ON DIREGT PRODUCTS OF ABELIAN GROUPS

JOHN M. IRWIN AND JOHN D. O'NEILL

In this paper we investigate the properties of the product (or complete direct sum) of torsion Abelian groups. The chief results concern products of Abelian primary groups (p-groups). Given a set of p-groups, $\left[G_{\lambda}\right]$, over an index set Λ, the product of these groups is written $\prod_{\lambda \in \Lambda} G_{\lambda}$, the torsion subgroup of the product of these p-groups is written $T\left[\Pi G_{\lambda}\right]$, and the discrete direct sum of the p-groups is written $\sum G_{\lambda}$.

Definition. $\sum G_{\lambda}$ is said to be an essentially bounded decomposition if and only if there exists an integer $M>0$ such that $M G_{\lambda}=0$ for all but a finite number of $G_{\lambda} \mathrm{s}$; otherwise the decomposition is essentially unbounded.

Notation, for the most part, will be that of Fuchs [1].
The main results of this paper are the following.
(1) The cardinal number of ΠG_{λ} equals the cardinal number of $T\left[\Pi G_{\lambda}\right]$.
(2) $T\left[\Pi G_{\lambda}\right]$ is torsion-complete if and only if each G_{λ} is torsion-complete.
(3) If the set of p-groups $\left[G_{\lambda}\right]$ is reduced, then the following are equivalent:
(a) $\sum G_{\lambda}$ is an essentially bounded decomposition,
(b) ΠG equals $T\left[\Pi G_{\lambda}\right]$,
(c) $T\left[\Pi G_{\lambda}\right]$ is a direct summand of ΠG_{λ},
(d) The quotient group $\Pi G_{\lambda} / T\left[\Pi G_{\lambda}\right]$ is reduced.
(4) For reduced p-groups, $\left[G_{\lambda}\right]$, the quotient group $T\left[\Pi G_{\lambda}\right] / \sum G_{\lambda}$ is divisible if and only if a basic subgroup of $\sum G_{\lambda}$ is also basic in $T\left[\Pi G_{\lambda}\right]$.
(5) For (reduced) p-groups [G_{λ}], the following are equivalent:
(a) $T\left[\Pi G_{\lambda}\right] / \sum G_{\lambda}$ is reduced,
(b) $\sum G_{\lambda}$ is an essentially bounded decomposition,
(c) $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is bounded.
(6) If $T\left(\Pi_{1}{ }^{\infty} G_{n}\right)$ is a reduced p-group, it has an essentially unbounded decomposition if and only if some G_{n} has an essentially unbounded decomposition.
(7) If $T\left(\prod_{1}{ }^{\infty} G_{n}\right)$ equals an infinite direct sum of isomorphic groups where all $G_{n} \mathrm{~s}$ are countable reduced p-groups, then $\sum_{1}{ }^{\infty} G_{n}$ is essentially bounded.
(8) A countably infinite direct product of isomorphic p-groups can be decomposed into an infinite direct sum of isomorphic groups if and only if the product is the direct sum of a divisible group and a bounded group.

Lemmas which are proved in this paper and which are important in their own right are the following.

[^0](1) If $G=A \oplus B=C \oplus D$ are two direct sum decompositions of an Abelian group G, where C is an unbounded direct sum of cyclic groups of infinite rank, then A or B contains a direct summand which is a direct sum of cyclic groups of infinite rank.
(2) If $G=A \oplus \bar{B}=C \oplus D$ is an Abelian group, where \bar{B} is an unbounded torsion-complete p-group, then C or D contains a summand which is an unbounded torsion-complete p-group.
(3) If $G=A \oplus B$ is an Abelian p-group without elements of infinite height, and G contains an unbounded torsion-complete group, then A or B contains an unbounded torsion-complete group.
(4) Every unbounded pure subgroup of a direct sum of cyclic p-groups contains an unbounded summand of the group.

1. Preliminary propositions. The following propositions are interesting in their own right or will be used in subsequent parts of the paper. Proofs will be omitted whenever they are obvious.
1.1. Proposition. If [G_{λ}] is a set of torsion groups, where $G_{\lambda}=D_{\lambda} \oplus R_{\lambda}, D_{\lambda}$ divisible, R_{λ} reduced, then $\Pi G_{\lambda}=\Pi D_{\lambda} \oplus \Pi R_{\lambda}$, where the first summand is divisible, and the second is reduced.
1.2. Proposition. Let $G_{\lambda}=\sum_{i=1}^{\infty} G_{\lambda p_{i}}$ be a decomposition of a torsion group G_{λ} into a direct sum of its primary components for each λ in an index set Λ and where $p_{1}<p_{2}<\ldots$ is a set of prime numbers. Then

$$
T\left(\Pi G_{\lambda}\right)=\sum_{i=1}^{\infty} T\left(\Pi_{\Lambda} G_{\lambda_{p_{i}}}\right)
$$

Proof. The torsion subgroup of a product is certainly the direct sum of its primary components. Now, for given p_{i}, the p_{i}-component of $T\left(\Pi G_{\lambda}\right)$ in our primary sum decomposition is clearly $T\left(\Pi_{\Lambda} G_{\lambda p_{i}}\right)$.

It is due to these first two propositions that our study deals with the complete direct sum of groups which are usually reduced and always p-groups, unless otherwise noted.
1.3. Proposition. If $\left[G_{\lambda}\right]$ is a set of p-groups and D_{λ} is the divisible hull of G_{λ} for each λ in Λ, then $T\left(\Pi D_{\lambda}\right)$ is the divisible hull of $T\left(\Pi G_{\lambda}\right)$.

Proof. This is clear, once we observe that $T\left(\Pi D_{\lambda}\right)[p]=\Pi\left(D_{\lambda}[p]\right)=$ $\Pi G_{\lambda}[p]=T\left(\Pi G_{\lambda}\right)[p]$, and that $T\left(\Pi D_{\lambda}\right)$ is divisible.

Remark. Notice that ΠD_{λ} need not be the divisible hull of ΠG_{λ}. To see this, consider the case where each G_{λ} is cyclic of order p. Then if Λ has infinite cardinality, ΠG_{λ} is bounded while ΠD_{λ} is mixed.
1.4a. Proposition. Given p-groups $\left[G_{\lambda}\right]_{\Lambda}$, let $G_{\lambda}=S_{\lambda_{n}}+G_{\lambda n}$, where $S_{\lambda_{n}}$ is a maximal p^{n}-bounded direct summand of G_{λ} for every $\lambda \in \Lambda$. Then $\Pi_{\Delta} S_{\lambda n}$ is a maximal p^{n}-bounded direct summand of $T=T\left(\Pi G_{\lambda}\right)$.

Proof. That $T=T\left(\Pi_{\Lambda} S_{\lambda_{n}}\right) \oplus T\left(\Pi_{\Lambda} G_{\lambda_{n}}\right)=\Pi_{\Delta} S_{\lambda_{n}} \oplus T\left(\Pi_{\Lambda} G_{\lambda_{n}}\right)$ is obvious. Now suppose that $\langle x\rangle$ is a direct summand of $T\left(\Pi_{\Delta} G_{\lambda n}\right)$ and $o(x)=p^{k} \leqq p^{n}$. Let $x=\left(g_{1}, g_{2}, \ldots, g_{\lambda}, \ldots\right), g_{\lambda} \in G_{\lambda n}$. Some g_{λ} in this expansion, say g_{i}, generates a pure cycle $\left\langle g_{i}\right\rangle$ of order p^{k} in $G_{i n}$. Hence $\left\langle g_{i}\right\rangle$ is a direct summand of $G_{i n}$ and $S_{i n} \oplus\left\langle g_{i}\right\rangle$ is a larger p^{n}-bounded direct summand of G_{i} than $S_{i n}$.
1.4b. Proposition. Given p-groups $\left[G_{\lambda}\right]_{\Lambda}$, let $B_{\lambda}=\sum_{n=1}^{\infty} B_{\lambda_{n}}$ be a basic subgroup of G_{λ}, where $B_{\lambda_{n}}$ is a direct sum of cyclic groups of order p^{n}, for each λ in Λ. Then $\hat{B}=\sum_{n=1}^{\infty} \Pi_{\Lambda} B_{\lambda n}$ is basic in $T=T\left(\Pi G_{\lambda}\right)$.

Proof. \hat{B} is clearly pure in T and a direct sum of cyclic groups. We must show that T / \hat{B} is divisible. Let x in T be mapped to \bar{x} in T / \hat{B}. Let $o(x)=p^{k}$, $x=\left(g_{1}, g_{2}, \ldots, g_{\lambda}, \ldots\right), g_{\lambda} \in G_{\lambda}$. By the Baer Decomposition Theorem [1, p. 98, Theorem 29.3], each g_{λ} may be written $b_{\lambda}+b_{\lambda}{ }^{*}+p^{k} g_{\lambda}{ }^{\prime}$, where $b_{\lambda} \in B_{\lambda 1}+\ldots+B_{\lambda k}, b_{\lambda}^{*}+p^{k} g^{\prime} \in G_{\lambda k} \in\left\{B_{\lambda k}{ }^{*}, p^{k} G_{\lambda}\right\}$. Since $0=p^{k} x=p^{k} g_{\lambda}=$ $p^{k} b_{\lambda}{ }^{*}+p^{k+k} g_{\lambda}{ }^{\prime}, p$ divides b^{*}. Thus each $g_{\lambda}=b_{\lambda}+p \hat{g}_{\lambda}$ for some $b_{\lambda} \in \sum_{n=1}^{k} B_{\lambda n}$, $\hat{g}_{\lambda} \in G_{\lambda}$. Hence $x=\left(b_{1}, b_{2}, \ldots, b_{\lambda}, \ldots\right)+p\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\lambda}, \ldots\right)$, where $\left(b_{1}, b_{2}, \ldots, b_{\lambda}, \ldots\right)$ is in

$$
\prod_{\Lambda} \sum_{n=1}^{k} B_{\lambda n}=\sum_{n=1}^{k} \prod_{\Lambda} B_{\lambda_{n}} \subset \hat{B} .
$$

In $T / \hat{B}, \bar{x}=p \hat{g}, \hat{g}$ being the image of ($\hat{\mathrm{g}}_{1}, \hat{\mathrm{~g}}_{2}, \ldots, \hat{\mathrm{~g}}_{\lambda}, \ldots$). Thus T / \hat{B} is divisible.
1.5a. Proposition. $\left|\Pi G_{\lambda}\right|=\left|T\left(\Pi G_{\lambda}\right)\right|$, if all G_{λ} s are p-groups and Λ is any index set.

Proof. (i) If the index set Λ is finite, the groups are identical and have the same cardinal number.
(ii) If the index set Λ is infinite, then

$$
\begin{aligned}
\left|\Pi G_{\lambda}\right|=\Pi\left|G_{\lambda}\right| \leqq \Pi\left(\aleph_{0}\left|G_{\lambda}[p]\right|\right) & =\boldsymbol{\aleph}_{0} \Pi\left|G_{\lambda}[p]\right|=\Pi\left|G_{\lambda}[p]\right| \\
& =\left|\Pi G_{\lambda}[p]\right|=\left|T\left(\Pi G_{\lambda}[p]\right)\right| \leqq\left|T\left(\Pi G_{\lambda}\right)\right|
\end{aligned}
$$

and the proposition is again true.
1.5b. Proposition. For prime numbers: $p_{1}<p_{2}<\ldots,\left|\Pi_{1}^{\infty} C\left(p_{i}\right)\right|$ is greater than $\left|\sum_{1}{ }^{\infty} C\left(p_{i}\right)\right|$ which equals $\left|T\left(\Pi_{1}{ }^{\infty} C\left(p_{i}\right)\right)\right|$, where $C\left(p_{i}\right)$ is a cyclic group of order p_{i}, for each i.
1.6. Proposition. Let $\left[G_{i}\right]_{1}{ }^{\infty}$ be a set of unbounded reduced p-groups. Then $T\left(\Pi_{1}^{\infty} G_{i}\right)$ has an unbounded torsion-complete direct summand.

