EXPANSION OF CONTINUOUS DIFFERENTIABLE FUNGTIONS IN FOURIER LEGENDRE SERIES

R. B. SAXENA

1. Let

$$
\begin{equation*}
S_{n}(f, x)=\sum_{k=0}^{n} a_{k} \widetilde{P}_{k}(x) \tag{1.1}
\end{equation*}
$$

denote the nth partial sum of the Fourier Legendre series of a function $f(x)$. The references available to us, except (5), prove only that $S_{n}(f, x)$ converges uniformly to $f(x)$ in $[-1,1]$ if $f(x)$ has a continuous second derivative on $[-1,1]$. Very recently Suetin (5) has shown by employing a theorem of A. F. Timan (7) (which is a stronger form of Jackson's theorem) that $S_{n}(f, x)$ converges uniformly to $f(x)$ if $f(x)$ belongs to a Lipschitz class of order greater than $1 / 2$ in $[-1,1]$. More generally he has proved the following theorem.

Theorem 1 (P. K. Suetin (5)). If $f(x)$ has p continuous derivatives on $[-1,1]$ and $f^{(p)}(x) \in \operatorname{Lip} \alpha$, then

$$
\begin{equation*}
\left|f(x)-\sum_{k=0}^{n} a_{k} \widetilde{P}_{k}(x)\right| \leqslant \frac{c_{1} \log n}{n^{p+\alpha-1 / 2}}, \quad x \in[-1,1] \tag{1.2}
\end{equation*}
$$

for $p+\alpha \geqslant \frac{1}{2}$.
In the course of his proof it is shown (as is mentioned by him), without using the theorem of Timan, that the uniform convergence of $S_{n}(f, x)$ to $f(x)$ holds in $[-1,1]$ if $f^{\prime}(x)$ is continuous in $[-1,1]$.

In this paper we shall supplement the above theorem by proving the following theorem.

Theorem 2. If $f(x)$ has p continuous derivatives on $[-1,1]$ and $f^{(p)}(x) \in \operatorname{Lip} \alpha$, then together with (1.2) the following inequalities hold:

$$
\begin{array}{ll}
\left(1-x^{2}\right)^{\frac{3}{1}}\left|f^{\prime}(x)-S_{n}^{\prime}(x)\right| \leqslant c_{2}(\log n) / n^{p+\alpha-1} & (0<\alpha<1, p \geqslant 1), \\
\left(1-x^{2}\right)^{\frac{1}{2}}\left|f^{\prime}(x)-S_{n}^{\prime}(x)\right| \leqslant c_{3}(\log n) / n^{p+\alpha-3 / 2} & \left(\frac{1}{2}<\alpha<1, p \geqslant 1\right), \tag{1.4}
\end{array}
$$ and

$$
\begin{equation*}
\left|f^{\prime}(x)-S_{n}^{\prime}(x)\right| \leqslant c_{4}(\log n) / n^{p+\alpha-5 / 2} \quad\left(\frac{1}{2}<\alpha<1, p \geqslant 2\right) \tag{1.5}
\end{equation*}
$$

uniformly in $[-1,1]$.

[^0]2. To prove the above theorem we shall require a number of well-known results on Legendre polynomials.

The orthonormalized Legendre polynomial $\widetilde{P}_{n}(x)$ is given by (2)

$$
\begin{equation*}
\widetilde{P}_{n}(x)=\sqrt{ }\left[\frac{1}{2}(n+1)\right] \cdot P_{n}(x) \tag{2.1}
\end{equation*}
$$

where $P_{n}(x)$ denotes the nth Legendre polynomial with the normalization $P_{n}(1)=1$.

For the $\widetilde{P}_{n}(x)$ we have the uniform estimations (2, 3, 6)

$$
\begin{equation*}
\left|\bar{P}_{n}(x)\right| \leqslant c_{5} \sqrt{ } n, \quad x \in[-1,1] \tag{2.2}
\end{equation*}
$$

and the inequality

$$
\begin{equation*}
\left(1-x^{2}\right)^{\frac{1}{4}}\left|\widetilde{P}_{n}(x)\right| \leqslant c_{6}, \quad x \in[-1,1] . \tag{2.3}
\end{equation*}
$$

