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A QUINTUPLE LAW FOR MARKOV ADDITIVE
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LOTHAR BREUER,∗ University of Kent

Abstract

We consider a Markov additive process (MAP) with phase-type jumps, starting at 0. Given
a positive level u, we determine the joint distribution of the undershoot and overshoot of
the first jump over the level u, the maximal level before this jump, the time of attaining
this maximum, and the time between the maximum and the jump. The analysis is based
on first passage times and time reversion of MAPs. A marginal of the derived distribution
is the Gerber–Shiu function, which is of interest to insurance risk. Several examples
serve to compare the present result with the literature.
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1. Introduction

In recent literature on insurance risk, the undershoot of a variety of stochastic processes has
been of considerable interest under the name of ‘surplus prior to ruin’. Mostly, it has been
investigated within the framework of the so-called Gerber–Shiu (discounted penalty) function,
which describes the joint distribution of the time to ruin, the surplus prior to ruin, and the deficit
at ruin. Some examples of stochastic processes for which results are available are the compound
Poisson model [16], its perturbed [12], [15], [22] and Markov-modulated [4], [25] versions, the
Lévy risk process [14], the fluid flow model [1], [8], the Sparre Andersen model with Erlang
interclaim times [17] as well as its perturbed version [20]. This list is by no means exhaustive,
but one can already see that all these models are special instances of Markov additive processes
(MAPs). The almost universal approach in the literature is to derive some (defective) renewal
equations, starting from a set of differential equations that can be obtained via Itô’s formula or
the infinitesimal generator of the surplus process (see the discussion to [21]).

From another perspective, a recent paper by Doney and Kyprianou [13] provides a formula
for the joint distributions of the space–time positions of overshoots and undershoots for Lévy
processes (see Theorem 3 therein, with Example 8 dedicated to insurance risk). Their approach
of analysis is more along the classical lines of fluctuation theory, using the ladder height process
and time reversal. For the case of Lévy processes with phase-type jumps, the ladder process is
derived explicitly in [27]. Related results on MAPs can be found in [19].

The present paper aims to apply the classical approach of ladder heights and time reversal
to the class of MAPs with phase-type jumps. Our main result is an explicit formula for the
measure

E(exp(−γ G̃τ̃ (u) − γ ∗(τ̃ (u)− G̃τ̃ (u))), M̃τ̃ (u) ∈ dz, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy),
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where X̃ = (X̃t : t ≥ 0) is the level process of a MAP, τ̃ (u) is the first passage time over some
level u > 0, the γ, γ ∗ ≥ 0 are time discounting factors (which can be seen as the variables
for the Laplace transforms of G̃τ̃ (u) and τ̃ (u)− G̃τ̃ (u)), M̃τ̃ (u) is the supremum of X̃ before
the passage time τ̃ (u), G̃τ̃ (u) is the time of attaining this supremum, and Uτ̃(u) := u− X̃τ̃ (u)−
and Oτ̃(u) := X̃τ̃ (u) − u respectively denote the undershoot and overshoot at time τ̃ (u). This
result will provide all the information (and more) that is usually contained in the Gerber–Shiu
function.

Of fundamental use in this paper will be the recent determination of the Laplace transform of
first passage times for MAPs as given in [11]. A second pillar of the present work is Theorem 2.5
of [4] (see also [2, Theorem 3.1] for a queueing context), which yields a relation between an
occupation measure and the ladder height via time reversal. The original result was presented
in the framework of the Markov-modulated compound Poisson model.

In the following section we shall collect all the necessary preliminary results that we shall
need later on. In particular, we simplify the results from [11] for the special kind of MAPs that
we employ in this paper. Section 3 contains the main result with some corollaries. Finally, in
Section 4 we present applications to insurance risk, in particular the Gerber–Shiu function, and
compare the present result with existing results in the literature.

2. Preliminaries

2.1. Markov additive processes with phase-type jumps

Let J̃ = (J̃t : t ≥ 0) be an irreducible Markov (jump) process with finite state space Ẽ and
infinitesimal generator matrix Q̃ = (q̃ij )i,j∈Ẽ . We call J̃t the phase at time t ≥ 0 (another
common name is regime). Define the real-valued process X̃ = (X̃t : t ≥ 0) as evolving like
a Lévy process X̃(i) with parameters µ̃i (drift), σ̃ 2

i (variation), and ν̃i (Lévy measure) during
intervals when the phase equals i ∈ Ẽ. Whenever J̃ jumps from a state i ∈ Ẽ to another state
j ∈ Ẽ, j �= i, this may be accompanied by a jump of X̃ with some distribution function F̃ij .
Then the two-dimensional process (X̃, J̃) is called a MAP. A MAP can also be defined by the
following property (see [5, Section XI.2a]): (X̃, J̃) is a Markov process such that

E(f (X̃t+s − X̃t )g(J̃t+s) | Ft , J̃t = i) = E(f (X̃s)g(J̃s) | X̃0 = 0, J̃0 = i) (1)

holds for all s, t > 0 and i ∈ E, wheref andg are measurable functions and (Ft : t ≥ 0)denotes
the canonical filtration of (X̃, J̃). For a textbook introduction to MAPs, see [5, Chapter XI].

Denote the indicator function of a set A by 1A. We assume that the Lévy measures ν̃i have
the form

ν̃i (dx) = λ+
i 1{x>0}α(ii)+ exp(T (ii)+x)η(ii)+ dx + λ−

i 1{x<0}α(ii)− exp(−T (ii)−x)η(ii)− dx

for all i ∈ Ẽ, where λ±
i ≥ 0 and (α(ii)±, T (ii)±) are representations of phase-type distributions

without an atom at 0. The η(ii)± := −T (ii)± 1 are called the exit vectors, where 1 denotes a
column vector of appropriate dimension with all entries being 1. This means that the jump
process induced by the Lévy measure ν̃i is compound Poisson with jump sizes of a doubly
phase-type (PH) distribution. Denote the order of PH(α(ii)±, T (ii)±) by m±

ii . Furthermore,
write λi := λ+

i + λ−
i .

Likewise, let p+
ij and p−

ij denote the probability that a positive or, respectively, negative
jump is induced by a phase change from i ∈ Ẽ to j ∈ Ẽ, and assume that these jumps have a
PH(α(ij)±, T (ij)±) distribution without an atom at 0. Note that p+

ij + p−
ij ≤ 1 for all i, j ∈ Ẽ.

Let m±
ij denote the order of PH(α(ij)±, T (ij)±) and define η(ij)± := −T (ij)± 1.
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Figure 1: A typical path of X̃.
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Figure 2: A typical path of X.

