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Let / : (W, 0)-> (R, 0) be a germ of a real analytic function. Let L and F(f) denote
the link of / and the Milnor fibre of fc respectively, i.e., L = {x e S"~l \f(x) = 0},
^ ( / W c ' t e J n f l ? 1 , where 0 < £ « r « l , B2

r" = {z eC \ \\z\\ <r}. In [2] Szafraniec
introduced the notion of an sid-germ as a generalization of a germ defined by a weighted
homogeneous polynomial satisfying some condition concerning the relation between its
degree and weights (definition 1). He also proved that if/is an ^d-germ (presumably with
nonisolated singularity) then the number #(F(/))/d mod 2 is a topological invariant of/,
where x(F(f)) IS the Euler characterististic of F(f), and gave the formula for
X(L)/2 mod 2 (it is a well-known fact that j (L) is an even number). As a simple
consequence he got the fact that xi^if)) m°d 2 is a topological invariant for any / , which
is a generalization of Wall's result [3] (he considered only germs with an isolated
singularity).

The aim of this paper is to obtain similar results for a larger class of germs. For this
purpose, we shall generalize the notion of an .s^-germ (see Definition 3). For such germs
we shall give the formula that relates numbers X{L)I2 and x(F(f))- As in [2], we do not
assume that/has an isolated singularity (hence L does not have to be smooth).

The author wants to thank Zbigniew Szafraniec for several comments concerning this
paper.

Let us first recall results from [2].
Let / : (Rn, 0 ) ^ (R, 0) be a germ of a real analytic function.

DEFINITION 1. Let d ^ 2 be an integer. We shall say that / i s an jtfd-germ if there are
positive integers wu...,wn all prime to d such that if f{x)-^,aax

a and aa¥=0 then
... +anwn = d mod 2d.

THEOREM 2. / / / is an s&d-germ then
(0 X{F(f)) = 0 m°d d and the number ^(F(/))/d mod 2 is a topological invariant of

f,
(ii) X(L)/2 -x(F{f))ld + x(S"-')/2 mod 2.

EXAMPLE. Letf(xu... ,xn) = Xug(xu- •• ,xn) = jcf~1jt2, d>2. Then both/and g are
.s^-germs and x(F(f))ld = 1 mod2, ^(F(g))/<i = 0mod2, but for even d x{F(f))s

X(F(f)) = 0 m°d 2, hence the number x(F(f))/d mod 2 is more precise invariant then
X(F(f))mod2.

We shall prove an analogous theorem in the general case, i.e. for arbitrary
wu..., wn, d, from which one can obtain Theorem 2.

DEFINITION 3. Let d s 2 be an integer. We shall say that / i s a generalized ^d-germ if
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there are positive integers wu...,wn such that if f(x) = Haax
a and a a # 0 then

a, w, + . . . + anwn = d mod 2d. a

EXAMPLES.

(i) Each germ defined by a weighted homogeneous polynomial of degree d is a
generalized j^d-germ.

(ii) The germ defined by the polynomial f(x,y, z, t) = x4 + xu + y2 + z3t + z4t4 is not
an .s^-germ for any d, but it is a generalized j^8-germ, where W] = 2 w2 = 4, w3 = 1, w4 = 5.

(iii) The germ f(x, y) = x + x2 + y2 is not a generalized .s^-germ for any d.
It turns out that Theorem 2 does not hold in the case of generalized sdd-germs.

EXAMPLE. Let f(x, y) = x4 + y2. Then / is a generalized j^4-germ for w, = 1 w2 = 2 (/
is a weighted homogeneous polynomial) and / is not an sdd-germ for any d. It is easy to
see that x(F(f)) = - 2 ^ 0 mod 4.

