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Abstract. Let f:T"^T" (n > 3) be a hyperbolic toral automorphism. Let A be the
set of a > 0 such that there is a Holder continuous path of index a in T" with
1-dimensional orbit-closure under/ We prove that ao = sup A can be expressed in
terms of the eigenvalues of f, and that aoe A if and only if ao< 1.

1. Introduction
When Smale asked whether or not a hyperbolic toral automorphism can have a
1-dimensional (compact) invariant set, one natural response was to consider the
orbit-closure of paths in the torus. Franks [2] and Mane [8] proved that if a path
is smooth enough then its orbit-closure is at least 2-dimensional. In fact, all rectifiable
paths have this property [8]. In contrast, Hancock [3], [4] and Przytycki [9] answered
Smales's question for tori of dimension >3 by showing how to construct C°-paths
with 1-dimensional orbit-closure. (Bowen [1] also obtained the answer, but by a
different route. Smale himself had given a negative answer for T2.)

There is a number that, to some extent, calibrates the gap between rectifiability
and bare continuity, namely the Holder index a of a Holder continuous map. The
purpose of the present paper is to locate the precise value of a at which the possibility
of paths with 1-dimensional orbit-closure ceases. This is given by the following
theorem:

THEOREM 1. For n > 3, let f: T" -» T" be a hyperbolic toral automorphism. Let a0 be
the maximum of log|/i|/log|A | for all pairs A and fi of (complex) eigenvalues of f for
which the ratio is s i . Then

(i) if a0 < 1 there are a-Holder paths in T" with 1 -dimensional orbit-closure for
a = a0 but for no greater a;

(ii) if a0 = 1 there are a-Holder paths in T" with 1 -dimensional orbit-closure for
every a < 1.

Since a = 1 is essentially the case of rectifiable paths, Mane's result completes the
picture.

The paper is in two parts. In §§2-4, we construct a-Holder paths with
1-dimensional orbit-closure for a = ao< 1 and a < ao= 1. In § 5 we prove that they
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do not exist for « > a0. We have already made a start on the first part in [7], which
dealt with the case of automorphisms of T3 with real eigenvalues. (Since no power
of such an automorphism can have repeated eigenvalues [7], this is precisely the
case a - ao< 1.)

When I had completed writing this paper, I received a preprint of a paper by
Mariusz Urbariski, now published as [10], which performs a similar investigation
in terms of the capacity of the image set rather than the Holder index of the map.
In his theorem 1, Urbariski proves that if / : T"-* T" is as above and if a curve in
T" has capacity < 2 - a 0 then its orbit-closure under / has dimension 22. This
immediately gives some restriction on the Holder index with which a path can have
1-dimensional orbit-closure, and, in fact, it is quite easy to modify his proof to give
the above result that the index can be at most a0. (However, I am grateful to the
referee for pointing out that I have actually proved rather more than this: see
theorem 11 below.) Urbariski's theorem 2 deals with the existence of paths with
1-dimensional orbit closure (and higher dimensional analogues). His theorem has
more general statement but, in our terms, he proves that there exist such paths with
capacity s 2 - a o + e , for any positive e. The Holder continuous paths in theorem 1
above have such a capacity, with e = 0 in the case ao< 1. Also, in the case ao< 1,
we prove that we can always find such paths that are simple (without self-intersec-
tions). In the case ao= 1, one may prove that the paths that Urbariski constructed
are a-Holder for a arbitrarily near 1. Both Urbariski's paper and the present one
make heavy use of techniques of Przytycki [9] to control the topological dimension
of sets.

2. Existence: strategy and preliminary results
Let / be a hyperbolic automorphism of T" = W/Z". That is to say, / : T" -* T" lifts
to a linear automorphism L:W-*M" with no eigenvalues of modulus 1. Thus R"
splits as a direct sum EU®ES of L-invariant subspaces such that the eigenvalues
of L\EU and L\ES have modulus respectively >1 and <1. Let IIiR"-* T" be the
quotient map. We make the standard identification R" = IR"xlRs. We may assume
that the product projection 6: W -» W restricts to an isomorphism <f> of the unstable
summand Eu onto W. Finally, recall the definition of Holder index: a map g:X->Y
of metric spaces is Holder continuous of index a (0 < a < 1) at x e X, or a-Holder
at x, if, for some constant C,

dY(g(x),g(x'))<Cdx(x,xr,

for all x'eX. We say that g is a-Holder if, for some C, the inequality holds for all
x, x'eX. Notice that if X is compact and g is a-H61der then g is /3-Holder for all

Proving the existence part of theorem 1 is easier for n = 3 than for n > 3. This is
because, by a theorem of Hirsch and Williams [5], invariant sets of / cannot be
(n -1)-dimensional. Also, since it is well known that there are dense orbits in T",
the only w-dimensional invariant set of/ is T". Thus to prove that the orbit-closure
of a (non-constant) path in T3 is 1-dimensional, we have merely to prove that it is
not the whole of T3, or, equivalently, that the orbit misses some non-empty open
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subset of T3. We may assume that the unstable dimension u is 2 (otherwise replace
/ by y^1). We take a small open neighbourhood N of 0 in R". Thus U6'\N) is a
small open neighbourhood of the circle YIO~\O) in T3. Now II injectively immerses
E" densely in T3, and the intersection of Eu with FT'lItf"1^) is the neighbourhood
4>~\N + Z2) of the lattice G = (j>~\Z2) in E". We start with a map y0: / - • £", where
/ = [0,1] and make a sequence of perturbations to Lipschitz maps %:/-»£", such
that, for i>0, L'yt(I) misses <t>~\N+Z2). If we are careful enough, we can ensure
that (%•) converges to a Holder continuous map y:I-*Eu whose index is related
to the eigenvalues of L\EU (this is achieved by keeping a tight control on the
Lipschitz constants of yt). Moreover, we can arrange that for all i>0, L'(y) misses
a rather smaller open neighbourhood ^(N^ + Z2) of G, where Oe A^c: JV. Now
Vy(I) -> 0 as i -> -oo. If we start with yo(I) sufficiently near 0, the negative half-orbit
Cr(y(J)) (thatistosayLK^'M-O: i^0})missesal\of ^(Ni+ Z2) except (f>-\Ni).
(In any case, it hits only finitely many components of the neighbourhood). Thus
the orbit of Tly(I) in T3 misses the open set Ud'^Ni^U^'^Ni), and hence has
1-dimensional closure.

