TOPOLOGICAL INVARIANTS OF GERMS OF REAL ANALYTIC FUNCTIONS

by PIOTR DUDZIŃSKI†

(Received 10 August, 1995)

Let $f:(\mathbb{R}^n,0)\to(\mathbb{R},0)$ be a germ of a real analytic function. Let L and F(f) denote the link of f and the Milnor fibre of $f_{\mathbb{C}}$ respectively, i.e., $L=\{x\in S^{n-1}\,|\,f(x)=0\},$ $F(f)=f_{\mathbb{C}}^{-1}(\xi)\cap B_r^{2n}$, where $0<\xi\ll r\ll 1$, $B_r^{2n}=\{z\in\mathbb{C}^n\,|\,\|z\|< r\}$. In [2] Szafraniec introduced the notion of an \mathcal{A}_d -germ as a generalization of a germ defined by a weighted homogeneous polynomial satisfying some condition concerning the relation between its degree and weights (definition 1). He also proved that if f is an \mathcal{A}_d -germ (presumably with nonisolated singularity) then the number $\chi(F(f))/d$ mod 2 is a topological invariant of f, where $\chi(F(f))$ is the Euler characterististic of F(f), and gave the formula for $\chi(L)/2$ mod 2 (it is a well-known fact that $\chi(L)$ is an even number). As a simple consequence he got the fact that $\chi(F(f))$ mod 2 is a topological invariant for any f, which is a generalization of Wall's result [3] (he considered only germs with an isolated singularity).

The aim of this paper is to obtain similar results for a larger class of germs. For this purpose, we shall generalize the notion of an \mathcal{A}_d -germ (see Definition 3). For such germs we shall give the formula that relates numbers $\chi(L)/2$ and $\chi(F(f))$. As in [2], we do not assume that f has an isolated singularity (hence L does not have to be smooth).

The author wants to thank Zbigniew Szafraniec for several comments concerning this paper.

Let us first recall results from [2].

Let $f:(\mathbb{R}^n,0)\to(\mathbb{R},0)$ be a germ of a real analytic function.

DEFINITION 1. Let $d \ge 2$ be an integer. We shall say that f is an \mathcal{A}_d -germ if there are positive integers w_1, \ldots, w_n all prime to d such that if $f(x) = \sum_{\alpha} a_{\alpha} x^{\alpha}$ and $a_{\alpha} \ne 0$ then $\alpha_1 w_1 + \ldots + \alpha_n w_n \equiv d \mod 2d$.

THEOREM 2. If f is an \mathcal{A}_{d} -germ then

- (i) $\chi(F(f)) \equiv 0 \mod d$ and the number $\chi(F(f))/d \mod 2$ is a topological invariant of f.
- (ii) $\chi(L)/2 \equiv \chi(F(f))/d + \chi(S^{n-1})/2 \mod 2$.

EXAMPLE. Let $f(x_1, \ldots, x_n) = x_1^d$, $g(x_1, \ldots, x_n) = x_1^{d-1}x_2$, $d \ge 2$. Then both f and g are \mathcal{A}_d -germs and $\chi(F(f))/d \equiv 1 \mod 2$, $\chi(F(g))/d \equiv 0 \mod 2$, but for even d $\chi(F(f)) \equiv \chi(F(f)) \equiv 0 \mod 2$, hence the number $\chi(F(f))/d \mod 2$ is more precise invariant then $\chi(F(f)) \mod 2$.

We shall prove an analogous theorem in the general case, i.e. for arbitrary w_1, \ldots, w_n, d , from which one can obtain Theorem 2.

DEFINITION 3. Let $d \ge 2$ be an integer. We shall say that f is a generalized \mathcal{A}_d -germ if

† Supported by grant KBN 610/P3/94/07

Glasgow Math. J. 39 (1997) 85-89.

there are positive integers w_1, \ldots, w_n such that if $f(x) = \sum_{\alpha} a_{\alpha} x^{\alpha}$ and $a_{\alpha} \neq 0$ then $\alpha_1 w_1 + \ldots + \alpha_n w_n \equiv d \mod 2d$.

