
EXPANSION OF CONTINUOUS DIFFERENTIABLE 
FUNCTIONS IN FOURIER LEGENDRE SERIES 

R. B. SAXENA 

1. Let 

(1.1) 5 » ( / , x ) = i a t P t ( x ) 
fc=0 

denote the nth partial sum of the Fourier Legendre series of a function fix). 
The references available to us, except (5), prove only that Sn(f, x) converges 
uniformly to f(x) in [ — 1,1] if f(x) has a continuous second derivative on 
[—1, 1]. Very recently Suetin (5) has shown by employing a theorem of 
A. F. Timan (7) (which is a stronger form of Jackson's theorem) that Sn(f, x) 
converges uniformly to/ (x) iif(x) belongs to a Lipschitz class of order greater 
than 1/2 in [ — 1 , 1]. More generally he has proved the following theorem. 

THEOREM 1 (P. K. Suetin (5)). Iff(x) has p continuous derivatives on [ — 1 , 1] 
and fiP) (x) £ Lip a, then 

(1.2) f(x) - X ) a*-P*(*0 < £ L I ° S 2 L XG\-\ 11 
^ p+o-1/2 J X t [ 1, 1J, 

for p + a > \. 

In the course of his proof it is shown (as is mentioned by him), without 
using the theorem of Timan, that the uniform convergence of Sn(f, x) to fix) 
holds in [—1, 1] if fix) is continuous in [—1, 1]. 

In this paper we shall supplement the above theorem by proving the fol
lowing theorem. 

THEOREM 2. If fix) has p continuous derivatives on [—1, 1] andf(p) (x) Ç Lip a, 
then together with (1.2) the following inequalities hold: 

(1.3) (1 - x^f'ix) - S'n(x)\ < c2 (log »)/»*+~-i (0 < a < 1, p > 1), 

(1.4) (1 - x^ \f(x) - S'n(x)\ < cs (log n)/nv+«-*>* (J < a < 1, p > 1), 

and 

(1.5) \f(x) - S'n(x)\ < c, (log n)/V+«-5 /2 (J < a < 1, £ > 2) 

uniformly in [—1,1], 
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2. To prove the above theorem we shall require a number of well-known 
results on Legendre polynomials. 

The orthonormalized Legendre polynomial Pn{x) is given by (2) 

(2.1) Pn(x) = V[Hn+l)].Pn(x), 

where Pn(x) denotes the nth Legendre polynomial with the normalization 
P„(l) = l ._ 

For the Pn(x) we have the uniform estimations (2, 3, 6) 

(2.2) \Pn(x)\ < c5Vn, x e [ - 1 , 1], 

and the inequality 

(2.3) (1 - x*)* \Pn(x)\ < c6, x 6 [ - 1 , 1]. 

For the derivatives P'n(x) we have the following Bernstein inequality: 

(2.4) (1 - x*)* \P'n(x)\ <c7n*'*, 

the Stieltjes inequality 

(2.5) (1 -x^\P'n(x)\ <csn, 

and Markov's inequality 

(2.6) \P'n(x)\ < c 9 n 5 / 2 

for x € [ - 1 , 1]. 

3, In order to prove Theorem 2 we need the following two lemmas. 

LEMMA 3.1. For — 1 < x < 1 we have 

»+l I n 

(3.1) 

(3.2) 

and 

a-* 2 ) 1 r Ê•?*(').?'*(*) 

(i-x2)* f\jbp*v)P'*(.x) 

dt *C cio n , 

dt K Cnn y 

dt < Ci2 ft (3.3) f Ê^*(0^'*(«) 

Proof. We give here only the proof for (3.1). In fact we have 

(1 - x2)8'2 f+1( é Pk(t)F'k(x)Ydt = £ 1(1 - x2)fP*(*)| 

which, owing to the inequality (2.5), gives (3.1). 
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LEMMA 3.2. For — 1 < x < 1 we have 

+i 
(3.4) (i_*')i £ ( ! - * ' ) ! 

(3.5) (1 - x2)è f+ (1 - ff< 

and 

Y, P*(f)P't(x) dt < en n log n, 

dt < Ci4 nz/2 log w, 

(3.6) £ 1 ( i - *2)i E^COP'.W ^ < £i5 W log W. 

Proof. We shall confine ourselves to the proof of (3.4). We denote by 
àn(x) the part of [—1, 1] on which \x — t\ < 1/n and by Xn(x) the rest of 
the interval. Thus taking account of (2.3) and (2.5) we have 

(3.7) (1 - x2)1 f (1 - t2)* £ Pk{t)P\{x) dt 

< f I Ê (1 - f)1 \P*<!)\ (1 - *2) f l^ '*(*)ll* 
•^A„(2r)L k=l J 

1 W 

< C1&-J2 k < en» , # £ [—1.1]. 
nk=i 

To estimate the integral over \n we use the Ch ris toff el-Darboux formula (6), 
Pn+1(x)Pn(t) - Pn(x)Pn+1(t) 

(3.8) E ^ ( 0 ^ W = ^ » : 

x — / 
o < en < l. 

Differentiating the above relation with respect to x we have 

(3.9) t Pk(t)P\(x) = 9n P'n^)Ut)-P'n{x)Pn+,{t) 
h=0 X I 

Then we have 

(3.10) (1 - x2f f (1 - t2)1 

P«+i(«)P«(Q - Pn(x)Pn+1(t) 
(x - *)2 

'XnW 
E^*(0P'*(*) * 

< ( l _ x
2 ) i f (1 _ ̂ J P ' . + l W ^ O ) - P'n (x)Pn+l(t) 

«Jx„(i) I X — t 
dt 

Pn+l(x)Pn(t) - Pn(x)Pn+1(t) 
(X - if + (1 - x2)* f (1 - ?)* 

= 7i + I2. 
Since \x — t\ > 1/n for t 6 X„(x), we find by using (2.3) and (2.5) that 

dt 

(3.11) I i < csn f (1 - ^ [ ^ . ( O l + I P H - I W I I T - ^ -

r * 
t\ 

< c^nlogn, x 6 [—1, 1]. 
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For 12 we have, on using (2.3), 

(3.12) h < c, f (1 - ff [\Pn{t)\ + \Pn+1(t)\]
 dt 

Ms) [X — t) 

< c2on, x 6 [—1, 1]. 

Thus (3.7), (3.10), (3.11), and (3.12) complete the proof of (3.1). 

4. Let Qn(x) be an algebraic polynomial of degree not greater than n\ 
then we have the following theorem of A. F. Timan (7) on the order of approxi
mation of the function/(x). 

THEOREM 3 (A. F. Timan). If f(x) has p continuous derivatives on [—1, 1] 
andfiP)(x) € Lip a, then there is a sequence of polynomials {Qn(x)} such that 

(4.1) \f(x) - Qn(x)\ < - ^ ( V l - x 2 + £)*+", x £ [ - 1 , 1]. 

From this theorem, on using the Dzyadyk inequality (1), we have the following 
lemma. 

LEMMA 4.1. Let fr)(x) g Lip a (0 < a < 1, r > 1) in [—1, 1]; /&e» ^m? 
is a polynomial pv(x) of degree at most n possessing the following properties: 

(4-2) |/(x) 

and 

- Pn(X)\ < ^ [ ( V i - x2y+a + ^ ] 

(4.3) |/'(x) - p's(x) I < - f e [ ( y/ï=l?)r+a~' + - 4 = r l 
/*• L_ n _| 

uniformly in [—1, 1]. 

The author has proved this lemma for r = 1 in (4). For general f the lemma 
can be proved in the same manner. 

We now complete the proof of Theorem 2. We shall confine ourselves to 
proving (1.3). 

We write 

(4.4) | f (x) - S'n(x)\ = |/'(x) - P'n(x) + P'n(x) - S'n(x)\ 

Z Pk{t)P'k{x) 
k=l 

< If (*) - Pn(x) \+ f+ \pn(t) -f(t) 

Now using Lemma 4.1 we have 

i/(x) - s'n(pc)\ < -i^=i [( v r ^ r - 1 + - = ] 

+ ^ f V - ^+a'2+«^11 ê p,(t)p\{x)\dt 
n J _ i l w ; I k=i I 
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so that 

(l-x2)*\f(x)~ S'n(x)\ 

dt ^24 , ^22 /-, 2 N | ( /-, , 2 \ p + a / 2 

^ ^ + a _ 1 ~̂~ n p + a ~~ °° ' "~ ^ 

+ » (i - *')' f+1 i, p,(t)p',(x) 
n *s-i I k=i ' - 1 \ k 

which, by the help of (3.4) and (3.1), gives 

dt 

(1 - X 2 ) 1 \f(x) - S'n(x) | < ~vT^=î + ~Jh ^13 ^ log U + 2iH-22tt ClO f?'2 

\ogn 
^ ^25 2 7 + a - l > P ^ X* 

This completes the proof of (1.3). The proof of (1.4) and (1.5) can be obtained 
similarly. 
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