Proof. Let $G_{i}=\left\langle g_{i}\right\rangle \oplus G_{i}{ }^{\prime}$, where $o\left(g_{i}\right)<o\left(g_{i+1}\right), i=1,2,3, \ldots$. Then $T\left(\Pi G_{i}\right)=T\left(\Pi\left\langle g_{i}\right\rangle\right) \oplus T\left(\Pi G_{i}{ }^{\prime}\right)$, where $T\left(\Pi\left\langle g_{i}\right\rangle\right)$ is torsion-complete and unbounded.

Remark. Here, the subgroup $T\left(\Pi\left\langle g_{i}\right\rangle\right)$ is not a direct summand of ΠG_{i}, since $T\left(\Pi\left\langle g_{i}\right\rangle\right) \subset \Pi\left\langle g_{i}\right\rangle \subset \Pi G_{i}$ and $\Pi\left\langle g_{i}\right\rangle / T\left(\Pi\left\langle g_{i}\right\rangle\right)$ is not reduced.
1.7. Proposition. If $B_{\lambda} \subset G_{\lambda} \subset \bar{B}_{\lambda}$, where B_{λ} is basic in the torsion-complete p-group \bar{B}_{λ}, and G_{λ} is pure in $\bar{B}_{\lambda}[\mathbf{1}, \mathrm{p} .112]$, then $T\left(\Pi G_{\lambda}\right)$ is pure in $T\left(\Pi \bar{B}_{\lambda}\right)$.
1.8a. Proposition. Given a set of p-groups [G_{λ}], if the elements of infinite height in $G_{\lambda}, \Pi G_{\lambda}$, and $T\left(\Pi G_{\lambda}\right)$ are designated by $G_{\lambda}{ }^{1}, \Pi^{1}$, and T^{1}, respectively, then $\Pi^{1}=\Pi G_{\lambda}{ }^{1}$ and $T^{1}=T\left(\Pi G_{\lambda}{ }^{1}\right)$.
1.8b. Proposition. If the elements of infinite height in the p-group G_{λ} are designated by $G_{\lambda}{ }^{1}$, then $T\left(\Pi G_{\lambda}\right) / T\left(\Pi G_{\lambda}{ }^{1}\right)$ is isomorphic to a pure subgroup of $T\left(\Pi G_{\lambda} / G_{\lambda}{ }^{1}\right)$.

Proof. Map $P=\Pi G_{\lambda}$ to $P^{\prime}=\Pi G_{\lambda} / G_{\lambda}{ }^{1}$. Now $T=T\left(\Pi G_{\lambda}\right)$ is mapped to T^{\prime}, a subgroup of $T\left(\Pi G_{\lambda} / G_{\lambda}{ }^{1}\right)$. We let $K=\Pi G_{\lambda}{ }^{1}$, the kernel of the map. Then T maps to $\{T, K\} / K \cong T /(T \cap K)$. But $T \cap K=T\left(\Pi G_{\lambda}{ }^{1}\right)$. Thus $T\left(\Pi G_{\lambda}\right) / T\left(\Pi G_{\lambda}{ }^{1}\right) \cong T^{\prime}$. We now show that T^{\prime} is pure in P^{\prime}. Let $p^{n} g^{\prime}=t^{\prime}$, $g^{\prime} \in P^{\prime}, t^{\prime} \in T^{\prime}$. If g^{\prime} is the image of g in P and t^{\prime} of t in T, then there exists $k \in K$ such that $p^{n} g=t+k$. Since k has infinite height and T is pure, there exists $x \in T$ such that $p^{n} x=t$. Thus $p^{n} x^{\prime}=t^{\prime}$, where x maps to x^{\prime} in T^{\prime} and T^{\prime} is pure.
1.9. Proposition. If $\Lambda=\Lambda_{\alpha}+\Lambda_{\beta}+\ldots$ is a partitioning of the index set Λ into subsets indexed by $N=[\alpha, \beta, \ldots]$, then

$$
T\left(\Pi G_{\lambda}\right) \cong T\left(\prod_{\alpha \in N}\left[T\left(\prod_{\lambda \in \Lambda_{\alpha}} G_{\lambda}\right)\right]\right) \text { and } \quad \Pi \quad G_{\lambda} \cong \prod_{\alpha \in N}\left[\prod_{\lambda \in \Lambda_{\alpha}} G_{\lambda}\right]
$$

for any set of p-groups $\left[G_{\lambda}\right]_{\Delta}$.
1.10. Proposition. For p-groups $\left[G_{\lambda}\right]$, if $\Pi G_{\lambda} \neq T\left(\Pi G_{\lambda}\right)$, then

$$
\left|\Pi G_{\lambda} / T\left(\Pi G_{\lambda}\right)\right| \geqq 2 \boldsymbol{\aleph}_{0}
$$

Proof. Each G_{λ} may be considered as a module over the p-adic integers. By defining multiplication by scalar component-wise, ΠG_{λ} may be considered as a module over the p-adic integers with $T\left(\Pi G_{\lambda}\right)$ as its submodule. Thus $\Pi G_{\lambda} / T\left(\Pi G_{\lambda}\right)$ is also a module over the p-adics. This quotient, if not zero, is torsion-free and contains a copy of the p-adics which is uncountable.
2. $T\left(\Pi G_{\lambda}\right)$ and torsion completion. A direct sum of cyclic groups $\sum_{1}^{\infty} B_{n}$ completely determines its torsion completion $T\left(\Pi B_{n}\right)$ (see [1, p. 115, Corollary 34.2]). We might think that the same relationship exists between $\sum G_{\lambda}$ and $T\left(\Pi G_{\lambda}\right)$ in general. That this is not so is made clear by the following example.
2.1. Example. Let $I=[1,2,3, \ldots]$. Let $G_{1}=C_{1}\left(p^{1}\right) ; G_{i}=C_{i}\left(p^{1}\right) \oplus C_{i}\left(p^{i}\right)$ for $i=2,3,4, \ldots$, where $C_{j}\left(p^{i}\right)$ is a cyclic group of order p^{i} for every $j \in I$.

Likewise, let $H_{1}=\sum_{1}{ }^{\infty} C_{i}(p)$ and $H_{i}=C_{i}\left(p^{i}\right), i=2,3,4, \ldots$ Then $\sum G_{i}=\sum H_{i}$, yet $T\left(\Pi G_{i}\right)$ is not isomorphic to $T\left(\Pi H_{i}\right)$, though both have the same cardinality and both are torsion-complete.

However, if in the example above, the number of cyclic summands of every power had been finite, then for every decomposition $\sum G_{i}=\sum H_{i}$, if $T\left(\Pi G_{i}\right)$ and $T\left(\Pi H_{i}\right)$ are torsion-complete, they are isomorphic. This would be true since $\sum G_{i}$ and $\sum H_{i}$ would then be basic in $T\left(\Pi G_{i}\right)$ and $T\left(\Pi H_{i}\right)$, respectively, which in turn are the torsion completions of these subgroups. In fact, if $\sum G_{i}=\sum H_{i}$ is a direct sum of cyclic groups where cycles of power p^{k} for given k appear in only a finite number of $G_{i} \mathrm{~s}$ and $H_{i} \mathrm{~s}$, then $T\left(\Pi G_{i}\right)$ and $T\left(\Pi H_{i}\right)$ are isomorphic if both are torsion-complete.

Although $\sum G_{i}=\sum H_{i}$ is a direct sum of cyclic p-groups and the number of cyclic summands of each power is finite, $T\left(\Pi G_{i}\right)$ may still not be isomorphic to $T\left(\Pi H_{i}\right)$, if the latter groups are not both torsion-complete. Let us illustrate.
2.2. Example. Let $G=\sum G_{i}$, where $G_{1}=\sum_{1}{ }^{\infty} C\left(p^{i}\right), \quad G_{i}=0$, for $i=2,3,4, \ldots$, and let $H=\sum{ }_{1}{ }^{\infty} H_{i}$, where $H_{i}=C\left(p^{i}\right), i=1,2,3, \ldots$. Then $\hat{G}=T\left(\Pi G_{i}\right)=G_{1}$, and $\hat{H}=T\left(\Pi H_{i}\right)=T\left(\Pi C\left(p^{i}\right)\right)$. Here, G equals H, but \hat{G} is not isomorphic to \hat{H}.

On the other hand, $T\left(\Pi G_{i}\right)$ may equal $T\left(\Pi H_{i}\right)$, yet $\sum G_{i}$ may not be isomorphic to $\sum H_{i}$. Again, we give an example.
2.3. Example. Let $G_{1}=T\left(\Pi C\left(p^{i}\right)\right)$, and $G_{i}=0$, for $i=2,3,4, \ldots$; let $H_{i}=C\left(p^{i}\right), \quad i=1,2,3, \ldots$. Then $T\left(\Pi G_{i}\right)=T\left(\Pi C\left(p^{i}\right)\right)=T\left(\Pi H_{i}\right)$. But $\sum G_{i}=G_{1}=T\left(\Pi C\left(p^{i}\right)\right)$ and $\sum H_{i}=\sum C\left(p^{i}\right)$, and these two groups are not isomorphic.

Along these lines, however, we do have the following positive theorem.
2.4. Theorem. For p-groups $\left[G_{\lambda}\right], T=T\left(\Pi G_{\lambda}\right)$ is torsion-complete if and only if each G_{λ} is torsion-complete.

Since each G_{λ} is a direct summand of $T\left(\Pi G_{\lambda}\right)$, it is clear that, if $T\left(\Pi G_{\lambda}\right)$ is torsion-complete, then so is each G_{λ}. We will prove the converse three times: first directly, then more quickly employing propositions of § 1, and finally by homological methods.

Proof 1. Let each G_{λ} be torsion-complete, and let $\left[g_{n}\right]$ be a bounded Cauchy sequence in $T=T\left(\Pi G_{\lambda}\right)$. Let $g_{n}=\left(g_{1}{ }^{n}, g_{2}{ }^{n}, \ldots, g_{\lambda}{ }^{n}, \ldots\right), g_{\lambda}{ }^{n} \in G_{\lambda}$, for every n. Then for each $\lambda,\left[g_{\lambda}^{n}\right]_{n}$ approaches limit g^{λ} in G. Now, the element $g=\left(g^{1}, g^{2}, \ldots, g^{\lambda}, \ldots\right)$, being bounded, is in $T\left(\Pi G_{\lambda}\right)$. Each G_{λ}, being torsion-complete, is without elements of infinite height and by Proposition 1.8a, $T=T\left(\Pi G_{\lambda}\right)$ is also without elements of infinite height. Now,

$$
g^{n}-g=\left(g_{1}{ }^{n}-g^{1}, g_{2}{ }^{n}-g^{2}, \ldots, g_{\lambda}{ }^{n}-g^{\lambda}, \ldots\right)
$$

is in $T\left(\Pi_{\Lambda} p^{n} G_{\lambda}\right) \subset p^{n} T\left(\Pi G_{\lambda}\right)$ for every n. Therefore [g_{n}] converges to g, and T is torsion-complete.

Proof 2. More directly, we might arrive at the same conclusion by first letting $G_{\lambda}=T\left(\Pi_{n} B_{\lambda_{n}}\right)$ where $\sum_{n=1}^{\infty} B_{\lambda n}$ is basic in G_{λ}, as in Proposition 1.4b, for each λ. Then $T=T\left(\Pi G_{\lambda}\right)=T\left(\Pi_{\Lambda}\left[T\left(\Pi_{n} B_{\lambda_{n}}\right)\right]\right)=T\left(\Pi_{\Lambda} \Pi_{n} B_{\lambda_{n}}\right)$. But, by Proposition 1.9, $T\left(\Pi_{\Delta} \Pi_{n} B_{\lambda_{n}}\right)$ is isomorphic to $T\left(\Pi_{n} \Pi_{\Delta} B_{\lambda_{n}}\right)$ which is torsion-complete.