We shall exclude the case where µ̃i = σ̃ 2
i = 0 for any phase i ∈ Ẽ, which would govern the

zero process or a pure Lévy measure. This avoids the awkward case of a nonunique timeGτ̃(u)
of attaining the supremum of X̃ before the passage time τ̃ (u).

The class of MAPs with these assumptions of phase-type jumps is dense within the class of
all MAPs; see [7, Proposition 1]. The main advantage of the restriction on the jump distribution
is the possibility of transforming the jumps into a succession of linear pieces of exponential
duration (each with slope 1 or −1) and retrieving the original process via a simple time change;
see [3, Section 3.4.4] or [9]. The path transformation is illustrated in Figures 1 and 2. Figure 1
shows a typical path of the original level process X̃ and Figure 2 shows the transformed path X.

In more exact terms, the transformation is done in the following way. Without the jumps,
the Lévy process X̃(i) during a phase i ∈ Ẽ is either a linear drift (of positive or negative slope
µ̃i ∈ R) or a Brownian motion (with parameters σ̃i > 0 and µ̃i ∈ R). Considering this MAP
(without the jumps) we can partition its phase space Ẽ into the subspaces Ep (for positive
drifts), Eσ (for Brownian motions), and En (for negative drifts). Then we introduce two new
phase spaces,

E± := {(i, j, k,±) : i, j ∈ Ep ∪ Eσ ∪ En, 1 ≤ k ≤ m±
ij },

to model the jumps. Now define the enlarged phase space E := E+ ∪ Ep ∪ Eσ ∪ En ∪ E−
and let Ec := Ep ∪Eσ ∪En denote the subspace of E that contains all phases under which the
real-time movements are continuous.
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We define the modified MAP (X,J) over the phase space E as follows. Set the phase-
dependent parameters as (µi, σ 2

i , νi) := (µ̃i , σ̃i , 0) for i ∈ Ec and (µh, σ 2
h , νh) := (±1, 0, 0)

for h ∈ E±, i.e. h = (i, j, k,±), where i, j ∈ Ec and 1 ≤ k ≤ m±
ij . This leads to the cumulant

functions ψh(α) = ±α for h ∈ E± and

ψi(α) =
{
µiα, i ∈ Ep ∪ En,
1
2σ

2
i α

2 + µiα, i ∈ Eσ , (2)

where the earlier exclusion of a phase i ∈ Ẽ with µ̃i = σ̃i = 0 yields µi > 0 for i ∈ Ep
and µi < 0 for i ∈ En. The modified phase process J is determined by its generator matrix
Q = (qij )i,j∈E . For this, the construction above yields

qih =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̃ii − λi, h = i ∈ Ec,
q̃ih(1 − p+

ih − p−
ih), h ∈ Ec, h �= i,

λ±
i α

(ii)±
k , h = (i, i, k,±),

q̃ijp
±
ij α

(ij)±
k , h = (i, j, k,±),

(3)

for i ∈ Ec as well as

q(i,j,k,±),(i,j,l,±) = T
(ij)±
kl and q(i,j,k,±),j = η

(ij)±
k (4)

for i, j ∈ Ec and 1 ≤ k, l ≤ m±
ij . For later use, we define qi := −qii for all i ∈ E.

Denote the MAP constructed in such a way by (X,J). The original level process X̃ is
retrieved via the time change

c(t) :=
∫ t

0
1{Js∈Ec} ds, c−1(s) := inf{t ≥ 0 : c(t) > s}, and X̃t = Xc−1(t), (5)

for all t ≥ 0. The inverses of the cumulant functions ψi can be given explicitly as

φi(β) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

±β, i ∈ E±,
β

µi
, i ∈ Ep ∪ En,

1

σi

√
2β + µ2

i

σ 2
i

− µi

σ 2
i

, i ∈ Eσ .
(6)

We shall, however, use them only for the so-called ascending phases i ∈ Ea := E+ ∪Ep ∪Eσ ;
cf. [10, Chapter VII].

Example 1. Regarding the sample paths in Figures 1 and 2, we find J in phases i ∈ E+ during
the intervals [50, 70] and [170, 210]. In all other intervals, J is in phases i ∈ Ec. Regarding
the time change, we observe in Figure 1 a first jump of height 20 at time 50. We thus obtain
c−1(50) = 70 and X̃50 = X70.
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2.2. First passage times

Of central use in the present paper will be the recent derivation of the Laplace transforms
for the first passage times of MAPs with phase-type jumps as given in [11]. We call the phases
i ∈ Ed := En ∪ E− descending. Define τ̃ (x) := inf{t ≥ 0 : X̃t > x} for all x ≥ 0 and
assume that X̃0 = 0. Note that this is the first passage time over the level x for the original
MAP X̃, meaning that we do not count the time spent in jump phases i ∈ E±. This means that
τ̃ (x) = c(τ (x)) = ∫ τ(x)

0 1{Js∈Ec} ds, according to (5). For γ ≥ 0, denote

Eij (e
−γ τ̃ (x)) := E(e−γ τ̃ (x); Jτ(x) = j | J0 = i, X0 = 0)

for all i, j ∈ E. Let E(e−γ τ̃ (x)) denote the matrix with these entries, and write

E(e−γ τ̃ (x)) =
(

E(a,a)(e−γ τ̃ (x)) E(a,d)(e−γ τ̃ (x))
E(d,a)(e−γ τ̃ (x)) E(d,d)(e−γ τ̃ (x))

)

in obvious block notation with respect to the subspacesEa = E+∪Ep∪Eσ (ascending phases)
and Ed = En ∪ E− (descending phases).

Since a first passage to a level above cannot occur in a descending phase, we obtain first
P(Jτ(x) = j) = 0 for all j ∈ Ed and, thus, E(d,d)(e−γ τ̃ (x)) = E(a,d)(e−γ τ̃ (x)) = 0, where 0
denotes a zero matrix of suitable dimension. Equation (6) of [11] states that

E(d,a)(e
−γ τ̃ (x)) = A(γ )eU(γ )x and E(a,a)(e

−γ τ̃ (x)) = eU(γ )x

for some subgenerator matrix U(γ ) of dimension |Ea| × |Ea| and a subtransition matrix A(γ )
of dimension |Ed | × |Ea|, where |S| denotes the number of elements of a set S. Altogether, we
can write

E(e−γ τ̃ (x)) =
(
Ia
A(γ )

