TOPOLOGICAL INVARIANTS OF GERMS OF REAL ANALYTIC FUNCTIONS

by PIOTR DUDZIŃSKI \dagger

(Received 10 August, 1995)

Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a germ of a real analytic function. Let L and $F(f)$ denote the link of f and the Milnor fibre of f_{\subset} respectively, i.e., $L=\left\{x \in S^{n-1} \mid f(x)=0\right\}$, $F(f)=f_{\mathbb{C}}^{-1}(\xi) \cap B_{r}^{2 n}$, where $0<\xi \ll r \ll 1, B_{r}^{2 n}=\left\{z \in \mathbb{C}^{n} \mid\|z\|<r\right\}$. In [2] Szafraniec introduced the notion of an \mathscr{A}_{d}-germ as a generalization of a germ defined by a weighted homogeneous polynomial satisfying some condition concerning the relation between its degree and weights (definition 1). He also proved that if f is an \mathscr{A}_{d}-germ (presumably with nonisolated singularity) then the number $\chi(F(f)) / d \bmod 2$ is a topological invariant of f, where $\chi(F(f))$ is the Euler characterististic of $F(f)$, and gave the formula for $\chi(L) / 2 \bmod 2$ (it is a well-known fact that $\chi(L)$ is an even number). As a simple consequence he got the fact that $\chi(F(f))$ mod 2 is a topological invariant for any f, which is a generalization of Wall's result [3] (he considered only germs with an isolated singularity).

The aim of this paper is to obtain similar results for a larger class of germs. For this purpose, we shall generalize the notion of an \mathscr{A}_{d}-germ (see Definition 3). For such germs we shall give the formula that relates numbers $\chi(L) / 2$ and $\chi(F(f))$. As in [2], we do not assume that f has an isolated singularity (hence L does not have to be smooth).

The author wants to thank Zbigniew Szafraniec for several comments concerning this paper.

Let us first recall results from [2].
Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a germ of a real analytic function.
Definition 1. Let $d \geq 2$ be an integer. We shall say that f is an \mathscr{A}_{d}-germ if there are positive integers w_{1}, \ldots, w_{n} all prime to d such that if $f(x)=\sum_{\alpha} a_{\alpha} x^{\alpha}$ and $a_{\alpha} \neq 0$ then $\alpha_{1} w_{1}+\ldots+\alpha_{n} w_{n} \equiv d \bmod 2 d$.

Theorem 2. If fis an \mathscr{A}_{d}-germ then

(i) $\chi(F(f)) \equiv 0 \bmod d$ and the number $\chi(F(f)) / d \bmod 2$ is a topological invariant of f,
(ii) $\chi(L) / 2 \equiv \chi(F(f)) / d+\chi\left(S^{n-1}\right) / 2 \bmod 2$.

Example. Let $f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{d}, g\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{d-1} x_{2}, d \geq 2$. Then both f and g are \mathscr{A}_{d}-germs and $\chi(F(f)) / d \equiv 1 \bmod 2, \chi(F(g)) / d \equiv 0 \bmod 2$, but for even $d \chi(F(f)) \equiv$ $\chi(F(f)) \equiv 0 \bmod 2$, hence the number $\chi(F(f)) / d \bmod 2$ is more precise invariant then $\chi(F(f)) \bmod 2$.

We shall prove an analogous theorem in the general case, i.e. for arbitrary w_{1}, \ldots, w_{n}, d, from which one can obtain Theorem 2.

Definition 3. Let $d \geq 2$ be an integer. We shall say that f is a generalized $\mathscr{A}_{d^{-}}$-germ if
there are positive integers w_{1}, \ldots, w_{n} such that if $f(x)=\sum_{\alpha} a_{\alpha} x^{\alpha}$ and $a_{\alpha} \neq 0$ then $\alpha_{1} w_{1}+\ldots+\alpha_{n} w_{n} \equiv d \bmod 2 d$.

Examples.
(i) Each germ defined by a weighted homogeneous polynomial of degree d is a generalized \mathscr{A}_{d}-germ.
(ii) The germ defined by the polynomial $f(x, y, z, t)=x^{4}+x^{12}+y^{2}+z^{3} t+z^{4} t^{4}$ is not an \mathscr{A}_{d}-germ for any d, but it is a generalized \mathscr{A}_{8}-germ, where $w_{1}=2 w_{2}=4, w_{3}=1, w_{4}=5$.
(iii) The germ $f(x, y)=x+x^{2}+y^{2}$ is not a generalized \mathscr{A}_{d}-germ for any d.

