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Abstract. Let f: T" > T" (n=3) be a hyperbolic toral automorphism. Let A be the
set of @ >0 such that there is a Holder continuous path of index a in T" with
1-dimensional orbit-closure under f. We prove that a,=sup A can be expressed in
terms of the eigenvalues of f, and that ay€ A if and only if ay<1.

1. Introduction

When Smale asked whether or not a hyperbolic toral automorphism can have a
1-dimensional (compact) invariant set, one natural response was to consider the
orbit-closure of paths in the torus. Franks [2] and Mané [8] proved that if a path
is smooth enough then its orbit-closure is at least 2-dimensional. In fact, all rectifiable
paths have this property [8]. In contrast, Hancock [3], [4] and Przytycki [9] answered
Smales’s question for tori of dimension =3 by showing how to construct C°-paths
with 1-dimensional orbit-closure. (Bowen [1] also obtained the answer, but by a
different route. Smale himself had given a negative answer for T2.)

There is a number that, to some extent, calibrates the gap between rectifiability
and bare continuity, namely the Holder index a of a Holder continuous map. The
purpose of the present paper is to locate the precise value of a at which the possibility
of paths with 1-dimensional orbit-closure ceases. This is given by the following
theorem:

THEOREM 1. For n=3, let f: T" » T" be a hyperbolic toral automorphism. Let a, be
the maximum of log|u|/log|A| for all pairs A and p of (complex) eigenvalues of f for
which the ratio is =1. Then

(1) if ao<1 there are a-Holder paths in T" with 1-dimensional orbit-closure for
a = ag but for no greater a;

(ii) if ag=1 there are a-Holder paths in T" with 1-dimensional orbit-closure for
every a <1.

Since a =1 is essentially the case of rectifiable paths, Mané’s result completes the
picture.

The paper is in two parts. In §§2-4, we construct a-Hélder paths with
1-dimensional orbit-closure for @ = ;<1 and a <a,=1. In § 5 we prove that they

https://doi.org/10.1017/50143385700003424 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700003424

242 M. C. Irwin

do not exist for « > a,. We have already made a start on the first part in [7], which
dealt with the case of automorphisms of T> with real eigenvalues. (Since no power
of such an automorphism can have repeated eigenvalues [7], this is precisely the
case a = ap<1.)

When I had completed writing this paper, I received a preprint of a paper by
Mariusz Urbanski, now published as [10], which performs a similar investigation
in terms of the capacity of the image set rather than the Hélder index of the map.
In his theorem 1, Urbanski proves that if f: T" > T" is as above and if a curve in
T" has capacity <2-—a, then its orbit-closure under f has dimension =2. This
immediately gives some restriction on the Holder index with which a path can have
1-dimensional orbit-closure, and, in fact, it is quite easy to modify his proof to give
the above result that the index can be at most «,. (However, I am grateful to the
referee for pointing out that I have actually proved rather more than this: see
theorem 11 below.) Urbanski’s theorem 2 deals with the existence of paths with
1-dimensional orbit closure (and higher dimensional analogues). His theorem has
more general statement but, in our terms, he proves that there exist such paths with
capacity =2 — a,+ ¢, for any positive £. The Holder continuous paths in theorem 1
above have such a capacity, with £ =0 in the case a,<1. Also, in the case a;<1,
we prove that we can always find such paths that are simple (without self-intersec-
tions). In the case a,=1, one may prove that the paths that Urbanski constructed
are a-Holder for a arbitrarily near 1. Both Urbariski’s paper and the present one
make heavy use of techniques of Przytycki [9] to control the topological dimension
of sets.

2. Existence: strategy and preliminary results
Let f be a hyperbolic automorphism of T" =R"/Z". That is to say, f: T" > T" lifts
to a linear automorphism L:R"->R" with no eigenvalues of modulus 1. Thus R”
splits as a direct sum E“@® E* of L-invariant Subspaces such that the eigenvalues
of L|E* and L|E* have modulus respectively >1 and <1. Let I[I:R" > T" be the
quotient map. We make the standard identification R" =R* xR*. We may assume
that the product projection 6:R" - R" restricts to an isomorphism ¢ of the unstable
summand E* onto R" Finally, recall the definition of Hilder index: amapg: X > Y
of metric spaces is Holder continuous of index a (0<a=1) at x€ X, or a-Hélder
at x, if, for some constant C,

dy(g(x), g(x)) = Cdx(x, x)%,
for all x’ € X. We say that g is a-Holder if, for some C, the inequality holds for all
x, x'€ X. Notice that if X is compact and g is a-Holder then g is B-Holder for all
B<a.

Proving the existence part of theorem 1 is easier for n =3 than for n> 3. This is
because, by a theorem of Hirsch and Williams [5], invariant sets of f cannot be
(n —1)-dimensional. Also, since it is well known that there are dense orbits in T",
the only n-dimensional invariant set of f is T". Thus to prove that the orbit-closure
of a (non-constant) path in T° is 1-dimensional, we have merely to prove that it is
not the whole of T3, or, equivalently, that the orbit misses some non-empty open
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subset of T°. We may assume that the unstable dimension u is 2 (otherwise replace
f by f'). We take a small open neighbourhood N of 0 in R* Thus II67'(N) is a
small open neighbourhood of the circle I187'(0) in T>. Now II injectively immerses
E* densely in T?, and the intersection of E* with II"'I187*( N) is the neighbourhood
¢ (N +2?) of the lattice G = ¢ (Z*) in E* We start with a map 7y,: I > E* where
I=[0,1] and make a sequence of perturbations to Lipschitz maps y;: I » E*, such
that, for i >0, L'y;(I) misses ¢ ‘(N +2Z?). If we are careful enough, we can ensure
that (y;) converges to a Holder continuous map y:I-> E“ whose index is related
to the eigenvalues of L|E* (this is achieved by keeping a tight control on the
Lipschitz constants of ;). Moreover, we can arrange that for all i >0, L'(y) misses
a rather smaller open neighbourhood ¢ '(N,+2Z?) of G, where 0 N,<= N. Now
Liy(I)> 0 as i > —co. If we start with y,(I) sufficiently near 0, the negative half-orbit
O (y(I)) (thatistosay | {L *y(I): i = 0}) misses all of ¢ '( N, +Z?) except ¢ '(N,).
(In any case, it hits only finitely many components of the neighbourhood). Thus
the orbit of [Ty(I) in T* misses the open set [107'(N,)\II¢ '(N,), and hence has
1-diniensional closure.