EXAMPLES.

- (i) Each germ defined by a weighted homogeneous polynomial of degree d is a generalized \mathcal{A}_d -germ.
- (ii) The germ defined by the polynomial $f(x, y, z, t) = x^4 + x^{12} + y^2 + z^3t + z^4t^4$ is not an \mathcal{A}_d -germ for any d, but it is a generalized \mathcal{A}_g -germ, where $w_1 = 2$ $w_2 = 4$, $w_3 = 1$, $w_4 = 5$.
 - (iii) The germ $f(x, y) = x + x^2 + y^2$ is not a generalized \mathcal{A}_d -germ for any d.

It turns out that Theorem 2 does not hold in the case of generalized \mathcal{A}_d -germs.

EXAMPLE. Let $f(x, y) = x^4 + y^2$. Then f is a generalized \mathcal{A}_4 -germ for $w_1 = 1$ $w_2 = 2$ (f is a weighted homogeneous polynomial) and f is not an \mathcal{A}_d -germ for any d. It is easy to see that $\chi(F(f)) = -2 \neq 0 \mod 4$.

From now on we shall assume that f is a generalized \mathcal{A}_d -germ.

Write $d = p^u v$, where p, u, v are positive integers such that p is prime, v is odd and prime to p (hence if d is even then p = 2). Renumbering the variables, if necessary, we may assume that $w_k \equiv 0 \mod p$ if and only if $k \leq m = m(p)$, where $1 \leq m < n$. For an arbitrary function $\phi : \mathbb{R}^n \to \mathbb{R}$ we will write $\tilde{\phi}$ to denote its restriction to $\mathbb{R}^m \times \{0\} \subset \mathbb{R}^n$. It is clear that \tilde{f} is a generalized \mathcal{A}_d -germ. Moreover, if $f_{\mathbb{C}}$ has an isolated singularity then also $\tilde{f}_{\mathbb{C}}$ has one. To see this, consider the linear transformation $H : \mathbb{C}^n \to \mathbb{C}^n$,

$$H(z_1,\ldots,z_n)=(z_1,\ldots,z_m,\exp(2\pi w_{m+1}i/p)z_{m+1},\ldots,\exp(2\pi w_ni/p)z_n).$$

The subspace fixed by H is $\mathbb{C}^m \times \{0\}$. It is easy to check that for any z fixed by H the vector $\operatorname{grad}(f_{\mathbb{C}}(z))$ is also fixed by H, hence $\operatorname{grad}(\tilde{f}_{\mathbb{C}}(z)) = \operatorname{grad}(f_{\mathbb{C}}(z))$, which proves our claim.

Denote $L = f^{-1}(0) \cap S_r^{n-1}$, $\tilde{L} = \tilde{f}^{-1}(0) \cap S_r^{m-1}$, where S_r^{n-1} (resp. S_r^{m-1}) is a sphere of a small radius r centred at the origin in \mathbb{R}^n (resp. in \mathbb{R}^m).

THEOREM 4. Assume that $f:(\mathbb{R}^n,0)\to(\mathbb{R},0)$ is a generalized \mathcal{A}_d -germ. Then

$$\chi(L)/2 + \chi(\tilde{L})/2 \equiv (\chi(F(f)) - \chi(F(\tilde{f})))/p^{u} + \chi(S^{n-1})/2 + \chi(S^{m-1})/2 \bmod 2.$$

Proof. Set $a = p^u$, $\eta = \exp(\pi i/a) \in \mathbb{C}$ and $\varepsilon = \eta^2$. For $h = 0, 1, \ldots, a-1$ and $z \in \mathbb{C}^n$ we define

$$h(z) = \varepsilon^h \cdot z = (\varepsilon^{hw_1} z_1, \dots, \varepsilon^{hw_n} z_n).$$