It turns out that Theorem 2 does not hold in the case of generalized \mathscr{A}_{d}-germs.
Example. Let $f(x, y)=x^{4}+y^{2}$. Then f is a generalized \mathscr{A}_{4}-germ for $w_{1}=1 w_{2}=2(f$ is a weighted homogeneous polynomial) and f is not an \mathscr{A}_{d}-germ for any d. It is easy to see that $\chi(F(f))=-2 \not \equiv 0 \bmod 4$.

From now on we shall assume that f is a generalized \mathscr{A}_{d}-germ.
Write $d=p^{u} v$, where p, u, v are positive integers such that p is prime, v is odd and prime to p (hence if d is even then $p=2$). Renumbering the variables, if necessary, we may assume that $w_{k} \equiv 0 \bmod p$ if and only if $k \leq m=m(p)$, where $1 \leq m<n$. For an arbitrary function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we will write $\tilde{\phi}$ to denote its restriction to $\mathbb{R}^{m} \times\{0\} \subset \mathbb{R}^{n}$. It is clear that \tilde{f} is a generlized $\mathscr{A}_{d^{-}}$-germ. Moreover, if $f_{\mathbb{C}}$ has an isolated singularity then also $f_{\mathbb{C}}$ has one. To see this, consider the linear transformation $H: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$,

$$
H\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}, \ldots, z_{m}, \exp \left(2 \pi w_{m+1} i / p\right) z_{m+1}, \ldots, \exp \left(2 \pi w_{n} i / p\right) z_{n}\right)
$$

The subspace fixed by H is $\mathbb{C}^{m} \times\{0\}$. It is easy to check that for any z fixed by H the vector $\operatorname{grad}\left(f_{\mathbb{C}}(z)\right)$ is also fixed by H, hence $\operatorname{grad}\left(\tilde{f}_{\mathbb{C}}(z)\right)=\operatorname{grad}\left(f_{\mathbb{C}}(z)\right)$, which proves our claim.

Denote $L=f^{-1}(0) \cap S_{r}^{n-1}, \tilde{L}=\tilde{f}^{-1}(0) \cap S_{r}^{m-1}$, where S_{r}^{n-1} (resp. S_{r}^{m-1}) is a sphere of a small radius r centred at the origin in \mathbb{R}^{n} (resp. in \mathbb{R}^{m}).

Theorem 4. Assume that $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ is a generalized $\mathscr{A}_{d^{-}}$-germ. Then

$$
\chi(L) / 2+\chi(\tilde{L}) / 2 \equiv(\chi(F(f))-\chi(F(\tilde{f}))) / p^{u}+\chi\left(S^{n-1}\right) / 2+\chi\left(S^{m-1}\right) / 2 \bmod 2
$$

Proof. Set $a=p^{u}, \eta=\exp (\pi i / a) \in \mathbb{C}$ and $\varepsilon=\eta^{2}$. For $h=0,1, \ldots, a-1$ and $z \in \mathbb{C}^{n}$ we define

$$
h(z)=\varepsilon^{h} \cdot z=\left(\varepsilon^{h w_{1}} z_{1}, \ldots, \varepsilon^{h w_{n}} z_{n}\right)
$$

For any $h=0, \ldots, a-1$ we have $f_{\mathbb{C}}(h(z))=f_{\mathbb{C}}(z)$, hence the group \mathbb{Z}_{a} acts on $F(f)$. Since f is a real analytic germ, the complex conjugation also acts on $F(f)$. Let G be the dihedral group of order $2 a$, i.e. the group generated by elements α, β with the relations $\gamma^{2}=1$, $\beta^{a}=1, \gamma \beta^{h}=\beta^{-h} \gamma, h \in \mathbb{Z}$. From the above, there is an action of G on the $F(f)$ given by: $\gamma(z)=\bar{z}, \beta(z)=\varepsilon . z$.

