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ABSTRACT 
A review of several microinstabilities that have been suggested 

as possible anomalous transport mechanisms in current sheets is 
presented. The specific application is to a afield reversed 
plasma' which is relevant to the so-called Miffusion region' of a 
reconnection process. The linear and nonlinear properties of the 
modes are discussed, and each mode is assessed as to its importance in 
reconnection processes based upon these properties. It is concluded 
that the two most relevant instabilities are the ion acoustic 
instability and the lower-hybrid-drift instability. However, each 
instability has limitations as far as reconnection is concerned, and 
more research is needed in this area. 

I. INTRODUCTION 

The subject of anomalous transport in current sheets is of great 
interest to space plasma physicists, especially as it can impact 
collisionless reconnection processes. A simple concept of a 
reconnection process is illustrated in Fig. 1, which depicts a field-
reversed plasma. The magnetic field B is in opposite directions on 
the two sides of the neutral line, ancf a uniform electric field E is 
directed into the page. The plasma motion in this configuration is 
roughly described by Ohm's law, which for the present situation may be 
written E + U x B = nJ where U is the plasma velocity, n the 
resistivity, and J the current density). Away from the neutral line, 
the resistivity term is usually small, and the plasma obeys E +(J x 
B = 0, which is sometimes called the frozen-in-field condition. 
Loosely speaking, this means that particles are tied to a particular 
magnetic-field line. In this region, far from the neutral line, the 
plasma and the magnetic field are carried towards the neutral line 
with a velocity = E/B. However, the frozen-in-field condition 
breaks down in the diffusion region, where the magnetic field becomes 
very weak. The governing equation is E = nJ, and the plasma and 
magnetic field are decoupled, i.e., no longer tied together. When 
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this occurs the magnetic field can slip through the plasma and 
reconnect. The plasma and magnetic field then leave the diffusion 
region with a velocity U Q u t as shown in Fig. 1. In this 
process U Q U t > U i n , so that the plasma energy has been increased at 
the expense of magnetic-field energy. 

Figure 1: Schematic of a forced reconnection process. 

One of the problems in applying this model to collisionless space 
plasmas (such as the earth's magnetotail) is properly describing the 
diffusion region. The resistivity n associated with coulomb 
collisions between particles is very small in space; the plasma is 
essentially collisionless. What then can balance the electric field 
in the diffusion region? There are other terms in Ohm's law, such as 
electron inertia and pressure anisotropy, but these also appear to be 
quite small (Vasiliunas, 1975). Another explanation is the occurrence 
of anomalous resistivity in the diffusion region. In this situation, 
particles scatter off collective electric fields generated by a plasma 
microinstability, and this scattering process decouples the plasma 
from the magnetic field. Recent laboratory experiments (Gekelman et 
al., 1982; Stenzel et al., 1983) in fact report observations of 
anomalous scattering. 

Incorporating microturbulence effects in a reconnection process 
is a formidable task. Several issues need to be addressed. First, 
the linear theory of a microinstability needs to be developed 
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appropriate for the plasma and magnetic field configuration of the 
diffusion region. In this study it is important to determine the 
relevant plasma conditions needed to excite the instability (e.g., 
width of the current sheet, electron/ion temperature ratio, etc.). 
Second, a nonlinear theory of the microinstability in question needs 
to be developed. Here, it is crucial to determine the level of 
microturbulence produced by the instability (i.e., saturation energy), 
and whether or not the turbulence is steady state. Finally, given the 
linear and nonlinear properties of the unstable waves, this 
information needs to be self-consistently incorporated into the 
hydrodynamic flows associated with a reconnection process. Develop­
ment of such a self-consistent theory of collisionless reconnection is 
indeed difficult. 