Proof 3. Let $T=T\left(\Pi G_{\lambda}\right)$, and $\Pi=\Pi G_{\lambda}$, and $\Pi / T=\Pi G_{\lambda} / T\left(\Pi G_{\lambda}\right)$. Consider the exact sequence: $0 \rightarrow T \rightarrow \Pi \rightarrow \Pi / T \rightarrow 0$ and

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}\left(Z\left(p^{\infty}\right), T\right) \rightarrow \operatorname{Hom}\left(Z\left(p^{\infty}\right), \Pi\right) \rightarrow \operatorname{Hom}\left(Z\left(p^{\infty}\right), \Pi / T\right) \\
& \rightarrow \operatorname{Pext}\left(Z\left(p^{\infty}\right), T\right) \rightarrow \operatorname{Pext}\left(Z\left(p^{\infty}\right), \Pi\right) \rightarrow \operatorname{Pext}\left(Z\left(p^{\infty}\right), \Pi / T\right) \rightarrow 0
\end{aligned}
$$

(see [2]). It is well known that a reduced p-group G is torsion-complete if and only if $\operatorname{Pext}\left(Z\left(p^{\infty}\right), G\right)=0$. Now, $\operatorname{Hom}\left(Z\left(p^{\infty}\right), \Pi / T\right)$ is zero, since $Z\left(p^{\infty}\right)$ is torsion and Π / T is torsion-free. $\operatorname{Pext}\left(Z\left(p^{\infty}\right), \Pi G_{\lambda}\right)=\Pi \operatorname{Pext}\left(Z\left(p^{\infty}\right), G_{\lambda}\right)$ which equals zero, since each G_{λ} is torsion-complete. Hence,

$$
\operatorname{Pext}\left(Z\left(p^{\infty}\right), T\right)=0 .
$$

T must then be torsion-complete, as claimed.
2.5. Corollary. If $G_{\lambda}=T\left(\Pi_{n} B_{\lambda_{n}}\right)$ for every λ in Λ, as in Proof 2 of Theorem 2.4, then $T\left(\Pi G_{\lambda}\right)$ is the torsion completion of its basic subgroup $\sum_{n} \Pi_{\Delta} B_{\lambda_{n}}$, and $T\left(\Pi G_{\lambda}\right) \cong T\left(\Pi_{n} \Pi_{\Delta} B_{\lambda_{n}}\right)$.

Remark. If $G=\sum G_{\lambda}$ and each G_{λ} is a torsion-complete p-group, then $T\left(\Pi G_{\lambda}\right)$ is torsion-complete, but not necessarily the smallest torsion-complete group containing G. Using the notation of Corollary 2.5, we can express $T\left(\Pi G_{\lambda}\right)$ as $T\left(\Pi_{n} \Pi_{\Delta} B_{\lambda_{n}}\right)$. Now $T\left(\Pi_{n} \sum_{\Delta} B_{\lambda_{n}}\right)$ is torsion-complete, contains G, and $\sum_{\Delta} B_{\lambda_{n}}$ need not equal $\Pi_{\Delta} B_{\lambda_{n}}$ for every n.
2.6. Corollary. If $\sum G_{\lambda} \subset H \subset T\left(\Pi G_{\lambda}\right)$ and H is a torsion-complete p-group, then so is $T\left(\Pi G_{\lambda}\right)$.

Proof. Each G_{λ} is a direct summand of $T\left(\Pi G_{\lambda}\right)$ and hence of H. Since H is torsion-complete, so is each G_{λ} and by Theorem 2.4, $T\left(\Pi G_{\lambda}\right)$ is then torsioncomplete.

3. Essentially bounded decompositions.

Definition. $G=\sum G_{\lambda}$ will be called an essentially bounded decomposition of G if there exists $M>0$ such that $M G_{\lambda}=0$ for almost all λ (for all but a finite number of λ). Otherwise, the decomposition will be called essentially unbounded.

[^1](a) $G=\sum G_{\lambda}$ is an essentially bounded decomposition of G,
(b) $\Pi G_{\lambda}=T\left(\Pi G_{\lambda}\right)$,
(c) $T\left(\Pi G_{\lambda}\right)$ is a direct summand of ΠG_{λ},
(d) $\left(\Pi G_{\lambda}\right) / T\left(\Pi G_{\lambda}\right)$ is reduced.

Proof. We shall establish this theorem by showing that $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow$ (d) \Rightarrow (a).
(a) $\Rightarrow(b)$. This is clear by the definition above.
(b) $\Rightarrow(c)$. This is clear.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$. If $\quad \Pi G_{\lambda}=T\left(\Pi G_{\lambda}\right) \oplus K$, then K is reduced, and $\Pi G_{\lambda} / T\left(\Pi G_{\lambda}\right)$, isomorphic to K, is also reduced.
(d) \Rightarrow (a). Suppose that $G=\sum G_{\lambda}$ is not essentially bounded. We could then find a set of elements $\left[g_{\lambda_{i}}\right]_{i=1}^{\infty}$ from a countable subset $\left[G_{\lambda_{i}}\right.$] of $\left[G_{\lambda}\right.$] such that $g_{\lambda_{i}} \subset G_{\lambda_{i}}$ and $o\left(g_{\lambda_{i}}\right)<o\left(g_{\lambda_{i+1}}\right)$ for every i. Writing the indices $\left[\lambda_{1}, \lambda_{2}, \ldots\right]$ consecutively in ΠG_{λ}, we consider the summand $\prod_{i=1}^{\infty} G_{\lambda_{i}}$. Now $g=\left(g_{\lambda_{1}}, 0, p g_{\lambda_{3}}, \ldots, p^{i-1} g_{\lambda_{2}+1}, \ldots\right)$ is in $\Pi G_{\lambda_{i}} \backslash T\left(\Pi G_{\lambda_{i}}\right) \subset \Pi G_{\lambda} \backslash T\left(\Pi G_{\lambda}\right)$. The image of g in $\Pi G_{\lambda} / T\left(\Pi G_{\lambda}\right)$ has infinite height therein. This quotient group, then, contains a divisible subgroup, since it is torsion-free. Thus $\Pi G_{\lambda} / T\left(\Pi G_{\lambda}\right)$ would not be reduced.
3.2. Corollary. If $\sum G_{\lambda}$ is essentially bounded, and each G_{λ} is a direct sum of cyclic groups, then $T\left(\Pi G_{\lambda}\right)$ is a direct sum of cyclic groups.
3.3. Corollary. For p-groups $\left[G_{\lambda}\right], T\left(\Pi G_{\lambda}\right)$ is a direct summand of ΠG_{λ} if and only if $\sum R_{\lambda}$ is an essentially bounded decomposition, where $G_{\lambda}=D_{\lambda} \oplus R_{\lambda}$, D_{λ} divisible, R_{λ} reduced.
3.4. Theorem. For reduced p-groups $\left[G_{\lambda}\right]_{\Lambda}$, the following statements are equivalent:
(a) $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is divisible;
(b) For any given order p^{k}, only a finite number of $G_{\lambda} s$ have cyclic summands of this order;
(c) If B_{λ} is basic in G_{λ} for every λ, then $\sum B_{\lambda}$ is basic in $T\left(\Pi G_{\lambda}\right)$.

Proof. We shall prove this theorem in the following manner: $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow$ (c) \Rightarrow (a).
(a) \Rightarrow (b). Suppose that we could split off cyclic summands of the same order p^{k} from an infinite subset of $\left[G_{\lambda}\right]$, say from $G_{\lambda}, \lambda \in A$, where $\Lambda=A+B$, $|A| \geqq \boldsymbol{\aleph}_{0}$. We could then write $G_{\lambda}=\left\langle e_{\lambda}\right\rangle \oplus G_{\lambda}{ }^{\prime}$, where $o\left(e_{\lambda}\right)=p^{k}$ for every $\lambda \in A$. Then

$$
\frac{T\left(\prod G_{\lambda}\right)}{\sum G_{\lambda}}=\frac{T\left(\prod_{A} G_{\lambda}\right)}{\sum_{A} G_{\lambda}} \oplus \frac{T\left(\prod_{B} G_{\lambda}\right)}{\sum_{B} G_{\lambda}}
$$

and

$$
\begin{aligned}
\frac{T\left(\prod_{A} G_{\lambda}\right)}{\sum_{A} G_{\lambda}} & =\frac{T\left(\prod_{A}\left(\left\langle e_{\lambda}\right\rangle \oplus G_{\lambda^{\prime}}\right)\right)}{\sum_{A}\left(\left\langle e_{\lambda}\right\rangle \oplus G_{\lambda^{\prime}}\right)} \\
& \cong \frac{\prod_{A}\left\langle e_{\lambda}\right\rangle}{\sum_{A}\left\langle e_{\lambda}\right\rangle} \oplus \frac{T\left(\prod_{A} G_{\lambda^{\prime}}\right)}{\sum_{A} G_{\lambda}^{\prime}}
\end{aligned}
$$

Since A is infinite, $\Pi_{A}\left\langle e_{\lambda}\right\rangle / \sum_{A}\left\langle e_{\lambda}\right\rangle$ is a non-zero sum of cyclic groups. Thus $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is not divisible.
(b) $\Rightarrow(\mathrm{c})$. By Proposition 1.4b, $\sum_{n} \Pi_{\Lambda} B_{\lambda_{n}}$ is basic in $T\left(\Pi G_{\lambda}\right)$, where $B_{\lambda}=\sum_{n} B_{\lambda n}$ is basic in G_{λ}. By condition (b), then, $\sum_{n} B_{\lambda n}=\prod_{n} B_{\lambda n}$ for every n. Hence, the basic subgroup of $T\left(\Pi G_{\lambda}\right)$ is

$$
\sum_{n} \prod_{\Lambda} B_{\lambda n}=\sum_{n} \sum_{\Lambda} B_{\lambda n}=\sum_{\Lambda} \sum_{n} B_{\lambda n}=\sum_{\Lambda} B_{\lambda} .
$$

(c) \Rightarrow (a). If $\sum B_{\lambda}$ is basic in $T\left(\Pi G_{\lambda}\right), T\left(\Pi G_{\lambda}\right) / \sum B_{\lambda}$ is divisible and its homomorphic image $\left(T\left(\Pi G_{\lambda}\right) / \sum B_{\lambda}\right) /\left(\sum G_{\lambda} / \sum B_{\lambda}\right) \cong T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is divisible.
3.5. Corollary. Theorem 3.4 remains true for p-groups in general.

Proof. Using the statement and notation of Proposition 1.1,

$$
T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda} \cong\left(T\left(\Pi D_{\lambda}\right) / \sum D_{\lambda}\right) \oplus\left(T\left(\Pi R_{\lambda}\right) / \sum R_{\lambda}\right)
$$

where $G_{\lambda}=D_{\lambda} \oplus R_{\lambda}, D_{\lambda}$ divisible, R_{λ} reduced. The left summand is divisible. Since cyclic summands and basic subgroups appear in the reduced part of groups, Theorem 3.4 applies to the right summand.
3.6. Theorem. For reduced p-groups [G_{λ}], the following statements are equivalent:
(a) $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is reduced,
(b) $\sum G_{\lambda}$ is an essentially bounded decomposition,
(c) $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is bounded.

Proof. We shall establish the following implications: $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow$ (a).
(a) \Rightarrow (b). If $\sum G_{\lambda}$ is not essentially bounded, we can find a subset $\left[G_{\lambda_{i}}\right]_{i=1}^{\infty}$ in $\left[G_{\lambda}\right]$ and $e_{\lambda_{i}} \in G_{\lambda_{i}}$ such that $o\left(e_{\lambda_{i}}\right)<o\left(e_{\lambda_{i+1}}\right)$ and $G_{\lambda_{i}}=\left\langle e_{\lambda_{i}}\right\rangle \oplus G_{\lambda_{i}}{ }^{\prime}$ for $i=1,2,3, \ldots$. We now have a summand of $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ which is isomorphic to $T\left(\prod_{i}\left\langle e_{\lambda_{i}}\right\rangle\right) / \sum_{i}\left\langle e_{\lambda_{i}}\right\rangle$ and this summand is divisible. Thus $T\left(\prod G_{\lambda}\right) / \sum G_{\lambda}$ is not reduced.
(b) \Rightarrow (c). This is clear.
(c) \Rightarrow (a). This is clear.
3.7. Corollary. Theorem 3.6 is true for p-groups in general.