The geometrical technique of constructing maps y, with the required properties
depends on the eigenvalues of L. For ao<l (as in [7]) we take <f>~1(N) to be a
diamond with axes in the directions of the two eigenspaces (the 'strongly unstable'
and 'weakly unstable' directions). Starting with y0 mapping onto a straight line
segment in the strongly unstable direction, we are able to make all perturbations in
the weakly unstable direction, and to finish with y an embedding onto the graph
of a function from one eigenspace to the other. In the case a0 = 1 the situation is
not so straightforward, since we are forced to perturb in many different directions.
This time <f>~1(N) is a Euclidean disc (after some linear change of coordinates in
E") and we work with maps yt that map / onto polyhedral paths in E". We carefully
control the minimum segment length of the paths, in order to control the Lipschitz
constants of the maps.

For the general case n >3, we again suppose u >2 and construct a sequence of
maps y, : / -»£", tending to a limit y, such that the orbit-closure of Uy(I) is
1-dimensional In fact the paths -y, and y are all constructed in a 2-dimensional
L-invariant subspace V of E", where the eigenvalues of L\V are related by
log |/i|/log |A| = «„• The construction of -y, is made much more complicated by our
efforts to control the dimension of the orbit-closure of II-y(J). The control-technique
that we use is due to Przytycki [9]. As for n = 3, the dimension of the closure of
O'(Uy(I)) causes no problems, because J^'Hy(I) -*ll(0). We try to ensure that
locally the dimension of the closure of O+(Uy{I)) is at most 1 in the unstable
direction and 0 in the stable direction.

We take a coordinate system in R" such that its (u - 2)-coordinate planes denoted
Xj, say, are transverse to <£( V). We arrange that, for each Xj, L'y(I) misses some
small neighbourhood o{U'1U6~1{XJ) for all i > 0. This implies that the orbit-closure
of Uy(I) has dimension <1 in the unstable direction, basically because the
complement of the neighbourhood in E" has an open cover of bounded mesh and
order 1 (for the notions of mesh and order, see [6]).
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To control dimension in the stable direction, we arrange that L'y(I) misses a
neighbourhood of n~1U(Bu(0, l) + dP), where P is a parallelepiped in Es such that
II(B"(0, /) + int P) covers T". Here Bu(0,1) is the ball with centre 0 and radius / in
E". Roughly speaking, locally, in the stable direction, the complement of a number
of copies of dP has an open cover of finite mesh and order 0, and this leads to the
dimension of the orbit-closure of Uy(I) being locally 0 in the stable direction.

Recall that, in the n =3 case, we made L'yf(I) miss a neighbourhood of G, but
that there was the possibility that later perturbations of y, into y might affect this
property. We got round this by making the total contribution of the later perturbations
so small that the fact that L'yi(I) missed the original neighbourhood of G forced
L'y(I) to miss a rather smaller one. In the general case, the situation is more
complicated because, instead of the single set G, we now have 2s + \u(u-\) sets
that we would like to miss, namely 2s sets of the form U~1n.(Bu(0, /) + Q,), where
Qj are the (s-l)-dimensional faces of the parallelepiped P, and the \u{u-\) sets
Y\~llie~\Xj). We make 2s+\u{u-\) perturbations in going from !/%_, to Vyh

each one to avoid a neighbourhood of one of the sets. Speaking very roughly, we
can make the neighbourhoods as large as we like in the Q case, and as small as
we like in the Xj case. We choose the neighbourhood-size to decrease so rapidly
with j that, once we have missed the neighbourhood of a given set, all subsequent
perturbations leading to L'% and all subsequent perturbations leading from L'y, to
Vy are comparatively small in total, and so L'y(I) misses a rather small neighbour-
hood of the given set. Of course there is a danger that, for example, perturbations
of L'+lyt to miss large neighbourhoods in the course of obtaining LI+1yj+1 may
affect the way that Vy^I) misses small neighbourhoods. However, this will not be
the case if L is a sufficiently powerful expansion on V. We can always achieve this
by replacing L by some large power of L. This is a useful trick, and we employ it
on several occasions. Notice that replacing / by some power of/ affects neither the
ratio of logarithms of eigenvalues nor the dimension of the orbit-closure of a given
subset of T". ;

We need a couple of preliminary results. The first shows how to obtain a Holder
continuous map as the limit of a sequence of Lipschitz maps. ,

LEMMA 2. Let X and Y be metric spaces, with X compact, and let y,r. X -> Y (i > 0)
be a sequence of maps converging uniformly to y: X -» Y. Given A > /* > 1, A>0 and j
B > 0, suppose that, for all i s some i0,

(i) yt is Lipschitz with constant AX'/fj,'; j

(ii) d(y, ?,)££//*', where {

d(y, S) = sup {d(y(x), S(x)):x€X}.