In general, plasma theorists have focussed on the first two 
issues: the linear and nonlinear theories of a microinstability as it 
applies to the diffusion region. The final issue, incorporating 
turbulence into reconnection flows, has been ignored. [A notable 
exception to this is the work of Coroniti and Eviatar (1977).] 
Although this may be considered, perhaps, a "cop-out" on the part of 
plasma theorists, the information regarding plasma microturbulence in 
the diffusion region is still crucial to understanding the overall 
process. Moreover, the anomalous transport properties of 
instabilities in the diffusion region can be modelled and incorporated 
into 2D and 3D MHD simulations of reconnection (Sato and Hayashi, 
1980; Ugai, 1983; Sato, these proceedings). Although this is not 
self-consistent, it does provide insight into the collisionless 
reconnection process. 

In this spirit, the purpose of this paper is to review the 
various microinstabilities that have been suggested to play a role in 
reconnection phenomena. Hence, only the linear and nonlinear 
properties of the instabilities will be discussed. Based upon these 
properties one can then assess whether or not a particular instability 
is a viable source of anomalous resistivity for a reconnection 
process. Finally, it should be noted that a review article of this 
nature has been published (Papadopoulos, 1979). The present work, in 
fact, draws heavily from Papadopoulos (1979); however, we attempt to 
elucidate certain aspects of the problem not emphasized in 
Papadopoulos (1979), and to present new results that have been 
obtained in the past four years. 

The organization of the paper is as follows. In the next 
section, we describe the basic plasma and magnetic field configuration 
under consideration. In Section III, a description of the linear and 
nonlinear properties of several macroinstabilities is given. In 
Section IV, a discussion of the relevance of each of these 
instabilities to a reconnection process is presented. Finally, the 
last section contains a summary of the important results obtained to 
date. 
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Figure 2: Plasma configuration and geometry. 

II. PLASMA AND FIELD CONFIGURATION 

The basic plasma and magnetic field configuration to be 
considered in this review is shown in Fig. 2. We take a simple, ID 
reversed field geometry shown in Fig. 2a. The magnetic field B 
reverses direction at x = 0 and is supported by a plasma 
current J which is peaked at x = 0. The width of the reversal layer 
(or current sheet) is given by X. An important parameter shown in 
Fig. 2a is x e and where x a = (2p aX) 1/ 2, where p a is the mean Larmor 
radius of the a species, and typically x e « X < x i # This parameter 
will be discussed shortly. In Fig. 2b, the slab geometry used in the 
stability analysis is shown. The magnetic field B is in the + or - z 
direction, the density gradient Vn is directed towards x = 0, the 
magnetic field gradient VB is directed away from x = 0, and the 
current J is in the y direction. For the purposes of this review, the 
microinstabilities discussed are driven solely by the cross-field 
current J. Thus, the wave vector ^ for t̂ he instabilities discussed is 
in the same direction as J, i.e., k = k e . Instabilities driven by 
particle distribution functions which include beams, tails, or 
temperature anisotropics are not considered. 

https://doi.org/10.1017/S0074180900075781 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900075781


ANOMALOUS TRANSPORT IN CURRENT SHEETS 319 

Finally, we make one further simplifying assumption in the 
analysis which concerns the parameter x a = (2p a\) 1/^ (Hob, 1966), 
This quantity indicates the boundary of crossing and non-crossing 
thermal particles. Thermal particles in the region |x| < x a cross the 
"neutral line", i.e., pass through the magnetic null region B = 0 at 
x = 0. These particles execute rather complicated orbits not amenable 
to analysis. On the other hand, thermal particles in the region 
|x| > x a do not cross the "neutral line". These particles are 
magnetized and execute gyro-orbits about Thus, we consider two 
regimes: unmagnetized electrons (|x| < x e) and magnetized electrons 
(|x| > x f i). The ions are taken to be unmagnetized which is valid for 
|x| < x^ or Y > 8i where y is the growth rate of an instability and 

= eB/m^c is the ion gyrof requency. The assumption of unmagnetized 
electrons (i.e., "straight line orbits") is an over-simplification but 
is reasonably valid for |x| « x e. 