Proof. As in Corollary 3.5,

$$
T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda} \cong\left(T\left(\Pi D_{\lambda}\right) / \sum D_{\lambda}\right) \oplus\left(T\left(\Pi R_{\lambda}\right) / \sum R_{\lambda}\right)
$$

If the left summand is non-zero, none of the conditions of Theorem 3.6 are satisfied. If the left summand is zero, Theorem 3.6 applies.
3.8. Corollary. For a set of p-groups [G G_{λ}], the reduced part of $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is bounded if and only if, using the notation of Proposition $1.4 \mathrm{~b}, \sum_{\Lambda} B_{\lambda_{n}}$ differs from $\Pi_{\Lambda} B_{\lambda n}$ for at most a finite number of $n s$.

Proof. (a) Suppose that $\sum_{\Lambda} B_{\lambda n} \neq \prod_{\Lambda} B_{\lambda n}$ implies $n \leqq N$. Then, as in Proposition 1.4a, $T\left(\Pi G_{\lambda}\right)=T\left(\Pi_{\Lambda} S_{\lambda_{N}}\right) \oplus T\left(\Pi_{\Lambda} G_{\lambda_{N}}\right)$ and $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda} \cong$ $\left(\left(\Pi S_{\lambda_{N}}\right) / \sum S_{\lambda_{N}}\right) \oplus\left(T\left(\Pi G_{\lambda_{N}}\right) / \sum G_{\lambda_{N}}\right)$. The left summand is bounded. Now in $T\left(\prod_{\lambda_{N N}}\right), \sum_{\Delta} B_{\lambda_{n}}$ equals $\Pi_{\Delta} B_{\lambda_{n}}$, since in $T\left(\Pi G_{\lambda_{N}}\right)$ we have n greater than N and since $\sum_{\Lambda} B_{\lambda_{n}} \neq \prod_{\Lambda} B_{\lambda_{n}}$ implies $n \leqq N$. Thus, $T\left(\Pi G_{\lambda_{N}}\right) / \sum G_{\lambda_{N}}$ is divisible (by Theorem 3.4). The quotient group is then the direct sum of a divisible group and a bounded group.
(b) If $\sum_{\Lambda} B_{\lambda n} \neq \Pi_{\Lambda} B_{\lambda n}$ for an infinite number of $n \mathrm{~s}$, then we can find a bounded direct summand of the quotient group isomorphic to $\Pi S_{\lambda_{n}} / \sum S_{\lambda n}$ for arbitrarily large n. The reduced part of $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ would not then be bounded.
3.9. Theorem. For reduced p-groups $\left[G_{\lambda}\right], T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is a direct summand of $\Pi G_{\lambda} / \sum G_{\lambda}$ if and only if $\sum_{\Lambda} B_{\lambda n} \neq \Pi_{\Lambda} B_{\lambda n}$ for at most a finite number of $n s$, where $\sum_{n} B_{\lambda n}$ is basic in G_{λ} for every λ.

Proof. If $\sum_{\Lambda} B_{\lambda n} \neq \Pi_{\Lambda} B_{\lambda n}$ for at most a finite number of $n \mathrm{~s}$, then by Corollary 3.8, the reduced part of $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is bounded and $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is divisible plus bounded. Since $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is the torsion subgroup of $\Pi G_{\lambda} / \sum G_{\lambda}$, it is a direct summand of $\Pi G_{\lambda} / \sum G_{\lambda}$ by [6, Theorem 8].

On the other hand, suppose that $\sum_{\Lambda} B_{\lambda n} \neq \Pi_{\Lambda} B_{\lambda n}$ for an infinite number of $n \mathrm{~s}$. Without loss of generality, we may suppose that this is true for all n. Then we can find an infinite number of infinite and mutually disjoint subsets $\Lambda_{i}, 1 \leqq i<\infty$, of Λ, and pure cycles $\left\langle e_{\lambda}{ }^{i}\right\rangle$ of order p^{i} in G_{λ} for $\lambda \in \Lambda_{i}$. If λ is not in Λ_{i} for any $i \geqq 1$, we will say that λ is in Λ_{0}, and let

$$
\Lambda=\Lambda_{0}+\Lambda_{1}+\ldots+\Lambda_{i}+\ldots
$$

Let x_{i} be the element $\left(e_{1}{ }^{i}, e_{2}{ }^{i}, \ldots, e_{\lambda}{ }^{i}, \ldots\right)$ in $\Pi_{\Lambda_{i}} G_{\lambda}$ for each $i \geqq 1$. Let x be the tuple in $\prod_{i=0}^{\infty}\left(\Pi_{\Lambda_{i}} G_{\lambda}\right)=\Pi G_{\lambda}$, where

$$
x=\left(0, x_{1}, 0, p x_{3}, 0, p^{2} x_{5}, \ldots, p^{i} x_{2 i+1}, \ldots\right)
$$

If $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is a summand of ΠG_{λ}, we may write

$$
\Pi G_{\lambda} / \sum G_{\lambda}=\left(T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}\right) \oplus\left(K / \sum G_{\lambda}\right)
$$

The order of x is infinite. If x is mapped to \hat{x} in $\Pi G_{\lambda} / \sum G_{\lambda}, p^{k} \hat{x}$ is in $K / \sum G_{\lambda}$, for some k. If $h\left(p^{k} x\right)=p^{j}$, then $h\left(p^{k} \hat{x}\right)=p^{j}$, since no x_{i} is in $\sum G_{\lambda}$. However, there exists a in $T\left(\Pi G_{\lambda}\right)$ such that $h\left(p^{k} x-a\right)>p^{j}$. Let \hat{a} be the image of a
in $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$. Now $h\left(p^{k} \hat{x}-\hat{t}\right)>p^{j}$ in $\Pi G_{\lambda} / \sum G_{\lambda}$. Since $p^{k} \hat{x}$ is in $K / \sum G_{\lambda}$ and \hat{t} is in $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$, the height of $p^{k} \hat{x}$ would be greater than p^{j}, a contradiction. We conclude that $T\left(\Pi G_{\lambda}\right) / \sum G_{\lambda}$ is not a summand of $\Pi G_{\lambda} / \sum G_{\lambda}$, if $\sum_{\Lambda} B_{\lambda n} \neq \Pi_{\Lambda} B_{\lambda n}$ for an infinite number of $n \mathrm{~s}$.
4. Decomposition theorems. Since we are more familiar with direct sums than with direct products of p-groups, it is worthwhile to know when a direct product of p-groups can be decomposed into a direct sum of groups. It is natural to ask the same question for the torsion subgroup of a product of p-groups.

Two cases with easy answers come immediately to mind. If the p-groups have a common bound, then their direct product is also bounded and a direct sum of cyclic groups. If all the p-groups are divisible, the product, and the torsion subgroup of the product, of these p-groups can each be written as a direct sum of copies of $Z\left(p^{\infty}\right)$ and the rationals. Hence we will be more concerned with collections of p-groups which are reduced, and where the direct sum of a collection is essentially unbounded (as defined in § 2).
4.1. Theorem. Neither the direct product, nor its torsion subgroup, of a collection of reduced p-groups whose direct sum is essentially unbounded, is a direct sum of countable groups.

We first must prove a lemma.
4.2. Lemma. If $G=H \oplus K$ is a reduced group, and A and T are subgroups of G such that $A \subset H$ and T / A is divisible, then $T \subset H$.

Proof. First, $T / H \cap T$ is reduced since $K \cong G / H \supset\{T, H\} / H \cong T / H \cap T$, and K is reduced. Now $A \subset H \cap T \subset T$, and T / A divisible, implies $T / H \cap T$, a homomorphic image of T / A, is divisible. Since $T / H \cap T$ is both divisible and reduced, it equals zero. Hence $T=H \cap T$, or T is contained in H.

Proof. of Theorem 4.1. Given the set $\left[G_{\lambda}\right]$ whose direct sum is essentially unbounded, we find a subset $\left[G_{\lambda_{i}}\right]_{i=1}^{\infty}$ and $g_{\lambda_{i}} \in G_{\lambda_{i}}$ such that $o\left(g_{\lambda_{i}}\right)<o\left(g_{\lambda_{i+1}}\right)$ for every i. If ΠG_{λ} or $T\left(\Pi G_{\lambda}\right)$ equals $\sum_{\mu \in M} H_{\mu}$, where each H_{μ} is countable, then the set $\left[g_{\lambda_{i}}\right]_{i=1}^{\infty}$ is contained in a countable subset of $\left[H_{\mu}\right]_{M} . T\left(\prod_{i=1}^{\infty}\left\langle g_{\lambda_{i}}\right\rangle\right)$ is in both ΠG_{λ} and $T\left(\Pi G_{\lambda}\right)$. Since $T\left(\Pi_{i}\left\langle g_{\lambda_{i}}\right\rangle\right) / \sum_{i}\left\langle g_{\lambda_{i}}\right\rangle$ is divisible, $T\left(\Pi_{i}\left\langle g_{\lambda_{i}}\right\rangle\right)$ would be contained in the direct sum of the same countable subset of $\left[H_{\mu}\right]$ as $\left[g_{\lambda_{i}}\right]$ by Lemma 4.2. But this is impossible, since $T\left(\Pi_{i}\left\langle g_{\lambda_{i}}\right\rangle\right)$ is uncountable.

Remark. It is of interest to know when a group is a direct sum of reduced countable groups, for such a group is fully starred as noted by Irwin and Richman [4, p. 446].
4.3. Theorem. If $G=A \oplus B=C \oplus D, C$ is an unbounded direct sum of
cyclic p-groups, then A or B has a direct summand which is an unbounded direct sum of cyclic p-groups.

Before proceeding to the proof we first establish some lemmas.
4.4. Lemma. If p-group G contains $H=\sum_{1}^{\infty}\left\langle x_{i}\right\rangle$, where $o\left(x_{i}\right)<o\left(x_{i+1}\right)$ for every i, then H is pure if and only if $\left\langle x_{i}\right\rangle$ is pure for each i.

Proof. If H is pure, then $\left\langle x_{i}\right\rangle$ as a summand is pure. The converse follows easily from a consideration of the socle elements and [6, p. 20, Lemma 7].
4.5. Lemma. If $H=\left\{x_{i}\right\}_{1}^{\infty}$, is a p-group, where $o\left(x_{i}\right)<o\left(x_{i+1}\right)$ and $\left\langle x_{i}\right\rangle$ is pure for each i, then H is a direct sum, i.e. $H=\sum_{1}{ }^{\infty}\left\langle x_{i}\right\rangle$.

Proof. Consider the set $\left[p^{k_{i-1}} x_{i}\right]_{i=1}^{\infty}$, where $o\left(x_{i}\right)=p^{k_{i}}$ for each i. Let $\sum_{i=1}^{N} a_{i}\left(p^{k_{i}-1} x_{i}\right)=0$. Suppose that $a_{j}\left(p^{k_{j}-1} x_{j}\right)$ is the first non-zero term on the left. Then

$$
a_{j}\left(p^{k_{j}-1} x_{j}\right)=-\sum_{i=j+1}^{N} a_{i}\left(p^{k_{i}-1} x_{i}\right)
$$

is non-zero. Now $\left\langle x_{j}\right\rangle$ is pure and $h\left(a_{j} p^{k_{j}-1} x_{j}\right)=k_{j}-1$. But since $o\left(x_{i}\right)<o\left(x_{i+1}\right)$, each term on the right has height greater than $k_{j}-1$, a contradiction. Thus $\left[p^{k_{i}-1} x_{i}\right]_{i=1}^{\infty}$ are linearly independent and as a result the x_{i} s are linearly independent or $H=\sum\left\langle x_{i}\right\rangle$ is direct.
4.6. Lemma. If p-group G is a direct sum of cyclic groups and $H=\sum_{1}{ }^{\infty}\left\langle h_{j}\right\rangle$ is a pure unbounded subgroup of G, then there exists $H_{1}=\sum_{n=1}^{\infty}\left\langle h_{j_{n}}\right\rangle$ which is an unbounded summand of G.