The geometrical technique of constructing maps vy; with the required properties
depends on the eigenvalues of L. For a,<1 (as in [7]) we take ¢ '(N) to be a
diamond with axes in the directions of the two eigenspaces (the ‘strongly unstable’
and ‘weakly unstable’ directions). Starting with y, mapping onto a straight line
segment in the strongly unstable direction, we are able to make all perturbations in
the weakly unstable direction, and to finish with ¥ an embedding onto the graph
of a function from one eigenspace to the other. In the case a,=1 the situation is
not so straightforward, since we are forced to perturb in many different directions.
This time ¢ ~'(N) is a Euclidean disc (after some linear change of coordinates in
E*") and we work with maps v, that map I onto polyhedral paths in E“. We carefully
control the minimum segment length of the paths, in order to control the Lipschitz
constants of the maps.

For the general case n=3, we again suppose ¥ =2 and construct a sequence of
maps v;:I-> E" tending to a limit vy, such that the orbit-closure of I1y(I) is
1-dimensional In fact the paths y; and y are all constructed in a 2-dimensional
L-invariant subspace V of E* where the eigenvalues of L|V are related by
log |1£|/1og |A| = @,. The construction of v; is made much more complicated by our
efforts to control the dimension of the orbit-closure of IIy(I). The control-technique
that we use is due to Przytycki [9]. As for n =3, the dimension of the closure of
O~(I1y(I)) causes no problems, because f ‘TIy(I)-II(0). We try to ensure that
locally the dimension of the closure of O*(IIy(I)) is at most 1 in the unstable
direction and 0 in the stable direction.

We take a coordinate system in R" such that its (¥ —2)-coordinate planes denoted
Xj, say, are transverse to ¢(V). We arrange that, for each X, L'y(I) misses some
small neighbourhood of [1"'T18~'(X;) for all i > 0. This implies that the orbit-closure
of IIy(I) has dimension =1 in the unstable direction, basically because the
complement of the neighbourhood in E* has an open cover of bounded mesh and
order 1 (for the notions of mesh and order, see [6]).
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To control dimension in the stable direction, we arrange that L'y(I) misses a
neighbourhood of I17'II(B*(0, /) +9P), where P is a parallelepiped in E* such that
II(B*(0, I)+int P) covers T". Here B“(0, I) is the ball with centre 0 and radius / in
E* Roughly speaking, locally, in the stable direction, the complement of a number
of copies of 3P has an open cover of finite mesh and order 0, and this leads to the
dimension of the orbit-closure of I y(I) being locally 0 in the stable direction.

Recall that, in the n =3 case, we made L'y,(I) miss a neighbourhood of G, but
that there was the possibility that later perturbations of v; into y might affect this
property. We got round this by making the total contribution of the later perturbations
so small that the fact that L'y,(I) missed the original neighbourhood of G forced
L'y(I) to miss a rather smaller one. In the general case, the situation is more
complicated because, instead of the single set G, we now have 2s+3u(u—1) sets
that we would like to miss, namely 2s sets of the form II 'II(B*(0, I) + Q;), where
Q; are the (s —1)-dimensional faces of the parallelepiped P, and the 3u(u —1) sets
II™'1167'(X;). We make 2s+3;u(u—1) perturbations in going from L'y,_, to L'y,
each one to avoid a neighbourhood of one of the sets. Speaking very roughly, we
can make the neighbourhoods as large as we like in the Q; case, and as small as
we like in the X; case. We choose the neighbourhood-size to decrease so rapidly
with j that, once we have missed the neighbourhood of a given set, all subsequent
perturbations leading to L'y; and all subsequent perturbations leading from L'y, to
L'y are comparatively small in total, and so L'y(I) misses a rather small neighbour-
hood of the given set. Of course there is a danger that, for example, perturbations
of L'*'y, to miss large neighbourhoods in the course of obtaining L**'y,,, may
affect the way that L'y;(I) misses small neighbourhoods. However, this will not be
the case if L is a sufficiently powerful expansion on V. We can always achieve this
by replacing L by some large power of L. This is a useful trick, and we employ it
on several occasions. Notice that replacing f by some power of f affects neither the
ratio of logarithms of eigenvalues nor the dimension of the orbit-closure of a given
subset of T".

We need a couple of preliminary results. The first shows how to obtain a Holder
continuous map as the limit of a sequence of Lipschitz maps.

LEMMA 2. Let X and Y be metric spaces, with X compact, and let v;: X > Y (i=0)
be a sequence of maps converging uniformly to y: X > Y. Given A > u>1, A>0 and
B >0, suppose that, for all i = some i,
(i) 1v; is Lipschitz with constant AX*/u’;
(ii) d(y, y:)=<B/un', where
d(v, 8) =sup {d(y(x), 6(x)): xe X}.
Then v is a-Holder, with « =log u/log A.

Proof. Exercise, or see the penultimate paragraph of [7].