) (
eU(γ )x 0

)
,

where Ia denotes the identity matrix of dimension |Ea| × |Ea|.
Write �q := diag(qi)i∈E , and let P = �−1

q Q+ I denote the transition matrix of phase
changes. Note that pii = 0 for all i ∈ E. Let e�i denote the ith canonical row base vector, with
appropriate dimension according to context. According to Theorem 3 of [11], A(γ ) and U(γ )
satisfy the following equations:

e�h U(γ ) =
m+
ij∑

l=1

T
(ij)+
kl e�(i,j,l,+) + η

(ij)+
k e�j

(
Ia
A(γ )

)
for h = (i, j, k,+) ∈ E+,

e�i U(γ ) = −φi(qi + γ )e�i + φi(qi)
∑
j∈E

pij e
�
j

(
Ia
A(γ )

)
Li(−U(γ )) for i ∈ Ep ∪ Eσ ,

e�i A(γ ) =
∑

j∈E, j �=i
qij e

�
j

(
Ia
A(γ )

)
((qi + γ )I − ψi(−U(γ )))−1 for i ∈ En,

e�i A(γ ) =
∑

j∈E, j �=i
qij e

�
j

(
Ia
A(γ )

)
(qiI − ψi(−U(γ )))−1 for i ∈ E−.

For the MAP (X,J) with continuous level process, the matrix function

Li(−U(γ )) = qi

φi(qi)
(φi(qi + γ )I + U(γ ))((qi + γ )I − ψi(−U(γ )))−1
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can be simplified considerably. For i ∈ Eσ , the same arguments as in [11, Example 2], lead to

Li(−U(γ )) = φ∗
i (qi)(φ

∗
i (qi + γ )I − U(γ ))−1 (7)

with

φ∗
i (β) = 1

σi

√
2β + µ2

i

σ 2
i

+ µi

σ 2
i

. (8)

Furthermore, Li(−U(γ )) = I for i ∈ Ep (see Example 3 of [11]), while, according to (2),
ψi(−U(γ )) = −µiU(γ ) for i ∈ En and ψi(−U(γ )) = U(γ ) for i ∈ E−. Hence, the
equations above involve rather simple expressions only.

Considering (6), it was shown in Theorem 2 of [11] that the matrices A(γ ) and U(γ ) can
be determined by successive approximation as the limit of the sequence ((An,Un) : n ≥ 0)
with initial values A0 := 0, U0 := −diag(φi(qi + γ )1{i∈Eσ∪Ep} + φi(qi)1{i∈E+})i∈Ea and the
following iteration:

e�h Un+1 =
m+
ij∑

l=1

T
(ij)+
kl e�(i,j,l,+) + η

(ij)+
k e�j

(
Ia
An

)
for h = (i, j, k,+) ∈ E+,

e�i Un+1 = −qi + γ

µi
e�i + 1

µi

∑
j∈E, j �=i

qij e
�
j

(
Ia
An

)
for i ∈ Ep,

e�i An+1 =
∑

j∈E, j �=i
qij e

�
j

(
Ia
An

)
((qi + γ )I + µiUn)

−1 for i ∈ En,

e�i An+1 =
∑

j∈E, j �=i
qij e

�
j

(
Ia
An

)
(qiI − Un)

−1 for i ∈ E−,

e�i Un+1 = −φi(qi + γ )e�i + 2

σ 2
i

∑
j∈E, j �=i

qij e
�
j

(
Ia
An

)
(φ∗
i (qi + γ )I − Un)

−1 for i ∈ Eσ .

For the last equality, the relation φi(qi)φ∗
i (qi) = 2qi/σ 2

i has been used. Note that the only
difference between the iterations for En and E− is the missing γ in the last factor for E−,
reflecting that we do not discount the time for phases i ∈ E− as they are jump phases in real
time.

2.3. Time-reversed MAPs

Denote the number of phases inE bym := |E|. Let π = (π1, . . . , πm) denote the stationary
phase distribution, which can be computed by πQ = 0 and π 1 = ∑m

i=1 πi = 1, where 0
denotes the zero row vector and 1 the column vector with all entries being 1. Define the matrix
Q∗ = (q∗

ij )i,j∈E by q∗
ij := πjqji/πi for all i, j ∈ E or in shorter notation Q∗ := �−1

π Q��π ,

where�π = diag(π1, . . . , πm) is the diagonal matrix with entryπi in its ith row and ‘�’denotes
transposition of a matrix. Then the Markov process with state spaceE and generator matrixQ∗
is a time-reversed version of the original phase process J. We denote it by J∗ = (J ∗

t : t ≥ 0).
Based on J∗ we define a time reversal (X∗,J∗) of the original MAP (X,J) by the rule that

X∗ evolves like a Lévy process with parameters −µi (drift) and σ 2
i (variation) during intervals

when the time-reversed phase J ∗
t equals i ∈ E. Note that the sign change of the µi leads to

E∗± = E∓,E∗
p = En,E∗

n = Ep, andE∗
σ = Eσ . We denote the first passage times for (X∗,J∗)

by τ ∗(x) := inf{t ≥ 0 : X∗
t > x} for any level x ≥ 0.
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The same arguments as for Equation (3.3) of [2] yield the following relation between the
occupation measure (before τ(0)) for the MAP (X,J) and the first passage time for its time
reversal (X∗,J∗):

πj P(X∗
t ∈ dx,X∗

t > X∗
u for all u < t, J ∗

t = i | X∗
0 = 0, J ∗

0 = j)

= πi P(Xt ∈ − dx, τ (0) > t, Jt = j | X0 = 0, J0 = i).

Write Ei for the conditional expectation given X0 = 0 and J0 = i. Multiplying by e−γ t and
integrating over t yields

πi Ei

∫ τ(0)

0
1{Xt∈− dx, Jt=j}e−γ t dt = πj Ej

∫ ∞

0
1{X∗

t ∈dx,X∗
t >X

∗
u for all u<t, J ∗

t =i}e−γ t dt

= πj Ej (e
−γ τ∗(x); J ∗

t = i). (9)

A well-known result that we shall use in the next section is the following lemma which is
Theorem VI.5(i) and Theorem VII.4(i) of [10] applied to Brownian motion and its time reversal.
This lemma also yields an alternative explanation for (7).

Lemma 1. Let B = (Bt : t ≥ 0) denote a Brownian motion with drift µ ∈ R and variation
σ 2 > 0. Assume that B0 = 0. Furthermore, let E(q) denote a random variable which is
independent of B and has an exponential distribution with parameter q > 0. Write

B̄E(q) := max
0≤t≤E(q)

Bt and B̄∗
E(q) := B̄E(q) − BE(q),

as well as

GE(q) := sup{t < E(q) : Bt = B̄E(q)} and G∗
E(q) := E(q)−GE(q).

