
ON A CONJECTURE BY J. H. CHUNG 

G. DE B. ROBINSON 

1. Introduction. The present paper is a sequel to that of J. H. Chung (2) 
and contains a proof of a conjecture made by him, namely, that the number of 
ordinary {modular) irreducible representations contained in a given p-block of Sn 

is independent of the p-core. A summary of the results contained herein appeared 
in the Proceedings of the National Academy of Sciences (9). 

The Main Theorem on which the proof of the conjecture depends is of some 
interest. It was stated without proof by Nakayama and Osima (6, p. 115) and 
obtained independently by the author (9). It has been known for some time 
that the £-hook structure of a Young diagram [a] is given by a certain star 
diagram (7; also 6, 9, 10, 11), with each of whose p disjoint constituents can 
be associated a unique residue class modulo p. What was not realized is that the 
converse theorem is also valid. The first part of Chung's conjecture concerning 
ordinary representations follows immediately from this theorem, while the proof 
of the second part concerning modular representations requires a detailed study 
of the independence of Chung's identities which are satisfied by the rows of the 
decomposition matrix D = (d^). 

Note added April 1, 1952. Since the writing of the present paper the problem 
of the modular representations of the symmetric group has been approached 
from a fresh point of view by D. E. Littlewood (Proc. Royal Soc. (London), 
(A), vol. 209 (1951), 333-353) and the present author (Proc. Nat. Acad. Sci., 
vol. 38 (1952), 129-133 ; 424-426). Chung's characterization of an indecomposable 
has been made explicit, while new light has been thrown on the modular irre
ducible representations themselves. So far as the contents of this paper is con
cerned, the new approach associates a residue (mod p) with each node of a 
disjoint constituent of the star diagram rather than with the upper left-hand 
corner node only, but the proof of the Main Theorem is largely unaffected. 

2. The Main Theorem. The notion of a £-hook was introduced by Nakayama 
(4) and has proved most fruitful in studying the modular representation theory 
of the symmetric group Sn. If as many ^-hooks as possible are removed from a 
diagram [a] containing n nodes, then the residue [ao] is called the p-core of 
[a] and we have the basic theorem of the modular theory (4, p. 423; 1; 6): 

2.1. Two irreducible representations [a] and [0] of Sn belong to the same p-block 
if and only if they have the same p-core. 

To proceed further it is necessary to know something of the p-hodk structure 
of [a], i.e., of the star diagram [a]* of [a]. If b p-hodks are removable from [a] 
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we shall say (9) that [a] is of weight b. We shall write 

2.2 [a]* = [XoHAi]. . . . '[K-i], 

where the [Xr] are the disjoint right constituents of [a]* which are determined 
explicitly in terms of the ^-chains (7; 10) of [a]. We assume that [Xr] contains br 

nodes, where 

2.3 b = bo + bi + . . . + V i , 

and r is the leg length of the £-hook represented by its upper left-hand corner 
node. We shall call r the class of the constituent [Xr]. We prove the following 

2.4. MAIN THEOREM. A diagram [a] of weight b exists and is uniquely determined 
by assigning : 

(i) its p-core [a0] ; 
(ii) its star diagram [a]* ; 

(iii) the class of each disjoint constituent [Xr]. 

As a preliminary to the proof it is necessary to remind the reader of a funda
mental result of Young which can be stated in the form (7, p. 283) 

2.5 [a] = £ [a'], 

where [a'] is obtained by removing a node from [a], and the summation indicates 
that this is to be done in all possible ways. From a group-theoretic point of view, 
the equation 2.5 gives the reduction of [a] when Sn is restricted to the subgroup 
Sn-i. It is convenient to describe this process of removing a node as differentiating 
[a] ; conversely, we may speak of [a] as the integral of the set of [a]1 s (2, p. 337 ; 3). 

Proof, (a) Suppose first that [a]* has just one constituent [X] and it is of class r. 
Certainly the theorem is true for b = 1, as was shown by Nakayama (4) and 
Chung (2) ; we shall assume it to be true for all diagrams of weight less than 
b > 1 and prove it for diagrams [a] of weight b. Let us differentiate [X], obtaining 
a derived set [X']^, where i — 1, 2, . . . , &. 

Assume that k > 1. Clearly the class of each [X']* is also r, since this depends 
on the last £-hook removable, i.e., on the upper left-hand corner node of [X]. 
By our inductive assumption, a unique diagram [a]t is associated with each 
such [\']i of class r. Since each node removable from [X] belongs to the same 
constituent, these nodes represent (4, §§4, 5; 7, p. 288) non-overlapping £-hooks 
of [a]. Thus each [a]t can be obtained by adding k — 1 non-overlapping £-hooks 
to a certain diagram [a] which is the residue left when all k £-hooks are removed 
from [a]. Considering the set of k diagrams [a']t together, it follows that the 
k £-hooks can be added simultaneously to [â] to yield [a]. The uniqueness of [a] 
is thus proved for k > 2. 