Recall that the norm ||L|| of a linear automorphism L:R"->R" is the sup of
{JL(x)||: xeR", ||x|| =1} and the so-called ‘minimum norm’ m(L) is its inf. Thus
17" =1/m(L).
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LEMMA 3. Let L be a linear automorphism of R* with eigenvalues A and u. satisfying
|A| = || = p, say. Then:

(i) given c<p, m(L")=o" for sufficiently large r,

(ii) given r>p, |L"|=<7" for sufficiently large r.

Proof. Immediate from the formula lim,_ | L"||"/" for the spectral radius.

3. Existence: the case ay,<1
Recall that in explaining our strategy for proving the existence part of theorem 1
for general n, we said that we would need to make a sequence of perturbations to
make O*(y(I)) miss neighbourhoods in V of a sequence of 2s+3u(u —1) sets (or,
equivalently, y(I) miss the negative half-orbit of the neighbourhoods). In the case
ay<1, each neighbourhood is a family of diamonds, and we shall isolate the
construction of all perturbations leading to the map vy as a lemma. For the purposes
of this lemma, let L:R*~>R? be a linear map of the form
L(x, y) = (Ax, uy).

Let N be a positive integer. For 1=j=< N, let {D;:: keN} be a family of disjoint
open diamonds in R” with centre Py = (x;, yj), width b;> 0 and height 2b;. That is
to say,

Dy ={(x, y) € R*: 2|x — x| + |y — yu| < b;}.
Given l;,-"with 0< b, <b, let ﬁjk be the open diamond with centre Py, width b; and
height 2b;.

LEMMA 4. Suppose that, for all j,
(i) b.i - 5; >2 Z£V=j+1 b,;
(i) A>2u, and u>1 is sufficiently large for
N N .
2 Y b+2Y b(u—-1)""<b-b;
r=j+1 r=1

(iii) the distance between two distinct diamonds Dy and Dj. is >4/5 Nb;.
Then there exists a map y:I->R? where I1=[0,1], which is a-Hélder, with
a =log u/log A, and such that, for all j and k, y(I) does not intersect the negative
half-orbit O_(ﬁjk). Moreover we can always find vy of the form y(x) = (x, 8(x)), where
8:I->R is an a-Holder map.
Proof. For all i=0, let Dy =L (D) and D~,»jk = L‘i(lsjk). Then Dy is an open
diamond with centre

L™(Py) = Py = (X Vi),

say, width b;/A’ and height 2b;/u". Similarly for Dy. Let p: I -R® be any map of
the form

p(t) =(1, 0(1)),
where o:I—- R is Lipschitz. Notice:

Remark 1. If Lip 0 <2A*/u' and if p(I) has non-empty intersection with D, then
either (@) xy € I and p(x;) € Dy, or (b) x> 1 and p(1) € Dy, or (¢) X <0 and
p(O) € Dijk-
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Remark 2. If Lip o <2A'/ ' and if p(I) has non-empty intersection with two distinct
diamonds Dy, and Dy then
%0 — Xyac| = 4 Nb; /A
Geometrically, since the edges of the diamond D, have slope 2A'/ w', if p(I) has
secant slope <2A'/u’ and enters Dy, it either crosses the vertical axis of Dy or
terminates short of this axis. This gives remark 1. For i =0, remark 2 is clear from
(iii), since p has Lipschitz constant J5. Mapping by L™ gives the general statement.
We now prove the following:

SuBLEMMA 5. For all i=0 and 0<j=< N, there exists a map vy;:1-> R? (with
Yin = Y1) Of the form y;(t) = (1, 8;(t)) such.tha.t:
(i) 8y is Lipschitz with constant (1+j/N)A*/u’ for all i, j;
(ii) y;(I) ~ Dy is empty for all i, k and j with 1 <j< N;
(iii) 0=8,(t)—8i;—(t)=2b;/pu' forall tel, i and j with 1<j=N.
Proof. The proof is by induction on the pair (i, j), ordered lexicographically. To
start the induction, define 8y(¢) =0. Now suppose that §;;_,, is defined, for some
i=z0,1=<j=<N. Let
S= {k€ N: ‘Yi(j—l)(I) (@) Dijk # @}.
By remark 2, if k, k'e S with k # k' then |x — x| =4Nb;/A". We obtain vy, from
Yi(j—1) by a linear perturbation upwards on each interval
[xj —2Nb;/ L', x+2Nb;/A'], keSS,
the perturbation being just large enough to avoid Dy;. To be precise, let 7(t) denote
the y-coordinate of the point at which the line x = ¢ intersects the top edge of Dy;.
We define the perturbation 8;(#) — 8;;-1)(¢) to be 0if |t — x,.|=2Nb;/A* forall ke S,
and to be

(1- W)(Tk(xijk) - 5i<j—1)(X.-jk))

if |t — x| =2wNb;/ A" for w=1, where k € S satisfies (a) of remark 1. We also have
to allow for v,;-1)(I) terminating in Dy, short of its vertical axis, as in (b) or (c)
of remark 1. In these cases, we define 8;(t) — 8,;_,)(?) to be respectively

(l_w)(Tk(l)_ai(j—l)(l))s
where 1—t=w(1-x;, +2Nb;/A’) for 0=w=1, and

(1= wH(7(0) — &i(;-1)(0)),
where t = w(x;;+2Nb;/1’) for 0=w=1.

In the three cases (a), (b) and (¢), (1 —w) multiplies a positive number which is
less than the height 2b;/ w' of Dy, and so property (iii) of the sublemma holds.
Also on each linear portion of y; — v;(;-1) there is a vertical increment lying between
~2b;/u’ and 2b;/u’ in a horizontal distance of 2Nb;/A’, and so y; — yi_1) is
Lipschitz with constant A‘/ Nu'. We deduce (i) for v, using (i) for yi(;_1). (N.b. If
j = N, this also gives (i) for 8.1y, since A/u >2).

