $\gamma(I) \cap O^-(\tilde{D}_{jk})$ is empty for all j, k. Moreover γ embeds I as the graph of an α_0 -Hölder map $\delta: I \to \mathbb{R}$.

We must now prove that the orbit-closure of $\Pi\gamma(I)$ is 1-dimensional. First note that, since $\gamma(I)$ is clearly 1-dimensional, so is the orbit of $\Pi\gamma(I)$. Since $f^n\Pi\gamma(t) \to \Pi(0)$ uniformly on I as $n \to -\infty$, the negative half-orbit $O^-(\Pi\gamma(I))$ has 1-dimensional closure. Thus it suffices to prove that $O^+(\Pi\gamma(I))$ has 1-dimensional closure.

Take an open ε -neighbourhood N^u of $X = \bigcup \{X_j : 2s + 1 \le j \le N\}$ in \mathbb{R}^u , where $\varepsilon > 0$ is small enough for $\Pi^{-1}\Pi\theta^{-1}(N^u) \cap V$ to be contained in

 $\bigcup \{\tilde{D}_{jk}: 2s+1 \le j \le N, k \in \mathbb{N}\}$. Thus $O^+(\gamma(I))$ is disjoint from $\Pi^{-1}\Pi \theta^{-1}(N^u)$. Take also an open ε_1 -neighbourhood N_1^u of X in \mathbb{R}^u , with $0 < \varepsilon_1 < \varepsilon$, and choose $\eta > 0$ so small that

$$\theta^{-1}(N_1^u) + B^s \subset \theta^{-1}(N^u),$$

where $B^s = B^s(0, \eta)$.

As B^u ranges over all open balls of radius l/4 in E^u , $\{\Pi(B): B = B^u + B^s\}$ gives an open cover of T^n . Thus, to show that $O^+(\Pi\gamma(I))$ has 1-dimensional closure in T^n , it suffices to show that the closure H of $O^+(\Pi^{-1}\Pi\gamma(I)) \cap B$ has dimension ≤ 1 for all B. We do this by showing that H is contained in $F^u + F^s$, where F^u and F^s are closed subsets of B^u and B^s of dimension at most 1 and 0 respectively.

By construction, $O^+(\Pi^{-1}\Pi\gamma(I))$ is disjoint from $\Pi^{-1}\Pi\theta^{-1}(N_1^u)+B^s$ and hence from the negative half-orbit of this set. This negative half-orbit contains $O^-(\Pi^{-1}\Pi\theta^{-1}(N_1^u)\cap E^u)+B^s$. Now the complement of $\Pi^{-1}\Pi\theta^{-1}(N_1^u)\cap E^u$ is a closed set contained in $\phi^{-1}(K)$. Hence the complement of its negative half-orbit in E^u is a closed set contained in $\bigcap \{L^{-i}\phi^{-1}(K): i\geq 0\}$, and hence covered by $L^{-i}\phi^{-1}(\mathcal{U})$ for all $i\geq 0$. Thus its intersection with B^u is a subset F^u of dimension ≤ 1 . We have $H \subset F^u + B^s$.

For each non-empty component of $\Pi^{-1}\Pi L^i(B^u(0, l/2) + N_j^s) \cap B$, where $i \ge 0$ and $1 \le j \le 2s$, remove the corresponding components of $\Pi^{-1}\Pi L^i(B^u(0, l) + N_j^s) \cap B$ from B. This leaves a set $B^u + F_i^s$, where F_i^s is closed in B^s . The connected components of F_i^s give an open cover of F_i^s of order 0. The cover has mesh $\nu^i d$, where ν is the largest eigenvalue of $L \mid E^s$, because each member of the cover is contained in a set isometric to $L^i(\text{int }P)$. Since the mesh tends to zero as $i \to \infty$, the closed set

$$F^s = \bigcap \{F_i^s : i \ge 0\}$$

has dimension ≤ 0 . Moreover $O^+(\Pi^{-1}\Pi\gamma(I))$ is contained in B^u+F^s , and hence so is H. Finally, since E^u+E^s is a direct sum, $H \subseteq F^u+F^s$, as asserted. This completes the proof of theorem 6.