Suppose that $z \in F(f)$ and that $z=h(z)$ for some $1 \leq h \leq a-1$. Then $z_{k}=\varepsilon^{h w_{k}} z_{k}$ for $k=1, \ldots, n$. Assume that $z_{k} \neq 0$ for some k. Then $h w_{k} \equiv 0 \bmod a$. Since $h \neq 0 \bmod p^{r}$, it follows that $w_{k} \equiv 0 \bmod p$. Thus we obtain $z_{k}=0$ for $k>m$. We shall write $A_{h}=\{z \in F(f) \mid h(z)=z\}$. If $h=a / p=p^{u-1}$ then $\varepsilon^{h w_{k}} z_{k}=z_{k} \exp \left(2 \pi w_{k} i / p\right)$, hence

$$
A_{a / p}=\left\{z \in F(f) \mid z_{k}=0 \text { for } k>m\right\}=F(f) \cap\left(\mathbb{C}^{m} \times\{0\}\right)
$$

Thus, for $1 \leq h \leq a-1$ we have $A_{h} \subset A_{a / p}$. It follows that

$$
\begin{equation*}
\bigcup_{h=1}^{a-1} A_{h}=A_{a / p} . \tag{1}
\end{equation*}
$$

Assume that $h(\bar{z})=z$ and $0 \leq h \leq a-1$. Then $z_{k}=\varepsilon^{h w_{k}} \bar{z}_{k}, 1 \leq k \leq n$, and consequently $z_{k}=\eta^{h w_{k}} x_{k}$, where $x_{k} \in \mathbb{R}$ (see [2]). Set $x=\left(x_{1}, \ldots, x_{n}\right)$. It is easy to check that $f_{c}(z)=(-1)^{h} f(x)$ (it follows from the fact that v is odd). Let $B_{h}=\{z \in F(f) \mid h(\bar{z})=z\}$, $C_{h}=\{z \in F(-f) \mid h(\bar{z})=z\}$. Then $B_{0}=F(f) \cap \mathbb{R}^{n}$ and $C_{0}=F(-f) \cap \mathbb{R}^{n}$. Hence

$$
\chi\left(B_{h}\right)= \begin{cases}\chi\left(B_{0}\right) & \text { if } h \text { is even } \tag{2}\\ \chi\left(C_{0}\right) & \text { if } h \text { is odd }\end{cases}
$$

We next claim that if $0 \leq h<h^{\prime} \leq a-1\left(^{*}\right)$ then

$$
\begin{equation*}
B_{h} \cap B_{h^{\prime}}=A_{a / p} \cap B_{h} \cap B_{h^{\prime}} \tag{3}
\end{equation*}
$$

Let $z \in B_{h} \cap B_{h^{\prime}}$. Choose $k>m$. Then $z_{k}=\eta^{h w_{k}} x_{k}=\eta^{h^{\prime} w_{k}} x_{k}^{\prime}$ where $x_{k}, x_{k}^{\prime} \in \mathbb{R}$. This implies that $|x|=\left|x_{k}^{\prime}\right|$. Suppose that $x_{k} \neq 0$. We thus get $w_{k}\left(h^{\prime}-h\right) \equiv 0 \bmod p^{u}$. Since $w_{k} \not \equiv 0 \bmod p$, it follows that $h^{\prime}-h \equiv 0 \bmod p^{u}$, which contradicts assumption (*).

Our next goal is to calculate $\chi\left(\bigcup_{h=1}^{a-1} A_{h} \cup \bigcup_{j=0}^{a-1} B_{j}\right)$. By (1),

$$
\bigcup_{n=1}^{a-1} A_{h} \cup \bigcup_{j=0}^{a-1} B_{j}=A_{a / p} \cup \bigcup_{j=0}^{a-1} B_{j} .
$$

To simplify notation, we write B_{a} instead of $A_{a / p}$. Clearly,

$$
\chi\left(\bigcup_{j=0}^{a} B_{j}\right)=\sum_{q=1}^{a+1}(-1)^{q-1} S_{q},
$$

where $S_{q}=\sum_{J} T_{J}, J=\left(j_{1}, \ldots, j_{q}\right), 0 \leq j_{1}<\ldots<j_{q} \leq a$, and $T_{J}=\chi\left(B_{j_{1}} \cap \ldots \cap B_{j_{q}}\right)$. We may write $S_{q}=\sum_{H} T_{H}+\sum_{J} T_{l}$, where $H=\left(h_{1}, \ldots, h_{q}\right), 0 \leq h_{1}<\ldots<h_{q}=a, I=\left(i_{1}, \ldots, i_{q}\right)$, $0 \leq i_{1}<\ldots<i_{q}<a$. Thus

