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ON DIRECT PRODUCTS OF ABELIAN GROUPS

JOHN M. IRWIN AND JOHN D. O’'NEILL

In this paper we investigate the properties of the product (or complete
direct sum) of torsion Abelian groups. The chief results concern products of
Abelian primary groups (p-groups). Given a set of p-groups, [Gy\], over an
index set A, the product of these groups is written Il cAGy, the torsion sub-
group of the product of these p-groups is written T[Il G,], and the discrete
direct sum of the p-groups is written Y Gy.

Definition. 3 Gy is said to be an essentially bounded decomposition if and
only if there exists an integer M > 0 such that MG, = 0 for all but a finite
number of Gys; otherwise the decomposition is essentially unbounded.

Notation, for the most part, will be that of Fuchs [1].

The main results of this paper are the following.

(1) The cardinal number of I1 Gy equals the cardinal number of T[II Gy].

(2) T[I1 G\] is torsion-complete if and only if each G, is torsion-complete.

(3) If the set of p-groups [Gy,] is reduced, then the following are equivalent:

(a) X Gy is an essentially bounded decomposition,
(b) II G equals T[I1 Gy],

(c) TIIILG,]is a direct summand of II G,,

(d) The quotient group 11 Gy/T[I1 Gy] is reduced.

(4) For reduced p-groups, [G\], the quotient group T[II G\]/X Gy is divisible
if and only if a basic subgroup of 3 Gy is also basic in 711 Gy].

(5) For (reduced) p-groups [Gy], the following are equivalent:

@) TIG\/3 Gy is reduced,
(b) X Gy is an essentially bounded decomposition,
(c) T(I1 Gy)/Z Gy is bounded.

6) If T7(II,=G,) is a reduced p-group, it has an essentially unbounded
decomposition if and only if some G, has an essentially unbounded decom-
position.

(7) If T(II,°G,) equals an infinite direct sum of isomorphic groups where
all G,s are countable reduced p-groups, then > 1°G, is essentially bounded.

(8) A countably infinite direct product of isomorphic p-groups can be
decomposed into an infinite direct sum of isomorphic groups if and only if the
product is the direct sum of a divisible group and a bounded group.

Lemmas which are proved in this paper and which are important in their
own right are the following.
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()IfG =A ® B = C ® D are two direct sum decompositions of an Abelian
group G, where C is an unbounded direct sum of cyclic groups of infinite rank,
then A or B contains a direct summand which is a direct sum of cyclic groups of
infinite rank.

(2)IfG=A ® B = C® D is an Abelian group, where B is an unbounded
torsion-complete p-group, then C or D contains a summand which is an unbounded
torston-complete p-group.

) If G = A ® B is an Abelian p-group without elements of infinite height,
and G contains an unbounded torsion-complete group, then A or B contains an
unbounded torsion-complete group.

(4) Every unbounded pure subgroup of a direct sum of cyclic p-groups contains
an unbounded summand of the group.

1. Preliminary propositions. The following propositions are interesting
in their own right or will be used in subsequent parts of the paper. Proofs will
be omitted whenever they are obvious.

1.1. ProposITION. If [G\] 7s a set of torsion groups, where Gn = Dy @ Ry, Dy
divisible, Ry reduced, then 11 G\ = 11 D\ @ 11 Ry, where the first summand is
divisible, and the second is reduced.

1.2. PROPOSITION. Let Gy = 2 ¢—1Grp: be a decomposition of a torsion group
G\ into a direct sum of its primary components for each N in an index set A and
where p1 < p2 < ... 1s a set of prime numbers. Then

TAG) = 3 TGy

Proof. The torsion subgroup of a product is certainly the direct sum of its
primary components. Now, for given p;, the p,-component of 7°(11 Gy) in our
primary sum decomposition is clearly T'(II, Gy,,).

Itis due to these first two propositions that our study deals with the complete
direct sum of groups which are usually reduced and always p-groups, unless
otherwise noted.

1.3. PROPOSITION. If [G)] is a set of p-groups and Dy is the divisible hull of G
for each \ in A, then T (I D)) is the divisible huill of T (I Gy).

Proof. This is clear, once we observe that T'(I1 D\)[p] = II(D\[p]) =
IIG\[p] = TALG))[p], and that T(I1 Dy) is divisible.

Remark. Notice that II Dy need not be the divisible hull of II Gy. To see
this, consider the case where each G, is cyclic of order p. Then if A has infinite
cardinality, II G, is bounded while I1 D, is mixed.
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1.4a. PROPOSITION. Given p-groups [Gi]a, let Gn = Sy + Grn, where Sy, s a
maximal p"-bounded direct summand of Gy for every N € A. Then I1,S\, is a
maximal p"-bounded direct summand of T = T (11 Gy).

Proof. That T = T(111Sy) ® T(Gy) = 11hS., & TI14G),) is obvious.
Now suppose that (x) is a direct summand of T (II,G\,) and o(x) = p* < p~.
Let x = (g1, 82 -..,8\y...), & € G\,. Some g, in this expansion, say g;,
generates a pure cycle {g;) of order p* in G;,. Hence (g;) is a direct summand of
G, and S;, @ (g;) is a larger p"-bounded direct summand of G; than S;,.

1.4b. PROPOSITION. Given p-groups [Grls, let By = D w—1Ba, be a basic subgroup
of Gy, where By, is a direct sum of cyclic groups of order p*, for each N in A. Then
B = Zn L ILBy, is basic in T = TI1G)).

Proof. B is clearly pure in T and a direct sum of cyclic groups. We must show
that 7/B is divisible. Let x in T' be mapped to & in T/B. Let o(x) = p*,
x= (g, 8 ---58-..-.), & € Gn. By the Baer Decomposition Theorem
[1, p. 98, Theorem 29.3], each g may be written by + b* 4+ p¥g’, where
by € Ba+ ...+ B, * + 9 € G € {Bu™, p*Gy}. Since 0 = p*x = pig, =
P¥h* 4 pEtEg’ | p divides b*. Thus each gy = by + py for some by € Zf,=1BM,
2 € G.. Hence x = (b1,bs,...,00...) + (@1, 82...,8\,...), where
(b1, b2y ..., by, ...)isin

k k

In T/B, & = pg, § being the image of (81,82 ...,8,...). Thus T/B is
divisible.

1.5a. Proposirion. |11 Gy| = |T(I1 G))|, if all Gys are p-groups and A is any
index set.

Proof. (i) If the index set A is finite, the groups are identical and have the
same cardinal number.
(ii) If the index set A is infinite, then

111G\ = |G\ = IT (Ro|Ga[p]) = RlI|Ga[p]] = I |Gilp]]
= |[ILGlpl| = ITALG\pD)| = |TALG),
and the proposition is again true.