For the derivatives $\widetilde{P}_{n}^{\prime}(x)$ we have the following Bernstein inequality:

$$
\begin{equation*}
\left(1-x^{2}\right)^{\frac{1}{2}}\left|\widetilde{P}_{n}^{\prime}(x)\right| \leqslant c_{7} n^{3 / 2} \tag{2.4}
\end{equation*}
$$

the Stieltjes inequality

$$
\begin{equation*}
\left(1-x^{2}\right)^{\frac{3}{2}}\left|\widetilde{P}_{n}^{\prime}(x)\right| \leqslant c_{8} n \tag{2.5}
\end{equation*}
$$

and Markov's inequality

$$
\begin{equation*}
\left|\widetilde{P}_{n}^{\prime}(x)\right| \leqslant c_{9} n^{5 / 2} \tag{2.6}
\end{equation*}
$$

for $x \in[-1,1]$.
3. In order to prove Theorem 2 we need the following two lemmas.

Lemma 3.1. For $-1 \leqslant x \leqslant 1$ we have

$$
\begin{align*}
& \left(1-x^{2}\right)^{\frac{3}{4}} \int_{-1}^{+1}\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t \leqslant c_{10} n^{3 / 2}, \tag{3.1}\\
& \left(1-x^{2}\right)^{\frac{1}{2}} \int_{-1}^{+1}\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t \leqslant c_{11} n^{2}, \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{-1}^{+1}\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t \leqslant c_{12} n^{3} \tag{3.3}
\end{equation*}
$$

Proof. We give here only the proof for (3.1). In fact we have

$$
\left(1-x^{2}\right)^{3 / 2} \int_{-1}^{+1}\left(\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right)^{2} d t=\sum_{k=1}^{n}\left|\left(1-x^{2}\right)^{\frac{3}{4}} \widetilde{P}_{k}^{\prime}(x)\right|^{2}
$$

which, owing to the inequality (2.5), gives (3.1).

Lemma 3.2. For $-1 \leqslant x \leqslant 1$ we have

$$
\begin{equation*}
\left(1-x^{2}\right)^{\frac{3}{4}} \int_{-1}^{+1}\left(1-t^{2}\right)^{\frac{1}{4}}\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t \leqslant c_{13} n \log n, \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(1-x^{2}\right)^{\frac{1}{2}} \int_{-1}^{+1}\left(1-t^{2}\right)^{\frac{1}{4}}\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t \leqslant c_{14} n^{3 / 2} \log n, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-1}^{+1}\left(1-t^{2}\right)^{\frac{1}{4}}\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t \leqslant c_{15} n^{5 / 2} \log n \tag{3.6}
\end{equation*}
$$

Proof. We shall confine ourselves to the proof of (3.4). We denote by $\Delta_{n}(x)$ the part of $[-1,1]$ on which $|x-t| \leqslant 1 / n$ and by $\lambda_{n}(x)$ the rest of the interval. Thus taking account of (2.3) and (2.5) we have

$$
\begin{align*}
& \left(1-x^{2}\right)^{\frac{3}{4}} \int_{\Delta_{n}(x)}\left(1-t^{2}\right)^{\frac{1}{4}}\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t \tag{3.7}\\
& \quad \leqslant \int_{\Delta_{n}(x)}\left[\sum_{k=1}^{n}\left(1-t^{2}\right)^{\frac{1}{4}}\left|\widetilde{P}_{k}(t)\right|\left(1-x^{2}\right)^{\frac{3}{4}}\left|\widetilde{P}_{k}^{\prime}(x)\right|\right] d t \\
& \quad \leqslant c_{16} \frac{1}{n} \sum_{k=1}^{n} k \leqslant c_{17} n, \quad x \in[-1,1] .
\end{align*}
$$

To estimate the integral over λ_{n} we use the Christoffel-Darboux formula (6),

$$
\begin{equation*}
\sum_{k=0}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}(x)=\theta_{n} \frac{\widetilde{P}_{n+1}(x) \widetilde{P}_{n}(t)-\widetilde{P}_{n}(x) \widetilde{P}_{n+1}(t)}{x-t}, \quad 0<\theta_{n} \leqslant 1 \tag{3.8}
\end{equation*}
$$