Proof. We may restrict ourselves to the case where $o\left(h_{j}\right)<o\left(h_{j+1}\right)$ and where $G=\sum\left\langle x_{i}\right\rangle, o\left(x_{i}\right) \leqq o\left(x_{i+1}\right)$. Let $\left\langle u_{j}\right\rangle=\left\langle h_{j}\right\rangle[p]$. Now

$$
u_{j_{1}}=u_{1} \in \sum_{1}^{N_{1}}\left\langle x_{i}\right\rangle
$$

and is purifiable in this summand, i.e., there exists y_{1} such that

$$
\left\langle y_{1}\right\rangle \perp \sum_{1}^{N_{1}}\left\langle x_{i}\right\rangle \text { and }\left\langle y_{1}\right\rangle[p]=\left\langle u_{1}\right\rangle
$$

There exists $u_{j_{2}}$ such that $h\left(u_{j_{2}}\right)>N_{1}$ and $u_{j_{2}} \in \sum_{i>N_{1}}^{N}\left\langle x_{i}\right\rangle$ and $\left\langle u_{j_{2}}\right\rangle=\left\langle y_{2}\right\rangle[p]$, where $\left\langle y_{2}\right\rangle$ is a summand of $\sum_{i>N_{1}}^{N_{2}}\left\langle x_{i}\right\rangle$. By induction we may find a

$$
u_{j_{n}} \in \sum_{i>N_{n}}^{N_{n+1}}\left\langle x_{i}\right\rangle \quad \text { and } \quad\left\langle y_{n}\right\rangle \perp \sum_{i>N_{n}}^{N_{n+1}}\left\langle x_{i}\right\rangle,
$$

where $\left\langle y_{n}\right\rangle[p]=\left\langle u_{j_{n}}\right\rangle$. Clearly, $\sum_{1}{ }^{\infty}\left\langle y_{n}\right\rangle \perp \sum\left\langle x_{i}\right\rangle$. Now,

$$
\sum\left\langle y_{n}\right\rangle[p]=\sum\left\langle u_{j_{n}}\right\rangle[p]=\sum_{n=1}^{\infty}\left\langle h_{j_{n}}\right\rangle[p] .
$$

By a theorem of Irwin and Walker [5, p. 1373, Theorem 16], if two pure subgroups have the same socle and one subgroup is a summand, then so is the other. Thus $\sum_{n=1}^{\infty}\left\langle h_{j_{n}}\right\rangle$ is a summand of $\sum\left\langle x_{i}\right\rangle$, as desired.
4.7. Lemma. If $G=A \oplus B=C \oplus D$, where $C=\sum\left\langle c_{i}\right\rangle$ is a p-group, and if $c_{j}=a_{j}+b_{j}, a_{j} \in A, b_{j} \in B$, and $a_{j}=c_{a}{ }^{j}+d_{j}, b_{j}=c_{b}{ }^{j}-d_{j}, c_{a}{ }^{j} \in C$, $c_{b}{ }^{j} \in C, d_{j} \in D$, then either $o\left(a_{j}\right)=o\left(c_{a}{ }^{j}\right)=o\left(c_{j}\right)$ and $\left\langle c_{a}{ }^{j}\right\rangle$ is pure or $\left\langle c_{b}{ }^{j}\right\rangle$ is pure with $o\left(c_{b}{ }^{j}\right)=o\left(c_{j}\right)=o\left(b_{j}\right)$.

Proof. Let $c_{a}{ }^{j}=\sum x_{i} c_{i}, c_{b}{ }^{j}=\sum y_{i} c_{i}$. Then

$$
p^{k-1} c_{j}=p^{k-1}\left(c_{a}{ }^{j}+c_{b}{ }^{j}\right)=p^{k-1}\left(x_{j}+y_{j}\right) c_{j},
$$

where $o\left(c_{j}\right)=p^{k}$. Since $\left\langle c_{j}\right\rangle$ is pure, $h\left(p^{k-1} c_{j}\right)=k-1$ and $\left(x_{j}+y_{j}, p\right)=1$. Thus $\left(x_{j}, p\right)=1$ or $\left(y_{j}, p\right)=1$. Suppose that $\left(x_{j}, p\right)=1$. Then

$$
o\left(c_{j}\right)=p^{k} \leqq o\left(c_{a}{ }^{j}\right) \leqq o\left(a_{j}\right) \leqq o\left(c_{j}\right), \quad \text { and } \quad o\left(c_{j}\right)=o\left(c_{a}{ }^{j}\right)=o\left(a_{j}\right) .
$$

Also $k-1 \leqq h\left(p^{k-1} c_{a}{ }^{j}\right) \leqq h\left(p^{k-1} x_{j} c_{j}\right)=k-1$. Thus $\left\langle c_{a}{ }^{j}\right\rangle$ is pure.
Proof of Theorem 4.3. Let $G=A \oplus B=C \oplus D$, where $C=\sum_{1}^{\infty}\left\langle c_{i}\right\rangle$ is an unbounded p-group. Let $c_{i}=a_{i}+b_{i}, a_{i} \in A, b_{i} \in B$, for every i, where $a_{i}=c_{a}{ }^{i}+d_{i}, b_{i}=c_{b}{ }^{i}-d_{i}, c_{a}{ }^{i} \in C, c_{b}{ }^{i} \in C, d_{i} \in D$. By Lemma 4.7, for each i, either $o\left(a_{i}\right)=o\left(c_{i}\right)=o\left(c_{a}{ }^{i}\right)$ and $\left\langle c_{a}{ }^{i}\right\rangle$ is pure or $o\left(b_{i}\right)=o\left(c_{i}\right)=o\left(c_{b}{ }^{i}\right)$ and $\left\langle c_{b}{ }^{i}\right\rangle$ is pure. Let us suppose the former case to be true for an infinite number of c_{i} s of properly increasing orders. Thus, for notational purposes, let us restrict ourselves to $C=\sum_{1}{ }^{\infty}\left\langle c_{i}\right\rangle$, where $c_{i}=a_{i}+b_{i}, a_{i}=c_{a}{ }^{i}+d_{i}$, $b_{i}=c_{b}{ }^{i}-d_{i}$, and $o\left(c_{i}\right)=o\left(a_{i}\right)=o\left(c_{a}{ }^{i}\right),\left\langle c_{a}{ }^{i}\right\rangle$ is pure, $o\left(c_{i}\right)<o\left(c_{i+1}\right)$ for each i. Since $o\left(c_{a}{ }^{i}\right)<o\left(c_{a}{ }^{i+1}\right)$ and $\left\langle c_{a}{ }^{i}\right\rangle$ is pure for each i, by Lemma 4.5, $H=\sum\left\langle c_{a}{ }^{i}\right\rangle$ is a direct sum, and is pure by Lemma 4.4. By Lemma 4.6, H contains an unbounded subgroup $H_{1}=\sum_{k=1}^{\infty}\left\langle c_{a}{ }^{i_{k}}\right\rangle$ which is a summand of C. Now $G=A \oplus B=H_{1} \oplus H_{2} \oplus D$, where $C=H_{1} \oplus H_{2}$. Consider

$$
G /\left(H_{2} \oplus D\right) \cong \sum_{k=1}^{\infty}\left\langle c_{a}{ }^{i_{k}}\right\rangle
$$

Since, for each $k, a_{i_{k}}=c_{a}{ }^{i_{k}}+d_{i_{k}}, o\left(a_{i_{k}}\right)=o\left(c_{a}{ }^{i_{k}}\right)$, and $a_{i_{k}}$ is mapped to $c_{a}{ }^{i_{k}}$ in the natural map $G \rightarrow G /\left(H_{2} \oplus D\right)$, then $G=\sum_{k=1}^{\infty}\left\langle a_{a}{ }^{i_{k}}\right\rangle \oplus H_{2} \oplus D$, by the proof of [6, Theorem 5]. Here $\sum_{k=1}^{\infty}\left\langle a_{a}{ }^{{ }^{i} k}\right\rangle$ is unbounded and direct. Since $G \supset A \supset \sum\left\langle a_{a}{ }^{i_{k}}\right\rangle, \sum\left\langle a_{a}{ }^{{ }^{i} k}\right\rangle$ is a direct summand of A, and the proof is complete.
4.8. Corollary. If reduced p-groups, H and K, are essentially finitely indecomposable groups (i.e., have no essentially unbounded decompositions), then $H \oplus K$ is essentially finitely indecomposable.
4.9. Lemma. If $G=A \oplus B=C \oplus D$, where C is a direct sum of an infinite number of cyclic groups, the orders of the cycles being powers of different prime numbers, then A or B has a direct summand which is a direct sum of an infinite number of cyclic groups, the orders of the cycles being powers of different prime numbers.

Proof. (a) Suppose that $C=\sum_{1}{ }^{\infty}\left\langle c_{i}\right\rangle, o\left(c_{i}\right)=p_{i}{ }^{k_{i}}, p_{1}<p_{2}<\ldots$, and $c_{i}=a_{i}+b_{i}, a_{i} \in A, b_{i} \in B$. Since the orders of the $c_{i} s$ are relatively prime, and $p_{i}{ }^{k_{i}} c_{i}=0=p_{i}{ }^{k_{i}} a_{i}=p_{i}{ }^{k_{i}} b_{i}$, it follows that

$$
a_{i}=x_{i}{ }^{i} c_{i}+d_{i}{ }^{\prime}, \quad b_{i}=y_{i}{ }^{i} c_{i}+d_{i} \quad \text { in } C \oplus D
$$

Now $\left(x_{i}{ }^{i}, p_{i}\right)=1$ for an infinite number of i or $\left(y_{i}{ }^{i}, p_{i}\right)=1$ for an infinite number of i s. Let us suppose that $\left(y_{i}{ }^{i}, p_{i}\right)=1$ for an infinite number of i s. In fact, without compromising our proof, let us suppose this to be true for all $y_{i}{ }^{i}, i=1,2,3, \ldots$.
(b) We now claim that $G=\sum_{1}{ }^{\infty}\left\langle b_{i}\right\rangle \oplus D$. We first show that

$$
\left\langle b_{1}\right\rangle+\left\langle b_{2}\right\rangle+\ldots+D
$$

generates G. Since $\left(y_{i}{ }^{i}, p_{i}\right)=1$, and $y_{i}{ }^{i} c_{i}=b_{i}-d_{i}$, each c_{i} is in

$$
\left\langle b_{1}\right\rangle+\left\langle b_{2}\right\rangle+\ldots+D
$$

and thus $G=C+D=\left\langle b_{1}\right\rangle+\left\langle b_{2}\right\rangle+\ldots+D$. Secondly, we show that $\sum\left\langle b_{i}\right\rangle+D$ is direct. If $\sum m_{i} b_{i}+d=0$, then $\sum m_{i} b_{i}-\sum m_{i} d_{i}=$ $\sum m_{i} y_{i}{ }^{i} c_{i}=-d-\sum m_{i} d_{i}=0$, since $C \cap D=0$. Thus $m_{i} y_{i}{ }^{i} c_{i}=0$ and $m_{i} c_{i}=0$, for each i. Since $c_{i}=a_{i}+b_{i}$ in $A+B, m_{i} b_{i}=0$, and the sum is direct.
(c) Since $G \supset B \supset \sum\left\langle b_{i}\right\rangle$ and $G=\sum\left\langle b_{i}\right\rangle \oplus D$, we conclude that $\sum\left\langle b_{i}\right\rangle$, which is unbounded, is a direct summand of B.