Finally, we have to check that our perturbation of ¥;(;—1)(I) to avoid Dy does
not produce an intersection of y;(I) with some other Dy, k'€ S. But, if this were
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the case, translating y;(I) slightly downwards would give it intersections with both
Dy and Dy, in a horizontal distance <2Nb;/\’, which contradicts remark 2. This
completes the proof of the sublemma.

To prove lemma 4, we show that (y;) converges to a limit y which has the required
properties. By (iii) of the sublemma, for all (', j') = (i, j),
N N o .
0= ai,,-,(t)—ai,-<z)s( ) b,+( 3 b,) ) 1/#"‘)2/u'

r=j+1

< (gl b’)(mio l/n"'>2/ui,

which >0 as i->00. Thus the limit 6 of (8;) exists and satisfies

056(t)—5,~j(t)5( y b+z b(n—1)" )2/,;‘. (1)

r=j+1
We write y(t)=(t, 8(t)). By (11) of the sublemma, v;(I)n Dy is empty. The
minimum vertical distance from D,Jk to the complement of Dy, is (b;— b )/ 1'. By
(1) and by hypothesis (ii) of the lemma, this is greater than the maximum vertical
distance from v;(I) to y(I). Hence y(I)n D~,-jk is empty. Finally, if we write 8, = §;5
then & is the limit of (8;), &; is Lipschitz with constant 2A’/u' and

N .
I6:=8l=2 ¥ b(pn—-1)"/u’
r=1

Thus, by lemma 2, § is a-Holder. Hence vy is a-Holder. This completes the proof
of lemma 4.

We now prove the existence part of theorem 1 in the a,<1 case.

THEOREM 6. Let f:T" > T" and a, be as in theorem 1. If ay<1, then there is an
embedded path that is ay-Holder and has 1-dimensional orbit-closure.

Proof. We use the notation of the first paragraph of § 2. Since a, < 1, the eigenvalues
of f are all real. Let A and u be eigenvalues with a,=1log |u|/log|A|. By taking a
suitable (possibly negative) power of f, we may assume that all eigenvalues of f are
positive and that A > x> 1. Let V be the 2-dimensional eigenspace corresponding
to A and u, and let W = ¢( V). We may assume, after conjugating with an automorph-
ism of R* with matrix in GL,(Z), that W is transverse to each coordinate (u—
2)-plane of R* (After possibly reordering the original coordinates of R", we can
choose generators of W of the form (1,0,4,,...,4a,) and (0,1, bs,...,b,). If
e, ..., e, is the standard basis of R", we can pick a new basis (1,0, m,, ..., m,),
0,1, n,,...,n,), e,..., e, where m, and n, are integers such that m, # a,, n, # b,
and
(m,—a,)(n,—b,) # (m,—a,)(n,—b,)

forall r, s with 3=r=wu, 3=s=u and r# s. The coordinate planes with respect to
this new basis have the required transversality.)

Consider R* as a cubical complex C with the integer lattice Z" as vertices. Let
K be the complement of the (u —2)-skeleton of this complex, and let U be the
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open cover of K consisting of all open star neighbourhoods of barycentres of (1 —1)-
and u-dimensional cubes of C in the barycentric first-derived simplicial complex
of C. Thus % is a cover of mesh vu and order 1.

It is convenient to identify the subspace V with the plane R? by an isomorphism
such that the induced map L:R?*-R? has the form

L(x, y) = (Ax, py),
and, renorming R* if necessary, we can assume that the identification is an isometry.
Following Przytycki [9], we construct an s-dimensional parallelepiped P in E°,

with a vertex at 0 and (s —1)-dimensional faces Q;, 1=j=2s, such that the faces
through 0 (given by j=1,..., 5) generate subspaces Y; of E* with the property that

O 'II(E*)n Y; ={0}. (2)
(We can make such a construction because II 'TI(E*)~ E* is countable.) Let P
have diameter d. Let B“(0, l) be the open ball in E* with centre 0 and radius |,

where [ is large enough for II to map the vector sum B*(0, 1/2)+int P onto T".
(This is possible since [I(E") is dense in T".) For 1 =j=2s, let

b=3*7.2J51 and £ =3>7J/51

For ¢;> 0, let N; be the open ¢;-neighbourhood of Q; in E*. For each point g€ E*
such that I1(q) e II(N;) and (g+ B*(0, I)) n V # &, consider the centroid p of the
open disc (g+ B“(0, I)) n V. Enumerate all such g and p as (gu) and (pu), keN.
Notice that the diamond D~jk in R? (= V), defined earlier in this section, contains
the ball (g, + B*(0,1)) "V, since the latter has radius =<l We choose ¢ so small
that, for all k # k', the distance from g, to g is greater than 4(1 +V5N )b;, where
N =2s+3u(u—1). (It follows from (2) that we can do this.) The inequality
guarantees that the diamonds D, and D;. are disjoint, and that the distance between
them is greater than 45 Nb;.

Let X; (j=2s+1,...,N) be the coordinate (u—2)-planes in R". Then
II7'T167'(X;) N V is, by the transversality assumption, a subgroup of V isomorphic
to Z2, and we enumerate its points as (pi), keN. We pick, successively, positive
numbers by, 4, ..., by satisfying b; < b;_,/3 and so small that the distance between
distinct diamonds Dj and Dy is at least 45 Nb;. Let l;, =b;/2.

We have now arranged that conditions (i) and (iii} of lemma 4 hold for all j, k
with 1=<j= N, keN. Replacing L by some positive power if necessary, we can
assume that (ii) holds as well. (Since the power has the same E°, E* and V as L,
this does not invalidate any of our previous work.) Thus, by lemma 4, there exists
an a,-Holder map y: I - V such that y(I) O_(D~jk) is empty for all j, k. Moreover
v embeds I as the graph of an a,-Hoélder map §: I >R.

We must now prove that the orbit-closure of I1y(I) is 1-dimensional. First note
that, since y(I) is clearly 1-dimensional, so is the orbit of ITy(I). Since f"IIy(t)~>
I1(0) uniformly on I as n > —00, the negative half-orbit O~ (I1y(I)) has 1-dimensional
closure. Thus it suffices to prove that O*(I1y(I)) has 1-dimensional closure.

Take an open e-neighbourhood N* of X=J{X;:2s+1=<j=<N} in R"
where £>0 is small enough for II"'II6"'(N*)nV to be contained in
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U {Dy: 2s+1=<j= N, keN}. Thus O*(y(I)) is disjoint from II"'I16*(N*“). Take
also an open &,-neighbourhood N} of X in R* with 0<¢, <eg, and choose n >0
so small that

07'(N})+B < §7(N"),
where B*= B*(0, n).

As B* ranges over all open balls of radius I/4 in E*, {II(B): B= B" + B*} gives
an open cover of T". Thus, to show that O (IIy(I)) has 1-dimensional closure in
T" it suffices to show that the closure H of O"(II"'[1y(I)) n B has dimension <1
for all B. We do this by showing that H is contained in F*+ F°, where F* and F*
are closed subsets of B* and B’ of dimension at most 1 and 0 respectively.

By construction, O*(II"'I1y(I)) is disjoint from [I'TI87'(N})+ B® and hence
from the negative half-orbit of this set. This negative half-orbit contains
O (I Y(NY¥)n E*)+ B°. Now the complement of [IT'TI6 '(NY)nE" is a
closed set contained in ¢ '(K). Hence the complement of its negative half-orbit in
E"* is a closed set contained in () {L ‘¢ '(K):i=0}, and hence covered by
L™'¢ "' (%) for all i=0. Thus its intersection with B* is a subset F* of dimension
=<1. We have H< F“+ B*.

For each non-empty component of II"'IIL'(B*(0, I/2)+ N;) n B, where i =0 and
1 <j =25, remove the corresponding components of 1 'TIL (B*(0, )+ N ) Bfrom
B. This leaves a set B*+ F;, where F; is closed in B*. The connected components
of F; give an open cover of F} of order 0. The cover has mesh v'd, where v is the
largest eigenvalue of L| E®, because each member of the cover is contained in a set
isometric to L'(int P). Since the mesh tends to zero as i - o, the closed set

Ff=M{Fi:i=0}
has dimension =0. Moreover O*(IT"'I1y(I)) is contained in B" + F*, and hence so

is H. Finally, since E“+ E° is a direct sum, H © F“+ F*, as asserted. This completes
the proof of theorem 6.

4. Existence: the case ay=1

We begin with a description of the type of perturbation that we employ in the ay=1
case. We call a continuous map &:S-R?, where S is a straight line segment, a
piecewise linear piecewise embedding (PLPE), if, for some subdivision of S, each
subsegment is mapped linearly by & onto a straight line segment in R>. The minimum
segment length of 8 is the minimum of the lengths 6(S;) for all subsegments S; of
the subdivision.

LEMMA 7. Let (py), k €N, be a sequence of distinct points in R*, such that the minimum
distance h between points of the sequence is positive. Let a, b, » and m =min {a, h/3}
be positive numbers satisfying 4b<m, 6b=mw. For any PLPE 8,:I->R* with
minimum segment length = a, there is a PLPE 8, : I > R? with minimum segment length
=b, such that:
(i) Lip 6,=(1+w) Lip &;
(i) |8, — 8|l =6b;
(iii) 8,(1)~ B(ps, b) is empty for all keN.
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Proof. The map 8, is 8, composed with a PLPE o : 8,(I) - R’. It is enough to describe
o on one segment S of §y(I). For each non-empty set S B(p,, b), choose any
subsegment S; of S of length m that contains the set. Two such subsegments S,
and S, k# k', do not overlap, for this would imply

I P — picll <2m~+2b<5m/2<5h/6.

We let o be the identity off the subsegments S,, and show how to define o on S,.
Let S, =[4q,, g.}- We distinguish three cases:

(1) one end-point, say g,, in B(p,, 2b) but not in B(py, b);

(2) one end-point, say ¢q,, in B(py, b);

(3) neither end-point in B(p,, 2b).
(Notice that we cannot have both end-points in B( p, 2b), since m =4b.)

Case (1). Let S; intersect the boundary 4 B( py, b) in points g; and q,, with g; nearer
to ¢,. Let g5 be the mid-point of the shorter arc of dB(p, b) joining g; to g4 Let
ge be a point distant b from g, and g; such that [g,, 4] and [ gs, g:] do not intersect
B(p, b). Let g, be similarly related to g; and gs, and let g5 be similarly related to
gs and g, (see figure 1). Define o on S, to be the PLPE which increases length by

96

FIGURE 1

a constant factor and maps S, onto the polyhedral path ¢,9¢4:9:959s9.9-. Clearly
o has Lipschitz constant at most (m+6b)/m, which is at most 1+ w. If g€[q,, 9]
then the polygonal path distance from g to o(q) along o(S,) is at most 6b. On the
other hand, it is easy to see that the convex hull of {q,, s, ¢+, qs, 44} has diameter
at most 6b, so

lg—o(q)ll=6b  for q[qs, q.].
Thus all three conditions of the lemma are satisfied in this case.

Case (3). We define points as in case 1, except that we no longer need a point g.
This time o maps S onto 4,4:9:9593949>-

https://doi.org/10.1017/50143385700003424 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700003424

Holder continuous paths 251

Case (2). Let S intersect dB(py, b) in gs. If g,, which is an end-point of S, is also
an end-point of an adjacent segment T of y(I), let T intersect dB( p, b) in gq,, and
let g5 be the mid-point of the shorter arc of dB( p, b) joining g; to q,. If g, is an
endpoint of y(I), let gs be an arbitrary point of dB(p,, b) near g,. Let g¢ be the
point distant b from ¢; and gs such that [ g5, g¢] and [ ge, ¢s] do not intersect B( py, b).
(See figure 2). We define o to map S, onto the polygonal path gsgsqsq.. Of course
o will also map T onto a polygonal path ending at gs. Similar estimates to those
in case 1 again give conditions (i) and (ii).

FIGURE 2

We now prove an analogue of lemma 4.-As before, (pu), keN, 1=<j=<N, are
points of R”. For fixed j, the minimum distance between points of the sequence
(pu) is the positive number h;. This time, Dy and Dy are balls B(p,, b;) and
B(pi, b) respectively, for some b; > b > 0. For the purposes of the next lemma L
is a linear automorphism of R>.

LeEmMA 8. Let L:R*>>R? have eigenvalues A, u with |A|=|w|> 1. Let 7 be a number
with |\|<||L]| < 7<|A]? and let @ >0 satisfy (1+ )™ <7/||L| and w <1. Suppose
that, for all j:

(i) bj=wb;_,/6;

(i) m(L) is large enough for b, < m(L)wbx/6;

(iii) @ is small enough for wb;(1—w/6)7' <b;— 5j;

(iv) m(L) is large enough for

wb,(1-©/6)'+6b,(1-w/6) '(m(L)—1)"" < b;~ b;

(v) hj=18b/ w.
Then there is a map v: 1 ->R?, where I =[0, 1], which is Holder constant with index
2log|Al/log 7—1 and such that, for all j, k, y(I) does not intersect the negative
half-orbit 0™(Dy,).

Proof. As before, we prove a sublemma by induction on the pair (i, j).
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SUBLEMMA 9. For all i=0 and 0=<j=< N, there exists a map vy;: I->R* (with yin =
Yi+1)0) such that:
(i) L'yy is Lipschitz with constant (6b,/ w)7'(1+ )’ for all i, j,

(i) L'y;(I)~ Dy is empty for all i, j, k with 1=<j=< N

(iii) || L'yy— L'yi;—n)|| <6b; for all i, j with 1<j=< N;

(iv) L'y, has minimum segment length =b; for all i, j with 1<j=< N.

Proof. Notice that (i) for L'y,y implies (i) for L™y .10, by the inequality
IL||(1+ @)™ < . We start with y,, mapping I linearly onto a straight line segment
of length 6b,/ .

Suppose that ¥;;_1) is defined and satisfies (i)-(iv) of the sublemma. We apply
lemnia 7 with 8= L'y; j-1s b = b, h=h; and pi = py. For j> 1, the minimum segment
length a of 8, is at least 6b/w by property (iv) of the sublemma and (i) of
lemma 8. For j =1, a is the minimum segment length of Liy(i_‘) ~» and so is at least
m(L)by by (iv) of the sublemma. This is at least 6b,/ w by (ii) of lemma 8. Combining
these estimates with (v) of lemma 8 gives the inequality 6b < me for lemma 7, which
in turn gives 4b=m, since w=<1. We define y; by putting 8, = L'y;. Properties
(i)-(iv) of the sublemma for v; are immediate from property (i) for ¥;;_;, and the
conclusions of lemma 7.

We now show that (y;) converges to a limit y having the properties stated in
lemma 9. Summing contributions, using (iii) of the sublemma, we have that, for all

@,7)> @, J),

Ive—rl=e( 3 n+("E 1) £

r=j+ s=

r=

"
LS b, ),

whence, using (i) of lemma 8 and the fact that |[L™'||=1/m(L)=|/L|/|Af <1,

||Li‘y,~'jr— Li'yij” =bw(1- w/6) ' +6b,(1 -w/6) ' (m(L)-1)*
and

95— vl = (bw(1 — 0/6) ' +6b,(1 - w/6) ' (m(L) = 1) )m(L)™"

Thus (y;) converges, to a limit v, say. Note that

|y — Ly;| = bo(1 —w/6) " +6b,(1 -w/6) ' (m(L)-1)"", (3)

which, together with (iv) of lemma 9 and (ii) of the sublemma, implies that
L'y(I) » Dy, is empty for all i, j, k with i=0, 1<j=< N and keN.

Now ¥ is the limit of (y;) where y; = y;n. By (i) of the sublemma, ¥y, is Lipschitz
with constant (6b,/w)(1+ ) r'm(L)~". Also, by (3),

Iy = ¥ll=(brnw(1-w/6) 7" +6b,(1 - /6) " (m(L)—1)")m(L)""

Thus, by lemma 2, y is Holder continuous with index log m(L)/log 7. But m(L) >
|A[*/7>1, and so y has index log (J]Af’/7)/log 7, as required. This completes the
proof of lemma 8.
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The existence part of theorem 1 in the a,=1 case is as follows:

THEOREM 10. Let f: T" - T" and « be as in theorem 1. If ag =1, then, forany a <1,
there is an a-Hélder path in T" with 1-dimensional orbit-closure.

Proof. Let A and u be eigenvalues of f with |A|=|u|. Replacing f by f ' if necessary,
we can assume |A|>1. Given a <1, choose a number 7, with |A|<7<|A[?, near
enough to |A| for 2 log |A|/log 7 —1 to be greater than a. As in the proof of theorem
6, we let V be a two-dimensional subspace of R* such that L|V has A and u as
eigenvalues. We identify V with R by some linear isomorphism. By lemma 3, if we
replace f (and ) by some sufficiently large power we can assume that |L| V|| <7
Now choose >0 satisfying (1+w)” </|L| V||, where N =2s+3u(u—1). We
also take w <35, noting that for such values of w, condition (iii) of lemma 8 holds
for all j, when b; = 5;-/2.

We construct points p,, 1=j= N, keNin V, exactly as in the proof of theorem
6. For 1=j=<2s, we define

b;=(6/w)*21 and b;=(6/w)*7L

As in theorem 6, we have numbers ¢; at our disposal, and we choose them so small
that the distance from p; to pu for k# k' is at least 18b;/ w. Next we successively
choose b,, .4, ..., by positive but so small that, for 2s+1 <j< N, b;=wb;_,/6 and
the dxstance from Pix t0 Dy, k# k', is at least 18b;/ w. Let b b;/2. For 1=j=< N,
let Dy, and Dy be the open balls in V with centre pj and radius b; and b respectively.
Finally, after replacing f by some power if necessary, we can assume, writing L| V
as L:R*> R?, that m(L) is large enough for conditions (ii) and (iv) of lemma 8 to
hold. Then the map y:I->R?*=V given by lemma 8 is a-Holder, and the orbit of
[Ty is 1-dimensional by the argument of the proof of theorem 6.

5. Non-existence
The following result implies the non-existence part of theorem 1(i).

THEOREM 11. Let f: T" - T" be a hyperbolic automorphism with a,<1. Let6: 1> T"
be a non-constant path where I =[0,1]. If, for some a > a,, & is a-Holder at every
point of I, then the orbit-closure of §(I) contains a coset of an f-invariant toral subgroup
of T" (and so is at least 2-dimensional).

Thus if 6 is nowhere locally constant, and if () has 1-dimensional orbit closure,
then for any given a > a,, the set of points at which 8 is not a-Hdolder is dense
in L

We begin with a piece of undergraduate analysis. The reason that «-Holder maps
g:I - Rare not important for a > 1 is that they are trivially constant, being differenti-
able with zero derivative. We generalise this remark, as follows.

LEMMA 12. Let k> 1, and let g: I »>R be continuous. Suppose that, for all t,€[0, 1),
there is some sequence (t,), decreasing to t,, such that:

lg () — g (1) = (1, = 0)".
Then g is constant.
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Proof. As we have remarked,

lg(t) —g(0)|<|r'—1*
for all ¢, t'e I implies that g is constant. Suppose that g is not constant, so that,
for some a, be I, with a <b say,

|g(b) ~g(a)|> (b—a)"
By continuity of g at b, there exists d > 0 such that

lg(1) —g(a)|> (1—a)*
for all te I with |t—b|=<d. Now consider the set X of te I with t=a such that,
for some r=0 there exists a chain

a=r1<m<---<7,=t
with
7,—T1<d and lg(Ti)—g(a)|S (Ti_a)k

for 1=i=r. Then X is non-empty (it contains a), and it is easy to see that, if
sup X = ¢, then £€ X and hence that ¢ =1 (using the sequence decreasing to ¢ to
obtain a contradiction if £ <1). But some point of the chain (7;) joining a to 1 lies
in the d-neighbourhood of b, which gives a contradiction. Hence g is constant.

For simplicity, we first give the proof of theorem 1 in the case n =3. Let [1: R’ > T° =
R?/Z? be the quotient map, and let L:R>-> R® be the hyperbolic linear automorphism
covering f. The condition a,<1 implies that the eigenvalues A, u, v of f are real
and we may assume, replacing f by some power if necessary, that they satisfy

A>u>1>v>0,

so that a,=1log u/log A. Let U be open in T°, and let V=I1"'(U). Let & lift to
v:I1->R* where y is a-Holder at every point of I. We must show that, for some
reZ, f'8(I) intersects U, or, equivalently, 8(I) intersects f "(U), or, equivalently,
y(I) intersects L™"(V).

For convenience we work with coordinates x = (x;, x,, x;) in R® with respect to
a basis v,, v,, v; of eigenvectors of L corresponding to the eigenvalues A, u, v in
that order. Given peR?, let C,(p, I, a) be the solid circular cylinder with centre p,
radius a, and axis in the v;-direction of length 2/ That is to say,

CipLa)={xeR|x,—p|=<l (x;—p) >+ (x—p)°=a? j*i#k#j}.

LEMMA 13. There exists a >0 and 1> 0 such that, for all i and for all p e R®, any path
in Ci(p, I, a) running its length (i.e. passing through a point of the boundary disc
x; = p;— 1l and a point of x; = p;+1) intersects V.

Proof. Let peR’. The x;-axis maps under II to a subgroup of T° that is dense in
T2. (Its closure is an f-invariant total subgroup G. Since f is hyperbolic, dim G;> 1
and so by theorem 9 of [1], G;= T°.) Hence so does the parallel line through p.
Thus, for some />0, the segment |x;— p;|<1 of this line intersects V. Since V is
open, it contains, for some small a >0, some interior cross-sectional disc x; = ¢; of
the cylinder C;( p, I, a). Thus the property holds for C,(p, [, a), and also for Ci(q, ], a),

https://doi.org/10.1017/50143385700003424 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700003424

Hélder continuous paths 255

for g € R® sufficiently near p, by openness of V. Using compactness of the unit cube
(with respect to the original coordinates in R*), we obtain a and I for which the
property holds uniformly for C;(p, [, a) for all p in the unit cube, and hence, by
covering translations, for all p e R>.

CoROLLARY 14. Let | and a be as in lemma 3. For all peR® and for all r>0, any
path in C,(p, I\, au™") running its length intersects L™"(V).

Proof. Under L', C,(p, IA"", au™") maps onto an elliptic cylinder contained in, and
with the same axis as, C,(L'(p),l, a). Thus a curve running the length of
Ci(p,IA"", au™") maps to a curve running the length of C,(L’(p), I, a). By lemma
13, the latter curve intersects V.

Returning to the proof of theorem 11, choose 8 €R with a > B8 >log i/log A, and
put € = B —(log p/log A). Write y = (1, v2, ¥3). We first suppose that v, is not the
constant function. Then, by lemma 12, for some subinterval J =[t,, t,+c], ¢>0,
of I,

[71(8) = 71 (t0)| = (£ = 26)*/%,
for all re J. We may assume without loss of generality that y,(¢) > y,(¢,) for t> ¢,
in J. Choose r> 0 large enough for

207"=c¢*® and AQDPA T <aq,
where A is the Holder constant of vy at t,. (That is to say,
() = y(t) | = Alr — 1|,
where || | is the Euclidean norm in the (x,, x,, x;)-coordinate system.) Thus
Nlto+c) = vi(ty) =217,

and by making c smaller if necessary, we can assume that t,+ ¢ is the smallest ¢ for
which equality holds, for this value of r. Thus, for all te J,

((72(8) = 72(86))> + (73(1) — w3(86)) ) = l¥(8) = y(to)
= A(t—1,)”
=A(n(1)- ')'1(‘0))3
= AP
= A(21)P A~ )" loB /log A

r

=au .
Hence y|J is a curve in Ci(y(t,)+IA "oy, IA™" au™"). It runs the length of the
cylinder, since it joins y(#,) to y(#,+ ¢). Thus, by corollary 14, y(J) intersects L™ "( V).
Now suppose that v, is constant, with v,(¢) = p,, say, for all t€ I. Suppose that
7y, is not constant. Let d be the length of the interval y,(I), and let e be a bound
for |y;(I)|. Then, for r> 0, L"y(I) is contained in, and runs the length of, the cylinder
Cy(p(r), du’, ev”), where p(r)=(p;, p»(r),0) for some p,(r)eR. Thus, for r
sufficiently large, L™y(I) intersects V. A similar argument shows that if vy; is not
constant, L™ "y(I) intersects V for sufficiently large r. This completes the proof of
theorem 11 in the case n=3.
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In the general case, we may assume that the hyperbolic linear automorphism
L:R">R" covering f has eigenvalues A;, 1 =i= n satisfying

A A> > A, > 1> A, > >4, >0.

Take coordinates in R” with respect to a basis v,, ..., v, of corresponding eigenvec-
tors. The closure of the image of the x;-axis under the quotient map I1:R" > T" is
an f-invariant toral subgroup which we denote by G, As before, C;(p, ], a) is the
solid spherical cylinder in R” with centre p, radius / and axis in the v-direction of
length 21 Lemma 13 generalises as follows:

LEMMA 13'. Let U be an open neighbourhood in T" of a point of G, let g€ T", let
V=M0""q+ U) and let H;=11"'(q+ G,). There exist positive numbers I, a and b such
that, for all p e R™ with distance <b from H,, any path in C;(p, I, a) running its length
intersects V.

To prove the lemma, note that, given p € H,, the x;-axis 0x; intersects the set V—p,
since I1(0x;) is dense in G, and hence Ox; + p intersects V. The proof now follows
that of lemma 13, using openness of V to get the result for cylinders with centre
near p, and compactness of G; and covering translations to get it for cylinders with
centre in the lift of some open neighbourhood of g + G.. The number b is the distance
from the boundary of the neighbourhood to g + G, Now let 6 lift to y: I > R", where
y is a-Holder at every point of 1. We first prove the theorem when y,, ¥»,..., ¥i-1
are constant but y; is non-constant, where 1=<i<u. We choose BecR such that
a>B>log A;.,/log A, By lemma 1, for some subinterval J =[t,, to+c], ¢>0 of I,

l7:(8) = vi(to)| = (2 = 15)°7*

for te J. Let g be some w-limit point of (%) under £, and let (r;) be an increasing
sequence such that fi6(t,) > q as j—> 0. We prove that the orbit-closure of 8§(I)
contains g + G; by showing that the orbit of 8(I) intersects g + U for each neighbour-
hood U (inT") of each point of G. Let U be such a neighbourhood of such a
point, and let I, a and b be the corresponding positive numbers given by lemma
13'. As in the proofof the n =3 case, there is, for large enough j, some restriction
of y running the length of the cylinder C;(y(t,)+IA; v, IA77, ariy). Moreover,
we can take j large enough for the distance from f78(t,) to g to be less than b.
Since ¥,,..., ¥;_; are constant, L7 maps the restriction of y into a path running
the length of the cylinder Ci(p, I, a), where p = Liy(1t,) + Iv. Since the distance from
p to H; is less than b, lemma 13’ tells us that L%/(I) intersects V.

A similar argument with f replaced by f ! proves the theorem for ¥,, Ya_1, - - ., Yit1
constant but y; non-constant, where u+1<i=<n. This leaves the case where all
coordinate functions but ¥y, and v,,; are constant. In this case, the orbit-closure
of 8(I) contains g+ G, (resp. ¢+ G,+;) when 1y, (resp. v,.,) is non-constant, g
being any w-limit (resp. a-limit) point of 8(0). The proof is an obvious modification
of the corresponding part of the n =3 proof.
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