Differentiating the above relation with respect to x we have

$$
\begin{align*}
& \sum_{k=0}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)=\theta_{n} \frac{\widetilde{P}_{n+1}^{\prime}(x) \widetilde{P}_{n}(t)-\widetilde{P}_{n}^{\prime}(x) \widetilde{P}_{n+1}(t)}{x-t} \tag{3.9}\\
& \quad-\theta_{n} \frac{\widetilde{P}_{n+1}(x) \widetilde{P}_{n}(t)-\widetilde{P}_{n}(x) \widetilde{P}_{n+1}(t)}{(x-t)^{2}}
\end{align*}
$$

Then we have

$$
\begin{align*}
& \left(1-x^{2}\right)^{\frac{3}{4}} \int_{\lambda_{n}(x)}\left(1-t^{2}\right)^{\frac{1}{4}}\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t \tag{3.10}\\
\leqslant & \left(1-x^{2}\right)^{\frac{3}{4}} \int_{\lambda_{n}(x)}\left(1-t^{2}\right)^{\frac{1}{4}}\left|\frac{\widetilde{P}_{n+1}^{\prime}(x) \widetilde{P}_{n}(t)-\widetilde{P}_{n}^{\prime}(x) \widetilde{P}_{n+1}(t)}{x-t}\right| d t \\
& \quad+\left(1-x^{2}\right)^{\frac{3}{4}} \int_{\lambda_{n}(x)}\left(1-t^{2}\right)^{\frac{1}{4}}\left|\frac{\widetilde{P}_{n+1}(x) \widetilde{P}_{n}(t)-\widetilde{P}_{n}(x) \widetilde{P}_{n+1}(t)}{(x-t)^{2}}\right| d t \\
= & I_{1}+I_{2} .
\end{align*}
$$

Since $|x-t|>1 / n$ for $t \in \lambda_{n}(x)$, we find by using (2.3) and (2.5) that

$$
\begin{align*}
I_{1} & \leqslant c_{8} n \int_{\lambda_{n}(x)}\left(1-t^{2}\right)^{\frac{1}{4}}\left[\left|\widetilde{P}_{n}(t)\right|+\left|\widetilde{P}_{n+1}(t)\right|\right] \frac{d t}{|x-t|} \tag{3.11}\\
& \leqslant c_{18} n \int_{\lambda_{n}(x)} \frac{d t}{|x-t|} \leqslant c_{19} n \log n, \quad x \in[-1,1] .
\end{align*}
$$

For I_{2} we have, on using (2.3),

$$
\begin{align*}
I_{2} & \leqslant c_{5} \int_{\lambda_{n}(x)}\left(1-t^{2}\right)^{\frac{1}{4}}\left[\left|\widetilde{P}_{n}(t)\right|+\left|\widetilde{P}_{n+1}(t)\right|\right] \frac{d t}{(x-t)^{2}} \tag{3.12}\\
& \leqslant c_{20} n, \quad x \in[-1,1] .
\end{align*}
$$

Thus (3.7), (3.10), (3.11), and (3.12) complete the proof of (3.1).
4. Let $Q_{n}(x)$ be an algebraic polynomial of degree not greater than n; then we have the following theorem of A. F. Timan (7) on the order of approximation of the function $f(x)$.

Theorem 3 (A. F. Timan). If $f(x)$ has p continuous derivatives on $[-1,1]$ and $f^{(p)}(x) \in \operatorname{Lip} \alpha$, then there is a sequence of polynomials $\left\{Q_{n}(x)\right\}$ such that

$$
\begin{equation*}
\left|f(x)-Q_{n}(x)\right| \leqslant \frac{c_{21}}{n^{p+\alpha}}\left(\sqrt{1-x^{2}}+\frac{1}{n}\right)^{p+\alpha}, \quad x \in[-1,1] . \tag{4.1}
\end{equation*}
$$

From this theorem, on using the Dzyadyk inequality (1), we have the following lemma.

Lemma 4.1. Let $f^{(r)}(x) \in \operatorname{Lip} \alpha(0<\alpha<1, r \geqslant 1)$ in $[-1,1]$; then there is a polynomial $\rho_{n}(x)$ of degree at most n possessing the following properties:

$$
\begin{equation*}
\left|f(x)-\rho_{n}(x)\right| \leqslant \frac{c_{22}}{n^{r+\alpha}}\left[\left(\sqrt{1-x^{2}}\right)^{r+\alpha}+\frac{1}{n^{r+\alpha}}\right] \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(x)-\rho_{n}^{\prime}(x)\right| \leqslant \frac{c_{23}}{n^{r+\alpha-1}}\left[\left(\sqrt{1-x^{2}}\right)^{r+\alpha-1}+\frac{1}{n^{r+\alpha-1}}\right] \tag{4.3}
\end{equation*}
$$

uniformly in $[-1,1]$.
The author has proved this lemma for $r=1$ in (4). For general r the lemma can be proved in the same manner.