From now on we shall assume that / is a generalized ,5^-germ.
Write d = p"v, where p, u, v are positive integers such that p is prime, v is odd and

prime to p (hence if d is even then p = 2). Renumbering the variables, if necessary, we
may assume that wk = 0modp if and only if k<m = m(p), where l < m < « . For an
arbitrary function </i:R"->Rwe will write <j> to denote its restriction to W X {0}c W. It
is clear that/is a generlized j^-germ. Moreover, if/c has an isolated singularity then also
/ c has one. To see this, consider the linear transformation H :C"-*C",

H ( z u - • • , z n ) = ( z i , . . . , z m , e x p { 2 7 t w m + - l i / p ) z m + u . . . , exp(27rwj/p)zn).

The subspace fixed by H is Cm x {0}. It is easy to check that for any z fixed by H the
vector grad(/c(z)) is also fixed by H, hence grad(/c(z)) = grad(/c(z)), which proves our
claim.

Denote L =f-\0)nsr\ L =/"1(0) n S?~\ where Sn
r~' (resp. S?~l) is a sphere of

a small radius r centred at the origin in W (resp. in IRm).

THEOREM 4. Assume that f : (W, 0)-» (U, 0) is a generalized s£d-germ. Then

X(L)/2 + X(L)/2 ^ (x(F(f)) - x(F(?)))Ip" + X(S"-])/2 + x{Sm~')l2 mod 2.

Proof. Set a = p", rj = exp(rti/a) e C and e = r\2. For h = 0 , 1 , . . . , a - 1 and z eC"
we define

For any h = 0 , . . . , a - 1 we have fc(h(z)) =fc(z), hence the group Zo acts on F(f). Since
/ is a real analytic germ, the complex conjugation also acts on F(f). Let G be the dihedral
group of order 2a, i.e. the group generated by elements a, j3 with the relations y2 = l,
P" = 1, yPh = )3"/iy, h e Z. From the above, there is an action of C on the F(f) given by:

Suppose that z e F(f) and that z = h(z) for some 1 < h < a - 1. Then z* = e^'z* for
k = l,... ,n. Assume that z*^0 for some k. Then /IH^ = 0 mod a. Since /z#0mod// ,
it follows that wA = 0 mod p. Thus we obtain Zk — 0 for /c > m. We shall write
Ah = {ze F(f) | A(z) = z}. If A = a/p=p"-1 then e ^ z , = z* exp(2Kwki/p), hence

= 0 for fc > m} = F(f) n (Cm X {0}).
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Thus, for 1 ^ h < a - 1 we have Ah c Aa/p. It follows that

"UAh=Aa/p. (1)

Assume that h(z) = z and 0^h<a -I. Then Zk = EhWkzk, l^k<n, and consequently
Zk - Vw***> where x s e R (see [2]). Set x = (xu.. . ,xn). It is easy to check that
fc(z) = (-l)Y(^) (it follows from the fact that v is odd). Let Bh = {z e F(/) | h(z) = z},
Ch = {z E F ( - / ) | /i(z) = z}. Then Bo = /="(/) n U" and Co = F(-f) n R". Hence

if * is even m
if A is odd. ( 2 )

We next claim that if 0 < h < h' < a - 1 (*) then

B^nB, . = y i a / p n s A n B v . (3)
Let zeBhDBh'. Choose fc>m. Then z* = Tjw*xfc = T J * ' ^ where xk,XksU. This
implies that |JC| = \xk\. Suppose that xk^0. We thus get wk(h'- h) = 0 mod pu. Since
wk * 0 mod/?, it follows that h' - h=0 modp", which contradicts assumption (*).

