JOINS AND DIRECT PRODUCTS OF EQUATIONAL CLASSES

G. Grätzer, H. Lakser, and J. Płonka (received March 15, 1969)

Let K_0 and K_1 be equational classes of algebras of the same type . The smallest equational class K containing K_0 and K_1 is the join of K_0 and K_1 ; in notation, $K = K_0 \vee K_1$. The direct product $K_0 \times K_1$ is the class of all algebras G which are isomorphic to an algebra of the form $G_0 \times G_1$, $G_0 \in K_0$, $G_1 \in K_1$. Naturally, $K_0 \times K_1 \subseteq K_0 \vee K_1$. Our first theorem states a very simple condition under which $K_0 \times K_1 = K_0 \vee K_1$, and an additional condition under which the representation $G \cong G_0 \times G_1$ is unique.

Let us call K_0 and K_1 independent if there exists a binary polynomial symbol p such that the identity $p = x_i$ holds in K_i , i = 0, 1.

THEOREM 1. Let K_0 and K_1 be independent. Then $K_0 \times K_1 = K_0 \vee K_1$. If, in addition, each algebra $G \in K_0 \vee K_1$ has a modular congruence lattice, then each $G \in K_0 \vee K_1$ has, up to isomorphism, a unique representation $G \cong G_0 \times G_1$, $G_0 \in K_0$, $G_1 \in K_1$.

Remark. Many special cases of this theorem can be found in the literature; for example, see A.L. Foster [4] and A. Astromoff [1]; a special case of the first statement of this theorem was observed independently by P. Kelenson [7].

Canad. Math. Bull. vol. 12, no. 6, 1969

The work of all three authors was supported by the National Research Council of Canada.

^{2.} For the concepts and notations see [5].

As an illustration of independence, we present an example quite different from those in the literature. The equational classes K_0 and K_1 are of type $\langle 2,2 \rangle$. Let K_0 consist of all algebras $\langle G; f_0, f_1 \rangle$ where G is a group, $f_0(x,y) = xy$, and $f_1(x,y) = xy^{-1}$. Let K_1 consist of all algebras $\langle L; f_0, f_1 \rangle$ where L is a lattice, $f_0(x,y) = x \vee y$, and $f_1(x,y) = x \wedge y$. The polynomial symbol $\underline{p} = \underline{f}_1(\underline{f}_0(\underline{x}_0,\underline{x}_1),\underline{x}_1)$ establishes the independence of K_0 and K_1 .

<u>Proof of Theorem 1.</u> Let $G \in K_0 \vee K_1$, and let Θ_i denote the smallest congruence relation on G such that $G/\Theta_i \in K_i$, i = 0,1. Then $G/\Theta_0 \vee \Theta_1 \in K_0 \wedge K_1$, and so satisfies $\underline{x}_0 = \underline{p} = \underline{x}_1$; hence $\Theta_0 \vee \Theta_1 = \iota$.

We claim that 3 $a_0 \equiv a_1(\Theta_0)$ if and only if $p(a_0, a_1) = a_1$. Indeed, if $p(a_0, a_1) = a_1$ then $[a_0]\Theta_0 = p([a_0]\Theta_0, [a_1]\Theta_0) = [a_1]\Theta_0$; hence $a_0 \equiv a_1(\Theta_0)$. Let Φ_0 be the relation defined by $a_0 \equiv a_1(\Phi_0)$ if and only if $p(a_0, a_1) = a_1$. To show that $\Theta_0 = \Phi_0$ it suffices to show that Φ_0 is a congruence relation. Reflexivity, symmetry, transitivity, and the substitution property for the operation f follow from the identities:

$$\begin{array}{rclcrcl} \underline{p}(\underline{x}\,,\underline{x}) & = & \underline{x}\,\,, \\ & \underline{p}(\underline{p}(\underline{x}\,,\underline{y})\,,\underline{x}) & = & \underline{x}\,\,, \\ & \underline{p}(\underline{x}\,,\underline{p}(\underline{y}\,,\underline{z})) & = & \underline{p}(\underline{p}(\underline{x}\,,\underline{y})\,,\underline{z}), \\ & \underline{p}(\underline{f}(\underline{x}_0\,,\underline{x}_1\,,\ldots),\,\,\underline{f}(\underline{y}_0\,,\underline{y}_1\,,\ldots)) & = & \underline{f}(\underline{p}(\underline{x}_0\,,\underline{y}_0)\,,\,\,\underline{p}(\underline{x}_1\,,\underline{y}_1)\,,\ldots)\,. \end{array}$$

Since these identities clearly hold in K_0 and K_1 , they hold in $K_0 \vee K_1$; thus $\Theta_0 = \Phi_0$. Similarly, $a_0 \equiv a_1(\Theta_1)$ if and only if $p(a_0, a_1) = a_0$.

Consequently, if $a_0 \equiv a_1(\Theta_0 \land \Theta_1)$ then $a_0 \equiv a_1(\Theta_1)$; hence $p(a_0, a_1) = a_1$, and so $a_0 = a_1$, establishing $\Theta_0 \land \Theta_1 = \omega$. Now let $a \equiv b(\Theta_0)$, $b \equiv c(\Theta_1)$; then $a \equiv p(c, a) (\Theta_1)$, $p(c, a) \equiv c(\Theta_0)$, and so Θ_0 and Θ_1 permute. Thus (see e.g. [5, Theorem 19.3]) $C \cong C/\Theta_0 \times C/\Theta_1$, $C/\Theta_0 \in K_0$, $C/\Theta_1 \in K_1$, verifying the first statement of the theorem.

3. This idea can be traced to N. Kimura [8], [9], see also C.C. Chang, B. Jónsson, and A. Tarski [2].

Now let G have a modular congruence lattice, G \cong G₀ \times G₁, G₀ \in K₀, G₁ \in K₁. Then G₀ \cong G/ Φ ₀, G₁ \cong G/ Φ ₁, where Φ ₀ \wedge Φ ₁ = ω , Φ ₀ \vee Φ ₁ = ω , and Φ ₀, Φ ₁ permute. Because of the minimal property of Θ ₁, Φ ₁ \geq Θ ₁, i = 0,1, and so by modularity Φ ₀ = Φ ₀ \wedge (Θ ₀ \vee Θ ₁) = Θ ₀ \vee (Φ ₀ \wedge Θ ₁) = Θ ₀, and Φ ₁ = Θ ₁, completing the proof of the theorem.

Does $K_0 \vee K_1 = K_0 \times K_1$ imply that K_0 and K_1 are independent? Trivial examples show that this is not the case. Let C_0 denote the equational class of Abelian groups satisfying px = 0. Set $K_0 = C_2 \vee C_3$, $K_1 = C_3 \vee C_5$. Then $K_0 \vee K_1 = K_0 \times K_1$; but K_0 and K_1 are not independent, because the meet $K_0 \wedge K_1$ of two independent classes can contain one-element algebras only, while $K_0 \wedge K_1$ in this example is C_3 . However, we can prove the following theorem.

THEOREM 2. Let $K_0 \wedge K_1$ consist of one-element algebras only and let every $G \in K_0 \vee K_1$ have a modular congruence lattice. Then $K_0 \vee K_1 = K_0 \times K_1$ if and only if K_0 and K_1 are independent.

<u>Proof.</u> Theorem 1 contains the "if" part. Now let $K_0 \vee K_1 = K_0 \times K_1$ Let 3 be the free algebra over $K_0 \vee K_1$ with two generators x_0 and x_1 . It follows from the assumptions that $\Im \ \cong \ \Im/\varphi_0 \times \Im/\varphi_1$, where $\Im/\varphi_i \in K_i$, i = 0,1. Now let Θ_0 and Θ_1 be defined as in the proof of Theorem 1. Then $\Theta_0 \leq \overline{\Phi}_0$, $\Theta_1 \leq \overline{\Phi}_1$, and $\Theta_0 \vee \Theta_1 = \iota$ as before. Now take $\mathfrak{F}/\Theta_0 \wedge \Theta_1$; since every homomorphism of \mathfrak{F} to an $\mathbb{G}_i \in K_i$ factors through $\mathbf{3/}\Theta_0 \; \wedge \; \Theta_1$, and every algebra in $\mathbf{K_0} \; \vee \; \mathbf{K_1}$ is isomorphic to an algebra of the form $G_0 \times G_1$ ($G_i \in K_i$, i = 0,1), we conclude that $\mathfrak{F}/\Theta_{0} \wedge \Theta_{1}$ also is free over K on two generators. Hence $\Theta_{0} \wedge \Theta_{1} = \omega$, and $\Theta_i = \Phi_i$ follows by modularity. Thus $\mathfrak{F} = \mathfrak{F}/\Theta_0 \times \mathfrak{F}/\Theta_1$, and \mathfrak{F}/Θ_i is the free algebra over K_i generated by, say, x_0^i , x_1^i (i = 0,1), where x_i corresponds to $\langle x_i^0, x_i^1 \rangle$ under this isomorphism (j = 0, 1). Let p be a polynomial symbol that represents an element of 3 corresponding to $\langle x_0^0, x_4^1 \rangle$ under the above isomorphism. Then $p(x_0, x_4) \equiv x_1(\Theta_1)$, i = 0,1; hence \underline{p} establishes the independence of K_0 and K_4 , completing the proof of Theorem 2.

It should be noted that the independence of K_0 and K_1 means that the polynomials of K_0 and K_1 can be arbitrarily "paired". In other words, if p_i is a polynomial on K_i , i=0,1, then there is a polynomial p on $K_0 \vee K_1$ acting as p_i on K_i (i=0,1). This implies that every "Mal'cev type condition" (see [6]) shared by K_0 and K_1 holds for $K_0 \vee K_1$, provided K_0 and K_1 are independent. By A. Day [3], modularity of congruence lattices is of Mal'cev type. Hence in the second statement of Theorem 1 the condition "every $G \in K_0 \vee K_1$ has a modular congruence lattice" can be replaced by "every G in K_0 or K_1 has a modular congruence lattice".

REFERENCES

- 1. A. Astromoff, Some structure theorems for primal and categorical algebras. Math. Z. 87 (1965) 365-377.
- 2. C. C. Chang, B. Jónsson, and A. Tarski, Refinement properties for relational structures. Fund. Math. 55 (1964) 249-281.
- A. Day, A characterization of modularity for congruence lattices of algebras. Canad. Math. Bull. 12 (1969) 167-173.
- 4. A.L. Foster, The identities of and unique subdirect factorization within classes of universal algebras. Math. Z. 62 (1955) 171-188.
- 5. G. Grätzer, Universal algebra. (The University Series in Higher Mathematics, D. Van Nostrand Co. Inc., Princeton, N.J., 1968).
- 6. G. Grätzer, Mal' cev type conditions. J. Comb. Theory (to appear).
- 7. P. Kelenson, Thesis. (Berkeley, 1969).
- 8. N. Kimura, Note on idempotent semigroups, III. Proc. Japan Acad. 34 (1958) 113-114.
- N. Kimura, The structure of idempotent semigroups, I. Pacific J. Math. 8 (1958) 257-275.

University of Manitoba