Assume that k = 1. In this case we know that [X] must be of the form [xv]. 
Again by our inductive hypothesis, we know that a unique diagram exists having 

https://doi.org/10.4153/CJM-1952-033-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-033-2


A CONJECTURE BY J. H. CHUNG 375 

as star diagram [X] = [(x — l)v _ 1]. Such a diagram is an (x + y — l^-core,1 

since [(x — l)v_1] is an (x + y — l)-core, and so there can be added to this core 
an (x + y — l)£-hook chosen so as to have the desired representation [X] — [X], 
of class r. This completes the proof of the theorem in case (a). 

(b) If [a]* has more than one constituent [X], we may again consider the set 
of k derived diagrams which we can divide into at most p subsets with kr (r = 0, 
1, . . . , £ — 1) diagrams in the rth set which differ only in the constituent of 
class r. 

Assume that kr > 1 and ks > 1. The argument of case (a) is applicable to the 
rth set and we obtain a unique diagram [ar]. Similarly, we obtain a unique 
diagram [as] from the 5th set. In order to prove that [ar] = [a*] we note that the 
two diagrams can differ only in the positions of at most two £-hooks, in view of 
our inductive assumption; and each of these can be added separately to a 
common part [ai] in a unique manner. If these added £-hooks do not overlap 
then certainly [ar] = [a5]. If they do overlap, they can be added in succession, 
the resulting diagram being obtained (4, §3) by moving the common part down 
and to the right one place, leaving the non-overlapping parts in their original 
positions. Thus again, [ar] = [a8]. 

The extension of the argument to the case where one or more of the kr's is 
unity presents no added difficulty, and after at most p steps the theorem is 
proved in case (b) also. 

It is to be noted that the conditions (i), (ii), (iii) in the above theorem are 
independent. The significance of (i) has already been seen in 2.1. With regard 
to (ii) and (iii), it is clear that each partition 2.3 of b leads to a class of star 
diagrams and the number of diagrams in each class depends again on the 
number of partitions of each br. It is also evident that each br is to be associated 
with a residue class r modulo p, and the number of representations belonging to 
a given block will depend on the number of ways this association can be made. 
To sum up, we have the following corollary of the Main Theorem: 

2.6. The number p of ordinary irreducible representations in any p-block of 
weight b is independent of the p-core and is determined by the conditions (ii) and (iii), 
i.e., by the number of possible star diagrams and the number of different ways the 
p distinct residue classes can be associated with the disjoint constituents. 

3. Chung's identities between the rows of D. In the general modular theory 
the splitting of an ordinary irreducible representation of a finite group G into 
its modular components is given by the decomposition matrix D = (dtj). If 
we suppose the representations arranged m blocks Bk, the matrix D takes the 
form 

^akayama's original theorem (5, p. 414) was phrased so as to apply to hooks of prime 
length p, but it and the hook structure theorem (7, p. 287) denning the star diagram, as well 
as the converse being proved here, are all valid for hooks of composite length. The argument 
at this point in the proof requires just this generality. 
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61 \o • • DJ' 
where the reduction of the representations belonging to Bk is given by Dk. For 
the symmetric group this arrangement is easy to achieve in view of 2.1. 

Since the indecomposable representations of the regular representation of G, 
or alternatively, the modular representations of G belonging to Bk, ^re associated 
with the columns of Dk, it follows that there will be a set of identities holding 
between the rows of Dk. The number of these identities for D as a whole is 
p — a, where p is the number of classes of G and a is the number of these which 
are ^-regular. Thus p — a is equal to the number of p-singular classes of G. If we 
denote by pk the number of ordinary irreducible representations in the block 
B*, and by <rk the number of indécomposables of B*, then we have 

CO 

3.2 p — a = X (pk — ak), 

where the number of identities satisfied by the rows of Dk is pk — <rk, in view of 
3.1. We can construct the following table, which, though it does not go very far, 
yields a convenient summary of our knowledge at the present time (4; 2, p. 235).2 

Weight Pk 0* Pk — Gk 

0 1 1 0 

1 P p-\ 1 

2 iP(P + 3) hip - 1) (P + 2) p + l 

In what follows we shall be concerned, for the most part, with representations 
belonging to a fixed block of weight b> so we may drop the subscript k. 