1.5b. PROPOSITION. For prime numbers: p1 < ps < ..., |H1°°C(p,~)| s
greater than |3:°C(p.)| which equals |T(11,°C(p.))|, where C(p:) is a cyclic
group of order p,, for each 1.

1.6. ProposITION. Let [G;i™ be a set of unbounded reduced p-groups. Then
T(1,°G,) has an unbounded torsion-complete direct summand.

Proof. Let G; = {g;) ® G/, where 0(g;) < 0(gi+1), 2=1,2,3,... . Then
7dIlc) = 7dI ) @ TALG/), where T(I (g;)) is torsion-complete
and unbounded.
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Remark. Here, the subgroup T (I (g;)) is not a direct summand of II G,,
since T'(IT (g.)) C I1 (g;) C 11 G, and II (g,)/T(II (g.)) is not reduced.

1.7. ProOPOSITION. If By C Gy C B,, where By, is basic in the torsion-complete
p-group By, and Gy is pure in By [1, p. 112], then T (11 G\) is pure in T(I1 B)).

1.8a. PROPOSITION. Given a set of p-groups (G, if the elements of infinite
height in G, I1Gy, and T (H Gy) are designated by G\!, 111, and 17, respectively,
then IIt = T1 G\t and T = TAL G\Y).

1.8b. PROPOSITION. If the elements of infinite height in the p-group G\ are
designated by G)\l, then T1 G/ T 1 Gy) is isomorphic to a pure subgroup of
TdIGy/GWY.

Proof. Map P = I1 Gy to P’ = I1 G\/G\*. Now T = T(II G\) is mapped
to T", a subgroup of T(11 G\/G\1). We let K = II Gy, the kernel of the map.
Then T maps to {T, K}/K = T/(IT\K). But TN\ K = T"(I1 G\)). Thus
T(IGy/TI G\) = T’. We now show that T” is pure in P’. Let prg’ = 1/,
g € Pt €T 1f ¢ is the image of g in P and ¢’ of ¢ in T, then there exists
k € K such that p"g = ¢ + k. Since k has infinite height and 7 is pure, there
exists ¥ € T such that p"x = ¢. Thus p"x’ = #/, where x maps to x’ in 77 and
T’ is pure.

1.9. PROPOSITION. If A = A, + Ag + . .. is a partitioning of the index set A
into subsets indexed by N = [a, B3, .. .], then

T(HGQ%T(H [T(H Gx>i|> and [] Gv==T] [H G)\]

xEN XeA, aev LXeh,
for any set of p-groups [Gila.
1.10. PROPOSITION. For p-groups [G\], if I1 Gy = T (1 Gy), then
LGy TIILGy)| = 2o,

Proof. Each G\ may be considered as a module over the p-adic integers. By
defining multiplication by scalar component-wise, 11 G\ may be considered
as a module over the p-adic integers with 7'(II Gy) as its submodule. Thus
11 G\/T 1 Gy) is also a module over the p-adics. This quotient, if not zero,
is torsion-free and contains a copy of the p-adics which is uncountable.

2. T(I1 G)) and torsion completion. A direct sum of cyclic groups
3"1"B, completely determines its torsion completion 7°(I1 B,) (see [1, p- 115,
Corollary 34.2]). We might think that the same relationship exists between
Y Grand T(I1 Gy) in general. That this is not so is made clear by the following

example.
2.1. Example. Let I = [1,2,3,...]. Let G, = C1(pY); G; = C:(p!) ® C:(p?)
for< = 2,3,4,..., where C;(p?) is a cyclic group of order p* for every j € I.
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Likewise, let H; = > 1°C;(p) and H, = C;(p?), 1=2,3,4,... . Then
> G, =Y Hy yet T(I1 G,) is not isomorphic to 7°(I1 H,), though both have
the same cardinality and both are torsion-complete.

However, if in the example above, the number of cyclic summands of every
power had been finite, then for every decomposition 3 G; = ¥ H,, if T(11 G,)
and T(II H,) are torsion-complete, they are isomorphic. This would be true
since ¥° G, and ¥ H, would then be basic in 7°(II G;) and 7(II H,), respec-
tively, which in turn are the torsion completions of these subgroups. In fact,
if > G, = > H;is adirect sum of cyclic groups where cycles of power p* for
given %k appear in only a finite number of G;s and H,s, then T'(II G,) and
T(I1 H,) are isomorphic if both are torsion-complete.

Although > G; = 3 H;is a direct sum of cyclic p-groups and the number
of cyclic summands of each power is finite, 7' (I G,) may still not be isomorphic
to T(II H,), if the latter groups are not both torsion-complete. Let us illustrate.

2.2. Example. Let G =Y G; where G1 = 2.°C(p?, G;=0, for
1=2,3,4,..., and let H = 3 *H;, where H, = C(p?), 1=1,2,3,... .
Then G =TIIG,) =Gy, and H=TAIH) =TI C(p?)). Here, G
equals H, but G is not isomorphic to H.

On the other hand, T(II G,) may equal T(I1 H,), yet 3 G; may not be
isomorphic to Y H;. Again, we give an example.

2.3. Example. Let Gy = T(II C(p?)), and G, = 0, for i = 2,3,4,...; let
H,=C@®", i=1,23,.... Then TAIG,) = Tl c(p?)) = TdI H)).
But X G; = G, = Tl C(p?)) and & H, = ¥ C(p?), and these two groups
are not isomorphic.

Along these lines, however, we do have the following positive theorem.

2.4. THEOREM. For p-groups [Gr], T = T 1 Gy) is torsion-complete if and
only if each G is torsion-complete.

Since each Gy is a direct summand of 7"(I1 G)), it is clear that, if 7(I1 G,) is
torsion-complete, then so is each Gy. We will prove the converse three times:
first directly, then more quickly employing propositions of § 1, and finally
by homological methods.

Proof 1. Let each Gy be torsion-complete, and let [g,] be a bounded Cauchy
sequence in T = T(ILGy). Let g, = (g g7 ..., "% ...), &" € G\, for
every n. Then for each X\, [g\"], approaches limit g* in G. Now, the element
g= (g4 g, ..., g, ...), being bounded, is in T(II G\). Each Gy, being
torsion-complete, is without elements of infinite height and by Proposition 1.8a,
T = T(IIG)) is also without elements of infinite height. Now,

—g=@ —ghg" —&....,a"—g,...)

is in T(IIp"Gy) C p*T(I1 Gy) for every n. Therefore [g,] converges to g,
and T is torsion-complete.
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Proof 2. More directly, we might arrive at the same conclusion by first
letting G\ = T(H,,BM) where Z;’,":lBM is basic in Gy, as in Proposition 1.4b,
for each \. Then T = TUIG)) = TAL[T{LB\)]) = TALIL,B,,). But,
by Proposition 1.9, T(II,II,B),) is isomorphic to T'(ILII4B\,) which is
torsion-complete.

Proof 3. Let T = TIG)), and T = I1 Gy, and 1I/T = 11 G\/T (1 G)).
Consider the exact sequence: 0 — ' — II — II/T — 0 and

0 —» Hom(Z (%), T) — Hom (Z(p*), ) —» Hom(Z (p*), I/ T)
— Pext(Z(p®), T) — Pext(Z(p™), I1) — Pext(Z(»*), 1I/T) — 0

(see [2]). It is well known that a reduced p-group G is torsion-complete if and
only if Pext(Z($%), G) = 0. Now, Hom (Z (p*), II/T") is zero, since Z(p7) is
torsion and II/T is torsion-free. Pext(Z(p®), II1 G\) = Il Pext(Z(p™), G\)
which equals zero, since each G, is torsion-complete. Hence,

Pext(Z(p*), T) = 0.
T must then be torsion-complete, as claimed.

2.5. COROLLARY. If G\ = 7 (1,B\) for every N in A, as in Proof 2 of
Theorem 2.4, then T(IL G)\) is the torsion completion of its basic subgroup
ZnHAB)\m and T(H G)\) = T(HnHABm)

Remark. If G = 3 Gy and each G, is a torsion-complete p-group, then
T(H G)) is torsion-complete, but not necessarily the smallest torsion-complete
group containing G. Using the notation of Corollary 2.5, we can express
71 Gy as TALIILB,,). Now T(I1, 4By, is torsion-complete, contains G,
and Y4By, need not equal II,B,, for every #.

2.6. CorOLLARY. If > G\ C HC TUIG\) and H is a torsion-complete
p-group, then so is T(I1 G)).

Proof. Each G, is a direct summand of T'(II Gy) and hence of H. Since H is
torsion-complete, so is each G and by Theorem 2.4, 7°(11 G)) is then torsion-
complete.

3. Essentially bounded decompositions.

Definition. G = 3 G will be called an essentially bounded decomposition
of G if there exists M > 0 such that MG, = 0 for almost all A (for all but a
finite number of \). Otherwise, the decomposition will be called essentially
unbounded.

3.1. THEOREM. For a set of reduced p-groups [G,], the following statements are
equivalent:
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(@) G = X Gy is an essentially bounded decomposition of G,
() I1 G\ = 7L Gy,

(¢) TIG)) is a direct summand of 11 Gy,

(d) dI Gy /TdIG)) is reduced.

Proof. We shall establish this theorem by showing that (a) = (b) = (¢) =
d) = ().

(a) = (b). This is clear by the definition above.

(b) = (c). This is clear.

(c)=@). If IIGn=7d1G)®K, then K is reduced, and
II G,/ (11 G)), isomorphic to K, is also reduced.

(d) = (a). Suppose that G = Y G, is not essentially bounded. We could
then find a set of elements [g)\;];=1 from a countable subset [Gy;] of [G)\] such
that gy, C Gy, and o(g;) < o(gn;+,) for every 4. Writing the indices
[\t Az, . . .] consecutively in II G\, we consider the summand II{_;Gy,. Now
g = (g)m 0, P& v o Pi—lg)\zi+1r .. -) isin H GM\T(H G)u‘) C H GR\T(HGX)
The image of g in II G,/T(II G)) has infinite height therein. This quotient
group, then, contains a divisible subgroup, since it is torsion-free. Thus

11 G,/T (11 G)) would not be reduced.

3.2. COROLLARY. If X Gy is essentially bounded, and each G\ is a direct sum
of cyclic groups, then T (L1 Gy) is a direct sum of cyclic groups.

3.3. COROLLARY. For p-groups [G\], T(11 Gy) is a direct summand of 11 G,
if and only if 3, Ry is an essentially bounded decomposition, where Gy = Dy @ Ry,
D, divisible, Ry reduced.

3.4. THEOREM. For reduced p-groups [Gila, the following statements are equi-
valent:

(@) TI G\ /T Gy is divisible;

(b) For any given order p*, only a finite number of Grs have cyclic summands
of this order;

(c) If By is basic in Gy for every \, then Y By is basic in T (11 Gy).

Proof. We shall prove this theorem in the following manner: (a) = (b) =
(c) = (a).

(a) = (b). Suppose that we could split off cyclic summands of the same
order p* from an infinite subset of [G,], say from Gy, A € A, where A = A + B,
|4] = No. We could then write Gy = (ex) ® G\, where o(ex) = p* for every

A € A. Then
f(ne) r(i1e) (1)

©) ’

> G EA:G)\ XB:G)\
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and

(1) (gwew)

EA: G XA: {ery ® G\)
IT e 7<H Gx')
A4 ® —* .
; <€)\> zA: G)\'

Since A4 is infinite, I1,{ex)/3 4(e\) is a non-zero sum of cyclic groups. Thus
T(I1 Gy)/ L G is not divisible.

(b) = (c). By Proposition 1.4b, 3,11 B\, is basic in T(II G\), where
By = Y_,By, is basic in Gx. By condition (b), then, > By, = I1,B,, for every #.
Hence, the basic subgroup of T(I1 G)) is

(c) = (a). If ¥ By is basic in T(I1 Gy), T(I1 G\)/X By is divisible and its
homomorphic image (T(II G/ B/ (Z G/ By) = TUIG)/E Gy is

divisible.

3.5. COrROLLARY. Theorem 3.4 remains true for p-groups in general.
Proof. Using the statement and notation of Proposition 1.1,
rd16)/x G= (rdl D))/ D)) @ (TdIR)/Z Ry,

where Gy, = Dy @ Ry, D, divisible, R reduced. The left summand is divisible.
Since cyclic summands and basic subgroups appear in the reduced part of
groups, Theorem 3.4 applies to the right summand.

3.6. THEOREM. For reduced p-groups [Gy], the following statements are equi-
valent:

(@) TUI G/ Gy is reduced,

(b) X G s an essentially bounded decomposition,

(c) TUI G/ Gy is bounded.

Proof. We shall establish the following implications: (a) = (b) = (c) = (a).

(a) = (b). If > Gy is not essentially bounded, we can find a subset
[G\i]f=11n [Gy] and ey; € Gy, such thato(er;) < o(er,4,) and Gy; = {(er;) @ Gy,
for i =1,2,3,... . We now have a summand of 7(II Gy)/ Y. Gy which is
isomorphic to 7'(IL.{er;))/3 «(er;) and this summand is divisible. Thus
T(] G\)/X Gy is not reduced.

(b) = (c). This is clear.

(c) = (a). This is clear.

3.7. COROLLARY. Theorem 3.6 is true for p-groups in general.
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Proof. As in Corollary 3.5,
r(I16)/2 6= (TAID)/E D) @ (TALRY)/Z Ry).

If the left summand is non-zero, none of the conditions of Theorem 3.6 are
satisfied. If the left summand is zero, Theorem 3.6 applies.

3.8. COROLLARY. For a set of p-groups [G\], the reduced part of T(11 G\)/ Y G
is bounded if and only if, using the notation of Proposition 1.4b, 3" s\Ba, differs
from 11,B, for at most a finite number of ns.

Proof. (a) Suppose that Y By, # II4By, implies » < N. Then, as in
Proposition 1.4a, T(II Gy) = T(I11S\y) ® T(111G\y) and TII G)/T Gy =
(IS%)/Z Sw) ® (TAIGwy)/E Gry). The left summand is bounded.
Now in T(II Gyy), ZaBx. equals II4B,,, since in T(I11 Gyy) we have n greater
than N and since Y4By, # 1I4By, implies # < N. Thus, T(II Gyy)/3 Gry is
divisible (by Theorem 3.4). The quotient group is then the direct sum of a
divisible group and a bounded group.

(b) If S4B, # II4By, for an infinite number of zs, then we can find a
bounded direct summand of the quotient group isomorphic to II.Sy./3 Sy
for arbitrarily large n. The reduced part of T'(11 G\)/¥ Gy would not then
be bounded.

3.9. THEOREM. For reduced p-groups [G\], T G\) /3 Gy is a direct summand
of II G2 Gy if and only if Y aB\, # I1, By, for at most a finite number of ns,
where Y, By, s basic in Gy for every \.

Proof. If > aBa, # I1,B,, for at most a finite number of #s, then by
Corollary 3.8, the reduced part of T(IIG\)/X G. is bounded and
T(I1 Gy)/ 3 Gy is divisible plus bounded. Since T'(11 G))/X Gy is the torsion
subgroup of II G,/ G\, it is a direct summand of IIG,/¥ G» by
[6, Theorem 8].

On the other hand, suppose that 3 4B, # LI By, for an infinite number
of ns. Without loss of generality, we may suppose that this is true for all #.
Then we can find an infinite number of infinite and mutually disjoint subsets
A, 1 4 <00, of A, and pure cycles {ex?) of order p?in G\ for N € A, If X is
notin A, for any < = 1, we will say that X isin Ao, and let

A=A+ A+ ...+ A+ ...
Let x, be the element (e, e5f, . .., ex?,...) in I14,Gy for each ¢ = 1. Let x be
the tuple in Iz, (HAti) = Il G\, where
x = (0, %1, 0, pxs3, 0, p2%xs, . . ., PX2ir1y .. .).
If 71 G\)/Y Gy is a summand of I Gy, we may write
II6/2 6 = (1G22 G) ® (K22 G.
The order of x is infinite. If x is mapped to £ in II Gy/¥ Gy, p*2 isin K/ Gy,

for some k. If h(p*x) = pI, then h(p*L) = p7, since no x; is in > G\. However,
there exists a in T(11 Gy) such that & (p*x — a) > p7. Let @ be the image of a
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in TAI G/ Gr. Now h(p& — 1) > p? in I1 Gy/X Gy Since p*& is in
K/Y. Grand fisin T(I1 G\)/T Gy, the height of p*& would be greater than p?,
a contradiction. We conclude that T(II G\)/X Gy is not a summand of
11 G\/Z Gy, if By, # 114B), for an infinite number of ns.

4. Decomposition theorems. Since we are more familiar with direct sums
than with direct products of p-groups, it is worthwhile to know when a direct
product of p-groups can be decomposed into a direct sum of groups. It is
natural to ask the same question for the torsion subgroup of a product of
p-groups.

Two cases with easy answers come immediately to mind. If the p-groups
have a common bound, then their direct product is also bounded and a direct
sum of cyclic groups. If all the p-groups are divisible, the product, and the
torsion subgroup of the product, of these p-groups can each be written as a
direct sum of copies of Z(p*) and the rationals. Hence we will be more con-
cerned with collections of p-groups which are reduced, and where the direct
sum of a collection is essentially unbounded (as defined in § 2).

4.1. THEOREM. Neither the direct product, nor its torsion subgroup, of a
collection of reduced p-groups whose divect sum is essentially unbounded, is a
direct sum of countable groups.

We first must prove a lemma.

4.2. LEMMA. If G = H ® K 1is a reduced group, and A and T are subgroups
of G such that A C H and T/A is divisible, then T C H.

Proof. First, T/H M T isreduced since K =< G/H D {T,H}/H=T/HN T,
and K is reduced. Now A CHNT C 1, and T/A divisible, implies
T/H M T, a homomorphic image of 7'/A4, is divisible. Since T/H M T is both
divisible and reduced, it equals zero. Hence 7' = H M T, or T is contained
in H.

Proof. of Theorem 4.1. Given the set [G\] whose direct sum is essentially
unbounded, we find a subset [G);];=1 and g\; € Gy, such that o(gy;) < 0(gri41)
for every 4. If I1 Gy or T(I1 Gy) equals 3 ,ca:H,, where each H, is countable,
then the set [g\;]i=1 is contained in a countable subset of [H,],,. 7 (II7_1(g\.))
is in both IIG\ and T{IG)). Since TL(g..))/Tig;) is divisible,
T(I1(g;)) would be contained in the direct sum of the same countable
subset of [H,] as [gx;] by Lemma 4.2. But this is impossible, since 7°(11,(g\;))
is uncountable.

Remark. 1t is of interest to know when a group is a direct sum of reduced
countable groups, for such a group is fully starred as noted by Irwin and
Richman [4, p. 446].

4.3. THEOREM. If G = A ® B = C ® D, C is an unbounded direct sum of
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cyclic p-groups, then A or B has a direct summand which is an unbounded direct
sum of cyclic p-groups.

Before proceeding to the proof we first establish some lemmas.

4.4. LEMMA. If p-group G contains H = 3 17(x;), where 0(x;) < 0(x441) for
every 1, then H is pure if and only if (x,) is pure for each i.

Proof. 1f H is pure, then (x;) as a summand is pure. The converse follows
easily from a consideration of the socle elements and [6, p. 20, Lemma 7].

4.5. LemMA. If H = {x;}1%, s a p-group, where o(x;) < 0(x:41) and (x;)
is pure for each i, then H is a direct sum, i.e. H = > 17(x;).

Proof. Consider the set [p¥ilx;]7-1, where o(x;) = p*¢ for each 7. Let

Y_1a;(p*x;) = 0. Suppose that a;(p*i~lx;) is the first non-zero term on
J
the left. Then

N

a; (0" %) = — 2 a7 xy)

1=j+1
is non-zero. Now (x,) is pure and h(ep*x;) = k; — 1. But since
0(x;) < 0(x41), each term on the right has height greater than k; — 1, a
contradiction. Thus [p¥i1x;];~; are linearly independent and as a result the
x;s are linearly independent or H = 3 (x;) is direct.

4.6. LEMMA. If p-group G is a direct sum of cyclic groups and H = 3 1*(h;)
is a pure unbounded subgroup of G, then there exists Hy = » w_1(h;,) which is an
unbounded summand of G.

Proof. We may restrict ourselves to the case where o(k;) < o(hj+1) and
where G = X (x), 0(x;) = o(xi41). Let (u;) = (h;)[p]. Now

Ny
Uy =t € le ()
and is purifiable in this summand, i.e., there exists y; such that
N1
(1) 13 () and Gn)lp] = ().

There exists #, such that £(u;,) > Nyand u,, € ngNl(x,) and (uj,) = (y2)[p],
where (y,) is a summand of Zf;?Nl(xi). By induction we may find a

Nn+l Nn+l
Uj, € Z (x:) and (y,) L Z (x4,
i>N, i>N,

where (y,)[p] = (u;,). Clearly, 32:"(y,) L 2 {(x:). Now,

2 Galp] = 2 wa)lp] = 22 (bl
By a theorem of Irwin and Walker [5, p. 1373, Theorem 16], if two pure

subgroups have the same socle and one subgroup is a summand, then so is
the other. Thus D _w_1(k;,) is a summand of 3 (x,), as desired.
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47 . LEMMA. If G = A @ B = C @ D, where C = 3 {(c;) is a p-group, and
if c;=a;+0by, a;€ A, b;€ B, and a; =c¢’ +dj; b; = ¢/ —d;, ¢’ € C,
¢! € C,d; € D, then either 0(a;) = 0(c,’) = o(c;) and {c,%) is pure or {(c?) is
pure with o(cy’) = o(c;) = o(by).

Proof. Let ¢,/ = 3 xicqy ¢’ = 2 y:¢i. Then

Pl = e + a’) = P + y5)ey
where o(c;) = p*. Since {(c;) is pure, h(p*'¢;) = k — 1l and (x; + y;, ) = 1.
Thus (x;, ») = 1 or (v, p) = 1. Suppose that (x;, p) = 1. Then
o(c;) = p* = o(ca’) = 0(a;) = 0(cy), and o(c;) = o(c!) = o(ay).
Also k — 1 = E(p*¥1¢,?) < h(p¥'xyc;) = B — 1. Thus (¢,?) is pure.

Proof of Theorem 4.3. Let G = A @ B = C® D, where C = 2.17(cy) is
an unbounded p-group. Let ¢; = a; + b, a; € A, b; € B, for every ¢, where
a; =¢t+ diy b =c' —dy, ¢t € C, ¢, € C, d; € D. By Lemma 4.7, for
each 17, either o(a;) = o(c;) = 0(c,) and (¢,?) is pure or 0(b;) = 0(c;) = 0(c?)
and {c¢;?) is pure. Let us suppose the former case to be true for an infinite
number of ¢;s of properly increasing orders. Thus, for notational purposes,
let us restrict ourselves to C = 3 1%(c;), where ¢; = a; + b;, a; = ¢,* + d,,
b; = ' — d;, and o(c;) = o(a;) = o(c,?), {c.*) is pure, o(c;) < o(ciy1) for
each <. Since 0(¢,?) < 0(c,™*') and {c,*) is pure for each 7, by Lemma 4.5,
H = 3 {c,') is a direct sum, and is pure by Lemma 4.4. By Lemma 4.6, H
contains an unbounded subgroup H; = Y _r—1{c,*) which is a summand of C.
Now G=A4A®B=H® Hy ®D, where C = H; ® H,. Consider

G/(H.® D) zg (ca™)-

Since, for each k, ¢, = ¢,% 4+ dy, 0(ay,) = 0(c,**), and a;, is mapped to ¢,
in the natural map G — G/(H, ® D), then G = D _p-1(a.*) ® H, ® D, by
the proof of [6, Theorem 5]. Here Y r—1(a,**) is unbounded and direct. Since
GDADY (a™), 2 {a,"*) is a direct summand of 4, and the proof is
complete.

4.8. COROLLARY. If reduced p-groups, H and K, are essentially finitely
indecomposable groups (i.e., have no essentially unbounded decompositions),
then H @ K is essentially finitely indecomposable.

4.9. LEMMA. If G = A ® B = C ® D, where C is a direct sum of an infinite
number of cyclic groups, the orders of the cycles being powers of different prime
numbers, then A or B has a direct summand which is a direct sum of an infinite

number of cyclic groups, the orders of the cycles being powers of different prime
numbers.

Proof. (a) Suppose that C = X 1%(c;), o(cs) = p&, p1 < p2 < ..., and
¢i=a;+ by a;, € A, b; € B. Since the orders of the ¢;s are relatively prime,
and p*ic; = 0 = pfia;, = pFib,, it follows that

a; = x;%c; + d/, b = yite; + d; inC® D.
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Now (x;% p;) = 1 for an infinite number of s or (v, p;) = 1 for an infinite
number of zs. Let us suppose that (y,% p;) = 1 for an infinite number of 7s.
In fact, without compromising our proof, let us suppose this to be true for
all y,5,2=1,2,3,... .
(b) We now claim that G = >_1%(b;) @ D. We first show that
(b1) + (bo) + ...+ D
generates G. Since (y.% p;) = 1, and y,%; = b; — d;, each ¢, is in
() + (b2} +...+ D
and thus G = C+ D = (by) + (b2) + ...+ D. Secondly, we show that
>y + D is direct. If > mb,4+d =0, then >Xmd, — > md,; =
Smyici=—d — Y md; =0, since CND =0. Thus my,%; = 0 and
mq,; = 0, for each <. Since ¢; = a; + b;in 4 + B, mb,; = 0, and the sum is
direct.
(c) Since G DB D Y (by)and G = 3 (b;) ® D, we conclude that > (b,),

which is unbounded, is a direct summand of B.

Remark. If G =4 ® B=C ® D and C is an unbounded direct sum of
cyclic groups of infinite rank, then 4 or B has an unbounded direct sum of
cyclic groups of infinite rank as a direct summand. Here we generalize
Lemmas 4.7 and 4.9. If C is free, the statement is still true.

4.10. LemMA. If B = Y (by) is a direct sum of cyclic p-groups, where
b, € H;'fgiGn in I1,°G,, then there exists a subgroup H such that
I[IG.DHDE ()
and H is a torsion-complete group.

Proof. If one writes out the b;s as tuples, the components appearing in each
G, is finite, and the lemma follows immediately.

4.11. LemMA. If the p-group T = T(I1,°G,) has as a direct summand an
unbounded direct sum of cyclic groups Y 1%{c:), where ¢; € Y G,, for every 1,
then some G, has an unbounded direct sum of cyclic groups as a direct summand.

Proof. (a) Let ¢; = g1 4+ g2 4+ ... 4+ gn.% 0(ci) < 0(ci1) for every 7, in
G BT =3 {ci) + D,letg;’ = gn'er + ... + ywi;'ens; + d5° = ¢;' + djF,
where gict + ... + Yniilen; = ¢;4in 2 {¢y) and d,;* € D. Now

(1t 4+ vt 4+ ... + v’ p) =1 for each 1.

Hence (y;% p) = 1, for some j < N,.
(b) Let us take one g,* for each ¢; such that (y;% p) = 1 and hence
o(c;) = o(g;i") = o(c;¥). If o(c;) = p*, then

E—1=h(p*%,") = h(@P" ;') =k — 1.

Thus {c,') is pure in X {¢;), and X {c;%) is direct and pure by Lemmas 4.5 and
4.4. By Lemma 4.6, we can find a subset [¢;,%*];=1 such that > {(c;,*) is a
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summand of X {¢;). As in the proof of Theorem 4.3, the corresponding
subset Y (g, %) is a summand of T. If [ji, jo, ..., j . . .] contains a properly
increasing subset, the corresponding elements in [g;, **]; =1 satisfy the condition
of Lemma 4.9, and yet generate an unbounded direct sum of cyclic groups,
say K, which is a summand of T((II1G,). We then have, by Lemma 4.9, a
torsion-complete group H such that K is in H and K is a summand H. This
contradicts the torsion completeness of H. Thus[ji, je, . . ., Ji, . . .]isbounded,
and we can find an infinite subset [g,,**] and finite N such that > (g, **) is
an unbounded direct summand of Gy + ...+ Gy. A finite application of
Theorem 4.3 completes the proof.

4.12. LEMMA. If the p-group T = T(I1,°G,) has an unbounded direct sum of
cyclic groups as a direct summand, then some G, has an unbounded direct sum
of cyclic groups as a direct summand.

Proof. (a) Let T = 31"y @ D, o(c;) < o(ciy1) for every 1. Let
ci=a;+by,a, € G+ ...+ Gyb; € TIPLG,), for every .

(b) Exactly as in Theorem 4.3, we can prove that either [a;i* or [b;];"
contains a subset which generates an unbounded direct sum of cyclic groups,
say K, which is a summand of T'(II G,). Now [b;],° cannot contain such a
subset, for, by Lemma 4.10, there is a torsion-complete group H such that
(b} C HC T(IG,). Then K, which is not torsion-complete would be a
summand of H.

(c) Thus, [a¢;],” contains a subset which generates an unbounded summand
K of T(I1 G,), where K is a direct sum of cyclic groups. Since

K C {a'z'} C Z Gm
we may use Lemma 4.11 to complete our proof.

4.13. THEOREM. The reduced p-group T (11,°G,) has an essentially unbounded
decomposition if and only if some G, has the same property.

Proof. If G; = >.1"H, is an essentially unbounded decomposition of G; for
some %, then T(IIG,) = :°H; ® T(I1,.:G,) is an essentially unbounded
decomposition. If T {1,°G,) = Y:1%H, is an essentially unbounded decom-
position, then we can split off an unbounded direct sum of cyclic groups from
the right side as a direct summand. Lemma 4.12 completes the proof.

We now turn our attention to the problem of when II Gy or 7L G)) is a
direct sum of isomorphic groups. If all Gy in [G\] have a common bound or
are all divisible, and of suitable rank, such a decomposition is possible. Again,
given [H,,°, where each H,=~T{I,°G,) and G,= Y.°H,, then
T(H{”G,,) =~ %" 1*H,, and all H,s are isomorphic. For unbounded reduced
Gys, things are more complicated. Before proceeding, we first establish some
preliminary facts.

4.14. LEMMA. If p-group G = A @ B, and Y {c;) is a pure direct sum of
cyclic groups of properly ascending orders, and ¢; = a; + b;, a; € A, b; € B,
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then there exists a pure direct sum of cyclic groups > 1°(x;), where x; = a; or
x; = by, and o(x;) = o(c;) for each 1.

Proof. For each 1, either {a;) or (b;) is a pure cycle of the same order as
{ci). Let {x;) be this pure cycle for each . First, > (x;) is a direct sum, by
Lemma 4.5. Then Y (x;) is pure by Lemma 4.4.

4.15. LEMMA. If p-group G = B ® K = A @ C, where B is an unbounded
torsion-complete group, and B = 3 {a; + ¢;) is a direct sum of cyclic groups
of properly ascending orders which is basic in B and where Y {(c;) is a pure
direct sum in C and o(a; + ¢;) = o(c;) for every i, then C contains a copy of B
as ¢ summand.

Proof. Let m: B — C be the natural projection in G = 4 ® C of B. Now
the image = (B) is isomorphic to B and pure in C. We first show that the kernel
of the map is zero. Let a be in B N A. Since B/B is divisible, for any 7, we
canfinda’ + ¢/inB,a’ € 4,¢ € C,and bin Bsuchthata = p*(@’ + ¢') + b.
If b =73 x:(a;+ ¢i), then p"¢’ = — Y x,; Since Y {c;) is pure direct,
p" divides x;, where x;¢; 5 0. This, in turn, implies that a is p"-divisible. Since
n is arbitrary, h(a) =00 and a = 0 for B! = 0. Thus »(B) =~ B. We now
show that «(B) is pure in C. Suppose that x € #(B) and x = p%, ¢ € C.
Then x is the image of some a + x in B, a € A. Since B/B is divisible,
a+x=pa + )+ ad" + ¢ for some o« + ¢ € B, a'’ 4+ ¢ € B. Since
pfc = x = p*¢’ + ¢/, and ¢’ € 3 {c¢;) which is pure, then, ¢’ = p¥ic’"" for
some ¢ € Y (¢;) C w(B). Therefore, x = p*(c’ + ¢'"),c’ + ¢ € =(B).
The Kulikov-Papp Theorem [1, p. 117, Theorem 34.6] completes the proof.

4.16. THEOREM. If G = B ® K = A ® C, where B is an unbounded torsion-
complete p-group, then A or C contains an unbounded torsion-complete p-group
as a summand.

Proof. Let B =Y (b;) be basic in B. And we may suppose that
0(b;) < o(biy1). Since, if b;=a;+ ¢;, a; € A4, ¢; € C, 0(b;) = o(a;) and
{a;) is pure or 0(b;) = 0(c;) and (c;) is pure, we may, by splitting B, suppose
the former or latter case to be true for all b;s. Therefore, let us suppose that
o(b;) = o(c;) and {c;) to be pure for all b;s. By the preceding lemma, then,
C contains a copy of B as a summand.

4.17. THEOREM. If G = B ® K = 3 H\, where B is an unbounded torsion-
complete p-group, then some H) has an unbounded torsion-complete p-group as
a summand.

Proof. Suppose that B = 3 (b;) is basic in B and that o(b;) < 0(b;;1) for
each 7. Let b; = hi*+ ...+ h; 4+ ...+ hy', h;* € H;. Then there exists
j: such that o(b;) = o(h;*) and (hy;) is pure in H,,. Consider the set [j;]7-1.
If we have an infinite number of distinct numbers in the set, we may suppose
all to be distinct and split off H' = ) (h;?) as a summand, letting
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G=H ® M. Now, if by =h)/ +m; h/ € H, m; ¢ M, then 0(b;) = o(h/)
and (k) is pure. By Lemma 4.15, H’ contains a copy of B, which is false.
Therefore, [§;]:=1 is bounded, say by N. Then if G = > \YH;, + > ~nxH: by
the previous argument, > {¥H,; contains an unbounded torsion-complete
summand. A finite application of Theorem 4.16 completes the proof.

4.18. COROLLARY. If G = Y 1°G, s an essentially unbounded decomposition
of a reduced p-group, and if T(H1°°Gn) = Y H,, then some H\ has an unbounded
torsion-complete p-group as a summand.

Proof. This is an immediate consequence of Proposition 1.6 and
Theorem 4.17.

In the above discussion, we note that A may be any index set.

4.19. TueoreM. If T(I1,°G,) = Y 1°H,, where all G,s are countable and
reduced p-groups, and H,, = H, for all m and n, then Y_ G, 1s essentially bounded.

Case 1. The group T (11 G,) has no non-zero elements of infinite height.

Proof of Case 1. If 3 G, is not essentially bounded, |p*T"(I1 G,)| > R, for
all . Since Y H, is a countable direct sum of isomorphic groups, |p"H,| > R,
for all n. Since H, is reduced, |(p"H,)[p]] > No for all n. Consider pH,[p]. It
is uncountable. Since G; is countable, some distinct elements, x and y in
pH,[p] have the same Gi;-component when expressed as an No-tuple in
TIIG,). Now ks = x — y # 0 is in pHy[p] N T(11,G,). Similarly, we can
find h; # 0 in p*H,[p] N\ T(II1,11G,). By the purity of T'(I11.41G,), then,
hy =p%0,...,0,gi1% .. .,8,...) for elements g,* € G, and all 7. Form

x = (0, pgo', p'gs' + £7%gs% ... P%t + PE+ P )

in TAIG)[p). Let g =h 4+ ...+ by, for every u = 2. Then
g —x € prT(1G,) forevery n = 2. If x = x, + ... + xy in Y1¥H,, then
gn—x = (hi — x1,. .., hy — %y, Byy1, Awgo, - o ., By, . . .). Since our group
has no elements of infinite height, g, — x has bounded height as # approaches
infinity, a contradiction. Case 1 is proved.

4.20. LEMMA. For p-group G, if Ky is high in G, for each \, then T(I1 K,) is
kigh in T (11 Gy).

Proof. A subgroup is called high in a group, we recall, if it is maximal with
respect to disjointness from the subgroup of elements of infinite height in
that group. Let G\! be this latter subgroup in G, and K, maximal with respect
to KxMN G! = 0 for each \. We must show that 7(II K,) is maximal with
respect to T(IT K,) N 7"(A1 G,') = 0. Suppose that x = 0 is in 711 Gy)
such that {x, T(I1 K\)} N TAIG\}) = 0. We may suppose that px = 0,

x ¢ TAIK,). Let x = (g1,...,8,...), where g\ € Gx. If g ¢ K,, then
there is a &y in K, such that o(ky) = p and ky + g has infinite height. If g, is
in K, let bk = —g, then {x, T(H K,)} has as a non-zero element
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y=(g+ky,...,on+ k,...) where each component has infinite height.
Then v has infinite height, which contradicts {x, T(II K,)} N 71 G,1) = 0.

Remark. By a similar argument, II K, can be shown to be high in IT G,.

Case 2 (of Theorem 4.19). The group T(IL G\) has non-zero elements of
infinite height.

Proof of Case 2. Let T(11,°G,) = ¥1H,. For each n, let K, be high in G,
and H,’ high in H,. By Lemma 4.20, T(II K,) is high in 7(II G,). Also
> H,' is high by a similar argument. Since Y G, is an essentially unbounded
decomposition, |piT(H G,)| > No for all 4, and since } K, is essentially
unbounded, |p‘T" (Il K,)| > R, forall 4. By [3, p. 1380, Theorem 5], pT (11 K,,)
and p{(¥ H,') are high in p‘T(II G,) and hence have the same cardinality.
Therefore [p*> H,'| > No and |p*H,’| > N, for all . We may now revert to
Case 1, being careful to take each k; from H,. Such a subgroup is without
elements of infinite height and the contradiction of Case 1 will repeat itself
now in Case 2.

4.21. THEOREM. Let G be a p-group without elements of infinite height. If
G = H @ K contains an unbounded torsion-complete group, then either H or K
contains an unbounded torsion-complete group.

The following two lemmas yield a straightforward proof of the theorem.

4.22. LEMMA. Let N be a subgroup of a torsion-complete group B such that
B/N is reduced. Then N is torsion-complete.

Proof. From the exact sequence: 0 = N — B — B/N — 0, we obtain the
exact sequence:

(1) 0 = Hom(Z(p®), B/N) — Ext(Z(p*), N)
— Ext(Z(p®), B) — Ext(Z(p™), B/N) — 0.

Now, as is well-known, a reduced p-group G is torsion-complete if and only if
Pext(Z (™), G) = 0. Moreover, Pext(Z(p*), G) is the subgroup of elements
of infinite height in Ext(Z(p%), G). Since Pext(Z(p®), B) = 0, Ext(Z(p™), B)
has no elements of infinite height, whence, by (1), Ext(Z($™), N) has no ele-
ments of infinite height, or Pext(Z(p®), N) = 0. Thus N is torsion-complete,
as stated.

4.23. LEMMA. Let N be a p*-bounded subgroup of the torsion-complete p-group
B. Then if (B/N)! = 0, B/N is torsion-complete.

Proof. To see this, we show that Pext(Z(p®), B/N) = 0. From the exact
sequence (1), we see that

w B - Ext(Z(p™), B) - Ext(Z(p>), B)
E’“<Z @ )’Xf> =Ext(Z(p®),N) = N '
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where, since N is cotorsion, N = Ext(Z(p®), N). Now, since (B/N)! = 0,
Pext(Z(p™), B/N) is torsion-free.

Suppose that g + N = p’g, + N is an element of infinite height and
infinite order in Ext(Z(p®), B)/N. Then p"g = p™*"g, for all positive integers 7,
so that 0 # p"g is an element of infinite height in Ext(Z(p~), B), a contra-
diction. Thus Pext(Z(p*), B/N) =0, and B/N is torsion-complete, as
stated.

Proof of the Theorem 4.21. Consider the projection 7: B — H in the decom-
position G = H ® K. The kernel of this map is B/ K. Now if BN K is
unbounded, it is the sought-after torsion-complete group, in K, by Lemma 4.22.
On the other hand, if BN K is bounded, then B/BN K =~ rx(B) C H is
unbounded and torsion-complete by Lemma 4.23. This completes the proof.

4.24. COROLLARY. Let G = Y NH; be a p-group without elements of infinite
hetght. If G contains an unbounded torsion-complete group, then so does some H ;.

4.25. THEOREM. If G = Y H, is a p-group without elements of infinite height,
which contains an unbounded torsion-complete group, then some H, contains an
unbounded torsion-complete group.

Proof. (a) Let B be an unbounded torsion-complete group in G. Let
B = B: @ B, be basic in B, where |Bi| = Xo. B = B, ® By, by [1, p. 115,
Theorem 34.3]. Thus, we may for our purposes, assume that B is the torsion
completion of a countable basic subgroup B. Then B is contained in a countable
subsum of the H,s. By Lemma 4.2, B is in the countable subsum of the H,s
also. We suppose, then, that B C 3 °H,.

(b) Consider S; = p BN pi(Q vt H,), i=1,2,3,... . We shall show
that.S; = 0 for some <. If S; £ 0 for each 7, we can find a set of positive inte-
gers: Ny < Ny < ...and a set [p;];” with each b, in B,

Ny
pib; € p’( >, H,,)

Ni-1+1

We can also assume that o(p;) = p, for every 7. Consider g, = > 7Z1pb..
Then g,i1 — g, € p"B, for every n and the Cauchy sequence [g,];" has a
limit g in B. Suppose that ¢ = (k1 + ... + hy) in Y1VH,. Then,

n—1
gn—g=21pib,-~(h1+...+h]v).

Since the p%;s are from mutually disjoint subsums of Y ;"H,, the height of
g, — g is bounded as # approaches infinity and g, — g ¢ p"B C p"G, for
every #, a contradiction. Thus, for N > 0,

S o =6 [ (S07H) D {9 B e} [ 307, 2578/ 10) 2278,

Since pV B is unbounded and torsion-complete, 3" ,¥~1H, contains an unbounded
torsion-complete group. Corollary 4.24 completes the proof.
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4.26. TueoreM. If T(I1,°G,) = S1°H, is a p-group without elements of
infinite height where no G, contains an unbounded torsion-complete group and
H, = H,, for every n and m, then 3 G, is essentially bounded.

Proof. Suppose that 3 G, is essentially unbounded. By Proposition 1.6,
T(II G,) has an unbounded torsion-complete summand. By Theorem 4.25,
each H, has an unbounded torsion-complete subgroup, say B,. We write
> H,=3:"B, ® K. Consider the natural projection m;: By — G; in
G: ® T(II,°G,). Since G: contains no unbounded torsion-complete group,
7 is not one-to-one. We can find then b; € B; N\ T(I1,°G,) with o(b;) = ».
Similarly, for each z, consider

p=(TAIG,)) = Tl p=1G,) =3 p~1B, @ pK,

and the projection w;: p*1B, — p*~1G, + ... + p*'G,. By Corollary 4.24,
p71G1 + ... + p*1G; contains no unbounded torsion-complete group, and
the projection w; is not one-to-one, for any <. We then find, for each
i=1,2,3,...,p7%,; € p—B, N\ Tl 1,G,) with o(p™1,) = p. Letting
2. = 21"p" 1, [g.]i” is a bounded Cauchy sequence which converges in
7dIG,). If g,—>g=b+k, b€ X,"B,, k € K, then, for large n,

g—g=b+E—3 17,

N
= b - zl: pi_lbi - PNbN+1 - PN+1bN+2 T e e e T :f)n_lbn + k.

As n approaches infinity, H(g — g,) is bounded, which contradicts conver-
gence. The theorem is thus proved.

4.27. COROLLARY. Neither the product, nor its torsion subgroup, of a countably
infinite collection of umbounded direct sums of cyclic p-groups equals an infinite
direct sum of isomorphic groups.

4.28. THEOREM. A countable direct product of isomorphic p-groups can be
decomposed into an infinite direct sum of isomorphic groups if and only if the
product is the direct sum of a divisible group and a bounded group.

Proof. (a) Let II,°G, be a countable direct product of isomorphic p-groups.
If I1 G, = D @ B, where D is divisible and B is bounded, the ranks of D
and/or B are infinite. We then express D, B, and consequently II G,, as a
direct sum of isomorphic groups.

(b) Suppose that II,G, = ¥,°H,, where [G,];” is a set of isomorphic
p-groups, [H,],™ is a set of isomorphic groups. Suppose that II G, is not the
direct sum of a divisible and a bounded group. Then the reduced part of each
G, is unbounded. We can find g, € G, for every # such that (g,) is pure and
0(g) < 0(gus1). Now & = (g1, 82+, gny - - .) is in II G, and (x) is a p-pure
cycle of infinite order. Thus 3 H,, and in fact each H, contains a pure (p-pure)
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cycle of infinite order, say (%;). Now there exists k; such that p*ih;, = v, is in
II...G, for each 4. Letting a, = y1 + pya + ...+ p"ly,, there exists a
non-zero « in 11 G, such that a, — a € p* I G, for every n. However, as n
increases, a, — a has bounded p-height, since « is in a finite sum of H,s and
Qny1 — @y is in H,yq and of finite p-height. This contradiction completes the
proof.

Note. We can replace countable by infinite in the preceding theorem, since
a countable product will split off and the proof remain intact.

5. Open questions. Many questions about direct products of Abelian
p-groups remain to be answered. Especially relevant to the work in this paper
are the following.

(1) Under what conditions does a product (torsion subgroup of a product)
of p-groups decompose into an infinite direct sum of isomorphic groups?

(2) If the torsion subgroup of a product of p-groups equals 4 @ B, does
the product equal 4’ ® B’, where A’ D 4 and B’ D B?

(3) For p-groups G», when do epimorphisms exist of the following type:
(@) IT1G.—1dLGy, ) I1G, =X Gy, (¢) TAIG,) — T G We note
that, for bounded G,s and unbounded product, the epimorphisms (a) and (b)
do not exist since I G, would be cotorsion as well as any homomorphic image
of it; (c) would exist since 3~ G\ would be a direct summand of a basic subgroup
of T(H G)\)
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