/a- l a-l \

Our next goal is to calculate H U ^ * U l J B/ • By (1),
\h=\ ;=0 /

X j h U j a l p J
/i = l ;=0 ;=0

To simplify notation, we write Ba instead of Aalp. Clearly,

where Sq = 2 7}, J = ( ; „ . . . , / , ) , 0 < / , < . . . <jq < a, and 7} = * ( £ , , n . . . n Biq). W e may

write 5 , = 2 TH + 2 7), whe re H = (hu... , h q ) , 0 < / J , < . . .<hq = a , / = ( / , , . . . , / , ) ,

0 < ( ' , < . . . < / , < a . T h u s

where /fl = ( i i , . . . , i« , f l ) , A = ( / { , . . - ,i"i+i)» 0 < / ( < . . . < / ^ + i < a . If ^ = a then

\j=0

By (3), X 7) = 2 7} and consequent ly

=o / j=o /,=o

https://doi.org/10.1017/S0017089500031943 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031943


88 PIOTR DUDZINSKI

Let o+ (resp. a_) denote the number of integers h such that O s / i < a - l and h is even
(resp. odd). Then applying (2) we obtain

X(\JB,)=a+X(B0) + a.

a

G acts on F(f) - U B, freely and has 2a elements, hence

u
V=o

It is easy to check that BhDBa = Bh n 5 a , where /i = 0,1, . . . ,alp - 1 and h' = h + alp.
Thus

X(F(f)) - a+X(B0) + a-X(C0) + X(Ba) - / f ^(B* n Ba) mod 2a.
yi=o

By definition / :0 r ->IR. For z' = (z, , . . . ,zm) e C and /? = 0 , 1 , . . . ,a/p - 1, we
define A(z') = (e*"-*,,... ,e*^zm), B , = {z' e F( / ) | A(f) = z'}, ^ = { Z ' E F ( - / )

| ') = z'}. Using the same arguments as above one can prove that

y(B } = lx@°) if h is e v e n

U ( C ) if h is odd.

Clearly x(Ba) = l (F( / ) ) and ^(fi,) = X(Bh n Bfl) for /> = 0 , . . . , a/p - 1. Let a+ (resp. J_)
denote the number of integers h such that 0 s / i £ a//? - 1 and /z is even (resp. odd). Thus
we can write

X(F(f)) - a+X(B0) + a.X(C0) + X(F(J)) -p(a+X(B0) + a -Z(C0))mod 2a.

If d is even then p=2 and fl+=fl_ = o/2. If rf is odd then (xu... ,xn)>-+
((-I)"'1*,,.. . , (-\)w"xn) maps Bo homeomorphically onto Co. Then ax(B0) = ax(Ca) =
a(x(B0) + x(C0))/2 (similarly for/). Hence in both cases we obtain

x(C0))/2 + X(F(~f)) ~ a(X(B0) + l(C0))/2 mod 2a. (4)

From the Alexander duality theorem we have

Clearly,

It is a well-known fact that the set {f>0}DSn
r~

l (resp. {f<0}nS"~l) is homeomorphic
to BQ (resp. Co). Thus

and consequently

X(B0) + X(Co) = (-1)"
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(the same reasoning applied to / ) . Hence we may rewrite (4) in the following form:

a(-l)"X(L)/2 + a(-irX(L)/2 = X(F(f)) - X(F(f)) + a((-l)"X(Srl)

+ a(-l)mx(S7-l))/2mod2a.

Dividing by a we obtain

X(L)/2 + X(L)/2 - Of (f (/)) - x(F(?)))la + x{Sn")l2 + X{Sm-')l2 mod 2.

which proves the theorem.

Let us recall that d = puv, where v is odd and prime to d. If each wk is prime to d,
then the group 2d acts freely on F(f), hence #(/•"(/)) ^Omodd. For v is odd,
X(F(f))/pu=X(Hf))/puvmod2. Clearly, X(H?)) = X(Q = 0- This follows that
X(L)/2 = x(F(f))/d + x(S" ' ) /2mod2, hence we have proved Theorem 2 as a conse-
quence of Theorem 4, as claimed.

Clearly, repeated application of Theorem 3 enables us to express #(L)/2 mod 2 only
in terms of Euler characteristics of Milnor fibers of appropriate restrictions of fc. It is
possible to write an explicit formula for j (L ) /2 mod 2, however it requires to introduce
some further notation.
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