Then y is a-Holder, with a = log fi/log A.

Proof. Exercise, or see the penultimate paragraph of [7].

Recall that the norm ||L|| of a linear automorphism L:R"-»IRn is the sup of
{||L(x)||: xeW, \\x\\ = 1} and the so-called 'minimum norm' m(L) is its inf. Thus
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LEMMA 3. Let Lbe a linear automorphism of R2 with eigenvalues A and /J. satisfying
\\\ = \fi\ = p, say. Then:

(i) given o-<p, m(Lr) > <rr for sufficiently large r;
(ii) given T> p, \\Lr\\ < rr for sufficiently large r.

Proof. Immediate from the formula lim^co ||Lr| |1 / r for the spectral radius.

3. Existence: the case ao< 1
Recall that in explaining our strategy for proving the existence part of theorem 1
for general n, we said that we would need to make a sequence of perturbations to
make O+(y(I)) miss neighbourhoods in V of a sequence of 2s + \u(u-\) sets (or,
equivalently, y(I) miss the negative half-orbit of the neighbourhoods). In the case
a o < l , each neighbourhood is a family of diamonds, and we shall isolate the
construction of all perturbations leading to the map y as a lemma. For the purposes
of this lemma, let L: R2 -» R2 be a linear map of the form

L(x, y) = (Ax, py).

Let N be a positive integer. For l<_/< JV, let {DJk: keN} be a family of disjoint
open diamonds in R2 with centre Pjk = (xJk, yjk), width b, > 0 and height 2bj. That is
to say,

Djk = {(*, y) G R2: 2\x - xjk\ + \y -yjk\ < bj}.

Given b} with 0 < b,- < b,, let Djk be the open diamond with centre Pjk, width b, and
height 2 b*.

LEMMA 4. Suppose that, for all j ,
(i) b,-b,>2I^,+1br;

(ii) A > 2/i, a«d /x > 1 is sufficiently large for

2 I br + 2 I b^-D-^b.-b,;

(iii) <fte distance between two distinct diamonds Djk and Djk' is >4v5 Nbj.
Then there exists a map "y:/-»R2, where / = [0,1], which is a-Holder, with
a =log fi/log A, and such that, for all j and k, y(I) does not intersect the negative
half-orbit O~(Djk). Moreover we can always find y of the form y(x) = {x, S(x)), where
S: I -* R is an a-Holder map.

Proof. For all i > 0 , let Dijk = L~'(Djk) and DiJk = L~'(Djk). Then Dijk is an open
diamond with centre

L-'(Pjk) = Pijk = (xiJk,yijk),

say, width bj/X' and height 2b,-//A'. Similarly for DiJk. Let p: I-*U2 be any map of
the form

where cr: /-» R is Lipschitz. Notice:

Remark 1. If Lip <r s 2A '/ft1 and if p(I) has non-empty intersection with Dijk then
either (a) xyk € / and p(xijk) e Dy)c, or (b) ^ > 1 and p(l) e Dijk, or (c) x ^ < 0 and
p(0)eDiJk.
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Remark!. If Lip o-<2A'/ p.1 andif p(/) has non-empty intersection with two distinct
diamonds D,^ and D^- then

Geometrically, since the edges of the diamond D,-,* have slope 2k'/fi', if p(7) has
secant slope S 2 A ' / M ' and enters Dste it either crosses the vertical axis of Dijk or
terminates short of this axis. This gives remark 1. For i = 0, remark 2 is clear from
(iii), since p has Lipschitz constant V5. Mapping by IT1 gives the general statement.

We now prove the following:

SUBLEMMA 5. For all i>0 and 0<j<JV, there exists a map y,-,-: /-» R2 (with
7iN = ?<i+oo) of the form y^t) = (t, 8tj(t)) such that:

(i) Sy is Lipschitz with constant (l+j/N)^/^1 for all i,j;
(ii) yy(I) n DiJk is empty for all i, k and) with 1 < ; < N;
(iii) 0^8iJ(t)-8,U-l)(t)<2bj/niforaUteI, iandjwith 1 < J < N :

Proof. The proof is by induction on the pair (i,j), ordered lexicographically. To
start the induction, define 5oo(') = 0. Now suppose that SJO-D is denned, for some
j>0, 1<;<AT. Let

By remark 2, if k, k'eS with k^k' then \xijk- xiJk,\si4Nbj/ k'. We obtain yy from
ynj-i) by a linear perturbation upwards on each interval

[xijk-2Nbj/\\ xijk + 2Nbj/k% keS,

the perturbation being just large enough to avoid DiJk. To be precise, let rk(t) denote
the y-coordinate of the point at which the line x = t intersects the top edge of Dijk.
We define the perturbation S^t) - SfO-_,)(0 to be 0 if \t -xiJk\ >2Nbj/\( for all keS,
and to be

(1 - w)(rk(xijk) - Snj-^Xyic))

if \t -xiJk\ = 2wNbj/\' for w < 1, where fc £ S satisfies (a) of remark 1. We also have
to allow for "yiO_1)(7) terminating in Dijk short of its vertical axis, as in (b) or (c)
of remark 1. In these cases, we define 5,j(<)-5i(j_1)(0 to be respectively

where \-t = w(\-xvk + 2NbJ/k
i) forO<w<l, and

where t = w(xiJk + 2Nbj/k
i) for 0< w< 1.