$$
S_{q+1}=\sum_{l_{a}} T_{l_{a}}+\sum_{l_{1}} T_{t_{1}}
$$

where $I_{a}=\left(i_{1}, \ldots, i_{q}, a\right), I_{1}=\left(i_{1}^{\prime}, \ldots, i_{q+1}^{\prime}\right), 0 \leq i_{1}^{\prime}<\ldots<i_{q+1}^{\prime}<a$. If $q=a$ then

$$
S_{q+1}=S_{a+1}=\chi\left(\bigcap_{j=0}^{a} B_{j}\right) .
$$

By (3), $\sum_{l} T_{l}=\sum_{l_{d}} T_{l_{d}}$ and consequently

$$
\chi\left(\bigcup_{j=0}^{a} B_{j}\right)=\sum_{j=0}^{a} \chi\left(B_{j}\right)-\sum_{h=0}^{a-1} \chi\left(B_{h} \cap B_{a}\right) .
$$

Let a_{+}(resp. a_{-}) denote the number of integers h such that $0 \leq h \leq a-1$ and h is even (resp. odd). Then applying (2) we obtain

$$
\chi\left(\bigcup_{j=0}^{a} B_{j}\right)=a_{+} \chi\left(B_{0}\right)+a_{-} \chi\left(C_{0}\right)+\chi\left(B_{a}\right)-\sum_{h=0}^{a-1} \chi\left(B_{h} \cap B_{a}\right)
$$

G acts on $F(f)-\bigcup_{j=0}^{a} B_{j}$ freely and has 2 a elements, hence

$$
\chi(F(f)) \equiv \chi\left(\bigcup_{j=0}^{a} B_{j}\right) \bmod 2 a .
$$

It is easy to check that $B_{h} \cap B_{a}=B_{h^{\prime}} \cap B_{a}$, where $h=0,1, \ldots, a / p-1$ and $h^{\prime}=h+a / p$. Thus

$$
\chi(F(f)) \equiv a_{+} \chi\left(B_{0}\right)+a_{-} \chi\left(C_{0}\right)+\chi\left(B_{a}\right)-p \sum_{h=0}^{a / p-1} \chi\left(B_{h} \cap B_{a}\right) \bmod 2 a .
$$

By definition $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$. For $z^{\prime}=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}$ and $h=0,1, \ldots, a / p-1$, we define $h\left(z^{\prime}\right)=\left(\varepsilon^{h w_{1}} z_{1}, \ldots, \varepsilon^{h w_{m}} z_{m}\right), \quad \tilde{B}_{h}=\left\{z^{\prime} \in F(\tilde{f}) \mid h\left(\bar{z}^{\prime}\right)=z^{\prime}\right\}, \quad \tilde{C}_{h}=\left\{z^{\prime} \in F(-\tilde{f})\right.$ $\left.\mid h\left(\bar{z}^{\prime}\right)=z^{\prime}\right\}$. Using the same arguments as above one can prove that

$$
\chi\left(\tilde{B}_{h}\right)= \begin{cases}\chi\left(\tilde{B}_{0}\right) & \text { if } h \text { is even } \\ \chi\left(\tilde{C}_{0}\right) & \text { if } h \text { is odd }\end{cases}
$$

Clearly $\chi\left(B_{a}\right)=\chi(F(\tilde{f}))$ and $\chi\left(\tilde{B}_{h}\right)=\chi\left(B_{h} \cap B_{a}\right)$ for $h=0, \ldots, a / p-1$. Let \tilde{a}_{+}(resp. \tilde{a}_{-}) denote the number of integers h such that $0 \leq h \leq a / p-1$ and h is even (resp. odd). Thus we can write

$$
\chi(F(f)) \equiv a_{+} \chi\left(B_{0}\right)+a_{-} \chi\left(C_{0}\right)+\chi(F(\tilde{f}))-p\left(\tilde{a}_{+} \chi\left(\tilde{B}_{0}\right)+\tilde{a}_{-} \chi\left(\tilde{C}_{0}\right)\right) \bmod 2 a
$$