We now complete the proof of Theorem 2. We shall confine ourselves to proving (1.3).

We write

$$
\begin{align*}
& \left|f^{\prime}(x)-S_{n}^{\prime}(x)\right|=\left|f^{\prime}(x)-\rho_{n}^{\prime}(x)+\rho_{n}^{\prime}(x)-S_{n}^{\prime}(x)\right| \tag{4.4}\\
& \quad \leqslant\left|f^{\prime}(x)-\rho_{n}^{\prime}(x)\right|+\int_{-1}^{+1}\left|\rho_{n}(t)-f(t)\right|\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t
\end{align*}
$$

Now using Lemma 4.1 we have

$$
\begin{aligned}
\left|f^{\prime}(x)-S_{n}^{\prime}(x)\right| & \leqslant \frac{c_{23}}{n^{p+\alpha-1}}\left[\left(\sqrt{1-x^{2}}\right)^{p+\alpha-1}+\frac{1}{n^{p+\alpha-1}}\right] \\
& +\frac{c_{22}}{n^{p+\alpha}} \int_{-1}^{+1}\left\{\left(1-t^{2}\right)^{p+\alpha / 2}+\frac{1}{n^{p+\alpha}}\right\}\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t
\end{aligned}
$$

so that

$$
\begin{aligned}
\left.\left(1-x^{2}\right)^{\frac{3}{4}} \right\rvert\, f^{\prime}(x) & -S_{n}^{\prime}(x) \mid \\
& \leqslant \frac{c_{24}}{n^{p+\alpha-1}}+\frac{c_{22}}{n^{p+\alpha}}\left(1-x^{2}\right)^{\frac{3}{4}} \int_{-1}^{+1}\left(1-t^{2}\right)^{p+\alpha / 2}\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t \\
& +\frac{c_{22}}{n^{2 p+2 \alpha}}\left(1-x^{2}\right)^{\frac{3}{4}} \int_{-1}^{+1}\left|\sum_{k=1}^{n} \widetilde{P}_{k}(t) \widetilde{P}_{k}^{\prime}(x)\right| d t
\end{aligned}
$$

which, by the help of (3.4) and (3.1), gives

$$
\begin{aligned}
\left(1-x^{2}\right)^{\frac{3}{4}}\left|f^{\prime}(x)-S_{n}^{\prime}(x)\right| & \leqslant \frac{c_{24}}{n^{p+\alpha-1}}+\frac{c_{22}}{n^{p+\alpha}} c_{13} n \log n+\frac{c_{22}}{n^{2 p+2 \alpha}} c_{10} n^{3 / 2} \\
& \leqslant c_{25} \frac{\log n}{n^{p+\alpha-1}}, \quad p \geqslant 1
\end{aligned}
$$

This completes the proof of (1.3). The proof of (1.4) and (1.5) can be obtained similarly.

References

1. V. K. Dzyadyk, Constructive characterisation of functions satisfying the condition Lip α $(0<\alpha<1)$ on a finite segment of real axis (in Russian), Izv. Akad. Nauk SSSR, 20 (1956), 623-642.
2. I. P. Natanson, Constructive theory of functions (in Russian: GITTL, Moscow, 1949; English transl.: FUPC, New York, 1964).
3. G. Sansone, Orthogonal functions (in Italian; English transl., IPI, New York, 1959).
4. R. B. Saxena, On mixed type lacunary interpolation, II, Acta Math. Acad. Sci. Hungar., 14 (1963), 1-19.
5. P. K. Suetin, Representation of continuous and differentiable functions by Fourier series of Legendre polynomials, Soviet Math. Dokl., 5 (1964), 1408-1410.
6. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Pub., 2nd ed. (1959).
7. A. F. Timan, Theory of approximation of functions of a real variable (English transl.: Fizmatgiz, Moscow, 1960).

University of Alberta, Edmonton

[^0]: Received May 13, 1966. This research was supported by the National Research Council Grant MCA-41 to the Department of Mathematics, University of Alberta, Edmonton.