For any h = 0, ..., a - 1 we have $f_{\mathbb{C}}(h(z)) = f_{\mathbb{C}}(z)$, hence the group \mathbb{Z}_a acts on F(f). Since f is a real analytic germ, the complex conjugation also acts on F(f). Let G be the dihedral group of order 2a, i.e. the group generated by elements α , β with the relations $\gamma^2 = 1$, $\beta^a = 1, \gamma \beta^h = \beta^{-h} \gamma, h \in \mathbb{Z}$. From the above, there is an action of G on the F(f) given by: $\gamma(z) = \bar{z}, \beta(z) = \varepsilon \cdot z$.

Suppose that $z \in F(f)$ and that z = h(z) for some $1 \le h \le a - 1$. Then $z_k = \varepsilon^{hw_k} z_k$ for $k = 1, \ldots, n$. Assume that $z_k \ne 0$ for some k. Then $hw_k \equiv 0 \mod a$. Since $h \ne 0 \mod p^r$, it follows that $w_k \equiv 0 \mod p$. Thus we obtain $z_k = 0$ for k > m. We shall write $A_h = \{z \in F(f) \mid h(z) = z\}$. If $h = a/p = p^{u-1}$ then $\varepsilon^{hw_k} z_k = z_k \exp(2\pi w_k i/p)$, hence

$$A_{a/p} = \{z \in F(f) \mid z_k = 0 \text{ for } k > m\} = F(f) \cap (\mathbb{C}^m \times \{0\}).$$

Thus, for $1 \le h \le a - 1$ we have $A_h \subset A_{a/p}$. It follows that

$$\bigcup_{h=1}^{a-1} A_h = A_{a/p}. \tag{1}$$

Assume that $h(\bar{z}) = z$ and $0 \le h \le a - 1$. Then $z_k = \varepsilon^{hw_k} \bar{z}_k$, $1 \le k \le n$, and consequently $z_k = \eta^{hw_k} x_k$, where $x_k \in \mathbb{R}$ (see [2]). Set $x = (x_1, \dots, x_n)$. It is easy to check that $f_{\mathbb{C}}(z) = (-1)^h f(x)$ (it follows from the fact that v is odd). Let $B_h = \{z \in F(f) \mid h(\bar{z}) = z\}$, $C_h = \{z \in F(-f) \mid h(\bar{z}) = z\}$. Then $B_0 = F(f) \cap \mathbb{R}^n$ and $C_0 = F(-f) \cap \mathbb{R}^n$. Hence

$$\chi(B_h) = \begin{cases} \chi(B_0) & \text{if } h \text{ is even} \\ \chi(C_0) & \text{if } h \text{ is odd.} \end{cases}$$
 (2)

We next claim that if $0 \le h < h' \le a - 1$ (*) then

$$B_h \cap B_{h'} = A_{a/p} \cap B_h \cap B_{h'}. \tag{3}$$

Let $z \in B_h \cap B_{h'}$. Choose k > m. Then $z_k = \eta^{hw_k} x_k = \eta^{h'w_k} x_k'$ where $x_k, x_k' \in \mathbb{R}$. This implies that $|x| = |x_k'|$. Suppose that $x_k \neq 0$. We thus get $w_k(h' - h) \equiv 0 \mod p''$. Since $w_k \neq 0 \mod p$, it follows that $h' - h \equiv 0 \mod p''$, which contradicts assumption (*).