If d is even then $p=2$ and $a_{+}=a_{-}=a / 2$. If d is odd then $\left(x_{1}, \ldots, x_{n}\right) \mapsto$ $\left((-1)^{\omega_{1}} x_{1}, \ldots,(-1)^{n_{n}} x_{n}\right)$ maps B_{0} homeomorphically onto C_{0}. Then $a \chi\left(B_{0}\right)=a \chi\left(C_{0}\right)=$ $a\left(\chi\left(B_{0}\right)+\chi\left(C_{0}\right)\right) / 2$ (similarly for $\left.\tilde{f}\right)$. Hence in both cases we obtain

$$
\begin{equation*}
\chi(F(f)) \equiv a\left(\chi\left(B_{0}\right)+\chi\left(C_{0}\right)\right) / 2+\chi(F(\tilde{f}))-a\left(\chi\left(\tilde{B}_{0}\right)+\chi\left(\tilde{C}_{0}\right)\right) / 2 \bmod 2 a \tag{4}
\end{equation*}
$$

From the Alexander duality theorem we have

$$
\chi(L)=\chi\left(S_{r}^{n-1}\right)+(-1)^{n} \chi\left(S_{r}^{n-1}-L\right)
$$

Clearly,

$$
\chi\left(S_{r}^{n-1}-L\right)=\chi\left(\{f>0\} \cap S_{r}^{n-1}\right)+\chi\left(\{f<0\} \cap S_{r}^{n-1}\right)
$$

It is a well-known fact that the set $\{f>0\} \cap S_{r}^{n-1}$ (resp. $\{f<0\} \cap S_{r}^{n-1}$) is homeomorphic to $B_{0}\left(\right.$ resp. $\left.C_{0}\right)$. Thus

$$
\chi\left(S_{r}^{n-1}-L\right)=\chi\left(B_{0}\right)+\chi\left(C_{0}\right)
$$

and consequently

$$
\chi\left(B_{0}\right)+\chi\left(C_{0}\right)=(-1)^{n}\left(\chi(L)-\chi\left(S_{r}^{n-1}\right)\right)
$$

(the same reasoning applied to \tilde{f}). Hence we may rewrite (4) in the following form:

$$
\begin{aligned}
a(-1)^{n} \chi(L) / 2+a(-1)^{m} \chi(\tilde{L}) / 2 \equiv & \chi(F(f))-\chi(F(\tilde{f}))+a\left((-1)^{n} \chi\left(S_{r}^{n-1}\right)\right. \\
& \left.+a(-1)^{m} \chi\left(S_{r}^{m-1}\right)\right) / 2 \bmod 2 a .
\end{aligned}
$$

Dividing by a we obtain

$$
\chi(L) / 2+\chi(\tilde{L}) / 2 \equiv(\chi(F(f))-\chi(F(\tilde{f}))) / a+\chi\left(S^{n-1}\right) / 2+\chi\left(S^{m-1}\right) / 2 \bmod 2
$$

which proves the theorem.
Let us recall that $d=p^{u} v$, where v is odd and prime to d. If each w_{k} is prime to d, then the group \mathbb{Z}_{d} acts freely on $F(f)$, hence $\chi(F(f)) \equiv 0 \bmod d$. For v is odd, $\chi(F(f)) / p^{u} \equiv \chi(F(f)) / p^{u} v \bmod 2$. Clearly, $\quad \chi(F(f))=\chi(\tilde{L})=0$. This follows that $\chi(L) / 2 \equiv \chi(F(f)) / d+\chi\left(S^{n-1}\right) / 2 \bmod 2$, hence we have proved Theorem 2 as a consequence of Theorem 4, as claimed.

Clearly, repeated application of Theorem 3 enables us to express $\chi(L) / 2 \bmod 2$ only in terms of Euler characteristics of Milnor fibers of appropriate restrictions of f_{c}. It is possible to write an explicit formula for $\chi(L) / 2 \bmod 2$, however it requires to introduce some further notation.

REFERENCES

1. J. Milnor, Singular points of complex hypersurfaces (Princeton University Press 1968).
2. Z. Szafraniec, On the topological invariants of germs of analytic functions Topology 26 (1987), 235-238.
3. C. T. C. Wall, Topological invariance of the Milnor number mod 2, Topology 22 (1983), 345-350.

Institute of Mathematics, University of Gdańsk 80-925 Gdańsk, Wita Stwosza 57, Poland
e-mail: matpd@halina.univ.gda.pl pd@ksinet.univ.gda.pl