Then the pairs (GE(q), B̄E(q)) and (G∗
E(q), B̄

∗
E(q)) are independent with respective measures

E(e−γGE(q); B̄E(q) ∈ dx) = φ(q)e−φ(q+γ )x dx

and
E(e−γG∗

E(q); B̄∗
E(q) ∈ dy) = φ∗(q)e−φ∗(q+γ )y dy

for γ ≥ 0, where φ(β) and φ∗(β) for β > 0 are given in the last line of (6) and in (8),
respectively.

3. Main result

Let (X̃, J̃) = ((X̃t , J̃t ) : t ≥ 0) denote a MAP with phase-type jumps, and assume that
X̃0 = 0. Denote the phase space of J̃ by Ẽ and its generator matrix by Q̃. Let

τ̃ (u) := inf{t > 0 : X̃t > u}
denote the first passage time over some level u ≥ 0. Write

M̃τ̃ (u) := sup{X̃t : t < τ̃ (u)}
for the maximum of X̃ before the first passage over u. We necessarily have 0 ≤ M̃τ̃ (u) ≤ u,
where M̃τ̃ (u) = 0 means that X̃ does not exceed its initial value 0 before it jumps (from a
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negative value) over the threshold u ≥ 0. The case M̃τ̃ (u) = u means that passage occurs by
creeping, i.e. the threshold u is not passed by a jump but continuously. We are further interested
in

G̃τ̃ (u) := sup{t < τ̃ (u) : X̃t = M̃τ̃ (u)},
which is the time of attaining the maximum before passage over u (cf. Lemma 2 regarding
its uniqueness). Finally, we wish to determine the density function of the undershoot and the
overshoot, defined as

Uτ̃(u) := u− X̃τ̃ (u)− and Oτ̃(u) := X̃τ̃ (u) − u,

respectively. Our aim is to derive a computable expression for the joint law of these five
variables in terms of the measure

E(e−γ G̃τ̃ (u)−γ ∗(τ̃ (u)−G̃τ̃ (u)); M̃τ̃ (u) ∈ dz, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy),

where γ, γ ∗ ≥ 0 are the arguments for the double Laplace transform, x, y ≥ 0, and 0 ≤ z ≤ u.
Note that necessarily x ≥ u− z.

The approach of analysis in this paper is the same as in [13] for Lévy processes. We divide
the sample paths into three parts: the path until the supremum M̃τ̃ (u) < u is attained, the path
from M̃τ̃ (u) to X̃τ̃ (u)−, and the final jump which leads to an overshoot of the level u.

Remark 1. This decomposes the sample paths either at points of phase changes or at a maxi-
mum within the (exponentially distributed) length of a phase regime. Given the phase process,
the parts between phase changes are independent according to (1). The standard result in
Lemma 1 shows further that the parts before and after a maximum within a single phase regime
are independent. Thus, we obtain conditional independence of all three parts in our path
decomposition given the phase process. For more results on this, see [18].

Example 2. Looking at Figure 2, the maximum before first passage of the level u = 60 occurs
at time tM = 120. Thus, the path of X is decomposed into the parts over the time intervals
[0, 120], [120, 170], and [170, 210]. Assume that the path is derived from a MAP on a phase
space E with two phases, one in E+ and one in Eσ . Then the different phase regimes cover
the intervals [0, 50], [50, 70], [70, 170], [170, 210], and [210, 260]. Their increments are
conditionally independent given the phase process. Furthermore, within the regime i ∈ Eσ
over the interval [70, 170], the part [70, 120] until the maximum is independent of the part
[120, 170] after the maximum in the sense of Lemma 1. As a consequence, the parts [0, 120],
[120, 170], and [170, 210] are conditionally independent given the phase process.

The first part of the decomposition is simply a first passage problem. The second part can
be determined by (4) via the time-reversed process. Between the three parts we need to take
possible (and necessary) phase changes into account. This reasoning will be similar to [8].
A difference to [13] is that we measure the times G̃τ̃ (u) and τ̃ (u)− G̃τ̃ (u) in terms of their
Laplace transforms. This enables us to provide an explicit formula with expressions that can
be readily computed.

One preliminary lemma that we need for the main result concerns the time of attaining the
maximum M̃τ̃ (u). See [26, Lemma 2] for the equivalent statement regarding Lévy processes.

https://doi.org/10.1239/jap/1276784902 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784902


A quintuple law for MAPs 449

Lemma 2. Define G̃′
τ̃ (u)

:= inf{t < τ̃ (u) : X̃t = M̃τ̃ (u)}. Then G̃τ̃ (u) = G̃′
τ̃ (u)

almost surely.

Proof. Since all possible jumps are phase type and the zero process as well as compound
Poisson processes are excluded under any regime, the transition probabilities between levels of
local maxima of X̃ are absolutely continuous. Thus, the probability of attaining the same local
maximum level twice is 0.

Given the MAP (X̃, J̃), we construct the modified MAP (X,J) from it as described in
Section 2.1. Recall that P = �−1

q Q+ I , where Q denotes the generator matrix of J (see (3)
and (4)) and�q is the diagonal matrix with entries qi = −qii for all i ∈ E. Definep(+,−)ij := δij
for i ∈ Eσ and p(+,−)ij := pij for i ∈ E+ ∪ Ep, j ∈ En ∪ E−. Furthermore, define

P (+,−) := (p
(+,−)
ij )i∈Ea, j∈Eσ∪Ed and P (c,+) := (pij1{i∈Ec})i∈E, j∈E+ .

The matrices P (+,−) and P (c,+) subsume the transition probabilities from ascending to
descending phases and from continuous to positive jump phases, respectively.

Write �φ := diag(φi(qi))i∈Ea and �φ∗ := diag(φi(qi)1{i∈Ep} + φ∗
i (qi)1{i∈Eσ∪En})i∈E ,

where φ∗
i (qi) := qi/(−µi) for i ∈ En and φ∗

i (qi) is defined in (8) for i ∈ Eσ . Furthermore,
define the block diagonal matrix T = diag(T (i,j))(i,j)∈Ec×Ec as well as the column vector
η = ((η(i,j))�)�(i,j)∈Ec×Ec . Here Ec ×Ec must be ordered in some way, say lexicographically.
Note that this order must be inherited from the order on E+. Finally, define the diagonal
matrices�∗

a = diag(1/πi)i∈Eσ∪Ed and�c = diag(πj1{j∈Ec})j∈E . Now we can state the main
result.