Remark. If $G=A \oplus B=C \oplus D$ and C is an unbounded direct sum of cyclic groups of infinite rank, then A or B has an unbounded direct sum of cyclic groups of infinite rank as a direct summand. Here we generalize Lemmas 4.7 and 4.9. If C is free, the statement is still true.
4.10. Lemma. If $B=\sum\left\langle b_{i}\right\rangle$ is a direct sum of cyclic p-groups, where $b_{i} \in \Pi_{n \geqq i}^{\infty} G_{n}$ in $\Pi_{1}^{\infty} G_{n}$, then there exists a subgroup H such that

$$
\Pi G_{n} \supset H \supset \sum\left\langle b_{i}\right\rangle
$$

and H is a torsion-complete group.
Proof. If one writes out the b_{i} s as tuples, the components appearing in each G_{n} is finite, and the lemma follows immediately.
4.11. Lemma. If the p-group $T=T\left(\Pi_{1}^{\infty} G_{n}\right)$ has as a direct summand an unbounded direct sum of cyclic groups $\sum_{1}{ }^{\infty}\left\langle c_{i}\right\rangle$, where $c_{i} \in \sum G_{n}$, for every i, then some G_{n} has an unbounded direct sum of cyclic groups as a direct summand.

Proof. (a) Let $c_{i}=g_{1}{ }^{i}+g_{2}{ }^{i}+\ldots+g_{N_{i}}{ }^{i}, o\left(c_{i}\right)<o\left(c_{i+1}\right)$ for every i, in $\sum G_{n}$. If $T=\sum\left\langle c_{i}\right\rangle+D$, let $g_{j}{ }^{i}=g_{j 1}{ }^{i} c_{1}+\ldots+y_{j N i j}{ }^{i} c_{N i j}+d_{j}{ }^{i}=c_{j}{ }^{i}+d_{j}{ }^{i}$, where $g_{j 1}{ }^{i} c_{1}+\ldots+y_{j N i j}{ }^{i} c_{N i j}=c_{j}{ }^{i}$ in $\sum\left\langle c_{i}\right\rangle$ and $d_{j}{ }^{i} \in D$. Now

$$
\left(y_{1 i}{ }^{i}+y_{2 i}{ }^{i}+\ldots+y_{N i i}{ }^{i}, p\right)=1 \text { for each } i .
$$

Hence $\left(y_{j i}{ }^{i}, p\right)=1$, for some $j<N_{i}$.
(b) Let us take one $g_{j}{ }^{i}$ for each c_{i} such that $\left(y_{j i}{ }^{i}, p\right)=1$ and hence $o\left(c_{i}\right)=o\left(g_{j i}{ }^{i}\right)=o\left(c_{j}{ }^{i}\right)$. If $o\left(c_{i}\right)=p^{k}$, then

$$
k-1 \leqq h\left(p^{k-1} c_{j}{ }^{i}\right) \leqq h\left(p^{k-1} y_{j i}{ }^{i} c_{i}\right)=k-1 .
$$

Thus $\left\langle c_{j}{ }^{i}\right\rangle$ is pure in $\sum\left\langle c_{i}\right\rangle$, and $\sum\left\langle c_{j}{ }^{i}\right\rangle$ is direct and pure by Lemmas 4.5 and 4.4. By Lemma 4.6, we can find a subset $\left[c_{j_{k}}{ }^{{ }^{k}}\right]_{k=1}^{\infty}$ such that $\sum\left\langle c_{j_{k}}{ }^{i_{k}}\right\rangle$ is a
summand of $\sum\left\langle c_{i}\right\rangle$. As in the proof of Theorem 4.3, the corresponding subset $\sum\left\langle g_{j_{k}}{ }^{i_{k}}\right\rangle$ is a summand of T. If $\left[j_{1}, j_{2}, \ldots, j_{k}, \ldots\right]$ contains a properly increasing subset, the corresponding elements in $\left[g_{j_{k}}{ }^{i k}\right]_{k=1}^{\infty}$ satisfy the condition of Lemma 4.9, and yet generate an unbounded direct sum of cyclic groups, say K, which is a summand of $T\left(\Pi G_{n}\right)$. We then have, by Lemma 4.9, a torsion-complete group H such that K is in H and K is a summand H. This contradicts the torsion completeness of H. Thus $\left[j_{1}, j_{2}, \ldots, j_{k}, \ldots\right]$ is bounded, and we can find an infinite subset $\left[g_{j_{k}}{ }^{{ }^{k}}\right.$] and finite N such that $\sum\left\langle g_{j k}{ }^{i_{k}}\right\rangle$ is an unbounded direct summand of $G_{1}+\ldots+G_{N}$. A finite application of Theorem 4.3 completes the proof.
4.12. Lemma. If the p-group $T=T\left(\prod_{1}^{\infty} G_{n}\right)$ has an unbounded direct sum of cyclic groups as a direct summand, then some G_{n} has an unbounded direct sum of cyclic groups as a direct summand.

Proof. (a) Let $T=\sum_{1}{ }^{\infty}\left\langle c_{i}\right\rangle \oplus D, o\left(c_{i}\right)<o\left(c_{i+1}\right)$ for every i. Let $c_{i}=a_{i}+b_{i}, a_{i} \in G_{1}+\ldots+G_{i}, b_{i} \in T\left(\prod_{i+1}^{\infty} G_{n}\right)$, for every i.
(b) Exactly as in Theorem 4.3, we can prove that either $\left[a_{i}\right]_{1}^{\infty}$ or $\left[b_{i}\right]_{1}^{\infty}$ contains a subset which generates an unbounded direct sum of cyclic groups, say K, which is a summand of $T\left(\Pi G_{n}\right)$. Now $\left[b_{i}\right]_{1}{ }^{\infty}$ cannot contain such a subset, for, by Lemma 4.10, there is a torsion-complete group H such that $\left\{b_{i}\right\} \subset H \subset T\left(\Pi G_{n}\right)$. Then K, which is not torsion-complete would be a summand of H.
(c) Thus, $\left[a_{i}\right]_{1}^{\infty}$ contains a subset which generates an unbounded summand K of $T\left(\Pi G_{n}\right)$, where K is a direct sum of cyclic groups. Since

$$
K \subset\left\{a_{i}\right\} \subset \sum G_{n}
$$

we may use Lemma 4.11 to complete our proof.
4.13. Theorem. The reduced p-group $T\left(\Pi_{1}{ }^{\infty} G_{n}\right)$ has an essentially unbounded decomposition if and only if some G_{n} has the same property.

Proof. If $G_{i}=\sum_{1}{ }^{\infty} H_{n}$ is an essentially unbounded decomposition of G_{i} for some i, then $T\left(\Pi G_{n}\right)=\sum_{1}^{\infty} H_{i} \oplus T\left(\prod_{n \neq i} G_{n}\right)$ is an essentially unbounded decomposition. If $T\left(\Pi_{1}{ }^{\infty} G_{n}\right)=\sum_{1}{ }^{\infty} H_{n}$ is an essentially unbounded decomposition, then we can split off an unbounded direct sum of cyclic groups from the right side as a direct summand. Lemma 4.12 completes the proof.

We now turn our attention to the problem of when ΠG_{λ} or $T\left(\Pi G_{\lambda}\right)$ is a direct sum of isomorphic groups. If all G_{λ} in $\left[G_{\lambda}\right]$ have a common bound or are all divisible, and of suitable rank, such a decomposition is possible. Again, given $\left[H_{n}\right]_{1}^{\infty}$, where each $H_{n} \cong T\left(\Pi_{2}{ }^{\infty} G_{n}\right)$ and $G_{1}=\sum_{2}{ }^{\infty} H_{n}$, then $T\left(\Pi_{1}^{\infty} G_{n}\right) \cong \sum_{1}^{\infty} H_{n}$, and all H_{n} s are isomorphic. For unbounded reduced $G_{\lambda} \mathrm{s}$, things are more complicated. Before proceeding, we first establish some preliminary facts.
4.14. Lemma. If p-group $G=A \oplus B$, and $\sum\left\langle c_{i}\right\rangle$ is a pure direct sum of cyclic groups of properly ascending orders, and $c_{i}=a_{i}+b_{i}, a_{i} \in A, b_{i} \in B$,
then there exists a pure direct sum of cyclic groups $\sum_{1}^{\infty}\left\langle x_{i}\right\rangle$, where $x_{i}=a_{i}$ or $x_{i}=b_{i}$, and $o\left(x_{i}\right)=o\left(c_{i}\right)$ for each i.

Proof. For each i, either $\left\langle a_{i}\right\rangle$ or $\left\langle b_{i}\right\rangle$ is a pure cycle of the same order as $\left\langle c_{i}\right\rangle$. Let $\left\langle x_{i}\right\rangle$ be this pure cycle for each i. First, $\sum\left\langle x_{i}\right\rangle$ is a direct sum, by Lemma 4.5. Then $\sum\left\langle x_{i}\right\rangle$ is pure by Lemma 4.4.
4.15. Lemma. If p-group $G=\bar{B} \oplus K=A \oplus C$, where \bar{B} is an unbounded torsion-complete group, and $B=\sum\left\langle a_{i}+c_{i}\right\rangle$ is a direct sum of cyclic groups of properly ascending orders which is basic in \bar{B} and where $\sum\left\langle c_{i}\right\rangle$ is a pure direct sum in C and $o\left(a_{i}+c_{i}\right)=o\left(c_{i}\right)$ for every i, then C contains a copy of \bar{B} as a summand.

Proof. Let $\pi: \bar{B} \rightarrow C$ be the natural projection in $G=A \oplus C$ of \bar{B}. Now the image $\pi(\bar{B})$ is isomorphic to \bar{B} and pure in C. We first show that the kernel of the map is zero. Let a be in $\bar{B} \cap A$. Since \bar{B} / B is divisible, for any n, we can find $a^{\prime}+c^{\prime}$ in $\bar{B}, a^{\prime} \in A, c^{\prime} \in C$, and b in B such that $a=p^{n}\left(a^{\prime}+c^{\prime}\right)+b$. If $b=\sum x_{i}\left(a_{i}+c_{i}\right)$, then $p^{n} c^{\prime}=-\sum x_{i} c_{i}$. Since $\sum\left\langle c_{i}\right\rangle$ is pure direct, p^{n} divides x_{i}, where $x_{i} c_{i} \neq 0$. This, in turn, implies that a is p^{n}-divisible. Since n is arbitrary, $h(a)=\infty$ and $a=0$ for $\bar{B}^{1}=0$. Thus $\pi(\bar{B}) \cong \bar{B}$. We now show that $\pi(\bar{B})$ is pure in C. Suppose that $x \in \pi(\bar{B})$ and $x=p^{k} c, c \in C$. Then x is the image of some $a+x$ in $\bar{B}, a \in A$. Since \bar{B} / B is divisible, $a+x=p^{k}\left(a^{\prime}+c^{\prime}\right)+a^{\prime \prime}+c^{\prime \prime}$ for some $a^{\prime}+c^{\prime} \in B, a^{\prime \prime}+c^{\prime \prime} \in B$. Since $p^{k} c=x=p^{k} c^{\prime}+c^{\prime \prime}$, and $c^{\prime \prime} \in \sum\left\langle c_{i}\right\rangle$ which is pure, then, $c^{\prime \prime}=p^{k} c^{\prime \prime \prime}$ for some $c^{\prime \prime \prime} \in \sum\left\langle c_{i}\right\rangle \subset \pi(\bar{B})$. Therefore, $x=p^{k}\left(c^{\prime}+c^{\prime \prime \prime}\right), c^{\prime}+c^{\prime \prime \prime} \in \pi(\bar{B})$. The Kulikov-Papp Theorem [1, p. 117, Theorem 34.6] completes the proof.
4.16. Theorem. If $G=\bar{B} \oplus K=A \oplus C$, where \bar{B} is an unbounded torsioncomplete p-group, then A or C contains an unbounded torsion-complete p-group as a summand.

Proof. Let $B=\sum\left\langle b_{i}\right\rangle$ be basic in \bar{B}. And we may suppose that $o\left(b_{i}\right)<o\left(b_{i+1}\right)$. Since, if $b_{i}=a_{i}+c_{i}, a_{i} \in A, c_{i} \in C, o\left(b_{i}\right)=o\left(a_{i}\right)$ and $\left\langle a_{i}\right\rangle$ is pure or $o\left(b_{i}\right\rangle=o\left(c_{i}\right)$ and $\left\langle c_{i}\right\rangle$ is pure, we may, by splitting B, suppose the former or latter case to be true for all b_{i} s. Therefore, let us suppose that $o\left(b_{i}\right)=o\left(c_{i}\right)$ and $\left\langle c_{i}\right\rangle$ to be pure for all b_{i} s. By the preceding lemma, then, C contains a copy of \bar{B} as a summand.
4.17. Theorem. If $G=\bar{B} \oplus K=\sum H_{\lambda}$, where \bar{B} is an unbounded torsioncomplete p-group, then some H_{λ} has an unbounded torsion-complete p-group as a summand.