In the three cases (a), (b) and (c), (1 - w) multiplies a positive number which is
less than the height 2b,/p.' of DiJk, and so property (iii) of the sublemma holds.
Also on each linear portion of %•, — y.o-i) there is a vertical increment lying between
-2bj/fi' and 2b,/p,' in a horizontal distance of 2Nbj/k', and so yy-ynj-i) is
Lipschitz with constant A'/N/i'. We deduce (i) for ytJ, using (i) for %<;-!). (N.b. If
7 = -N, this also gives (i) for 8(i+1)0, since A/p. > 2).

Finally, we have to check that our perturbation of %(J_1)(/) to avoid Dijk does
not produce an intersection of ytj(I) with some other Dijk; k'iS. But, if this were
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the case, translating yy(I) slightly downwards would give it intersections with both
Dijk and Dyfc. in a horizontal distance <2Nbj/\', which contradicts remark 2. This
completes the proof of the sublemma.

To prove lemma 4, we show that (y0) converges to a limit y which has the required
properties. By (iii) of the sublemma, for all (i',j')

r=j+l

l br)(l
r = l / \m=0

which -»0 as i->oo. Thus the limit S of (80) exists and satisfies

r=j+l r = l

We write y(t) = (t,S(t)). By (ii) of the sublemma, yij(I)nDijk is empty. The
minimum vertical distance from Dijk to the complement of DiJk is (bj — bj)/ ft'. By
(1) and by hypothesis (ii) of the lemma, this is greater than the maximum vertical
distance from %,(/) to y(I). Hence y{I) n Dijk is empty. Finally, if we write St = SIN

then S is the limit of (Si), 8, is Lipschitz with constant 2A1/n' and

iis,-sn<21 w/t-irv/i1.

Thus, by lemma 2, 8 is a-H61der. Hence y is a-H61der. This completes the proof
of lemma 4.

We now prove the existence part of theorem 1 in the a0 < 1 case.

THEOREM 6. Let f: T"-> T" and a0 be as in theorem 1. If ao<\, then there is an
embedded path that is ao-H6lder and has l-dimensional orbit-closure.

Proof. We use the notation of the first paragraph of § 2. Since a0 < 1, the eigenvalues
of / are all real. Let A and (i be eigenvalues with a0 = log |/x|/log |A|. By taking a
suitable (possibly negative) power off, we may assume that all eigenvalues of/ are
positive and that A > fi > 1. Let V be the 2-dimensional eigenspace corresponding
to A and fi, and let W = (f>{ V). We may assume, after conjugating with an automorph-
ism of W with matrix in GLU(Z), that W is transverse to each coordinate ( w -
2)-plane of U". (After possibly reordering the original coordinates of W, we can
choose generators of W of the form (1,0, a 3 , . . . , au) and (0,1, b3,..., bu). If
eu...,eu is the standard basis of W, we can pick a new basis (1,0, m3,..., mu),
(0,1, « 3 , . . . , nu), e 3 , . . . , eu, where mr and nr are integers such that mr # annr^ bn

and
(mr-ar)(ns-bs)*(ms-as){nr-br)

for all r, s with 3 s r < u , 3 s j < u and r ̂  s. The coordinate planes with respect to
this new basis have the required transversality.)

Consider W as a cubical complex C with the integer lattice Z" as vertices. Let
K be the complement of the (u-2)-skeleton of this complex, and let °U be the
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open cover of K consisting of all open star neighbourhoods of bary centres of(w -1)-
and u-dimensional cubes of C in the barycentric first-derived simplicial complex
of C. Thus % is a cover of mesh v u and order 1.

It is convenient to identify the subspace V with the plane R2 by an isomorphism
such that the induced map L: R2 -» U2 has the form

L{x,y) = {\x,lx,y),

and, renorming W if necessary, we can assume that the identification is an isometry.
Following Przytycki [9], we construct an s-dimensional parallelepiped P in E\

with a vertex at 0 and (s-l)-dimensional faces Q,, l ^ j<2s , such that the faces
through 0 (given by j = 1 , . . . , s) generate subspaces Yj of £ s with the property that

i r 1 n ( £ u ) n Y, = {0}. (2)

(We can make such a construction because U~1U(E")n Es is countable.) Let P
have diameter d. Let B"(0, /) be the open ball in E" with centre 0 and radius /,
where / is large enough for II to map the vector sum Bu(0, //2) + intP onto T".
(This is possible since U(E") is dense in T".) For l<y<2.s, let

bj, = 32s-J • 275 / and b, = 32s"JV5 /.

For Sj > 0, let N* be the open e,-neighbourhood of Q, in Es. For each point qe E"
such that U(q)eU{Nj) and (q + Bu{0, l))n V^0, consider the centroid p of the
open disc (q + Bu(0, /))n V. Enumerate all such q and p as (qjk) and (pjk), keN.
Notice that the diamond DJk in R2 ( = V), defined earlier in this section, contains
the ball (qjk + Bu(0, l))n V, since the latter has radius </. We choose e, so small
that, for all k ^ k', the distance from qjk to qjk- is greater than 4(1 +V5 N)bj, where
N = 25 + J M ( U - 1 ) . (It follows from (2) that we can do this.) The inequality
guarantees that the diamonds Djk and DJk- are disjoint, and that the distance between
them is greater than 4V5 Nbj.

Let Xj (j = 2s + l,...,N) be the coordinate (w-2)-planes in W. Then
Yl^1Il6~1(Xj) n V is, by the transversality assumption, a subgroup of V isomorphic
to Z2, and we enumerate its points as (pjk), fceM. We pick, successively, positive
numbers b2s+l,..., bN satisfying bj s bj^/3 and so small that the distance between
distinct diamonds Djk and Djk. is at least 4v5 Nbj. Let b} = b}/2.