4. Existence: the case $\alpha_0 = 1$

We begin with a description of the type of perturbation that we employ in the $\alpha_0 = 1$ case. We call a continuous map $\delta: S \to \mathbb{R}^2$, where S is a straight line segment, a piecewise linear piecewise embedding (PLPE), if, for some subdivision of S, each subsegment is mapped linearly by δ onto a straight line segment in \mathbb{R}^2 . The minimum segment length of δ is the minimum of the lengths $\delta(S_k)$ for all subsegments S_k of the subdivision.

LEMMA 7. Let (p_k) , $k \in \mathbb{N}$, be a sequence of distinct points in \mathbb{R}^2 , such that the minimum distance h between points of the sequence is positive. Let a, b, ω and $m = \min\{a, h/3\}$ be positive numbers satisfying $4b \le m$, $6b \le m\omega$. For any PLPE $\delta_0: I \to \mathbb{R}^2$ with minimum segment length $\ge a$, there is a PLPE $\delta_1: I \to \mathbb{R}^2$ with minimum segment length $\ge b$, such that:

- (i) Lip $\delta_1 \leq (1+\omega)$ Lip δ_0 ;
- (ii) $\|\delta_1 \delta_0\| \leq 6b$;
- (iii) $\delta_1(I) \cap B(p_k, b)$ is empty for all $k \in \mathbb{N}$.

Proof. The map δ_1 is δ_0 composed with a PLPE $\sigma: \delta_0(I) \to \mathbb{R}^2$. It is enough to describe σ on one segment S of $\delta_0(I)$. For each non-empty set $S \cap B(p_k, b)$, choose any subsegment S_k of S of length m that contains the set. Two such subsegments S_k and $S_{k'}$, $k \neq k'$, do not overlap, for this would imply

$$||p_k - p_{k'}|| \le 2m + 2b \le 5m/2 \le 5h/6.$$

We let σ be the identity off the subsegments S_k , and show how to define σ on S_k . Let $S_k = [q_1, q_2]$. We distinguish three cases:

- (1) one end-point, say q_1 , in $B(p_k, 2b)$ but not in $B(p_k, b)$;
- (2) one end-point, say q_1 , in $B(p_k, b)$;
- (3) neither end-point in $B(p_k, 2b)$.

(Notice that we cannot have both end-points in $B(p_k, 2b)$, since $m \ge 4b$.)

Case (1). Let S_k intersect the boundary $\partial B(p_k, b)$ in points q_3 and q_4 , with q_3 nearer to q_1 . Let q_5 be the mid-point of the shorter arc of $\partial B(p_k, b)$ joining q_3 to q_4 . Let q_6 be a point distant b from q_1 and q_3 such that $[q_1, q_6]$ and $[q_6, q_3]$ do not intersect $B(p_k, b)$. Let q_7 be similarly related to q_3 and q_5 , and let q_8 be similarly related to q_5 and q_4 (see figure 1). Define σ on S_k to be the PLPE which increases length by

FIGURE 1

a constant factor and maps S_k onto the polyhedral path $q_1q_6q_3q_7q_5q_8q_4q_2$. Clearly σ has Lipschitz constant at most (m+6b)/m, which is at most $1+\omega$. If $q \in [q_4, q_2]$ then the polygonal path distance from q to $\sigma(q)$ along $\sigma(S_k)$ is at most 6b. On the other hand, it is easy to see that the convex hull of $\{q_1, q_6, q_7, q_8, q_4\}$ has diameter at most 6b, so

$$||q-\sigma(q)|| \le 6b$$
 for $q \notin [q_4, q_2]$.

Thus all three conditions of the lemma are satisfied in this case.

Case (3). We define points as in case 1, except that we no longer need a point q_6 . This time σ maps S onto $q_1q_3q_7q_5q_8q_4q_2$.