Our next goal is to calculate $\chi(\bigcup_{h=1}^{a-1} A_h \cup \bigcup_{j=0}^{a-1} B_j)$. By (1),

$$\bigcup_{h=1}^{a-1} A_h \cup \bigcup_{j=0}^{a-1} B_j = A_{a/p} \cup \bigcup_{j=0}^{a-1} B_j.$$

To simplify notation, we write B_a instead of $A_{a/p}$. Clearly,

$$\chi\left(\bigcup_{j=0}^{a} B_{j}\right) = \sum_{q=1}^{a+1} (-1)^{q-1} S_{q},$$

where $S_q = \sum_{J} T_J$, $J = (j_1, \dots, j_q)$, $0 \le j_1 < \dots < j_q \le a$, and $T_J = \chi(B_{j_1} \cap \dots \cap B_{j_q})$. We may write $S_q = \sum_{H} T_H + \sum_{J} T_J$, where $H = (h_1, \dots, h_q)$, $0 \le h_1 < \dots < h_q = a$, $I = (i_1, \dots, i_q)$, $0 \le i_1 < \dots < i_q < a$. Thus

$$S_{q+1} = \sum_{I_a} T_{I_a} + \sum_{I_1} T_{I_1},$$

where $I_a = (i_1, \dots, i_q, a)$, $I_1 = (i'_1, \dots, i'_{q+1})$, $0 \le i'_1 < \dots < i'_{q+1} < a$. If q = a then

$$S_{q+1} = S_{a+1} = \chi \left(\bigcap_{j=0}^{a} B_j \right).$$

By (3), $\sum_{I} T_{I} = \sum_{I_{a}} T_{I_{a}}$ and consequently

$$\chi\left(\bigcup_{j=0}^{a} B_{j}\right) = \sum_{j=0}^{a} \chi(B_{j}) - \sum_{h=0}^{a-1} \chi(B_{h} \cap B_{a}).$$

Let a_+ (resp. a_-) denote the number of integers h such that $0 \le h \le a - 1$ and h is even (resp. odd). Then applying (2) we obtain

$$\chi\left(\bigcup_{j=0}^{a} B_{j}\right) = a_{+}\chi(B_{0}) + a_{-}\chi(C_{0}) + \chi(B_{a}) - \sum_{h=0}^{a-1} \chi(B_{h} \cap B_{a})$$

G acts on $F(f) - \bigcup_{j=0}^{a} B_j$ freely and has 2a elements, hence

$$\chi(F(f)) \equiv \chi\left(\bigcup_{j=0}^{a} B_{j}\right) \mod 2a.$$

It is easy to check that $B_h \cap B_a = B_{h'} \cap B_a$, where $h = 0, 1, \dots, a/p - 1$ and h' = h + a/p. Thus

$$\chi(F(f)) \equiv a_+ \chi(B_0) + a_- \chi(C_0) + \chi(B_a) - p \sum_{h=0}^{a/p-1} \chi(B_h \cap B_a) \bmod 2a.$$

By definition $\bar{f}: \mathbb{R}^m \to \mathbb{R}$. For $z' = (z_1, \dots, z_m) \in \mathbb{C}^m$ and $h = 0, 1, \dots, a/p - 1$, we define $h(z') = (\varepsilon^{hw_1} z_1, \dots, \varepsilon^{hw_m} z_m)$, $\tilde{B}_h = \{z' \in F(\tilde{f}) \mid h(\bar{z}') = z'\}$, $\tilde{C}_h = \{z' \in F(-\tilde{f}) \mid h(\bar{z}') = z'\}$. Using the same arguments as above one can prove that

$$\chi(\tilde{B}_h) = \begin{cases} \chi(\tilde{B}_0) & \text{if } h \text{ is even} \\ \chi(\tilde{C}_0) & \text{if } h \text{ is odd.} \end{cases}$$

Clearly $\chi(B_a) = \chi(F(\tilde{f}))$ and $\chi(\tilde{B}_h) = \chi(B_h \cap B_a)$ for $h = 0, \dots, a/p - 1$. Let \tilde{a}_+ (resp. \tilde{a}_-) denote the number of integers h such that $0 \le h \le a/p - 1$ and h is even (resp. odd). Thus we can write

$$\chi(F(f)) \equiv a_+ \chi(B_0) + a_- \chi(C_0) + \chi(F(\tilde{f})) - p(\tilde{a}_+ \chi(\tilde{B}_0) + \tilde{a}_- \chi(\tilde{C}_0)) \mod 2a.$$