Proof. Suppose that $B=\sum\left\langle b_{i}\right\rangle$ is basic in \bar{B} and that $o\left(b_{i}\right)<o\left(b_{i+1}\right)$ for each i. Let $b_{i}=h_{1}{ }^{i}+\ldots+h_{j}{ }^{i}+\ldots+h_{N}{ }^{i}, h_{j}{ }^{i} \in H_{j}$. Then there exists j_{i} such that $o\left(b_{i}\right)=o\left(h_{j_{i}}{ }^{i}\right)$ and $\left\langle h_{j_{i}}\right\rangle$ is pure in $H_{j_{i}}$. Consider the set $\left[j_{i}\right]_{i=1}^{\infty}$. If we have an infinite number of distinct numbers in the set, we may suppose all to be distinct and split off $H^{\prime}=\sum\left\langle h_{j_{i}}{ }^{i}\right\rangle$ as a summand, letting
$G=H^{\prime} \oplus M$. Now, if $b_{i}=h_{i}{ }^{\prime}+m_{i}, h_{i}{ }^{\prime} \in H^{\prime}, m_{i} \in M$, then $o\left(b_{i}\right)=o\left(h_{i}{ }^{\prime}\right)$ and $\left\langle h_{i}{ }^{\prime}\right\rangle$ is pure. By Lemma 4.15, H^{\prime} contains a copy of \bar{B}, which is false. Therefore, $\left[j_{i}\right]_{i=1}$ is bounded, say by N. Then if $G=\sum_{1}{ }^{N} H_{i}+\sum_{i>N} H_{i}$, by the previous argument, $\sum_{1}{ }^{N} H_{i}$ contains an unbounded torsion-complete summand. A finite application of Theorem 4.16 completes the proof.
4.18. Corollary. If $G=\sum_{1}^{\infty} G_{n}$ is an essentially unbounded decomposition of a reduced p-group, and if $T\left(\Pi_{1}^{\infty} G_{n}\right)=\sum H_{\lambda}$, then some H_{λ} has an unbounded torsion-complete p-group as a summand.
Proof. This is an immediate consequence of Proposition 1.6 and Theorem 4.17.

In the above discussion, we note that Λ may be any index set.
4.19. Theorem. If $T\left(\Pi_{1}{ }^{\circ} G_{n}\right)=\sum_{1}^{\infty} H_{n}$, where all $G_{n} s$ are countable and reduced p-groups, and $H_{m} \cong H_{n}$ for all m and n, then $\sum G_{n}$ is essentially bounded.

Case 1. The group $T\left(\Pi G_{n}\right)$ has no non-zero elements of infinite height.
Proof of Case 1. If $\sum G_{n}$ is not essentially bounded, $\left|\phi^{n} T\left(\Pi G_{n}\right)\right|>\boldsymbol{\aleph}_{0}$ for all n. Since $\sum H_{n}$ is a countable direct sum of isomorphic groups, $\left|p^{n} H_{n}\right|>\boldsymbol{\aleph}_{0}$ for all n. Since H_{n} is reduced, $\left|\left(p^{n} H_{n}\right)[p]\right|>\boldsymbol{X}_{0}$ for all n. Consider $p H_{1}[p]$. It is uncountable. Since G_{1} is countable, some distinct elements, x and y in $p H_{1}[p]$ have the same G_{1}-component when expressed as an $\mathbf{\aleph}_{0}$-tuple in $T\left(\Pi G_{n}\right)$. Now $h_{1}=x-y \neq 0$ is in $p H_{1}[p] \cap T\left(\Pi_{2} G_{n}\right)$. Similarly, we can find $h_{i} \neq 0$ in $p^{i} H_{i}[p] \cap T\left(\Pi_{i+1} G_{n}\right)$. By the purity of $T\left(\Pi_{i+1} G_{n}\right)$, then, $h_{i}=p^{i}\left(0, \ldots, 0, g_{i+1}{ }^{i}, \ldots, g_{n}{ }^{i}, \ldots\right)$ for elements $g_{n}{ }^{i} \in G_{n}$ and all i. Form

$$
x=\left(0, p g_{2}{ }^{1}, p^{1} g_{3^{1}}{ }^{1}+p^{2} g_{3}{ }^{2}, \ldots, p g_{n}{ }^{1}+p^{2} g_{n}{ }^{2}+\ldots+p^{n-1} g_{n}{ }^{n-1}, \ldots\right)
$$

in $T\left(\Pi G_{n}\right)[p]$. Let $g_{n}=h_{1}+\ldots+h_{n-1}$, for every $n \geqq 2$. Then $g_{n}-x \in p^{n} T\left(\Pi G_{n}\right)$ for every $n \geqq 2$. If $x=x_{1}+\ldots+x_{N}$ in $\sum_{1}{ }^{N} H_{n}$, then $g_{n}-x=\left(h_{1}-x_{1}, \ldots, h_{N}-x_{N}, h_{N+1}, h_{N+2}, \ldots, h_{n-1}, \ldots\right)$. Since our group has no elements of infinite height, $g_{n}-x$ has bounded height as n approaches infinity, a contradiction. Case 1 is proved.
4.20. Lemma. For p-group G_{λ}, if K_{λ} is high in G_{λ} for each λ, then $T\left(\Pi K_{\lambda}\right)$ is high in $T\left(\Pi G_{\lambda}\right)$.

Proof. A subgroup is called high in a group, we recall, if it is maximal with respect to disjointness from the subgroup of elements of infinite height in that group. Let $G_{\lambda}{ }^{1}$ be this latter subgroup in G_{λ} and K_{λ} maximal with respect to $K_{\lambda} \cap G^{1}=0$ for each λ. We must show that $T\left(\Pi K_{\lambda}\right)$ is maximal with respect to $T\left(\Pi K_{\lambda}\right) \cap T\left(\Pi G_{\lambda}{ }^{1}\right)=0$. Suppose that $x \neq 0$ is in $T\left(\Pi G_{\lambda}\right)$ such that $\left\{x, T\left(\Pi K_{\lambda}\right)\right\} \cap T\left(\Pi G_{\lambda}{ }^{1}\right)=0$. We may suppose that $p x=0$, $x \notin T\left(\Pi K_{\lambda}\right)$. Let $x=\left(g_{1}, \ldots, g_{\lambda}, \ldots\right)$, where $g_{\lambda} \in G_{\lambda}$. If $g_{\lambda} \notin K_{\lambda}$, then there is a k_{λ} in K_{λ} such that $o\left(k_{\lambda}\right)=p$ and $k_{\lambda}+g_{\lambda}$ has infinite height. If g_{λ} is in K_{λ}, let $k_{\lambda}=-g_{\lambda}$, then $\left\{x, T\left(\Pi K_{\lambda}\right)\right\}$ has as a non-zero element
$y=\left(g_{1}+k_{1}, \ldots, g_{\lambda}+k_{\lambda}, \ldots\right)$ where each component has infinite height. Then y has infinite height, which contradicts $\left\{x, T\left(\Pi K_{\lambda}\right)\right\} \cap T\left(\Pi G_{\lambda}{ }^{1}\right)=0$.

Remark. By a similar argument, ΠK_{λ} can be shown to be high in ΠG_{λ}.
Case 2 (of Theorem 4.19). The group $T\left(\Pi G_{\lambda}\right)$ has non-zero elements of infinite height.

Proof of Case 2. Let $T\left(\Pi_{1}^{\infty} G_{n}\right)=\sum_{1}^{\infty} H_{n}$. For each n, let K_{n} be high in G_{n} and $H_{n}{ }^{\prime}$ high in H_{n}. By Lemma 4.20, $T\left(\Pi K_{n}\right)$ is high in $T\left(\Pi G_{n}\right)$. Also $\sum H_{n}{ }^{\prime}$ is high by a similar argument. Since $\sum G_{n}$ is an essentially unbounded decomposition, $\left|p^{i} T\left(\Pi G_{n}\right)\right|>\boldsymbol{\aleph}_{0}$ for all i, and since $\sum K_{n}$ is essentially unbounded, $\left|p^{i} T\left(\Pi K_{n}\right)\right|>\boldsymbol{\aleph}_{0}$ for all i. By [3, p. 1380, Theorem 5], $p^{i} T\left(\Pi K_{n}\right)$ and $p^{i}\left(\sum H_{n}{ }^{\prime}\right)$ are high in $p^{i} T\left(\Pi G_{n}\right)$ and hence have the same cardinality. Therefore $\left|p^{i} \sum H_{n}{ }^{\prime}\right|>\boldsymbol{\aleph}_{0}$ and $\left|p^{i} H_{n}{ }^{\prime}\right|>\boldsymbol{\aleph}_{0}$ for all i. We may now revert to Case 1, being careful to take each h_{i} from $H_{i}{ }^{\prime}$. Such a subgroup is without elements of infinite height and the contradiction of Case 1 will repeat itself now in Case 2.
4.21. Theorem. Let G be a p-group without elements of infinite height. If $G=H \oplus K$ contains an unbounded torsion-complete group, then either H or K contains an unbounded torsion-complete group.

The following two lemmas yield a straightforward proof of the theorem.
4.22. Lemma. Let N be a subgroup of a torsion-complete group \bar{B} such that \bar{B} / N is reduced. Then N is torsion-complete.

Proof. From the exact sequence: $0 \rightarrow N \rightarrow \bar{B} \rightarrow \bar{B} / N \rightarrow 0$, we obtain the exact sequence:

$$
\begin{align*}
0=\operatorname{Hom}\left(Z\left(p^{\infty}\right), \bar{B} / N\right) \rightarrow & \operatorname{Ext}\left(Z\left(p^{\infty}\right), N\right) \tag{1}\\
& \rightarrow \operatorname{Ext}\left(Z\left(p^{\infty}\right), \bar{B}\right) \rightarrow \operatorname{Ext}\left(Z\left(p^{\infty}\right), \bar{B} / N\right) \rightarrow 0 .
\end{align*}
$$

Now, as is well-known, a reduced p-group G is torsion-complete if and only if $\operatorname{Pext}\left(Z\left(p^{\infty}\right), G\right)=0$. Moreover, $\operatorname{Pext}\left(Z\left(p^{\infty}\right), G\right)$ is the subgroup of elements of infinite height in $\operatorname{Ext}\left(Z\left(p^{\infty}\right), G\right)$. Since $\operatorname{Pext}\left(Z\left(p^{\infty}\right), \bar{B}\right)=0, \operatorname{Ext}\left(Z\left(p^{\infty}\right), \bar{B}\right)$ has no elements of infinite height, whence, by $(1), \operatorname{Ext}\left(Z\left(p^{\infty}\right), N\right)$ has no elements of infinite height, or $\operatorname{Pext}\left(Z\left(p^{\infty}\right), N\right)=0$. Thus N is torsion-complete, as stated.
4.23. Lemma. Let N be a p^{n}-bounded subgroup of the torsion-complete p-group \bar{B}. Then if $(\bar{B} / N)^{1}=0, \bar{B} / N$ is torsion-complete.

Proof. To see this, we show that $\operatorname{Pext}\left(Z\left(p^{\infty}\right), \bar{B} / N\right)=0$. From the exact sequence (1), we see that

$$
\operatorname{Ext}\left(Z\left(p^{\infty}\right), \frac{\bar{B}}{N}\right) \cong \frac{\operatorname{Ext}\left(Z\left(p^{\infty}\right), \bar{B}\right)}{\operatorname{Ext}\left(Z\left(p^{\infty}\right), N\right)} \cong \frac{\operatorname{Ext}\left(Z\left(p^{\infty}\right), \bar{B}\right)}{N}
$$

where, since N is cotorsion, $N \cong \operatorname{Ext}\left(Z\left(p^{\infty}\right), N\right)$. Now, since $(\bar{B} / N)^{1}=0$, $\operatorname{Pext}\left(Z\left(p^{\infty}\right), \bar{B} / N\right)$ is torsion-free.