Case (2). Let S intersect $\partial B(p_k, b)$ in q_3 . If q_1 , which is an end-point of S, is also an end-point of an adjacent segment T of $\gamma(I)$, let T intersect $\partial B(p_k, b)$ in q_4 , and let q_5 be the mid-point of the shorter arc of $\partial B(p_k, b)$ joining q_3 to q_4 . If q_1 is an endpoint of $\gamma(I)$, let q_5 be an arbitrary point of $\partial B(p_k, b)$ near q_3 . Let q_6 be the point distant b from q_3 and q_5 such that $[q_3, q_6]$ and $[q_6, q_5]$ do not intersect $B(p_k, b)$. (See figure 2). We define σ to map S_k onto the polygonal path $q_5q_6q_3q_2$. Of course σ will also map T onto a polygonal path ending at q_5 . Similar estimates to those in case 1 again give conditions (i) and (ii).

We now prove an analogue of lemma 4.-As before, (p_{jk}) , $k \in \mathbb{N}$, $1 \le j \le N$, are points of \mathbb{R}^2 . For fixed j, the minimum distance between points of the sequence (p_{jk}) is the positive number h_j . This time, D_{jk} and \tilde{D}_{jk} are balls $B(p_{jk}, b_j)$ and $B(p_{jk}, \tilde{b_j})$ respectively, for some $b_j > \tilde{b_j} > 0$. For the purposes of the next lemma L is a linear automorphism of \mathbb{R}^2 .

LEMMA 8. Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ have eigenvalues λ , μ with $|\lambda| = |\mu| > 1$. Let τ be a number with $|\lambda| \le ||L|| < \tau < |\lambda|^2$ and let $\omega > 0$ satisfy $(1 + \omega)^N < \tau / ||L||$ and $\omega < 1$. Suppose that, for all j:

- (i) $b_j \leq \omega b_{j-1}/6$;
- (ii) m(L) is large enough for $b_1 \le m(L)\omega b_N/6$;
- (iii) ω is small enough for $\omega b_i (1 \omega/6)^{-1} < b_i \tilde{b}_i$;
- (iv) m(L) is large enough for

$$\omega b_j (1-\omega/6)^{-1} + 6b_1 (1-\omega/6)^{-1} (m(L)-1)^{-1} < b_j - \tilde{b_j};$$

(v) $h_i \ge 18b_i/\omega$.

Then there is a map $\gamma: I \to \mathbb{R}^2$, where I = [0, 1], which is Hölder constant with index $2 \log |\lambda|/\log \tau - 1$ and such that, for all j, k, $\gamma(I)$ does not intersect the negative half-orbit $O^-(\tilde{D}_{ik})$.

Proof. As before, we prove a sublemma by induction on the pair (i, j).

SUBLEMMA 9. For all $i \ge 0$ and $0 \le j \le N$, there exists a map $\gamma_{ij}: I \to \mathbb{R}^2$ (with $\gamma_{iN} = \gamma_{(i+1)0}$) such that:

- (i) $L^i \gamma_{ij}$ is Lipschitz with constant $(6b_1/\omega)\tau^i(1+\omega)^j$ for all i, j;
- (ii) $L^i \gamma_{ij}(I) \cap D_{ik}$ is empty for all i, j, k with $1 \le j \le N$;
- (iii) $||L^i\gamma_{ii}-L^i\gamma_{i(i-1)}|| \leq 6b_i$ for all i, j with $1\leq j\leq N$;
- (iv) $L^i \gamma_{ij}$ has minimum segment length $\geq b_i$ for all i, j with $1 \leq j \leq N$.

Proof. Notice that (i) for $L^i\gamma_{iN}$ implies (i) for $L^{i+1}\gamma_{(i+1)0}$, by the inequality $||L||(1+\omega)^N < \tau$. We start with γ_{00} mapping I linearly onto a straight line segment of length $6b_1/\omega$.

Suppose that $\gamma_{i(j-1)}$ is defined and satisfies (i)-(iv) of the sublemma. We apply lemma 7 with $\delta_0 = L^i \gamma_{i(j-1)}$, $b = b_j$, $h = h_j$ and $p_k = p_{jk}$. For j > 1, the minimum segment length a of δ_0 is at least $6b/\omega$ by property (iv) of the sublemma and (i) of lemma 8. For j = 1, a is the minimum segment length of $L^i \gamma_{(i-1)N}$, and so is at least $m(L)b_N$ by (iv) of the sublemma. This is at least $6b_1/\omega$ by (ii) of lemma 8. Combining these estimates with (v) of lemma 8 gives the inequality $6b \le m\omega$ for lemma 7, which in turn gives $4b \le m$, since $\omega \le 1$. We define γ_{ij} by putting $\delta_1 = L^i \gamma_{ij}$. Properties (i)-(iv) of the sublemma for γ_{ij} are immediate from property (i) for $\gamma_{i(j-1)}$ and the conclusions of lemma 7.

We now show that (γ_{ij}) converges to a limit γ having the properties stated in lemma 9. Summing contributions, using (iii) of the sublemma, we have that, for all (i',j') > (i,j),

$$||L^{i}\gamma_{i'j'} - L^{i}\gamma_{ij}|| \leq 6\left(\sum_{r=j+1}^{N} b_{r} + \left(\sum_{s=1}^{i'-i-1} ||L^{-s}||\right)\sum_{r=1}^{N} b_{r} + ||L^{i-i'}||\sum_{s=1}^{j'-1} b_{r}\right),$$

whence, using (i) of lemma 8 and the fact that $||L^{-1}|| = 1/m(L) = ||L||/|\lambda|^2 < 1$,

$$||L^{i}\gamma_{i'i'}-L^{i}\gamma_{ij}|| \leq b_{i}\omega(1-\omega/6)^{-1}+6b_{1}(1-\omega/6)^{-1}(m(L)-1)^{-1}$$

and

$$\|\gamma_{i'j'} - \gamma_{ij}\| \le (b_j \omega (1 - \omega/6)^{-1} + 6b_1 (1 - \omega/6)^{-1} (m(L) - 1)^{-1}) m(L)^{-i}.$$

Thus (γ_{ij}) converges, to a limit γ , say. Note that

$$||L^{i}\gamma - L^{i}\gamma_{ij}|| \le b_{i}\omega(1 - \omega/6)^{-1} + 6b_{1}(1 - \omega/6)^{-1}(m(L) - 1)^{-1},$$
(3)

which, together with (iv) of lemma 9 and (ii) of the sublemma, implies that $L^i\gamma(I)\cap \tilde{D}_{jk}$ is empty for all i, j, k with $i\geq 0, 1\leq j\leq N$ and $k\in\mathbb{N}$.

Now γ is the limit of (γ_i) where $\gamma_i = \gamma_{iN}$. By (i) of the sublemma, γ_i is Lipschitz with constant $(6b_1/\omega)(1+\omega)^N \tau^i m(L)^{-i}$. Also, by (3),

$$\|\gamma - \gamma_i\| \le (b_N \omega (1 - \omega/6)^{-1} + 6b_1 (1 - \omega/6)^{-1} (m(L) - 1)^{-1}) m(L)^{-i}.$$

Thus, by lemma 2, γ is Hölder continuous with index $\log m(L)/\log \tau$. But $m(L) > |\lambda|^2/\tau > 1$, and so γ has index $\log (|\lambda|^2/\tau)/\log \tau$, as required. This completes the proof of lemma 8.

The existence part of theorem 1 in the $\alpha_0 = 1$ case is as follows:

THEOREM 10. Let $f: T^n \to T^n$ and α_0 be as in theorem 1. If $\alpha_0 = 1$, then, for any $\alpha < 1$, there is an α -Hölder path in T^n with 1-dimensional orbit-closure.

Proof. Let λ and μ be eigenvalues of f with $|\lambda| = |\mu|$. Replacing f by f^{-1} if necessary, we can assume $|\lambda| > 1$. Given $\alpha < 1$, choose a number τ , with $|\lambda| < \tau < |\lambda|^2$, near enough to $|\lambda|$ for $2 \log |\lambda|/\log \tau - 1$ to be greater than α . As in the proof of theorem 6, we let V be a two-dimensional subspace of \mathbb{R}^u such that L|V has λ and μ as eigenvalues. We identify V with \mathbb{R}^2 by some linear isomorphism. By lemma 3, if we replace f (and τ) by some sufficiently large power we can assume that $||L|V|| < \tau$. Now choose $\omega > 0$ satisfying $(1+\omega)^N < \tau/||L|V||$, where $N = 2s + \frac{1}{2}u(u-1)$. We also take $\omega < \frac{6}{13}$, noting that for such values of ω , condition (iii) of lemma 8 holds for all j, when $b_j = \tilde{b_j}/2$.

We construct points p_{jk} , $1 \le j \le N$, $k \in \mathbb{N}$ in V, exactly as in the proof of theorem 6. For $1 \le j \le 2s$, we define

$$b_j = (6/\omega)^{2s-j} 2l$$
 and $\tilde{b_j} = (6/\omega)^{2s-j} l$.

As in theorem 6, we have numbers ε_j at our disposal, and we choose them so small that the distance from p_{jk} to $p_{jk'}$ for $k \neq k'$ is at least $18b_j/\omega$. Next we successively choose b_{2s+1}, \ldots, b_N positive but so small that, for $2s+1 \leq j \leq N$, $b_j \leq \omega b_{j-1}/6$ and the distance from p_{jk} to $p_{jk'}$, $k \neq k'$, is at least $18b_j/\omega$. Let $\tilde{b}_j = b_j/2$. For $1 \leq j \leq N$, let D_{jk} and \tilde{D}_{jk} be the open balls in V with centre p_{jk} and radius b_j and \tilde{b}_j respectively. Finally, after replacing f by some power if necessary, we can assume, writing $L \mid V$ as $L: \mathbb{R}^2 \to \mathbb{R}^2$, that m(L) is large enough for conditions (ii) and (iv) of lemma 8 to hold. Then the map $\gamma: I \to \mathbb{R}^2 = V$ given by lemma 8 is α -Hölder, and the orbit of $\Pi \gamma$ is 1-dimensional by the argument of the proof of theorem 6.

5. Non-existence

The following result implies the non-existence part of theorem 1(i).

THEOREM 11. Let $f: T^n \to T^n$ be a hyperbolic automorphism with $\alpha_0 < 1$. Let $\delta: I \to T^n$ be a non-constant path where I = [0, 1]. If, for some $\alpha > \alpha_0$, δ is α -Hölder at every point of I, then the orbit-closure of $\delta(I)$ contains a coset of an f-invariant toral subgroup of T^n (and so is at least 2-dimensional).

Thus if δ is nowhere locally constant, and if $\delta(I)$ has 1-dimensional orbit closure, then for any given $\alpha > \alpha_0$, the set of points at which δ is not α -Hölder is dense in I.

We begin with a piece of undergraduate analysis. The reason that α -Hölder maps $g: I \to \mathbb{R}$ are not important for $\alpha > 1$ is that they are trivially constant, being differentiable with zero derivative. We generalise this remark, as follows.

LEMMA 12. Let k > 1, and let $g: I \to \mathbb{R}$ be continuous. Suppose that, for all $t_0 \in [0, 1)$, there is some sequence (t_n) , decreasing to t_0 , such that:

$$|g(t_n)-g(t_0)| \leq (t_n-t_0)^k$$
.

Then g is constant.

Proof. As we have remarked,

$$|g(t')-g(t)| \leq |t'-t|^k$$

for all t, $t' \in I$ implies that g is constant. Suppose that g is not constant, so that, for some a, $b \in I$, with a < b say,

$$|g(b)-g(a)|>(b-a)^k$$
.

By continuity of g at b, there exists d > 0 such that

$$|g(t)-g(a)|>(t-a)^k$$

for all $t \in I$ with $|t-b| \le d$. Now consider the set X of $t \in I$ with $t \ge a$ such that, for some $t \ge 0$ there exists a chain

$$a = \tau_0 < \tau_1 < \cdots < \tau_r = t$$

with

$$\tau_i - \tau_{i-1} < d$$
 and $|g(\tau_i) - g(a)| \le (\tau_i - a)^k$

for $1 \le i \le r$. Then X is non-empty (it contains a), and it is easy to see that, if $\sup X = \xi$, then $\xi \in X$ and hence that $\xi = 1$ (using the sequence decreasing to ξ to obtain a contradiction if $\xi < 1$). But some point of the chain (τ_i) joining a to 1 lies in the d-neighbourhood of b, which gives a contradiction. Hence g is constant.

For simplicity, we first give the proof of theorem 1 in the case n = 3. Let $\Pi: \mathbb{R}^3 \to T^3 = \mathbb{R}^3/\mathbb{Z}^3$ be the quotient map, and let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be the hyperbolic linear automorphism covering f. The condition $\alpha_0 < 1$ implies that the eigenvalues λ , μ , ν of f are real and we may assume, replacing f by some power if necessary, that they satisfy

$$\lambda > \mu > 1 > \nu > 0$$

so that $\alpha_0 = \log \mu/\log \lambda$. Let U be open in T^3 , and let $V = \Pi^{-1}(U)$. Let δ lift to $\gamma: I \to \mathbb{R}^3$, where γ is α -Hölder at every point of I. We must show that, for some $r \in \mathbb{Z}$, $f^r \delta(I)$ intersects U, or, equivalently, $\delta(I)$ intersects $f^{-r}(U)$, or, equivalently, $\gamma(I)$ intersects $L^{-r}(V)$.

For convenience we work with coordinates $x = (x_1, x_2, x_3)$ in \mathbb{R}^3 with respect to a basis v_1 , v_2 , v_3 of eigenvectors of L corresponding to the eigenvalues λ , μ , ν in that order. Given $p \in \mathbb{R}^3$, let $C_i(p, l, a)$ be the solid circular cylinder with centre p, radius a, and axis in the v_i -direction of length 2l. That is to say,

$$C_i(p, l, a) = \{x \in \mathbb{R}^3 : |x_i - p_i| \le l, (x_j - p_j)^2 + (x_k - p_k)^2 \le a^2, j \ne i \ne k \ne j\}.$$

LEMMA 13. There exists a > 0 and l > 0 such that, for all l and for all $p \in \mathbb{R}^3$, any path in $C_i(p, l, a)$ running its length (i.e. passing through a point of the boundary disc $x_i = p_i - l$ and a point of $x_i = p_i + l$) intersects V.

Proof. Let $p \in \mathbb{R}^3$. The x_i -axis maps under Π to a subgroup of T^3 that is dense in T^3 . (Its closure is an f-invariant total subgroup G_i . Since f is hyperbolic, dim $G_i > 1$ and so by theorem 9 of [1], $G_i = T^3$.) Hence so does the parallel line through p. Thus, for some l > 0, the segment $|x_i - p_i| \le l$ of this line intersects V. Since V is open, it contains, for some small a > 0, some interior cross-sectional disc $x_i = c_i$ of the cylinder $C_i(p, l, a)$. Thus the property holds for $C_i(p, l, a)$, and also for $C_i(q, l, a)$,

for $q \in \mathbb{R}^3$ sufficiently near p, by openness of V. Using compactness of the unit cube (with respect to the original coordinates in \mathbb{R}^3), we obtain a and l for which the property holds uniformly for $C_i(p, l, a)$ for all p in the unit cube, and hence, by covering translations, for all $p \in \mathbb{R}^3$.

COROLLARY 14. Let l and a be as in lemma 3. For all $p \in \mathbb{R}^3$ and for all r > 0, any path in $C_1(p, l\lambda^{-r}, a\mu^{-r})$ running its length intersects $L^{-r}(V)$.

Proof. Under L', $C_1(p, l\lambda^{-r}, a\mu^{-r})$ maps onto an elliptic cylinder contained in, and with the same axis as, $C_1(L'(p), l, a)$. Thus a curve running the length of $C_1(p, l\lambda^{-r}, a\mu^{-r})$ maps to a curve running the length of $C_1(L'(p), l, a)$. By lemma 13, the latter curve intersects V.

Returning to the proof of theorem 11, choose $\beta \in \mathbb{R}$ with $\alpha > \beta > \log \mu / \log \lambda$, and put $\varepsilon = \beta - (\log \mu / \log \lambda)$. Write $\gamma = (\gamma_1, \gamma_2, \gamma_3)$. We first suppose that γ_1 is not the constant function. Then, by lemma 12, for some subinterval $J = [t_0, t_0 + c], c > 0$, of I,

$$|\gamma_1(t)-\gamma_1(t_0)| \geq (t-t_0)^{\alpha/\beta}$$

for all $t \in J$. We may assume without loss of generality that $\gamma_1(t) > \gamma_1(t_0)$ for $t > t_0$ in J. Choose t > 0 large enough for

$$2l\lambda^{-r} \le c^{\alpha/\beta}$$
 and $A(2l)^{\beta}\lambda^{-r\epsilon} \le a$,

where A is the Hölder constant of γ at t_0 . (That is to say,

$$\|\gamma(t)-\gamma(t_0)\| \leq A|t-t_0|^{\alpha},$$

where $\| \|$ is the Euclidean norm in the (x_1, x_2, x_3) -coordinate system.) Thus

$$\gamma_1(t_0+c)-\gamma_1(t_0)\geq 2l\lambda^{-r},$$

and by making c smaller if necessary, we can assume that $t_0 + c$ is the smallest t for which equality holds, for this value of r. Thus, for all $t \in J$,

$$((\gamma_2(t) - \gamma_2(t_0))^2 + (\gamma_3(t) - \gamma_3(t_0))^2)^{\frac{1}{2}} \leq \|\gamma(t) - \gamma(t_0)\|$$

$$\leq A(t - t_0)^{\alpha}$$

$$\leq A(\gamma_1(t) - \gamma_1(t_0))^{\beta}$$

$$\leq A(2l\lambda^{-r})^{\beta}$$

$$= A(2l)^{\beta} \lambda^{-r\epsilon} \lambda^{-r\log \mu/\log \lambda}$$

$$\leq \alpha u^{-r}$$

Hence $\gamma | J$ is a curve in $C_1(\gamma(t_0) + l\lambda^{-r}v_1, l\lambda^{-r}, a\mu^{-r})$. It runs the length of the cylinder, since it joins $\gamma(t_0)$ to $\gamma(t_0 + c)$. Thus, by corollary 14, $\gamma(J)$ intersects $L^{-r}(V)$.

Now suppose that γ_1 is constant, with $\gamma_1(t) = p_1$, say, for all $t \in I$. Suppose that γ_2 is not constant. Let d be the length of the interval $\gamma_2(I)$, and let e be a bound for $|\gamma_3(I)|$. Then, for r > 0, $L'\gamma(I)$ is contained in, and runs the length of, the cylinder $C_2(p(r), d\mu', e\nu')$, where $p(r) = (p_1, p_2(r), 0)$ for some $p_2(r) \in \mathbb{R}$. Thus, for r sufficiently large, $L'\gamma(I)$ intersects V. A similar argument shows that if γ_3 is not constant, $L^{-r}\gamma(I)$ intersects V for sufficiently large r. This completes the proof of theorem 11 in the case n = 3.

In the general case, we may assume that the hyperbolic linear automorphism $L:\mathbb{R}^n \to \mathbb{R}^n$ covering f has eigenvalues λ_i , $1 \le i \le n$ satisfying

$$\lambda_1 > \lambda_2 > \cdots > \lambda_u > 1 > \lambda_{u+1} > \cdots > \lambda_n > 0.$$

Take coordinates in \mathbb{R}^n with respect to a basis v_1, \ldots, v_n of corresponding eigenvectors. The closure of the image of the x_i -axis under the quotient map $\Pi: \mathbb{R}^n \to T^n$ is an f-invariant toral subgroup which we denote by G_i . As before, $C_i(p, l, a)$ is the solid spherical cylinder in \mathbb{R}^n with centre p, radius l and axis in the v_i -direction of length 2l. Lemma 13 generalises as follows:

LEMMA 13'. Let U be an open neighbourhood in T^n of a point of G_i , let $q \in T^n$, let $V = \Pi^{-1}(q + U)$ and let $H_i = \Pi^{-1}(q + G_i)$. There exist positive numbers l, a and b such that, for all $p \in \mathbb{R}^n$ with distance < b from H_i , any path in $C_i(p, l, a)$ running its length intersects V.

To prove the lemma, note that, given $p \in H_i$, the x_i -axis $0x_i$ intersects the set V - p, since $\Pi(0x_i)$ is dense in G_i , and hence $0x_i + p$ intersects V. The proof now follows that of lemma 13, using openness of V to get the result for cylinders with centre near p, and compactness of G_i and covering translations to get it for cylinders with centre in the lift of some open neighbourhood of $q + G_i$. The number b is the distance from the boundary of the neighbourhood to $q + G_i$. Now let δ lift to $\gamma: I \to \mathbb{R}^n$, where γ is α -Hölder at every point of I. We first prove the theorem when $\gamma_1, \gamma_2, \ldots, \gamma_{i-1}$ are constant but γ_i is non-constant, where $1 \le i < u$. We choose $\beta \in \mathbb{R}$ such that $\alpha > \beta > \log \lambda_{i+1}/\log \lambda_i$. By lemma 1, for some subinterval $J = [t_0, t_0 + c]$, c > 0 of I,

$$|\gamma_i(t) - \gamma_i(t_0)| \ge (t - t_0)^{\alpha/\beta}$$

for $t \in J$. Let q be some ω -limit point of $\delta(t_0)$ under f, and let (r_j) be an increasing sequence such that $f^{r_j}\delta(t_0) \to q$ as $j \to \infty$. We prove that the orbit-closure of $\delta(I)$ contains $q + G_i$ by showing that the orbit of $\delta(I)$ intersects q + U for each neighbourhood U (in T^n) of each point of G_i . Let U be such a neighbourhood of such a point, and let l, a and b be the corresponding positive numbers given by lemma 13'. As in the proof of the n = 3 case, there is, for large enough j, some restriction of γ running the length of the cylinder $C_i(\gamma(t_0) + l\lambda_i^{-r_j}v_i, l\lambda_i^{-r_j}, a\lambda_{i+1}^{-r_j})$. Moreover, we can take j large enough for the distance from $f^{r_j}\delta(t_0)$ to q to be less than b. Since $\gamma_1, \ldots, \gamma_{i-1}$ are constant, L^{r_j} maps the restriction of γ into a path running the length of the cylinder $C_i(p, l, a)$, where $p = L^{r_j}\gamma(t_0) + lv_i$. Since the distance from p to H_i is less than p, lemma 13' tells us that $L^{r_j}(I)$ intersects V.

A similar argument with f replaced by f^{-1} proves the theorem for $\gamma_n, \gamma_{n-1}, \ldots, \gamma_{i+1}$ constant but γ_i non-constant, where $u+1 < i \le n$. This leaves the case where all coordinate functions but γ_u and γ_{u+1} are constant. In this case, the orbit-closure of $\delta(I)$ contains $q + G_u$ (resp. $q + G_{u+1}$) when γ_u (resp. γ_{u+1}) is non-constant, q being any ω -limit (resp. α -limit) point of $\delta(0)$. The proof is an obvious modification of the corresponding part of the n=3 proof.

REFERENCES

- [1] R. Bowen. Markov partitions are not smooth. Proc. Amer. Math. Soc. 71 (1978), 130-132.
- [2] J. Franks. Invariant sets of hyperbolic toral automorphisms. Amer. J. Math. 99 (1977), 1089-1095.
- [3] S.G. Hancock. Construction of invariant sets for Anosov diffeomorphisms. J. London Math. Soc. (2) 18 (1978), 339-348.
- [4] S. G. Hancock. Invariant sets of Anosov diffeomorphisms. Thesis. Warwick University, 1979.
- [5] M. W. Hirsch. On invariant subsets of hyperbolic sets. In Essays on Topology and Related Topics. Springer-Verlag, 1970.
- [6] W. Hurewicz and H. Wallman. Dimension Theory. Princeton University Press, 1941.
- [7] M. C. Irwin. The orbit of a Hölder continuous path under a hyperbolic toral automorphism. Ergod. Th. & Dynam. Sys. 3 (1983), 345-349.
- [8] R. Mañé. Orbits of paths under hyperbolic toral automorphisms. Proc. Amer. Math. Soc. 73 (1979), 121-125.
- [9] F. Przytycki. Construction of invariant sets for Anosov diffeomorphisms and hyperbolic attractors. *Studia Math.* 68 (1980), 199-213.
- [10] M. Urbanski. On the capacity of a continuum with a non-dense orbit under a hyperbolic toral automorphism. Studia Math. 81 (1985), 37-51.