We have now arranged that conditions (i) and (iii) of lemma 4 hold for all j , k
with 1<^<N, /ceN. Replacing L by some positive power if necessary, we can
assume that (ii) holds as well. (Since the power has the same E\ Eu and V as L,
this does not invalidate any of our previous work.) Thus, by lemma 4, there exists
an ao-H61dermap y.I-* V such that y(I)n O~(DJk) is empty for all j , k. Moreover
y embeds 7 as the graph of an a0-Holder map 5: J-»IR.

We must now prove that the orbit-closure of Yly(I) is 1-dimensional. First note
that, since y(I) is clearly 1-dimensional, so is the orbit of Uy(I). Since f"Uy(t)-*
11(0) uniformly on / as n -* -00, the negative half-orbit O~(Uy(I)) has 1-dimensional
closure. Thus it suffices to prove that O+(Uy(I)) has 1-dimensional closure.

Take an open e-neighbourhood N" of X = \J{Xj: 2s + l<./< N} in R",
where e > 0 is small enough for U'1Ud~\N")r\ V to be contained in
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\J{Djk: 2s + l<j<N,keN}. Thus O+(-y(/)) is disjoint from U~^ne~\Nu). Take
also an open ex-neighbourhood N" of X in R", with 0<e i<e , and choose 77>0
so small that

0-1(N?) + B'c8-\N'1),
where B* = BS(O, TJ).

As Bu ranges over all open balls of radius 1/4 in E", {U(B): B = BU + Bs} gives
an open cover of T". Thus, to show that O+{Uy(I)) has 1-dimensional closure in
T", it suffices to show that the closure H of O+(rr1ri'y(J)) n B has dimension <1
for all B. We do this by showing that H is contained in F" + F', where F" and Fs

are closed subsets of B" and Bs of dimension at most 1 and 0 respectively.
By construction, O+(n"'ny(/)) is disjoint from Il~lne~l(N") +Bs and hence

from the negative half-orbit of this set. This negative half-orbit contains
O~(U~lUd-\N")nEu) + Bs. Now the complement of ir1ri0-1(.N7)nE" is a
closed set contained in $" ' (£) . Hence the complement of its negative half-orbit in
Eu is a closed set contained in (~]{L~'(f>~*(K): 12O}, and hence covered by
L''4>~l(aU.) for all i>0. Thus its intersection with B" is a subset Fu of dimension
<1. We have HcFu + Bs.

For each non-empty component of n"1IlL'(B"(0,1/2) + Nj) n B, where i >0 and
1 •&] < 2s, remove the corresponding components of n~1IIL'(B"(0, /) + N*) n B from
B. This leaves a set B" + F*, where F- is closed in Bs. The connected components
of F- give an open cover of F* of order 0. The cover has mesh v'd, where v is the
largest eigenvalue of L\ E\ because each member of the cover is contained in a set
isometric to L'(int P). Since the mesh tends to zero as i-»oo, the closed set

has dimension <0. Moreover O+(U~lUy(I)) is contained in B" + Fs, and hence so
is H. Finally, since E" + Es is a direct sum, H c F " + F\ as asserted. This completes
the proof of theorem 6.

4. Existence: the case a0 = 1
We begin with a description of the type of perturbation that we employ in the a0 = 1
case. We call a continuous map S: S -»R2, where S is a straight line segment, a
piecewise linear piecewise embedding (PLPE), if, for some subdivision of 5, each
subsegment is mapped linearly by 5 onto a straight line segment in R2. The minimum
segment length of S is the minimum of the lengths S(Sk) for all subsegments Ŝ  of
the subdivision.

LEMMA 7. Let (pk), keN,bea sequence of distinct points in R2, such that the minimum
distance h between points of the sequence is positive. Let a, b, a> and m = min {a, h/3}
be positive numbers satisfying 4b <m, 6b smw. For any PLPE 5O:/-*R2 with
minimum segment length >a, there is a PLPE Sx: I -* R2 with minimum segment length
sfc, such that:

(i) LipS,<(l + w)LipS0;
(ii) ||5,-5O||<6/);
(iii) 5,(/)nfi(pfc, b) is empty for all keN.
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Proof. The map St is So composed with a PLPE cr: S0(I) -» R2. It is enough to describe
cr on one segment S of S0(I). For each non-empty set Sn B(pk,b), choose any
subsegment Sk of S of length m that contains the set. Two such subsegments Sk

and Sk; k ^ k', do not overlap, for this would imply

We let cr be the identity off the subsegments Sk, and show how to define a on Sk.
Let Sk = [qu q2]. We distinguish three cases:

(1) one end-point, say qu in B(pk,2b) but not in B(pk, b);
(2) one end-point, say qu in B(pk, b);
(3) neither end-point in B(pk, 2b).

(Notice that we cannot have both end-points in B(pk, 2b), since m 2:4b.)

Case (1). Let Sk intersect the boundary dB(pk, b) in points q3 and <j4, with <j3 nearer
to qt. Let qs be the mid-point of the shorter arc of dB(pk, b) joining q3 to q4. Let
q6 be a point distant b from qt and g3 such that [qu q6] and [q6, q3] do not intersect
B(Pk, b). Let q7 be similarly related to q3 and qr5, and let <j8 be similarly related to
q5 and q4 (see figure 1). Define a on Sk to be the PLPE which increases length by

a constant factor and maps Sk onto the polyhedral path gig6<73<77<75'?8<?4<72- Clearly
o- has Lipschitz constant at most (m + 6b)/m, which is at most 1 + w. If qe[q4, q2]
then the polygonal path distance from q to cr(q) along a-(Sk) is at most 6b. On the
other hand, it is easy to see that the convex hull of {qu q6, q7, qs, q4} has diameter
at most 6b, so

\\q-<r(q)\\*6b for q& [q4, q2].

Thus all three conditions of the lemma are satisfied in this case.

Case (3). We define points as in case 1, except that we no longer need a point q6.
This time a maps S onto
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Case (2). Let S intersect dB(pk, b) in q3. If qx, which is an end-point of S, is also
an end-point of an adjacent segment T of y(I), let T intersect dB(pk, b) in <?4, and
let qs be the mid-point of the shorter arc of dB(pk, b) joining q3 to qA. If q^ is an
endpoint of -y(/), let q5 be an arbitrary point of dB{pk, b) near q3. Let q6 be the
point distant b from q3 and qs such that [q3, q6] and [q6, qs~\ do not intersect B(pk, b).
(See figure 2). We define a- to map Sk onto the polygonal path q5q6q3q2- Of course
o- will also map T onto a polygonal path ending at qs. Similar estimates to those
in case 1 again give conditions (i) and (ii).

FIGURE 2

We now prove an analogue of lemma 4.-As before, (pJk), keN, l s y < JV, are
points of U2. For fixed j , the minimum distance between points of the sequence
{pjk) is the positive number hj. This time, DJk and Djk are balls B{pjk, bj) and
B(Pjk, bj) respectively, for some bj> bj>0. For the purposes of the next lemma L
is a linear automorphism of IR2.

LEMMA 8. Let L:U2->U2 have eigenvalues A, fi with |A| = \/x\> 1. Let T be a number
with | A | < | | L | | < T < | A | 2 and let <O>0 satisfy (l + w)N

 < T / | | L | | anda><\. Suppose
that, for allj:

(i) bj^wbj.,/6;

(ii) m(L) is large enough for b{ < m(L)(obN/6;
(iii) a) is small enough for o>b,(l — w/6)^1 < bj — bj;
(iv) m(L) is large enough for

wbj{\ - w/6)"1 +6b,(l - (o/6)'\m(L) - 1 ) " 1 < bj - by,

(v) hj>lSbj/(o.
Then there is a map y.I^U2, where I = [0,1], which is Holder constant with index
2 log |A|/log T - 1 and such that, for all j , k, y(I) does not intersect the negative
half-orbit O~(Djk).

Proof. As before, we prove a sublemma by induction on the pair (i,j).
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SUBLEMMA 9. For all i>0 and 0 < j < JV, there exists a map yi;,:/-»IR2 (with yiN =
y(j+1)0) suc/i that:

(i) L'yy is Lipschitz with constant (6fe1/a>)T1(l + w)^/or all i, j ;
(ii) L'yjj(I) n Djfc is empty for all i, j , k with 1 <j;< AT;
(iii) ||L'ytj - L'y,O-i) || < 6fy for all i, j with 1 < j< JV;
(iv) L'y.j Zias minimum segment length sibjfor all i, j with 1 ^j^ N.

Proof. Notice that (i) for L'yiN implies (i) for L'+1y(j+1)0, by the inequality
||L||(1 + <o)N < T. We start with yoo mapping / linearly onto a straight line segment
of length 6bx/(o.

Suppose that y,-(;-i> is defined and satisfies (i)-(iv) of the sublemma. We apply
lemma 7 with So = L'ylO-i), b = bj,h = hj and pk = pJk. Forj > 1, the minimum segment
length a of 50 is at least 6b/a) by property (iv) of the sublemma and (i) of
lemma 8. Fory" = 1, a is the minimum segment length of L'y(i_1)N, and so is at least
m(L)bN by (iv) of the sublemma. This is at least f>bj a by (ii) of lemma 8. Combining
these estimates with (v) of lemma 8 gives the inequality 6b < mw for lemma 7, which
in turn gives 4fe<w, since w < l . We define y,j by putting 5, = L'y(,. Properties
(i)-(iv) of the sublemma for ŷ  are immediate from property (i) for y,o_D and the
conclusions of lemma 7.

We now show that (y,y) converges to a limit y having the properties stated in
lemma 9. Summing contributions, using (iii) of the sublemma, we have that, for all

( N / i ' - i - l \ N

v-i t i l v1 II r —$ II 1 v LI b + l I || L II) I br
r=j+\ \ s = l / r = \

whence, using (i) of lemma 8 and the fact that ||i,—11| = l/m(L) = | |L | | / |A | 2 < 1,

and

Thus (ytj) converges, to a limit y, say. Note that

l)-1, (3)

which, together with (iv) of lemma 9 and (ii) of the sublemma, implies that
L'y(I)nDJk is empty for all i,j, k with i>0, l<j<N and keN.

Now y is the limit of (y,) where y, = yiN. By (i) of the sublemma, y, is Lipschitz
with constant (6O,/W)(1 + W)A'T1OT(L)-'. Also, by (3),

Thus, by lemma 2, y is Holder continuous with index log m(L)/log T. But m(L)>
| A | 2 / T > 1 , and so y has index log(|A|2/r)/log T, as required. This completes the
proof of lemma 8.
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The existence part of theorem 1 in the ao= 1 case is as follows:

THEOREM 10. Letf: T" -» T" and a0 be as in theorem 1. Ifa0 = 1, then, for any a < 1,
there is an a-Holder path in T" with 1 -dimensional orbit-closure.

Proof. Let A and fi be eigenvalues of/with |A| = |/*|. Replacing/ by f~x if necessary,
we can assume | A | > 1 . Given a < 1, choose a number T, with | A | < T < | A | 2 , near
enough to |A | for 2 log |A |/log T - 1 to be greater than a. As in the proof of theorem
6, we let V be a two-dimensional subspace of R" such that L\ V has A and fi as
eigenvalues. We identify V with R2 by some linear isomorphism. By lemma 3, if we
replace/ (and T) by some sufficiently large power we can assume that ||L| Vj| <T .
Now choose w>0 satisfying (l + w)N< T/\\L\ V||, where N = 2 s + | « ( u - l ) . We
also take to < ^ , noting that for such values of «, condition (iii) of lemma 8 holds
for all j , when b, = bj/2.

We construct points pJk, l<j<JV, t e N i n V, exactly as in the proof of theorem
6. For 1<;<2s, we define

bj = (6/<o)2s-J2l and b~ =(6/o))2s"JZ.

As in theorem 6, we have numbers e, at our disposal, and we choose them so small
that the distance from pjk to pjK for k^ k' is at least 18bj/o>. Next we successively
choose b2s+i, . . . , bN positive but so small that, for 2s +1 <_/ < N, bj < wb,_1/6 and
the distance from pjk to pJk; k ̂  k', is at least 18b,/«. Let fc, = bj/2. For 1 <jr< JV,
let Djk and D̂ ^ be the open balls in V with centre pjk and radius b} and b, respectively.
Finally, after replacing / by some power if necessary, we can assume, writing L \ V
as L:R2-»R2, that m(L) is large enough for conditions (ii) and (iv) of lemma 8 to
hold. Then the map y: I-»R2= V given by lemma 8 is a-Holder, and the orbit of
Fly is 1-dimensional by the argument of the proof of theorem 6.

5. Non-existence
The following result implies the non-existence part of theorem l(i).

THEOREM 11. Letf: T" -*T" be a hyperbolic automorphism with a0 < 1. Let S.I^T"
be a non-constant path where I = [0,1]. If, for some a> a0, S is a-Holder at every
point of I, then the orbit-closure ofS(I) contains a coset of an f-invariant toral subgroup
ofT" (and so is at least 2-dimensional).

Thus if S is nowhere locally constant, and if 8(1) has 1-dimensional orbit closure,
then for any given a > a0, the set of points at which S is not a-Holder is dense
in/.

We begin with a piece of undergraduate analysis. The reason that a-Holder maps
g: / -* R are not important for a > 1 is that they are trivially constant, being differenti-
able with zero derivative. We generalise this remark, as follows.

LEMMA 12. Letk>\, and let g:I -»R be continuous. Suppose that, for all toe [0,1),
there is some sequence (tn), decreasing to t0, such that:

\g(tn)-g(t0)\^(tn-t0)
k.

Then g is constant.
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Proof As we have remarked,

\g(t')-g(t)\*\t'-t\k

for all t, t'el implies that g is constant. Suppose that g is not constant, so that,
for some a, be I, with a < b say,

\g(b)-g(a)\>(b-a)k.

By continuity of g at b, there exists d > 0 such that

\g(t)-g(a)\>(t-a)k

for all r e / with \t-b\<d. Now consider the set X of f e / with ( > d such that,

for some r > 0 there exists a chain

a = T0 < T, < • • • < rr = /

with

Tf-Tj.^d and |g(T,)-g(a)|<(T,-a)fc

for l < i < r . Then X is non-empty (it contains a), and it is easy to see that, if
sup X = £ then £eX and hence that f = 1 (using the sequence decreasing to f to
obtain a contradiction if f < 1). But some point of the chain (T,) joining a to 1 lies
in the d-neighbourhood of b, which gives a contradiction. Hence g is constant.

For simplicity, we first give the proof of theorem 1 in the case n = 3. Let II: R3-> T3 =
R3/Z3 be the quotient map, and let L: R3 -» U3 be the hyperbolic linear automorphism
covering / The condition a0 < 1 implies that the eigenvalues A, fi, v of / are real
and we may assume, replacing / by some power if necessary, that they satisfy

A>/i>l>f>0,

so that a0
 = logM/logA. Let U be open in T3, and let V = U~l(U). Let 8 lift to

y: J-»R3, where -y is a-Holder at every point of /. We must show that, for some
reZ,frS(I) intersects U, or, equivalently, 8(7) intersects f~r{U), or, equivalently,
y(I) intersects L~r(V).

For convenience we work with coordinates x = (xlt x2, x3) in R3 with respect to
a basis vu v2, v3 of eigenvectors of L corresponding to the eigenvalues A, /JL, V in
that order. Given peU3, let Q(p, I, a) be the solid circular cylinder with centre p,
radius a, and axis in the ^-direction of length 21. That is to say,

C,(p, I, a) = {xe R3: \x, -p,\ < /, (x, ~Pj)2 + (xk -pkf<a2, j*i*k *j}.

LEMMA 13. There exists a> 0 andl>0 such that, for alii and for all peU3, any path
in Ct(p, I, a) running its length (i.e. passing through a point of the boundary disc
*i = Pt~l <*nd a point ofxt = pt +1) intersects V.

Proof. Let peU3. The x,-axis maps under II to a subgroup of T3 that is dense in
T3. (Its closure is an /-invariant total subgroup Gt. Since / is hyperbolic, dim G, > 1
and so by theorem 9 of [1], Gt = T3.) Hence so does the parallel line through p.
Thus, for some />0, the segment |x;—/>,!</ of this line intersects V. Since V is
open, it contains, for some small a > 0, some interior cross-sectional disc xt = c, of
the cylinder Ct{p, I, a). Thus the property holds for C,(p, /, a), and also for Q(q, I, a),
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for q e R3 sufficiently near p, by openness of V. Using compactness of the unit cube
(with respect to the original coordinates in R3), we obtain a and I for which the
property holds uniformly for C,(p, /, a) for all p in the unit cube, and hence, by
covering translations, for all p e IR3.