Suppose that $g+N=p^{r} g_{r}+N$ is an element of infinite height and infinite order in $\operatorname{Ext}\left(Z\left(p^{\infty}\right), \bar{B}\right) / N$. Then $p^{n} g=p^{r+n} g_{r}$ for all positive integers r, so that $0 \neq p^{n} g$ is an element of infinite height in $\operatorname{Ext}\left(Z\left(p^{\infty}\right), \bar{B}\right)$, a contradiction. Thus $\operatorname{Pext}\left(Z\left(p^{\infty}\right), \bar{B} / N\right)=0$, and \bar{B} / N is torsion-complete, as stated.

Proof of the Theorem 4.21. Consider the projection $\pi_{H}: \bar{B} \rightarrow H$ in the decomposition $G=H \oplus K$. The kernel of this map is $\bar{B} \cap K$. Now if $\bar{B} \cap K$ is unbounded, it is the sought-after torsion-complete group, in K, by Lemma 4.22. On the other hand, if $\bar{B} \cap K$ is bounded, then $\bar{B} / \bar{B} \cap K \cong \pi_{H}(\bar{B}) \subset H$ is unbounded and torsion-complete by Lemma 4.23. This completes the proof.
4.24. Corollary. Let $G=\sum_{1}{ }^{N} H_{i}$ be a p-group without elements of infinite height. If G contains an unbounded torsion-complete group, then so does some H_{i}.
4.25. Theorem. If $G=\sum H_{\lambda}$ is a p-group without elements of infinite height, which contains an unbounded torsion-complete group, then some H_{λ} contains an unbounded torsion-complete group.

Proof. (a) Let \bar{B} be an unbounded torsion-complete group in G. Let $B=B_{1} \oplus B_{2}$ be basic in \bar{B}, where $\left|B_{1}\right|=\boldsymbol{\aleph}_{0} . \bar{B}=\bar{B}_{1} \oplus \bar{B}_{2}$, by [1, p. 115, Theorem 34.3]. Thus, we may for our purposes, assume that \bar{B} is the torsion completion of a countable basic subgroup B. Then B is contained in a countable subsum of the $H_{\lambda} \mathrm{s}$. By Lemma 4.2, \bar{B} is in the countable subsum of the $H_{\lambda} \mathrm{s}$ also. We suppose, then, that $\bar{B} \subset \sum_{1}^{\infty} H_{n}$.
(b) Consider $S_{i}=p^{i} \bar{B} \cap p^{i}\left(\sum_{n=i}^{\infty} H_{n}\right), i=1,2,3, \ldots$. We shall show that $S_{i}=0$ for some i. If $S_{i} \neq 0$ for each i, we can find a set of positive integers: $N_{1}<N_{2}<\ldots$ and a set $\left[p^{i} b_{i}\right]_{1}^{\infty}$ with each b_{i} in \bar{B},

$$
p^{i} b_{i} \in p^{i}\left(\sum_{N_{i-1+1}}^{N_{i}} H_{n}\right) .
$$

We can also assume that $o\left(p^{i} b_{i}\right)=p$, for every i. Consider $g_{n}=\sum_{i=1}^{n-1} p^{i} b_{i}$. Then $g_{n+1}-g_{n} \in p^{n} \bar{B}$, for every n and the Cauchy sequence $\left[g_{n}\right]_{1}^{\infty}$ has a limit g in \bar{B}. Suppose that $g=\left(h_{1}+\ldots+h_{N}\right)$ in $\sum_{1}{ }^{N} H_{n}$. Then,

$$
g_{n}-g=\sum_{1}^{n-1} p^{i} b_{i}-\left(h_{1}+\ldots+h_{N}\right) .
$$

Since the $p^{i} b_{i}$ s are from mutually disjoint subsums of $\sum_{1}{ }^{\infty} H_{n}$, the height of $g_{n}-g$ is bounded as n approaches infinity and $g_{n}-g \notin p^{n} \bar{B} \subset p^{n} G$, for every n, a contradiction. Thus, for $N>0$,
$\sum_{1}^{N-1} p^{N} H_{n}=G /\left(\sum_{N}^{\infty} p^{N} H_{n}\right) \supset\left\{p^{N} \bar{B}, \sum_{N}^{\infty} p^{N} H_{n}\right\} / \sum_{N}^{\infty} p^{N} H_{n} \cong p^{N} \bar{B} /\{0\} \cong p^{N} \bar{B}$.
Since $p^{N} \bar{B}$ is unbounded and torsion-complete, $\sum_{1}{ }^{N-1} H_{n}$ contains an unbounded torsion-complete group. Corollary 4.24 completes the proof.
4.26. Theorem. If $T\left(\Pi_{1}{ }^{\infty} G_{n}\right)=\sum_{1}^{\infty} H_{n}$ is a p-group without elements of infinite height where no G_{n} contains an unbounded torsion-complete group and $H_{n} \cong H_{m}$, for every n and m, then $\sum G_{n}$ is essentially bounded.

Proof. Suppose that $\sum G_{n}$ is essentially unbounded. By Proposition 1.6, $T\left(\Pi G_{n}\right)$ has an unbounded torsion-complete summand. By Theorem 4.25, each H_{n} has an unbounded torsion-complete subgroup, say \bar{B}_{n}. We write $\sum H_{n}=\sum_{1}^{\infty} \bar{B}_{n} \oplus K$. Consider the natural projection $\pi_{1}: \bar{B}_{1} \rightarrow G_{1}$ in $G_{1} \oplus T\left(\Pi_{2}{ }^{\infty} G_{n}\right)$. Since G_{1} contains no unbounded torsion-complete group, π_{1} is not one-to-one. We can find then $b_{1} \in \bar{B}_{1} \cap T\left(\Pi_{2}^{\infty} G_{n}\right)$ with $o\left(b_{1}\right)=p$. Similarly, for each i, consider

$$
p^{i-1}\left(T\left(\Pi G_{n}\right)\right)=T\left(\Pi p^{i-1} G_{n}\right)=\sum p^{i-1} \bar{B}_{n} \oplus p^{i-1} K
$$

and the projection $\pi_{i}: p^{i-1} \bar{B}_{i} \rightarrow p^{i-1} G_{1}+\ldots+p^{i-1} G_{i}$. By Corollary 4.24, $p^{i-1} G_{1}+\ldots+p^{i-1} G_{i}$ contains no unbounded torsion-complete group, and the projection π_{i} is not one-to-one, for any i. We then find, for each $i=1,2,3, \ldots, p^{i-1} b_{i} \in p^{i-1} B_{i} \cap T\left(\Pi_{i+1} G_{n}\right)$ with $o\left(p^{i-1} b_{i}\right)=p$. Letting $g_{n}=\sum_{1}{ }^{n} p^{i-1} b_{i},\left[g_{n}\right]_{1}^{\infty}$ is a bounded Cauchy sequence which converges in $T\left(\Pi G_{n}\right)$. If $g_{n} \rightarrow g=b+k, b \in \sum_{1}{ }^{N} \bar{B}_{n}, k \in K$, then, for large n,

$$
\begin{aligned}
g-g_{n} & =b+k-\sum_{1}^{n} p^{i-1} b_{i} \\
& =b-\sum_{1}^{N} p^{i-1} b_{i}-p^{N} b_{N+1}-p^{N+1} b_{N+2}-\ldots-p^{n-1} b_{n}+k
\end{aligned}
$$

As n approaches infinity, $H\left(g-g_{n}\right)$ is bounded, which contradicts convergence. The theorem is thus proved.
4.27. Corollary. Neither the product, nor its torsion subgroup, of a countably infinite collection of unbounded direct sums of cyclic p-groups equals an infinite direct sum of isomorphic groups.
4.28. Theorem. A countable direct product of isomorphic p-groups can be decomposed into an infinite direct sum of isomorphic groups if and only if the product is the direct sum of a divisible group and a bounded group.

Proof. (a) Let $\Pi_{1}^{\infty} G_{n}$ be a countable direct product of isomorphic p-groups. If $\Pi G_{n}=D \oplus B$, where D is divisible and B is bounded, the ranks of D and/or B are infinite. We then express D, B, and consequently ΠG_{n}, as a direct sum of isomorphic groups.
(b) Suppose that $\Pi_{1}{ }^{\infty} G_{n}=\sum_{1}{ }^{\infty} H_{n}$, where $\left[G_{n}\right]_{1}{ }^{\infty}$ is a set of isomorphic p-groups, $\left[H_{n}\right]_{1}^{\infty}$ is a set of isomorphic groups. Suppose that ΠG_{n} is not the direct sum of a divisible and a bounded group. Then the reduced part of each G_{n} is unbounded. We can find $g_{n} \in G_{n}$ for every n such that $\left\langle g_{n}\right\rangle$ is pure and $o\left(g_{n}\right)<o\left(g_{n+1}\right)$. Now $x=\left(g_{1}, g_{2}, \ldots, g_{n}, \ldots\right)$ is in ΠG_{n} and $\langle x\rangle$ is a p-pure cycle of infinite order. Thus $\sum H_{n}$, and in fact each H_{i} contains a pure (p-pure)
cycle of infinite order, say $\left\langle h_{i}\right\rangle$. Now there exists k_{i} such that $p^{k_{i} h_{i}}=y_{i}$ is in $\Pi_{n>i} G_{n}$ for each i. Letting $a_{n}=y_{1}+p y_{2}+\ldots+p^{n-1} y_{n}$, there exists a non-zero a in ΠG_{n} such that $a_{n}-a \in p^{n} \Pi G_{n}$ for every n. However, as n increases, $a_{n}-a$ has bounded p-height, since a is in a finite sum of H_{n} s and $a_{n+1}-a_{n}$ is in H_{n+1} and of finite p-height. This contradiction completes the proof.

Note. We can replace countable by infinite in the preceding theorem, since a countable product will split off and the proof remain intact.
5. Open questions. Many questions about direct products of Abelian p-groups remain to be answered. Especially relevant to the work in this paper are the following.
(1) Under what conditions does a product (torsion subgroup of a product) of p-groups decompose into an infinite direct sum of isomorphic groups?
(2) If the torsion subgroup of a product of p-groups equals $A \oplus B$, does the product equal $A^{\prime} \oplus B^{\prime}$, where $A^{\prime} \supset A$ and $B^{\prime} \supset B$?
(3) For p-groups G_{λ}, when do epimorphisms exist of the following type: (a) $\Pi G_{\lambda} \rightarrow T\left(\Pi G_{\lambda}\right)$, (b) $\Pi G_{\lambda} \rightarrow \sum G_{\lambda}$, (c) $T\left(\Pi G_{\lambda}\right) \rightarrow \sum G_{\lambda}$? We note that, for bounded G_{λ} s and unbounded product, the epimorphisms (a) and (b) do not exist since ΠG_{λ} would be cotorsion as well as any homomorphic image of it; (c) would exist since $\sum G_{\lambda}$ would be a direct summand of a basic subgroup of $T\left(\Pi G_{\lambda}\right)$.

References

1. L. Fuchs, Abelian groups (Publishing House of the Hungarian Academy of Sciences, Budapest, 1958).
2. D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366-391.
3. John M. Irwin, High subgroups of abelian torsion groups, Pacific J. Math. 11 (1961), 13751384.
4. John M. Irwin and Fred Richman, Direct sums of countable groups and related concepts, J. Algebra 2 (1965), 443-450.
5. John M. Irwin and E. A. Walker, On N-high subgroups of Abelian groups, Pacific J. Math. 11 (1961), 1363-1374.
6. Irving Kaplansky, Infinite abelian groups (University of Michigan Press, Ann Arbor, 1954).

Wayne State University, Detroit, Michigan;
University of Detroit, Detroit, Michigan

[^0]: Received February 28, 1969 and in revised form, July 31, 1969.

[^1]: 3.1. Theorem. For a set of reduced p-groups $\left[G_{\lambda}\right]$, the following statements are equivalent:

