A NONABELIAN FROBENIUS-WIELANDT COMPLEMENT

by ALBERTO ESPUELAS

(Received 9th May 1986)

We recall the following definition (see [1]):
A finite group G is said to be a Frobenius-Wielandt group provided that there exists a proper subgroup H of G and a proper normal subgroup N of H such that $H \cap H^{g} \leqq N$ if $g \in G-H$. Then H / N is said to be the complement of (G, H, N) (see [1] for more details and notation).

An important particular case of this situation is the following:
The finite group H acts faithfully on a vector space V over a finite field and the elements of $H-N$ act fixed point freely on V.

In this case let G be the semidirect product of V by H. Now (G, H, N) is an $\mathrm{F}-\mathrm{W}$ group. This particular situation was first considered by Lou and Passman in [2]. With their notation the group $H /\left\langle C_{H}(v) \mid 0 \neq v \in V\right\rangle$ is said to be the generalized Frobenius complement, GFC, in short.

Recently, in his thesis at the University of Chicago, C. M. Scoppola showed that GFCs for abelian-by-cyclic p-groups of odd order are abelian (see Theorem B of [4]). As he points out the result is false for $p=2$, the quaternion group being a counterexample.

The purpose of this note is to construct a metabelian p-group for p odd having a nonabelian generalized Frobenius complement (in particular, a nonabelian F-W complement). Furthermore our example is an extension of an abelian p-group by the elementary abelian p-group of order p^{2}. Thus Scoppola's result is best possible in some sense.

Example. Let p be an odd prime. There exists a p-group P with the following properties:
(i) P is an extension of an abelian group A by the elementary abelian group of order $p^{2}, C_{p} \times C_{p}$. In particular, P is metabelian.
(ii) $P / \Omega_{1}(A)$ is extraspecial of order p^{3} and exponent p^{2}, where $\Omega_{1}(A)=\left\langle x \in A \mid x^{p}=1\right\rangle$.
(iii) There exists a faithful irreducible $K P$-module V, K being a finite field, such that the elements of $P-\Omega_{1}(A)$ act f.p.f. on V.

Thus the GFC of P with respect to V is nonabelian.
Proof. We start with the elementary abelian p-group

$$
A_{0}=\left\langle a_{i, j} \mid 1 \leqq i \leqq p-1,1 \leqq j \leqq p,(i, j) \neq(p-1, p)\right\rangle \times\langle z\rangle \simeq C_{p}^{p(p-1)-1+1}=C_{p}^{(p-1) p} .
$$

Consider $\langle\mathrm{x}\rangle \simeq C_{p^{3}}$ acting on A as follows:

$$
a_{i, j}^{x}=a_{i, j+1}, \quad z^{x}=2,
$$

where, by definition, $a_{i, p+1}=a_{i, 1}$ if $i<p-1$ and $a_{p-1, p}=a_{p-1,1}^{-1} \ldots a_{p-1, p-1}^{-1} z^{-1}$. Observe that the image of $a_{p-1, p}$ under x is $a_{p-1,1}$. Hence, for each i, the group $\langle x\rangle$ permutes the set $\left\{a_{i, j} \mid 1 \leqq j \leqq p\right\}$ cyclically. Observe equally that x^{p} centralizes A_{0}. Let $\langle x\rangle A_{0}$ be the natural semidirect product of A_{0} by $\langle x\rangle$. Consider $B=\langle x\rangle A_{0} /\left\langle z^{-1} x^{p^{2}}\right\rangle$. Identify the elements of $\langle x\rangle A_{0}$ with their images in B.

Take $\langle y\rangle \simeq C_{p^{2}}$ acting on B as follows:

$$
\begin{gathered}
a_{i, j}^{y}=\left\{\begin{array}{lll}
a_{i, j} a_{i+1, j} & \text { if } & i \neq p-1 . \\
a_{p-1, j} & \text { if } & i=p-1 .
\end{array}\right. \\
x^{y}=x^{1+p} a_{1,1}, \\
z^{y}=z .
\end{gathered}
$$

We show that this action is well defined. We must prove that the image of a^{y} under x^{y} is equal to the image of a^{x} under y for all $a \in A_{0}$. As $\left\langle x^{p}, A_{0}\right\rangle$ is abelian then the image of a^{y} under x^{y} is equal to the image of a^{y} under x. Thus we will prove that $a^{x y}=a^{y x}$ for all $a \in A_{0}$. As this is clear for z we may suppose that $a=a_{i, j}$ for some i, j.

If $i \neq p-1$ then $a_{i, j}^{x y}=a_{i, j+1}^{y}=a_{i, j+1} a_{i+1, j+1}$ and $a_{i, j}^{y x}=\left(a_{i, j} a_{i+1, j}\right)^{x}=a_{i, j+1} a_{i+1, j+1}$.
If $i=p-1$ then $a_{p-1, j}^{x y}=a_{p-1, j+1}=a_{p-1, j}^{y x}$.
It is easy to see that y centralizes $x^{p^{2}}$. Thus the action of $\langle y\rangle$ on B is well defined. Consider the semidirect product $\langle y\rangle B$ of B by $\langle y\rangle$. We will prove the following relation:

$$
\begin{equation*}
u^{y^{p-1}+\cdots+y+1}=1 \quad \text { if } \quad u \in\left\langle x^{p}, A_{0}\right\rangle . \tag{}
\end{equation*}
$$

Once $\left(^{*}\right.$) is proven it is clear that y^{p} centralizes $\left\langle x^{p}, A_{0}\right\rangle$. Furthermore $x^{y}=x u$ for $u \in\left\langle x^{p}, A_{0}\right\rangle$ and then $x^{y^{p}}=x u u^{y} \ldots u^{y^{p-1}}=x$ and y^{p} is central in $\langle y\rangle B$. Consider $P=$ $\langle y\rangle B /\left\langle y^{p} z^{-1}\right\rangle$. We identify the elements of $\langle y\rangle B$ with their images in P. Let A be the subgroup of P generated by x^{p} and A_{0}. Then A is abelian and $A_{0}=\Omega_{1}(A)$. Observe that $Z(P)$ is generated by z.

Assuming that $\left(^{*}\right)$ is true we show that if $t \in P-A_{0}$ then t has a nontrivial power in $Z(P)$. Clearly P / A_{0} is extraspecial of order p^{3} and exponent p^{2}. As p is odd then if $t \in P-A\langle y\rangle$ we have that $t^{p} \in A-A_{0}$ and $t^{p^{2}}$ is a nontrivial element of $Z(P)$. If $t \in A-A_{0}$ then t^{p} is nontrivial and central. Now (*) assures that $(y u)^{p}=y^{p}=z$ if $u \in A$ and thus our claim is verified.

To prove $\left(^{*}\right)$ consider y as a linear map of A_{0}. Then y acts on each $A_{j}=\left\langle a_{i, j}\right| 1 \leqq i \leqq$ $p-1\rangle$. As $\left|A_{j}\right|=p^{p-1}$ it is clear that the minimum polynomial of y on A_{j} divides $(X-1)^{p-1}$. Thus $\left(^{*}\right)$ is proven for $u \in A_{0}$. As A is abelian and it is generated by x^{p} and A_{0} it only remains to check that $\left(^{*}\right)$ is true for x^{p}. But $\left(x^{p}\right)^{y}=\left(x^{y}\right)^{p}=\left(x^{1+p} a_{1,1}\right)^{p}=$ $x^{p} z a_{1,1} \ldots a_{1, p}$. Put $b_{i}=\prod_{j=1}^{p} a_{i, j}, 1 \leqq i \leqq p-1$. Observe that $b_{p-1}=z^{-1}$ by the definition of $a_{p-1, p}$. Now

$$
\left(x^{p}\right)^{y}=x^{p} b_{1} z, \quad b_{1}^{y}=b_{1} b_{2}, \ldots, b_{p-2}^{y}=b_{p-2} z^{-1} .
$$

Put $\bar{b}_{1}=b_{1} z$ and $\bar{b}_{i}=b_{i}$ for $i>1$. Then we have that $\left(x^{p}\right)^{y}=x^{p} \bar{b}_{1}$ and the remaining relations are valid replacing b_{i} by \bar{b}_{i}. By induction on i it is easy to see that

$$
\left(x^{p}\right)^{y^{i}}=x^{p} b_{1}^{\binom{i}{1}} \ldots b_{i}^{\binom{i}{i}}, \quad \text { for } i>0 .
$$

Now the exponent of \bar{b}_{j} in the first member of $\left(^{*}\right)$ is $\sum_{i=j}^{p-1}\binom{i}{j}$. This number equals $\left({ }_{j+1}^{p}\right)$ and hence it is divisible by p if $j<p-1$. As $b_{p-1}=z^{-1}$ and $x^{p^{2}}=z$ then $\left(^{*}\right)$ is valid for x^{p} also.

Hence our claim is verified and every element of $P-A_{0}$ has a nontrivial power in $Z(P)$. Let α be a faithful irreducible representation of $Z(P)$ over a finite field K, $\operatorname{char}(K) \neq p$, and put $\rho=\alpha^{P}$. It is clear that every element of $P-A_{0}$ acts f.p.f. under ρ since z does. Furthermore, as A_{0} is elementary abelian, we have that A_{0} is the subgroup of P generated by the elements having nontrivial fixed points under ρ. Thus P / A_{0} is a nonabelian GFC for P and the proof is finished.

REFERENCES

1. A. Espuelas, The complement of a Frobenius-Wielandt group, Proc. London Math. Soc. (3) 48 (1984), 564-576.
2. B. Lou and D. S. Passman, Generalized Frobenius Complements, Proc. Amer. Math. Soc. 17 (1966), 1166-1172.
3. C. M. Scoppola, On Generalized Frobenius Complements, Proceedings of Groups-St. Andrews 1985, (Eds., E. F. Robertson and C. M. Campbell, Cambridge University Press, Cambridge, 1986), 305-306.
4. C. M. Scoppola, Abelian Generalized Frobenius Complements for p-groups and the Hughes problem, submitted.

Departamento de Algebra
Facultad de Ciencias
Universidad de Zaragoza
Zaragoza, Spain