If d is even then p=2 and $a_+=a_-=a/2$. If d is odd then $(x_1,\ldots,x_n)\mapsto ((-1)^{w_1}x_1,\ldots,(-1)^{w_n}x_n)$ maps B_0 homeomorphically onto C_0 . Then $a\chi(B_0)=a\chi(C_0)=a(\chi(B_0)+\chi(C_0))/2$ (similarly for f). Hence in both cases we obtain

$$\chi(F(f)) = a(\chi(B_0) + \chi(C_0))/2 + \chi(F(\tilde{f})) - a(\chi(\tilde{B}_0) + \chi(\tilde{C}_0))/2 \mod 2a. \tag{4}$$

From the Alexander duality theorem we have

$$\chi(L) = \chi(S_r^{n-1}) + (-1)^n \chi(S_r^{n-1} - L)$$

Clearly,

$$\chi(S_r^{n-1}-L)=\chi(\{f>0\}\cap S_r^{n-1})+\chi(\{f<0\}\cap S_r^{n-1}).$$

It is a well-known fact that the set $\{f > 0\} \cap S_r^{n-1}$ (resp. $\{f < 0\} \cap S_r^{n-1}$) is homeomorphic to B_0 (resp. C_0). Thus

$$\chi(S_r^{n-1}-L)=\chi(B_0)+\chi(C_0),$$

and consequently

$$\chi(B_0) + \chi(C_0) = (-1)^n (\chi(L) - \chi(S_r^{n-1}))$$

(the same reasoning applied to \tilde{f}). Hence we may rewrite (4) in the following form:

$$a(-1)^{n}\chi(L)/2 + a(-1)^{m}\chi(\tilde{L})/2 \equiv \chi(F(f)) - \chi(F(\tilde{f})) + a((-1)^{n}\chi(S_{r}^{n-1}) + a(-1)^{m}\chi(S_{r}^{m-1}))/2 \mod 2a.$$

Dividing by a we obtain

$$\chi(L)/2 + \chi(\tilde{L})/2 \equiv (\chi(F(f)) - \chi(F(\tilde{f})))/a + \chi(S^{n-1})/2 + \chi(S^{m-1})/2 \bmod 2.$$

which proves the theorem.

Let us recall that $d = p^u v$, where v is odd and prime to d. If each w_k is prime to d, then the group \mathbb{Z}_d acts freely on F(f), hence $\chi(F(f)) \equiv 0 \mod d$. For v is odd, $\chi(F(f))/p^u \equiv \chi(F(f))/p^u v \mod 2$. Clearly, $\chi(F(\tilde{f})) = \chi(\tilde{L}) \equiv 0$. This follows that $\chi(L)/2 \equiv \chi(F(f))/d + \chi(S^{n-1})/2 \mod 2$, hence we have proved Theorem 2 as a consequence of Theorem 4, as claimed.

Clearly, repeated application of Theorem 3 enables us to express $\chi(L)/2 \mod 2$ only in terms of Euler characteristics of Milnor fibers of appropriate restrictions of $f_{\mathbb{C}}$. It is possible to write an explicit formula for $\chi(L)/2 \mod 2$, however it requires to introduce some further notation.

REFERENCES

- 1. J. Milnor, Singular points of complex hypersurfaces (Princeton University Press 1968).
- 2. Z. Szafraniec, On the topological invariants of germs of analytic functions *Topology* 26 (1987), 235–238.
- 3. C. T. C. Wall, Topological invariance of the Milnor number mod 2, *Topology* 22 (1983), 345-350.

Institute of Mathematics,
University of Gdańsk 80-925 Gdańsk,
Wita Stwosza 57,
Poland
e-mail: matpd@halina.univ.gda.pl
pd@ksinet.univ.gda.pl