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Let KO and K’1 be equational classes of algebras of the same

2
type . The smallest equational class K containing KO and K1 is
0 and Ki; in notation, K = KO \V; K1 . The direct product

KO X K1 is the class of all algebras (G which are isomorphic to an

algebra of the form GO X CL1 , G

the join of K

0 € ¥ Gy

\Y K1 . Our first theorem states a very simple condition

c K1 . Naturally,
K0 X K1 c KO

under which KO X K1 = KO \ K1 , and an additional condition under

which the representation G z GO X G, is unique.

1

Let us call KO and K1 independent if there exists a binary

polynomial symbol P such that the identity p = x holds in
K.,i=20,1.
i

THEOREM 1. Let K  and K, be independent. Then

0 1

« - v . . .
KO K1 K0 K1 I, in addition, each algebra G ¢ KO

a modular congruence lattice, then each G ¢ K0 \ K'1 has, up to

OEKO’G1 €K1.

vV K, has

isomorphism, a unique representation G z GO X Gi , G

Remark. Many special cases of this theorem can be found in
the literature; for example, see A.L. Foster [4] and A. Astromoff [1];
a special case of the first statement of this theorem was observed
independently by P. Kelenson [7].

1. The work of all three authors was supported by the National
Research Council of Canada.

2. For the concepts and notations see [5].
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As an illustration of independence, we present an example quite

different from those in the literature. The equational classes KO and

K1 are of type <2,2>. Let KO consist of all algebras {G; fO’f1>

where G is a group, fo(x,y) = xy, and fi(x,y) = xy ' . Let K1

’f1> where L is a lattice, fO(x,y) =xVy,

X—-i)’51)

consist of all algebras <L; fO

and f1(x,y) = x A y. The polynomial symbol p = 11@0(50,

establishes the independence of KO and K1 .

Proof of Theorem 1. Let G ¢ KO \Y, Ki' and let ®. denote the
i

smallest congruence relation on G such that (1/@i c K ,i=0,1. Then
i
v ® K A 1 i = = - h
G/@O 1 €% K1, and so satisfies x P = %;; hence
® ® =..
oV T

We claim that3 a, = ai(®0) if and only if p(ao,ai) = a Indeed,

0 1°
1 then [a0]®0 = p([a0]®0, [a1]®o) = [a1]®0; hence

a, = a1(®0). Let @)0 be the relation defined by a; = a1(¢0) if and

only if p(ao,ai) = a To show that‘@o =9, it suffices to show that ¢0

if P(ao,ai) = a

L°
is a congruence relation. Reflexivity, symmetry, transitivity, and
the substitution property for the operation f follow from the identities:

plx, x) = x,
plp(x,y).x) = x,
p(x,ply,z) = plp(x.y), z)

Py % -0 Hygoyy o ee ) fplxy,yy) R Yy ) )

Since these identities clearly hold in KO and K1 , they hold in Ko \Y% K1 H
thus ® = . imai = 3 5 -
u 0 @0 Similarly, a, a1(®1) if and only if p(a0 s ai) ag .
C i = = .
onsequently, if a, a1(®o A @1) then a, a1(®i), hence
p(ao, a,) =a,, andso a, = a establishing @0 A @1 = w. Now

1 i 0 1’
= b(@o),b = C(®1); then a

so ®O and ®

1]
n

plc,a) (Gi), p(c, a) c(®0), and

, Permute. Thus (see e.g. [5, Theorem 19.3])

a = G/®, x /8, /0, ¢ Ky, 0/® ¢ K,, verifying the first

statement of the theorem.
3. This idea can be traced to N. Kimura [8], [9], see also C.C. Chang,

B. Jénsson, and A. Tarski [2].
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Now let G have a modular congruence lattice, G z GO X 01 ,

K . g a 'l: d & =
Goe 0’01€K1 Then GO /§>O,G1 a/@i, where @0/\@1 w,
cI)O \Y @1 =, , and @0, _851 permute. Because of the minimal property
of ®i’ c@i > ®i’ i = 0,1, and so by modularity (PO = éo A (®0 v ®1)
= @ ® =

®0 % (&;)0 A 1) and <§1 ®

0 )
theorem.

1

1 completing the proof of the

Does K0 Y K1 = K0 X K1 imply that KO and K1 are independent?

Trivial examples show that this is not the case. Let Cp denote the

equational class of Abelian groups satisfying px = 0. Set KO = C2 \ C3,

= X K ;
1 K0 e but KO and K1 are not

1 of two independent classes can

contain one-element algebras only, while K

K1=C3VC5. Then KOVK

independent, because the meet KO A K

0 A K)1 in this example is

C3 . However, we can prove the following theorem.

THEOREM 2. Let KO A K1 consist of one-element algebras only

and let every G ¢ KO \ K1 have a modular congruence lattice. Then

- if . .
KO Y K1 K0 X K1 if and only if K0 and K1 are independent.

Proof. Theorem 1 contains the "if'" part. Now let Ko \Y K1 = K0 X Kf

Let & be the free algebra over KO \Y K1 with two generators X, and X, .

It follows from the assumptions that F = 3/@0 X 3/@)1 , where 3/@1 € Ki’
i=0,1. Now let ®0 and ®1 be defined as in the proof of Theorem 1.

0 < = .
Then ®0§§0, @1 < éi’ and ®_ V ®1 L as before. Now take

0
3/@0 A ®1; since every homomorphism of & to an Gi € Ki factors
through 3/@0 A ©y, and every algebra in Ky v K, is isomorphic
to an algebra of the form GO X G1 (Gi € Ki, i = 0,1), we conclude that
3/0, A ©,
and @, = @i follows by modularity. Thus F = 3/@0 X ;;/@1, and 3/@i

also is free over K on two generators. Hence ®0 A ®1 = w,

is the free algebra over Ki generated by, say, xt), x; (i =0,1), where

xj corresponds to (xjo, x;) under this isomorphism (j = 0,1). Let
P be a polynomial symbol that represents an element of JF corresponding
to (xg R xi > under the above isomorphism. Then p(xo , x1) = xi(®i) s

i = 0,1; hence p establishes the independence of KO and K1,
completing the proof of Theorem 2.
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It should be noted that the independence of KO and K1 means

that the polynomials of KO and K1 can be arbitrarily 'paired'. In
other words, if P, is a polynomial on Ki, i = 0,1, then there is

a polynomial p on K_V K1 acting as p;, on Ki (i =0,1). This

0

implies that every "Mal'cev type condition' (see [6]) shared by KO

and K1 holds for KO \Y K1, provided KO and K1 are independent.

By A. Day [3], modularity of congruence lattices is of Mal'cev type.
Hence in the second statement of Theorem 1 the condition "every
G ¢ KO \Y K1 has a modular congruence lattice' can be replaced by

"every G in KO or K1 has a modular congruence lattice''.
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