The problem of actually constructing the set of identities associated with B 
was solved by Chung (2, §3). He began with the fundamental character relation 

3.4 2 *a(i?)xa(S) = 0, all [a], 
a 

which is to remain valid for any ^-regular element of 5 of 5„. Thus R must be 
/^-singular and we may set it equal to PkV, where Pk is a cycle of length kp. 
Applying the Murnaghan-Nakayama recursion formula and the orthogonality 
relations for the characters of Sn — kp, we obtain 

3.5 2 <M*X.(S) = 0 (* = 1, 2 6)f [a] C B, 
a 

2Chung's determination of the number of ordinary and modular irreducible representations 
belonging to a £-block of weight 2 with zero core is applicable to the case of arbitrary £-core, 
in consequence of the theorems proved in this paper. 
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where [&] is the residual diagram left after removing a &£-hook of parity aapk 

from [a]. Of course all \fik] have p-core [a0], so the summation in 3.5 may be limited 
to those [a]1 s belonging to B. Writing 

X.(S) = Z<Wx(S), 
x 

where <t>\(S) is the character of 5 in the irreducible modular representation X, 
Chung obtained the identities 

3.6 2 ***** = 0 (£ = 1 , 2 , . . . , b),[a] C B, 
a 

for all X in B. 
Conversely, let us assume the existence of a relation 

3.7 £ aadaX = 0, [a] C B. 
a 

Retracing our steps, we conclude the existence of a relation 

3.8 5 > . X . ( S ) = 0 , [ a ] C B , 
a 

for any ^-regular element 5 of 5n. If we consider the columns of the character 
table as a mutually orthogonal set of vectors spannnig the space, then it follows 
that any equation 3.8 must be linearly dependent on the set of equations 3.4. But 
we have seen how these can be broken up into sets of equations 3.6 applicable 
to the separate blocks. Thus we have proved that 

3.9. Chung's system of identities satisfied by the rows of D is complete. 

4. Star ordering of Young diagrams. Let us denote the set of Young diagrams 
[a] belonging to B, or alternatively, the set of their representative star diagrams 
according to 2.4, by the symbol (6, ao). If we remove a p-hodk from each [a], 
i.e., a node from each of the representative star diagrams of (6, a0), it is not 
difficult to see that the residual diagrams [0i] are just those of the set (b — 1, ao). 
Similarly, removing a 2£-hook, where possible, from the [a]'s yields the diagrams 
[j32] of the set (b — 2, ao). That we can identify the [ft] in this simple way follows 
from our Main Theorem. Proceeding in this manner we can write Chung's 
relation matrix in the form 

. __ . . f [a] ranging over the set (&, a0), 
\a+*)\[fl ranging over the set (b - k, a0) with k = 1, 2, . . . ,6. 

The coefficients aaph are ± 1 or zero according as the &£-hook removed is of even 
or odd leg length or does not exist, to yield the residual diagram \fik] of the set 
(b — k, ao) at the head of the column in question. We shall denote the matrix 
consisting of rows (6, a0) and columns (6 — k, a0) by M(b — k, a0). The equa
tions 3.6 may be summarized in the equation 

4.2 AD = 0, 

where A1 is the transpose of A. 
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Chung arranged the [a]'s of (6, ao) according to their natural or dictionary 
ordering. Largely for its intrinsic interest we define now a star ordering which will 
depend on the ordering of the associated star diagrams. For a diagram [/3] we 
may write 

4.3 [/?]* = M - [ M I ] - . . . -[MP-I] 

as in 2.2, where [/xr] contains cr nodes and 

4.4 b = Co + ci + . . . + Cp-i. 

We shall say that [a] precedes [0] in the star order if: 

(i) b0 = c0, bi = cu • • • , oT > cr\ 
or if 

(ii) br = cr (r = 0, 1, . . . , p — 1) and 

[Xo] = [MO], [XI] = [/*i], . . . , [Xs] precedes [ns] in the natural order. 

As an illustration we shall rearrange the rows of Chung's table (2, p. 317) 
according to this ordering. The constituent of the star diagram preceding the 
vertical stroke is assumed to be of class 0, and that following it of class 1 ; here, 
of course, p = 2. This table illustrates also the application of our Main Theorem. 

[8] | [6, 2] . . . | . [32,2] : | . . [7,1] 

[6, i2] : ' ' | [4,22] : - | . [24] : | : [5, l3] 

[4,3, i] : : | [23, i2] : | . [5,3] . | . . . [3, 22, 1] 

[4,i4] : * | [42] . . | . . [32, i 2 ] . | : * [3, l6] 

[2, i6] : | [4,2, i2] . . | : [22, i 4 ] . I : [I8] 

If, in addition to the rows, the columns of each set (6 — k, a0) are rearranged 
in star order, then we shall denote the resulting matrix by A*. Similarly we may 
star order the rows of D to obtain D*. Of course these changes could have been 
made by using a transforming matrix, but it is clear that the relation A*' D* = 0 
still holds. 