COROLLARY 14. Let I and a be as in lemma 3. For all peU3 and for all r>0, any
path in Cx{p, lk~r, an~r) running its length intersects L~r(V).

Proof. Under V, C,(/>, /A~r, an~r) maps onto an elliptic cylinder contained in, and
with the same axis as, C^Uip), I, a). Thus a curve running the length of
Cx(p, l\~r, afj.'r) maps to a curve running the length of Cx(Lr(p), /, a). By lemma
13, the latter curve intersects V.

Returning to the proof of theorem 11, choose /? e R with a > /3 > log /x/log A, and
put e = )3 - (log /x/log A). Write y = (yi, y2, y3). We first suppose that y^ is not the
constant function. Then, by lemma 12, for some subinterval J = [t0, to + c], c>0 ,
of/,

for all teJ. We may assume without loss of generality that yi(t)> yi(t0) for t> t0

in /. Choose r > 0 large enough for

2l\~r<ca/fS and

where A is the Holder constant of y at t0. (That is to say,

where || || is the Euclidean norm in the (xu x2, x3)-coordinate system.) Thus

yi(to+ c)-yi(t0)>2l\-r,

and by making c smaller if necessary, we can assume that to+ c is the smallest t for
which equality holds, for this value of r. Thus, for all t e J,

= A(2/)"A-reA~rlog'i/logA

Hence y\j is a curve in C1(y(t0) + l\~rvu l\~r- a/j,~r). It runs the length of the
cylinder, since it joins y(t0) to y(to+ c). Thus, by corollary 14, y(J) intersects L~r( V).

Now suppose that yx is constant, with yt(t) = pu say, for all tel. Suppose that
y2 is not constant. Let d be the length of the interval y2(I), and let e be a bound
for |y3(/)|. Then, for r > 0, Uy{I) is contained in, and runs the length of, the cylinder
C2{p{r), d/Ar, evr), where p(r) = (pup2{r),0) for some p2(r)eR. Thus, for r
sufficiently large, Lry(I) intersects V. A similar argument shows that if y3 is not
constant, L~ry{I) intersects V for sufficiently large r. This completes the proof of
theorem 11 in the case n = 3.
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In the general case, we may assume that the hyperbolic linear automorphism
L: W -> R" covering / has eigenvalues A,, 1 < i < n satisfying

A, > A 2 > • • • > Xu > 1 > Au+1 > • • • > An > 0.

Take coordinates in W with respect to a basis vu ..., vn of corresponding eigenvec-
tors. The closure of the image of the xraxis under the quotient map II: W -» T" is
an/-invariant toral subgroup which we denote by G,. As before, Ct(p, /, a) is the
solid spherical cylinder in W with centre p, radius / and axis in the u.-direction of
length 21. Lemma 13 generalises as follows:

LEMMA 13'. Let U be an open neighbourhood in T" of a point of G,, let q€ T", let
V = U'\q + U) and let Hi = U~\q+ Gt). There exist positive numbers I, a and b such
that, for allpe U" with distance <bfrom H,, any path in Ct(p, I, a) running its length
intersects V.

To prove the lemma, note that, given p e H,, the x,-axis Ox, intersects the set V—p,
since 11(0*,) is dense in G,, and hence 0xt+p intersects V. The proof now follows
that of lemma 13, using openness of V to get the result for cylinders with centre
near p, and compactness of G, and covering translations to get it for cylinders with
centre in the lift of some open neighbourhood of q + G,. The number b is the distance
from the boundary of the neighbourhood to q + Gt. Now let 5 lift to y: / -» W, where
y is a-H61der at every point of I. We first prove the theorem when yu y2,---, %-i
are constant but y, is non-constant, where 1 < i < u. We choose ;3 e R such that
«>/3>log A,+1/log Aj. By lemma 1, for some subinterval J = [t0, to+c], OOof / ,

for tE /. Let q be some w-limit point of 8{t0) under/ and let (/)) be an increasing
sequence such that/rj5(/0)-*9 as j-»oo. We prove that the orbit-closure of 8(1)
contains q + G, by showing that the orbit of 8(1) intersects q + U for each neighbour-
hood U (in T") of each point of G,. Let U be such a neighbourhood of such a
point, and let /, a and b be the corresponding positive numbers given by lemma
13'. As in the proofof the n = 3 case, there is, for large enough j , some restriction
of y running the length of the cylinder Ci(y(to) + l\.Tr'Vi, /Ap, a\J+\). Moreover,
we can take j large enough for the distance from fr'8(t0) to q to be less than b.
Since yu ..., %_! are constant, Lr> maps the restriction of y into a path running
the length of the cylinder Q(p, I, a), where p = Lriy( t0) + /«,-. Since the distance from
p to Ht is less than b, lemma 13' tells us that Lr4(I) intersects V.

A similar argument with/replaced by/^1 proves the theorem for yn, yn-u . . . , %+!
constant but yt non-constant, where u +1< i < n. This leaves the case where all
coordinate functions but yu and -yu+1 are constant. In this case, the orbit-closure
of 8(1) contains q+Gu (resp. q+Gu+1) when yu (resp. yu+i) is non-constant, q
being any co-limit (resp. a-limit) point of 5(0). The proof is an obvious modification
of the corresponding part of the n - 3 proof.
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