Theorem 1. Let α̃ denote the initial phase distribution of a MAP (X̃, J̃)with phase-type jumps.
Define the row vector α = (αi : i ∈ E) on the phase space E of the enlarged MAP (X,J) by
αi := α̃i for all i ∈ Ec = Ẽ and αi := 0 for i ∈ E+ ∪ E−. Then

E(exp(−γ G̃τ̃ (u) − γ ∗(τ̃ (u)− G̃τ̃ (u))); M̃τ̃ (u) ∈ dz, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy)

= α

(
Ia
A(γ )

)
eU(γ )z�φP

(+,−)

×
(
�c

(
A∗(γ ∗)
IEσ∪Ed

)
eU

∗(γ ∗)(z−(u−x))�∗
a

)�
�φ∗P (c,+)eT (x+y)η dx dy dz

for all γ, γ ∗ ≥ 0, 0 < z < u, x > u− z, and y > 0.

Proof. We consider all possible paths leading to the event

{M̃τ̃ (u) ∈ dz, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy}.
Since the paths of (X̃, J̃) can be retrieved from those of (X,J), we may restrict our attention
to (X,J). We shall, however, speak of jumps whenever we refer to linear movements governed
by phases in E− ∪ E+. Recall the first passage time

τ(u) := inf{t ≥ 0 : Xt > u} = min{t ≥ 0 : Xt = u},
where the last equality holds because of the path continuity of X. Define the times

σ(u) := sup{t < τ(u) : Jt /∈ E+} and σ ′(u) := inf{t > τ(u) : Jt /∈ E+}.
The assumption z < u implies that x ≥ u − z > 0. Furthermore, y > 0 almost surely
since positive jumps are phase type and, hence, absolutely continuous. The time σ(u) denotes
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the instant when the final positive jump, which leads X over the threshold u, begins. The
time σ ′(u) indicates the instant when this final jump ends and we can measure the overshoot
Oτ̃(u) = X̃τ̃ (u) − u = Xσ ′(u) − u. We further obtain

M̃τ̃ (u) = Mσ(u) := sup{Xt : t ≤ σ(u)},
such that we can write

{M̃τ̃ (u) ∈ dz, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy} = {Mσ(u) ∈ dz, Xσ(u) ∈ u− dx, Xσ ′(u) ∈ u+ dy}.
We shall employ the following path decomposition. First we consider the path up to its

maximum (which is attained at a unique time, due to Lemma 2). The second part to consider
is the path strictly between the time of maximum and σ(u). The last part is the jump. Owing
to Remark 1, the three parts are conditionally independent given the phase process.

The initial phase distribution is denoted by the row vector α = (αi : i ∈ E), where αi =
P(J0 = i) for all i ∈ E. In order to attain Mσ(u) ∈ dz, a path must first pass the level z. This
happens at the artificial time τ(z) := inf{t ≥ 0 : Xt > z}. The Laplace transform of the real
time τ̃ (z) := ∫ τ(z)

0 1{Js∈Ec} ds, restricted to {Jτ(z) = i} and with argument γ ≥ 0, is given by

E(e−γ τ̃ (z); Jτ(z) = i | X0 = 0) = α

(
Ia
A(γ )

)
eU(γ )zei,

where ei denotes the ith canonical base column vector of dimension |Ea|.
The further development of the path depends on Jτ(z). There are two cases. In the first

case Jτ(z) = i ∈ E+ ∪ Ep. Then we need an instantaneous phase change in order to satisfy
Mσ(u) ∈ dz. This must occur while X still remains in dz. The infinitesimal rates for this
to happen are φi(qi) dz = qi/µi dz if i ∈ Ep and φi(qi) dz = qi dz if i ∈ E+; see (6).
The probabilities for the next phase are then given by p(+,−)ij = pij . In the second case,
Jτ(z) = i ∈ Eσ , there will be no phase change immediately. In order to satisfy Mσ(u) ∈ dz,
we need to stop the upward ladder process of X(i) with the infinitesimal rate φi(qi) dz; see
Lemma 1. The remaining path during phase i will stay below the level z and is independent of
the path until τ(z). Denote the phase after this part by Jτ(z)+ = i. Then the first part of the
path is described by

E(e−γ τ̃ (z); Jτ(z)+ = i | X0 = 0) = α

(
Ia
A(γ )

)
eU(γ )z�φP

(+,−)ei dz.

The second part of the path consists of a movement of X from the level z at time τ(z)+ to the
level u− x at time σ(u)− without crossing the level z. Then a subsequent phase change from
Ec to E+ occurs while the level process X is still in u− dx. The first event can be described
via the time-reversed MAP (X∗,J∗) and relation (9). Denote the matrices governing the
first passage times of (X∗,J∗) by A∗(γ ∗) and U∗(γ ∗) for γ ∗ ≥ 0. They have dimensions
|Ep ∪ E+| × |Eσ ∪ Ed | and |Eσ ∪ Ed |2, respectively. We obtain, from (9),

E(e−γ ∗(τ̃ (u)−τ̃ (z)); Jσ(u)− = j | Jτ(z)+ = i)

= πj

πi
E(e−γ ∗ τ̃∗(z−(u−x)); J ∗

τ∗(z−(u−x)) = i | J ∗
0 = j),

where τ ∗(w) := inf{t ≥ 0 : X∗
t > w} and τ̃ ∗(w) = ∫ τ∗(w)

0 1{J ∗
s ∈Ec} ds. Here we consider only

phases j ∈ Ec, since we wish the process J to change phase from Ec to E+ at time σ(u), and
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i ∈ Eσ ∪Ed = E∗
a since these are the only phases in which the time-reversed process X∗ can

cross the level z − (u − x) from below. In matrix notation, the Laplace transform of the real
time spent between τ̃ (z) and τ̃ (u) is thus

E(e−γ ∗(τ̃ (u)−τ̃ (z))) =
(
�c

(
A∗(γ ∗)
IEσ∪En

)
eU

∗(γ ∗)(z−(u−x))�∗
a

)�
(10)

with �∗
a = diag(1/πi)i∈Eσ∪Ed and �c = diag(πj1{j∈Ec})j∈E . Now to the subsequent phase

change. Denote the phase at the time of moving to the level u−x by Jσ(u)− = j ∈ Ec. In order
to trigger the jump that will overshoot the level u with Uτ̃(u) ∈ dx, the phase process J needs
to change from j to some k ∈ E+ while the level process X is still in u − dx. This happens
with probabilities qj /µj dxpjk for j ∈ Ep, qj /(−µj ) dxpjk for j ∈ En, and φ∗

j (qj ) dxpjk
for j ∈ Eσ . Hence, the second part of the path can be subsumed in matrix notation as

E(e−γ ∗(τ̃ (u)−τ̃ (z)); Jσ(u) = k | Jτ(z)+ = i)

= e�i
(
�c

(
A∗(γ ∗)
IEσ∪En

)
eU

∗(γ ∗)(z−(u−x))�∗
a

)�
�φ∗P (c,+)ek dx.

The last part of the path is merely the final jump. Given Jσ(u) = k ∈ E+, it is independent
of the path before. In order to be the final jump, it must be larger than x. Given this, the
phase-type assumption on the jumps yields the conditional density function e�k eT (x+y)η dy.
This completes the proof.

If the process starts with a negative drift then the singular case, M̃τ̃ (u) = 0, is possible. This
implies that G̃τ̃ (u) = 0 and x > u. The remaining triple law is given in the following theorem.
For γ ∗ = 0 and Eσ = ∅ it yields Equation (3.6) of [2] and Theorem 1 of [25].

Corollary 1. Let α be an initial phase distribution with support on En. Then

E(e−γ ∗ τ̃ (u); M̃τ̃ (u) = 0, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy)

= α

(
�c

(
A∗(γ ∗)
IEσ∪Ed

)
eU

∗(γ ∗)(x−u)�∗
a

)�
�φ∗P (c,+)eT (x+y)η dx dy

for x > u and y > 0.

Two other singular cases that may arise are given in the following corollaries. The reasoning
for them is the same as for Theorem 1.

Corollary 2. Passage by creeping:

E(e−γ τ̃ (u); M̃τ̃ (u) = u, Uτ̃(u) = 0, Oτ̃(u) = 0) = α

(
Ia
A(γ )

)
eU(γ )u 1Ep∪Eσ ,

where 1Ep∪Eσ is a column vector of dimension |Ea| with the ith entry being 0 for i ∈ E+ and
1 for i ∈ Ep ∪ Eσ .

Corollary 3. Passage by jump from a running maximum:

E(e−γ τ̃ (u); M̃τ̃ (u) ∈ dz, Uτ̃(u) ∈ u− dz, Oτ̃(u) ∈ dy)

= α

(
Ia
A(γ )

)
eU(γ )z�φP

(p,+)eT (u−z+y)η dy dz,

where P (p,+) = (pij1{i∈Ep})i∈Ea, j∈E+ .
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4. Application to insurance risk

Consider a risk reserve process with initial capital u ≥ 0 and claims occurring like a
Markovian point process (MPP); see [6], [23], and [24]. (This has traditionally been called the
Markovian arrival process and abbreviated as MAP. Since we use the abbreviation MAP for the
more general class of Markov additive processes, we prefer to use the term Markovian point
process and the abbreviation MPP instead. Some authors use the abbreviation MArP.) It was
shown in [6] that the class of MPPs is dense within the class of marked point processes.
Thus, we incur no serious restriction in generality. Denote the claim arrival process by
(N , J̃) = ((Nt , J̃t ) : t ≥ 0) and the phase space for J̃ by Ẽ. Assume that the claim sizes
have a phase-type distribution and denote the nth claim size by Cn, n ∈ N. By [28], the class
of phase-type distributions is dense within the class of all distributions on the positive real
numbers. We assume further that the premium income between claims can be modelled by
a Brownian motion, where the parameters µ̃i (drift) and σ̃i (variation) at time t may depend
on the current phase J̃t = i of the claim arrival process. For insurance risk, we typically have
µ̃i > 0 for all i ∈ Ẽ. We shall allow σ̃i = 0 for some (or possibly all) phases, under which
condition the Brownian motion becomes a linear drift. However, the case µ̃i = σ̃i = 0 of a
constant (null) movement will be excluded. Then the process of premium income is a Markov-
modulated Brownian motion which we denote by (B, J̃) = ((Bt , J̃t ) : t ≥ 0). We assume that
B0 = 0.

Note that J̃ here is the same as for the claim arrival process (N , J̃). This is no restriction
in modelling power as we can choose identical parameters (µ̃i , σ̃i ) = (µ̃j , σ̃j ) for different
phases i �= j ∈ Ẽ and map two different environments for the premium income and the claim
arrivals by using Kronecker products. Rather on the contrary, a common phase space enables
us to model correlations between claim arrivals, claim sizes, and the premium income.

With the definitions above, the risk reserve process U = (Ut : t ≥ 0) is given by

Ut = u+ Bt −
Nt∑
n=1

Cn

for t ≥ 0. Denote the net claim process by X̃ = (X̃t : t ≥ 0), where X̃t := u− Ut for all
t ≥ 0. Then the process (X̃, J̃) is a MAP with phase-type jumps and we can apply the analysis
presented in Section 3. For γ = γ ∗, this yields in particular the Gerber–Shiu function after
integrating out the variable M̃τ̃ (u). The following examples will illustrate this.

Example 3. We consider the classical compound Poisson model. Interclaim times and claim
sizes are independent, identically exponentially distributed with parameters λ > 0 and β > 0,
respectively. The rate of premium income is c > 0. The net profit condition is then λ/(cβ) < 1.
This model has been examined in [16]. The net claim amount at time t ≥ 0 is given by

X̃t =
Nt∑
n=0

Cn − ct, (11)

where (Nt : t ≥ 0) is a Poisson process with intensity λ and the Cn, n ∈ N, are independent
and identically distributed random variables with exponential distribution of parameter β.

The process of accumulated claims can be analysed as a MAP with exponential (and, hence,
phase-type) positive jumps, where T = −β and η = β. We further obtain the MAP (X,J) as
follows. Let the phase space be given by E+ = {1}, En = {2}, and Eσ = ∅. The parameters
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are given by σ1 = σ2 = 0, µ1 = 1, µ2 = −c, ν1 = ν2 = 0, and

Q =
(−β β

λ −λ
)
.

Note that phase 1 represents the upwards jumps and we shall not discount the time during
sojourns in it. As shown in [11, Example 5], the Laplace transform of the first passage time
τ̃ (x) := inf{t ≥ 0 : X̃t > x} to a level x > 0 is given by

E(e−γ τ̃ (x)) = A(γ )eU(γ )x,

where

A(γ ) = β − R

β
, U(γ ) = −R,

and

−R = 1

2c

(
λ+ γ − cβ −

√
(cβ − γ − λ)2 + 4cβγ

)
,

which coincides with Equation (4.24) of [16], noting that γ is denoted as δ there. The time-
reversed process has a positive drift (E∗

p = En = {2}) and negative jumps (E∗− = E+ = {1}).
Instead of evaluating the rather complicated expression (10), we can treat it as a spectrally
negative Lévy process directly. Its cumulant function is given by

ψ∗(x) = cx − λ+ λ
β

β + x
.

Hence, we find, for the inverse of ψ∗,

φ∗(γ ) = 1

2c

(
λ+ γ − cβ +

√
(cβ − λ− γ )2 + 4cβγ

)
,

which is denoted by ρ in [16, Equation (3.12)]. We thus obtain(
�π

(
A∗(γ )
IEn

)
eU

∗(γ )(z−(u−x))�−1
π

)�
= e−ρ(z−(u−x)). (12)

Furthermore, we shall need φ1(q1) = β and φ∗
2 (q2) = λ/c.

In order to find the function f (x | u) := E(e−γ τ̃ (u);Uτ̃(u) ∈ dx), we consider the cases
x ≤ u and x > u separately. We always have M̃τ̃ (u) ≥ u− x. From Theorem 1 and (12), we
compute the marginal density function

E(e−γ τ̃ (u);Uτ̃(u) ∈ dx, x ≤ u) =
∫ u

u−x
A(γ )eU(γ )zφ1(q1)e

−ρ(z−u+x)φ∗
2 (q2) dzeT x

=
∫ u

u−x
β − R

β
e−Rzβe−ρ(z−u+x) λ

c
dze−βx

= λ

c
(β − R)e−ρ(x−u)e−βx

∫ u

u−x
e−(R+ρ)z dz

= λ

c

β − R

R + ρ
e−(ρ+β)xeρu(e−(R+ρ)(u−x) − e−(R+ρ)u)

= λ

c

β − R

R + ρ
e−(ρ+β)x(e(R+ρ)x − 1)e−Ru,
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which coincides with Equation (6.40) of [16]. Now for the case x > u. This means that the
event Mτ̃(u) = 0 may attain a positive probability. Corollary 1 and (12) yield, for this case,

E(e−γ τ̃ (u), Uτ̃(u) ∈ dx, M̃τ̃ (u) = 0) = e−ρ(x−u)φ∗
2 (q2)e

T x

= e−ρ(x−u) λ
c

e−βx

= λ

c
e−(ρ+β)xeρu.

For the case of x > u and Mτ̃(u) > 0, Theorem 1 yields

E(e−γ τ̃ (u), Uτ̃(u) ∈ dx, M̃τ̃ (u) > 0, x > u) =
∫ u

0

β − R

β
e−Rzβe−ρ(z−u+x) λ

c
dze−βx

= λ

c

β − R

R + ρ
e−(ρ+β)xeρu(1 − e−(R+ρ)u)

= λ

c

β − R

R + ρ
e−(ρ+β)x(eρu − e−Ru).

Adding these results we finally obtain

E(e−γ τ̃ (u), Uτ̃(u) ∈ dx, x > u) = λ

c
e−(ρ+β)x

(
eρu + β − R

R + ρ
(eρu − e−Ru)

)

= λ

c(R + ρ)
e−(ρ+β)x((β + ρ)eρu − (β − R)e−Ru),

which coincides with Equation (6.39) of [16].

Example 4. The same net claim process as in (11) can be analysed by the approach in [13,
Example 8]. There the time aspect is neglected and, thus, we set γ = γ ∗ = 0. Then we obtain
ρ = 0 and −R = (λ− cβ)/c = λ/c − β by Equations (3.12) and (4.24) of [16]. This implies
that β − R = λ/c, and Theorem 1 now yields, for 0 < z < u,

P(M̃τ̃ (u) ∈ dz, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy) = β − R

β
e−Rzβe−ρ(z−(u−x)) λ

c
e−β(x+y)β

= λ

c
e−(β−λ/c)z λ

c
e−β(x+y)β.

Corollary 1 yields further, for x > u,

P(M̃τ̃ (u) = 0, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy) = e−ρ(x−u) λ
c

e−β(x+y)β = λ

c
e−β(x+y)β.

The form obtained in [13, p. 101] is

P(M̃τ̃ (u) ∈ dz, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy) = 1

c

∑
n≥0

ν∗n(dz)�X(x + dy) dx

for 0 ≤ z ≤ u, x ≥ u − z, and y > 0, where �X(dx) = λe−βxβ dx is the Lévy measure,
ν∗0 = δ0 (the Dirac measure on 0), and ν∗n denotes the n-fold convolution of the measure

ν(dx) = 1

c
�X(x,∞) dx = λ

c
e−βx dx.

It is immediate that the results coincide for the singular case, Mτ̃(u) = 0. In order to show
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agreement for the case Mτ̃(u) > 0, it suffices to show that∑
n≥1

ν∗n(dz) = λ

c
e−(β−λ/c)z dz (13)

holds. Taking Laplace transforms on both sides, we obtain on the left-hand side∫
e−αz ∑

n≥1

ν∗n(dz) =
∑
n≥1

∫
e−αzν∗n(dz) =

∑
n≥1

(Lν(α))
n = Lν(α)

1 − Lν(α)
,

where Lν(α) = λ/c(α + β)−1, α > 0, is the Laplace transform of ν. On the right-hand side
we obtain

λ

c

∫
e−αze−(β−λ/c)z dz = λ

c

1

α + β − λ/c
= (λ/c)(1/(α + β))

1 − (λ/c)(1/(α + β))
,

which yields (13).

Example 5. The joint density function of the undershoot and overshoot has been derived in
[8] for the fluid flow case from an insurance perspective. We set X̃t := u− Ut , where u is the
initial capital and Ut is the risk reserve process as given in [8, p. 434]. For the resulting MAP
(X,J) constructed from X̃ as in Section 2.1, we obtain Ep = Eσ = E− = ∅ and E+ = S2,
En = S1, where Si is the notation used in [8, p. 434]. Comparing the notation for the generator
matrix of the phase process J, we get the block partition

Q =
(
Q++ Q+−
Q−+ Q−−

)
=

(
T22 T21
T12 T11

)
= T .

Write P = �−1
q Q+ I and P+−, etc. for the obvious block partitions. The assumption that

c = 1 therein translates to µi = −1 for all i ∈ En in our notation. Since we do not need to
determine the time variables, we can set γ = γ ∗ = 0.

First of all we observe that � in [8, p. 436] equals A(0) by definition. Then Equation (16)
of [11] yields

U(0) = Q++ +Q+−A(0) = T22 + T21� = H,

which is the notation used in [8, p. 437]. Furthermore, φ(qi) = qi for all i ∈ E+ and
P (+,−) = P+−, which yields�φP (+,−) = Q+− = T21. Regarding the time reversal (X∗,J∗)
of (X,J), the phase subspaces translate as E∗

p = En and E∗− = E+. Write

Q∗ = �−1
π Q��π =

(
Q∗−− Q∗−+
Q∗+− Q∗++

)
such that Q∗++ = �−1

π−Q
�−−�π− and Q∗+− = �−1

π−Q
�−+�π+ , denoting �π− = diag(πi)i∈En

and �π+ = diag(πi)i∈E+ . Then U∗(0) = Q∗++ +Q∗+−A∗(0), where A∗(0) has dimension
E+ × En. Since Eσ = E∗

σ = ∅, we obtain A∗(0) = �−1
π+A

�(0)�π− . Thus,

U∗(0) = �−1
π−(Q

�−− +Q�−+A�(0))�π−

and
(�π−eU

∗(0)(z−(u−x))�−1
π−)

� = (e(Q
�−−+Q�−+A�(0))(z−(u−x)))�

= e(Q−−+A(0)Q+−)(z−(u−x))

= e(T11+�T21)(z−(u−x))

= eK(z−(u−x)), (14)
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in the notation of [8, p. 436]. Finally, φ∗(qi) = qi for all E∗
p = En and P (c,+) = P−+ such

that �φ∗P (c,+) = Q−+ = T12. For the jump, the notation translates as T = Q++ = T22 and
η = t2. Hence, the density function h(u, x, y) of the surplus prior to ruin (the undershoot x)
and the deficit at ruin (the overshoot y) is given by

h(u, x, y) =
∫ u

z=u−x
P(Mτ̃(u) ∈ dz, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy)

for x < u. Theorem 1 yields

h(u, x, y) = αA(0)
∫ u

z=u−x
eU(0)z�φP

(+,−)(�π−eU
∗(γ ∗)(z−(u−x))�−1

π−)
� dz

×�φ∗P (c,+)eT (x+y)η

= α�eH(u−x)
∫ x

w=0
eHwT21eKw dwT12eT22(x+y)t2,

after the substitutionw = z−(u−x). This coincides with Equation (17) of [8], noting definition
(19) therein. The case x > u includes the singular event {M̃τ̃ (u) = 0}. For this, Corollary 1
and (14) yield

P(M̃τ̃ (u) = 0, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy)

= α(�π−eU
∗(γ ∗)(z−(u−x))�−1

π−)
��φ∗P (c,+)eT (x+y)η

= αeK(x−u)T12eT22(x+y)t2. (15)

The other part can be determined via Theorem 1 as

P(M̃τ̃ (u) = 0, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy) = α�

∫ u

z=0
eHzT21eK(z−(u−x)) dzT12eT22(x+y)t2

= α�R(u)eK(x−u)T12eT22(x+y)t2, (16)

where R(u) = ∫ u
w=0 eHwT21eKw dw is the notation used in [8, Equation (19)]. Adding (15)

and (16) yields the same expression as Equation (18) of [8].

Example 6. We consider the perturbed version of the classical compound Poisson model
with exponential claim sizes. The net claim process is a Lévy process with parameters
σ̃ > 0, µ̃ = −c < 0, and ν̃(dx) = 1{x>0}λβe−βx dx. From this we construct the MAP (X,J)
according to Section 2.1. This has phase space E = {0, 1} with E+ = {0} and Eσ = {1}. The
generator matrix of J is given by

Q =
(−β β

λ −λ
)
,

which implies that q0 = β and q1 = λ. The parameters for X areσ0 = 0,µ0 = 1, σ1 = σ̃ =: σ ,
µ1 = −c, and ν0 = ν1 = 0. In order to determine the matrix U = U(γ ), we note that Ea = E

such thatU has dimension 2×2 and there is no matrixA(γ ). We need the values of φ1(q1 +γ )
and φ∗

1 (q1 + γ ), which are given in (6) and (8) as

φ1(q1 + γ ) = 1

σ

√
2(λ+ γ )+ c2

σ 2 + c

σ 2 and φ∗
1 (q1 + γ ) = 1

σ

√
2(λ+ γ )+ c2

σ 2 − c

σ 2 .
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Then the matrix U is determined by the fixed point equation

e�0 U = −βe�0 + βe�1 = (−β, β),
e�1 U = −φ1(q1 + γ )e�1 + 2

σ 2 λe
�
0 (φ

∗
1 (q1 + γ )I − U)−1. (17)

We further obtain

�φP
(+,−) =

(
β 0
0 φ1(q1)

) (
0
1

)
=

(
0

φ1(q1)

)
.

For the second part in the formula of Theorem 1, we need to determine the time-reversed MAP
(X∗,J∗) according to Section 2.3. We obtain E∗

σ = Eσ = {1} and E∗− = E+ = {0} with
parameters σ ∗

0 = 0, µ∗
0 = −1, σ ∗

1 = σ , and µ∗
1 = c for X∗. The generator matrix for J∗ turns

out to beQ∗ = �−1
π Q��π = Q, where π = (λ/(β+λ), β/(β+λ)). Thus, q∗

0 = q0 = β and
q∗

1 = q1 = λ. Since E∗
a = {1} and E∗

d = {0}, the matrices U∗ = U∗(γ ∗) and A∗ = A∗(γ ∗)
are real numbers. They are determined by

U∗ = −φ∗
1 (λ+ γ ∗)+ 2

σ 2 λ
A∗

φ1(λ+ γ ∗)− U∗ and A∗ = β

β − U∗ , (18)

where the duality of X and X∗ yields (φ∗
1 )

∗ = φ1. With the definitions of

�c =
⎛
⎝0 0

0
β

β + λ

⎞
⎠ , �∗

a = β + λ

β
, �φ∗ =

(
0 0
0 φ∗

1 (λ)

)
, P (c,+) =

(
0
1

)
,

this yields

(
�c

(
A∗
1

)
eU

∗(z−(u−x))�∗
a

)�
�φ∗P (c,+) = eU

∗(z−(u−x))φ∗
1 (λ).

Finally, the parameters for the final jump part are T = −β and η = β. For the natural choice
α = e�1 , the expression in Theorem 1 becomes, after the simplification φ1(λ)φ

∗
1 (λ) = 2λ/σ 2,

E(e−γ G̃τ̃ (u)−γ ∗(τ̃ (u)−G̃τ̃ (u)); M̃τ̃ (u) ∈ dz, Uτ̃(u) ∈ dx, Oτ̃(u) ∈ dy)

= (e�1 eU(γ )ze1)
2λ

σ 2 eU
∗(γ ∗)(z−(u−x))βe−β(x+y) dx dy dz.

The number U∗(γ ∗) and the matrix U(γ ) are probably best determined numerically from (17)
and (18).
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