5. The independence of Chung's identities. The proof of the following lemma 
follows immediately from the independence of the representations of the set 
(b — k, ao). 

5.1. The columns belonging to any set (b — k, ao) of A, that is^ of M{b — k, a0), 
are linearly independent. 

While the columns of any given set are linearly independent, yet the columns 
belonging to different sets may very well be dependent, as Chung showed. The 
question arises: do Chung's relations between the columns of different sets 
exhaust the possibilities? 
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As referred to already, the character of any element R in [a] can be obtained 
by considering the removal of successive hooks from [a] which correspond to the 
cycles of R (7, p. 290). The ± l's which appear in the row [a] of A and lie in 
M(b — k, a0) pick out those representations of Sn-kv which contribute to Xa(R)> 
Thus for columns of M(b — #i, a0) to be dependent on columns of M(b — k2, ao), 
with ki ^ k2, implies a relation of the form 

5.2 ^ at co\iM(b — ku a0) = X) ^ coljM(b — k2, ao). 
i i 

To say that 5.2 is valid for all [a] of B means that it is valid for those elements 
of the form Pkl Pka V which contribute to both sides of the equation. For such 
elements we can represent both sides of 5.2 in the form 

5.3 J j cx co\xM(b — ki — k2l a0)° 
X 

where 

5.4 M(b - ki — k2, a0)° = M(b - ki, aQ)M(b — ki — k2, a0) 

= M(b — k2, a0)M(b — k2 - ku a0). 

The expression 5.3 implies the restriction of the &'s given by Chung (2, p. 220). 
Clearly the number of independent expressions 5.3 is just the number of irre
ducible representations of Sn-kip-k*p with £-core [ao], i.e., the number of members 
of the set (b — ki — k2l a0). Taking all possible ki and k2 we obtain precisely 
Chung's relations between the identities. 

5.5. All linear relations between the columns of A are expressible in terms of the 
independent relations obtained by Chung. 

In §3 we denoted the number of representations belonging to a block Bt by 
Pi, and the number of indécomposables or modular irreducible representations 
belonging to B* by o-*. Thus the number of identities satisfied by the rows of 
Dt will be pi — orir and it follows from 5.1 and 5.5 that this number is equal to 
the number of Chung's identities which are linearly independent. According to 
Chung's procedure, this number pt — <rt is a function of the following two 
determinations: 

(a) The number of distinct sets ki, k2, . . . , kr with kt 9e kjyi ^ j , and ki > 0 
for all i and j , and such that /.kr < b; 

(b) The number of members of the sets (b — k, a0). 

Now it is clear that the number of solutions of (a) depends only on n and b 
and not on [a0], and the number of members of (b — k, a0) in (b) is also indepen
dent of [ao] by our Main Theorem. Thus we have the following result: 

5.6. The number of indécomposables or modularly irreducible representations 
belonging to any p-block is independent of the p-core. 

The two results 2.6 and 5.6 provide a proof of Chung's conjecture. 

https://doi.org/10.4153/CJM-1952-033-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-033-2


380 G. DE B. ROBINSON 

REFERENCES 

1. R. Brauer and G. de B. Robinson, On a conjecture by Nakayama, Trans. Royal Soc. Canada, 
Sec III, vol. 40 (1947), 11-25. 

2. J. H. Chung, On the modular representations of the symmetric group, Can. J . Math., vol. 3 
(1951), 309-327. 

3. F . D. Murnaghan, The characters of the symmetric group, Proc. Nat . Acad. Sci., vol. 37 
(1951), 55-58. 

4. T. Nakayama, On some modular properties of irreducible representations of a symmetric 
group I, Jap. J. Math., vol. 17 (1941), 89-108. 

5. , I I , ibid, 411-423. 
6. T. Nakayama and M. Osima, Note on blocks of symmetric groups, Nagoya Math. J., vol. 2 

(1951), 111-117. 
7. G. de B. Robinson, On the representations of the symmetric group III, Amer. J. Math., vol. 70 

(1948), 277-294. 
8. , Induced representations and invariants, Can. J. Math., vol. 2 (1950), 334-343. 
9. , On the modular representations of the symmetric group, Proc. Nat . Acad. Sci., 

vol. 37 (1951), 694-696. 
10. R. A. Staal, Star diagrams and the symmetric group, Can. J. Math., vol. 2 (1950), 79-92. 
11. R. M. Thrall and G. de B. Robinson, Supplement to a paper by G. de B. Robinson, Amer. 

J. Math., vol. 73 (1951), 721-724 (cf. 7 above). 

The University of Toronto 

https://doi.org/10.4153/CJM-1952-033-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-033-2