III. REVIEW OF MICROINSTABILITIES 

A. Unmagnetized Regime (|x| < x e) 

1. Buneman instability 

The Buneman instability is the classic electron-ion two-
stream instability (Buneman, 1959). It is a fluid-like (or 
hydrodynamic) instability in that it does not involve wave-particle 
resonances (i.e., u>/k » v a where v a = (T a/m a)^/^ is the thermal 
velocity of species a). The turn-on condition for instability is 
roughly V^ X 2v e where V^ is the relative electron-ion drift. In the 
linear regime at maximum growth one finds that u)r * o>pe» y -
(m e/m4 ) 1/5 a ) p e and k * Vd/u>pe i X^e""1 where a> = + iy, u)pe = (4«rrne

2/ 
m e)l'2 i s t n e electron plasma frequency, and = ve/u>pe is the 
electron Debye length (Krall and Trivelpiece, 1973). Thus, the 
instability is considered to be high frequency and short wavelength. 
In the nonlinear regime the instability is saturated by electron 
trapping which leads to strong electron heating (i.e., v e i V d) 
(Davidson et al., 1970; Biskamp and Chodura, 1973). In the presence 
of a steady state electric field, the anomalous resistivity n a n is not 
steady state (i.e., nan - constant) but is spiky (Papadopoulos, 1977). 

2. Ion acoustic instability 

The ion-acoustic instability, like the Buneman instability, 
is driven by the relative electron-ion drift V<j. However, the ion 
acoustic instability is a resonant (or kinetic) instability and is 
driven via an electron-wave resonance. The turn-on condition for this 
instability is somewhat less stringent than that of the Buneman 
instability when T e » T±. The condition is approximately V^ i (T^/ 
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m ) X / 2 for 0.2 < Te/T± < 5.0 (Coroniti and Eviatar, 1977). However, 
when T e $, the turn-on is comparable to that of the Buneman 
instability. Linear theory predicts (at maximum growth) that o>r * 
kc s a (Dpi, Y * (m e/m i) 1 / 2(V d/c s)a) p e and k ~ Xd"1 where c. = (T e/ 
m ^ ) * / 2 is the ion sound speed and u) p i = (4tt n e 2 / * ^ ) 1 ' 2 is the ion 
plasma frequency (Papadopoulos, 1979). 

There have been many nonlinear theories of the ion-acoustic 
instability proposed (e.g., quasilinear, resonance broadening, 
nonlinear Landau damping). Rather than discuss any of these theories 
in detail it will simply be noted that (1) a steady state anomalous 
resistivity can be achieved (Coroniti and Eviatar, 1977), and (2) near 
marginal stability, the anomalous collision frequency is roughly v a n « 
10 Wpe (Papadogoulos, 1979) so that the anomalous resistivity is 
nan = ^TTVan/wpe - l O " 1 ^ " 1 . 

B. Magnetized instabilities (|x| > x e) 

1. Beam cyclotron instability 

The beam cyclotron instability (also known as the electron 
cyclotron drift instability) (Wong, 1970; Lampe et al., 1972) is a 
fluid-like (or hydrodynamic) instability that is excited via the 
coupling of an electron Bernstein wave to an ion mode. The relative 
electron-ion drift allows the ion mode to be Doppler-shifted so that 
its frequency matches an electron cyclotron harmonic. The turn-on 
condition for this instablity is > Max [cs, (fte/u)pe)ve] where c s = 
( T ^ m i ) 1 / 2 (Papadopoulos, 1979). For the case T~ « T^, maximum 
growth is characterized by a)r k(c s + V^), y * (m e/m£)^/^^ e and k = 
X a e~* (Lampe et al., 1972). The mode saturates because of turbulent 
scattering of the electrons which effectively "demagnetize" them and 
they are unable to maintain coherent gyro-orbits (Lampe et al., 
1971). The saturation energy of the instability is relatively small 
so that a small anomalous collision frequency results: v a n * (V^/ 
v e) 3p^ (Papadopoulos, 1979). 

2. Magnetized ion-ion instability 

The magnetized ion-ion instability (Papadopoulos et al., 
1971) is a counter-streaming ion-ion instability. It is a fluid-like 
(or hydrodynamic) instability. The turn-on condition for this 
instability is >, 2v± where V±± is the relative ion-ion drift. At 
maximum growth one can show that o>r * 0, y = u^h and k * <*>£h/vii where 
w£h - Wpi/C* + (tfpe 2/^ 2)*/ 2 is the lower-hybrid frequency. However, 
the instability is linearly stable when V±i > V A(1 + & e ) 1 ^ 2 where 
VA = B/^immj.)!/ 2 is the Alfven velocity and g e = 8TrnTe/B2. The mode 
saturates because of ion trapping and produces strong ion heating as 
well as a reduction in the relative ion-ion drift velocity. The 
anomalous ion-ion collision frequency associated with this instability 
is v a n <, 10~*o)£h (Lampe et al., 1975). 
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3. Lower-hybrid-drift instability 

The lower-hybrid-drift instability (Davidson et al., 1977) 
is a resonant (or kinetic) instability which is excited via an ion-
drift wave resonance when V ^ < v^ (here, V ^ = ^±2/u±)dIn n/3x is 
the ion diagmagnetic velocity). The turn-on condition for the 
instability is V d i > Vj[(me/mi)^M. The instability is characterized 
at maximum growth by 2 kV^i < w^h* Y - (vdi/vi)<*>r a n d kPe ~ (Te/ 
Tj[)^/2 where p e is the mean electron Larmor radius. This instability 
is relatively insensitive to the temperature ratio T e/T^. However, 
the mode is suppressed in high 3 plasmas because of an electron VB 
drift-wave resonance. A variety of nonlinear theories have been 
suggested for the lower-hybrid-drift instabilities (e.g., quasilinear 
relaxation, resonance broadening, ion trapping, mode coupling). 
Again, we will not discuss these in detail but note that the most 
likely saturation mechanism is mode coupling (Drake et al., 1983). 
The anomalous collision frequency associated with the turbulence is 
van - (Vdi/ vi) 2W£h and a steady state resistivity can result from this 
turbulence. 

IV. APPLICATION TO RECONNECTION 

Prior to discussing the relevance of each instability discussed 
in Section III to reconnection, it is important to note a major 
difference between the magnetized and unmagnetized instabilities. 
Namely, the spatial region where these instabilities can exist. As 
noted in Section II the unmagnetized instabilities are limited to 
|x| < x e, i.e., essentially the null region where B * 0. This is 
precisely where one would like microturbulence to exist in order to 
"decouple" the plasma from the magnetic field. On the other hand, the 
magnetized instabilities are restricted to |x| > x e, away from the 
null field region. Thus, these instabilities do not directly produce 
an anomalous resistivity in the null region. However, the dynamic 
evolution of the plasma and field in a reconnection process may allow 
penetration of the magnetized modes to the region |x| < x e (e.g., 
current steepening, convection). 

A. Unmagnetized instabilities 

1. Buneman instability 

The Buneman instability requires a strong relative electron-
ion drift to be excited (i.e., V d i 2v e). By using Ampere's law to 
relate the width of the current sheet (A) to the relative drift (V<j), 
one can show that X < c/u>pe for this instability to be excited in the 
diffusion region. Because of the extremely thin current sheet needed, 
it seems unlikely that the Buneman instability can be of any 
importance to collisionless reconnection processes. 
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2. Ion acoustic instability 

A theory of reconnection incorporating the ion acoustic 
instability as a source of anomalous resistivity has been developed by 
Coroniti and Eviatar (1977). For a detailed discussion, we refer the 
interested reader to this paper. However, several comments on this 
work are in order. First, the model developed by Coroniti and Eviatar 
(1977) is reasonably self-consistent although a number of simplifying 
assumptions were required for the analysis. Second, they found that 
steady state reconnection could occur based upon ion acoustic wave 
turbulence for certain parameter regimes. Third, even though the 
turn-on condition for the ion acoustic instability is less stringent 
than that for the Buneman instability, a thin current sheet is still 
required to excite this mode, i.e., X £ few (c/ojpe), especially for 
plasmas such that T e « T-£. Finally, although ion acoustic turbulence 
has been observed in laboratory reconnection experiments (Bratenahl 
and Yeates, 1970) its exact role is unclear. Moreover, in space 
plasmas, it is unlikely that current sheets develop as thin as 
required for this instability (e.g., the earth's magnetotail). Thus, 
the ion acoustic instability is probably not important for 
reconnection processes in collisionless space plasmas. 

B. Magnetized plasmas 

1. Beam cyclotron instability 

The beam cyclotron instability has been discussed in regard 
to reconnection by Coroniti and Eviatar (1977) and by Haerendel 
(1978). As noted by Papadopoulos (1979), thin current sheets (X ^ few 
(c/u)pe)) are needed to produce a significant anomalous resistivity. 
Also, it has been shown that a magnetic field gradient (VB) substan­
tially reduces the growth rate of this instability (Gary, 1972; 
Sanderson and Priest, 1972). Thus, we conclude that the beam 
cyclotron instability is not important to reconnection processes. 

2. Magnetized ion-ion instability 

The magnetized ion-ion instability has recently been 
proposed as a source of anomalous resistivity for magnetotail 
reconnection by Lee (1982). However, the plasma configuration 
required is somewhat more complicated than shown in Fig. 2a. That is, 
a second electron and ion species is also considered as shown in Fig. 
3. This second plasma is labelled untrapped. At the position x = X Q 
in Fig. 3, the diagmagnetic drifts of the two ion species are in 
opposite directions so that ion counter-streaming occurs. Based on 
this type of plasma configuration, Lee (1982) finds that he magnetized 
ion-ion instability can be unstable. It should be noted that (1) the 
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scale lengths of the density gradients need to be relatively sharp 
(Ln < Pi where L n * (3 &n n/Bx)*"1) in order that the instability turn-
on V-ljl > 2v^; (2) the mode is stable in high 3 plasmas; and (3) the 
important effect of electron VB damping has been ignored in Lee 
(1982). 

Figure 3: Equilibrium for ion-ion instability. 

3. Lower-hybrid-drift instability 

The lower-hybrid-drift instability was first proposed by 
Huba et al. (1977) as a source of anomalous resistivity for recon­
nection in the earth's magnetotail. Two factors in favor of this 
instability are (1) the mode can be excited in relatively broad 
current sheets (X < (mj[ / m e ) ^ / ^ p-^), and (2) the mode is insensitive 
to the temperature ratio Tg/T^. Both of these factors should be 
contrasted to, say, the requirements for the ion acoustic 
instability. A subsequent study determined that turbulence observed 
in the distant magnetotail was consistent with the occurrence of the 
lower-hybrid-drift instability (Huba et al., 1978). However, a 
problem with this instability (as it applies to a reconnection 
process) is that the mode is damped in a high 3 plasma (3 » 1) 
because of an electron drift-wave resonance. Thus, based upon both 
a local and nonlocal linear analysis (Huba et al., 1980), the 
instability is stable in the near vicinity of the null point. 
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Although this result is unfavorable in directly providing an 
anomalous resistivity in the diffusion region, the evolution of the 
magnetic field in the presence of a resistivity based upon the 
nonlocal mode structure of the lower-hybrid-drift instability has been 
investigated (Drake et al., 1 9 8 1 ) . In this regard, a ID transport 
equation for the magnetic field has been developed for an arbitrary 
resistivity profile in a field-reversed plasma. The equation is given 
by 

_9B , cE 8B 2B 3 2 3B 2 B B & 8 B & m 

3t B 9x " B2+B 2 a x
 van pes 3x B*+B 2 3t u ; 

X* JC 

where B^ = B (outer boundary) and p e s
2 = p e

2(Ti/T e). On the LHS of 
Eq. ( 1 ) the first term represents the time rate of change of the 
magnetic field, the second term represents convection because of the 
inductive electric field E, and the third term represents diffusion 
based upon an arbitrary collision frequency v a t l. The RHS side of Eq. 
( 1 ) contains the effect of a time-varying boundary field. 

We have solved Eq. ( 1 ) numerically (Drake et al., 1 9 8 1 ) . A 
resistivity model such that n « B 2 was chosen; this model has the 
feature that j) = 0 at the neutral line, but n * 0 away from the 
neutral line. The results of this work are illustrated in Fig. 4. 
The initial magnetic field (Fig. 4a) and current density (Fig. 4b) 
profiles are labeled T = 0; the profiles at a later time are labeled 
x = 0.2. It is found that magnetic flux is transported towards the 
neutral line and that the current density increases at the neutral 
line which is due to a diffusion process. This leads to the 
possibility that waves can subsequently penetrate to the neutral 
region during the nonlinear evolution of the field-reversed plasma. 
Such an evolution has been observed in particle simulations of field-
reversed plasmas (Winske, 1 9 8 1 ; Tanaka and Sato, 1 9 8 1 ) . However, 
these simulations used unrealistic mass ratios and it is unclear at 
this time whether or not wave penetration occurs using realistic mass 
ratios (Quest, private communication). 

Finally, recently a 2D mode coupling nonlinear theory of the 
lower-hybrid-drift instability has been developed (Drake et al., 
1 9 8 3 ) . This theory is consistent with both laboratory measurements of 
the instability as well as with computer simulations. An important 
result from this new theory is an estimate of the anomalous 
resistivity associated with the turbulence: v a n * 2.4(pj[/X)2a)^n. This 
value of v a n corresponds to a magnetic Reynolds number of ^ a 0 . 5 
( m i / m e ) 1 / 2 ( x / p i ) 3 . Thus, it is found that the lower-hybrid-drift 
Instability only provides significant anomalous transport for current 
sheets such that X * p^« Also, a discussion of this instability as it 
applies to substorm dynamics is given in Huba et al. ( 1 9 8 1 ) . 
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Figure 4: Time evolution of B and J based upon Eq. (1). 

V. CONCLUDING REMARKS 

It is well known that microinstabilities can affect the dynamic 
evolution of plasmas through wave-particle interactions (i.e., 
scattering) and cause anomalous diffusion, momentum transfer and 
energy exchange. The purpose of this review is to briefly discuss 
several instabilities that have been proposed as anomalous transport 
mechanisms in current sheets. The focus has been on reversed magnetic 
field configurations (Fig. 2a), as they relate to collisionless 
reconnection processes, since the presence of microturbulence in the 
diffusion region can influence the hydrodynamic flows. However, the 
stability analysis of waves in the diffusion region is difficult and 
simplifying assumptions are made, as noted in Section II. 
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The two "favored" instabilities are the ion acoustic instability 
and lower-hybrid-drift instability. The ion acoustic instability can 
be excited in the null field region but requires quite thin current 
sheets (X £ few (c/a>pe)) and is more easily excited in hot electron 
plasmas (T e » T^). Although it has been observed in laboratory 
reconnection experiments where these conditions can be met, its 
occurrence in relevant space plasmas is rather unlikely (e.g., the 
earth's magnetotail). On the other hand, the lower-hybrid-drift 
instability has received considerable attention since it can be 
excited in broader current sheets (X ~ p±) and is relatively 
insensitive to Te/Tj[. However, the waves are strongly damped close to 
the null region. In a dynamic situation (e.g., forced reconnection), 
lower-hybrid-drift wave turbulence may penetrate the null region, but 
this result is tentative at this time. Nonetheless, even if this 
turbulence does not penetrate the null region, it is likely to exist 
over a substantial portion of the current sheet and can strongly 
affect plasma flow in the regions where the mode is unstable. One 
possibility is that this instability may limit the width of current 
sheets to X ~ p^ and inertial effects may be dominant in the null 
region (Coroniti, private communication). 

We emphasize that a simplified plasma and field configuration has 
been used. It is possible that other instabilities may be excited 
which depend upon non-Maxwellian distribution functions which contain, 
say, beams and anisotropics. In this regard, laboratory experiments 
and in situ space observations may indicate more appropriate 
distribution functions. 

Finally, as noted in the introduction, it is crucial to self-
consistently incorporate plasma turbulence in the dynamic evolution of 
collisionless reconnection. This is an exceedingly difficult problem 
which, perhaps, may only be answered by 3D particle or hybrid simula­
tions, which in themselves are also enormously difficult and beyond 
present day computational facilities. Maybe our grandchildren will 
finally solve the problem. 
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DISCUSSION 

Van Hoven: Would you comment on the effects of the addition of By to 
your model, so that it has field shear? Does one have different spatial 
structure or different instabilities? 

Huba: Finite By introduces magnetic shear into the equilibrium model. 
A study of this situation is given in Huba et al., J. Geophys. Res. 87, 
1697 (1982). Basically, magnetic shear has a stabilizing influence on 
the lower-hybrid-drift instability (and instabilities in general), and 
acts to inhibit penetration of the mode toward the neutral line. 

Migliuolo: The addition of a y-component of the equilibrium B-field 
keeps B low in the central region. This might make some of the afore­
mentioned modes (e.g. ion-acoustic) more effective in producing n a n . 

Huba: Although a y-component of B may keep £ low in the central 
region, it introduces magnetic shear into the equilibrium, which is a 
stabilizing influence. (See reply to Van Hoven.) 

Vasyliunas: Nearly all of the instabilities discussed, with the 
exception of lower-hybrid-drift, occur only when the thickness of the 
current sheet is comparable to or less than c/a)pe, but on this scale the 
inertial terms in the generalized Ohm's law dominant and their neglect 
is rather questionable. 

Huba: This point is discussed in Coroniti and Eviatar (1977). It is 
not clear that inertial terms would be dominant over the anomalous 
resistivity provided by, say, the ion acoustic instability. However, I 
agree they should be included for self-consistency. 

D. Smith: Could you go into more detail on how magnetic field is 
transported toward the neutral line? 

Huba: The transport of magnetic flux towards the neutral line in the 
presence of an anomalous collision model based upon the lower-hybrid-
drift instability is simply a diffusion process. It is evident in the 
3rd term on the LHS of Eq.(l) which is the ID transport equation for B. 

Hasegawa: MHD equilibrium requires the presence of Vp rather than 
Vn = 0? 

Huba: The analysis of the lower-hybrid-drift instability is based 
upon p = nT. If Vn = 0, then for VT + 0. The lower-hybrid-drift 
instability can be excited when Vn = 0 and VT 4- 0. 

Coppi: In the theory of magnetic reconnection it is necessary to 
couple the consideration of microscopic (kinetic) effects with those 
of the macroscopic magnetic configuration. In fact, the theory of 
tearing modes in collisionless regimes for sheared magnetic field con­
figurations shows that these tend to become stable, and this could not 
be foreseen without carrying out a complete analysis. Therefore it is 
probably premature, on the basis of the state of the theory you 
presented, to pass a judgement on what is adequate to explain the re­
connection processes that appar to occur in the Earth's magnetotail. 

Huba: I agree that a self-consistent theory which couples micro­
turbulence to the macroscopic evolution of the plasma is needed. I have 
tried to emphasize this point in my paper, although the purpose of the 
article is to simply review the linear and nonlinear properties of 
various instabilities possibly relevant to reconnection processes. 
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