SPECTRA OF IRREDUCIBLE MATRICES

by HENRYK MINC†

(Received 10th September 1973)

1. Introduction

A real matrix is called *non-negative* (*positive*) if all its entries are non-negative (positive). Two matrices A and B are said to be *cogredient* if there exists a permutation matrix Q such that $QAQ^{T} = B$. A square non-negative matrix is called *reducible* if it is cogredient to a matrix of the form

$$\begin{bmatrix} X & Z \\ 0 & Y \end{bmatrix},$$

where the blocks X and Y are square. Otherwise it is called *irreducible*.

Frobenius (1) proved *inter alia* (see Section 3 below) that an irreducible matrix is cogredient to a matrix in the form

0	A_{12}	0				0	0		
0	0	A_{23}	•	•	•	0	0		
•	•	•	•				•		
•	•						•		
•	•		•	•			•	,	(1)
•	•			•	•		•		
•	•				•	•	•		
0	0		•			0	$A_{h-1,h}$		
A_{h1}	0		•			0	0	ļ	

where the zero blocks along the main diagonal are square and h is the index of imprimitivity of A, i.e. the number of eigenvalues of A of maximal modulus (see Lemma 1 (c) in Section 3 below).

Mirsky (5) showed that if $A_{12}, A_{23}, ..., A_{h1}$ are any complex *m*-square matrices (here *h* is an arbitrary positive integer) and the eigenvalues of the product $A_{12}A_{23}...A_{h1}$ are $\omega_1, ..., \omega_m$, then the eigenvalues of the *hm*-square matrix in the form (1) with the $A_{i,i+1}$ in the indicated superdiagonal positions consist of all the *h*th roots of $\omega_1, ..., \omega_m$ (a *h*th root of zero being counted *h* times).

In this paper I extend Mirsky's result to all complex matrices in the form (1) where the superdiagonal blocks A_{12} , ..., A_{h1} are not necessarily square, and I use this theorem to gain new information about the structure of irreducible matrices and their spectra.

† This research was supported by the Air Force Office of Scientific Research under Grant AFOSR-72-2164.

HENRYK MINC

2. Main results

Theorem 1. Let A be an n-square complex matrix in the superdiagonal block form

where the zero blocks along the main diagonal are square. Let $\omega_1, ..., \omega_m$ be the non-zero eigenvalues of the product $A_{12}A_{23}...A_{k1}$. Then the spectrum of A consists of n-km zeros and the km kth roots of the numbers $\omega_1, ..., \omega_m$.

In order to exploit significantly Theorem 1 via the result of Frobenius to the case of irreducible non-negative matrices, we establish the following two auxiliary theorems which may be of interest in themselves.

Theorem 2. Let $B_1, ..., B_s$ and $C_1, ..., C_t$ be irreducible non-negative matrices. The direct sums

and

$$G = \sum_{i=1}^{t} B_i$$
$$H = \sum_{i=1}^{t} C_i$$

S

are cogredient if and only if
$$s = t$$
 and there exists a permutation σ such that B_i
and $C_{\sigma(i)}$ are cogredient for $i = 1, ..., s$.

Theorem 3. If A is an irreducible non-negative matrix and if A^k is cogredient to a direct sum of irreducible matrices $C_1, ..., C_k$, then k divides the index of imprimitivity of A, and all the C_i have the same non-zero eigenvalues.

By an application of the above theorems we obtain the following result.

Theorem 4. Let A be an irreducible non-negative n-square matrix and suppose that A^k is cogredient to a direct sum of irreducible matrices $C_1, ..., C_k$. If the nonzero eigenvalues of C_1 are $\omega_1, ..., \omega_m$, then the spectrum of A consists of n-kmzeros and the km kth roots of $\omega_1, ..., \omega_m$.

3. Preliminaries

Some known results are first stated for reference purposes.

Lemma 1 (Frobenius (1)). If A is an irreducible non-negative matrix, then:

 (a) A has a real simple positive eigenvalue r which is greater than or equal to the moduli of its other eigenvalues (the number r is called the maximal eigenvalue of A);

232

- (b) there exists a positive eigenvector corresponding to r;
- (c) if A has h eigenvalues of modulus r, then these are the distinct roots of $\lambda^h r^h = 0$ (the number h is called the *index of imprimitivity* of A. If h = 1, then A is said to be primitive);
- (d) A is cogredient to a matrix in the form (1).

Lemma 2. If A is a complex matrix in the form (2), then

$$A^k = \sum_{i=1}^k B_i,$$

where $B_t = A_{t,t+1}A_{t+1,t+2}...A_{t-1,t}, t = 1, ..., k$.

Lemma 3 (Sylvester (6)). All the matrices B_t defined in Lemma 2 have the same nonzero eigenvalues.

Lemma 4 (Minc (4)). Let A be an irreducible non-negative matrix with index of imprimitivity h. Then A is cogredient to a matrix in the form (2) with k non-zero blocks in the superdiagonal if and only if k divides h.

Lemma 5 (Minc (4)). If A is an irreducible non-negative matrix in the form (2) with k non-zero blocks in the superdiagonal, then

$$A^k = \sum_{t=1}^k B_t,$$

where the blocks $B_t = A_{t,t+1}A_{t+1,t+2}...A_{t-1,t}$ are irreducible.

The last auxiliary result is an extension to complex matrices of a theorem of Frobenius (1) on non-negative matrices.

Lemma 6. Let A be a complex $n \times n$ matrix in the form (2), and let

$$\lambda^{n} + \Sigma b_{t} \lambda^{m_{t}}$$

where the coefficients b_t are non-zero, be the characteristic polynomial of A. Then k divides $n - m_t$ for all t.

Proof of Lemma 6. Let $p(\lambda, M)$ denote the characteristic polynomial of M. Suppose that A is in the form (2), where the block $A_{t,t+1}$ is $n_t \times n_{t+1}$, t = 1, ..., n-1, and A_{k1} is $n_k \times n_1$, and let

$$D = \sum_{t=1}^{k} \theta^{t} I_{n_{t}},$$
$$D^{-1}AD = \theta A,$$

and therefore

where $\theta = \exp(2\pi i/k)$. Then

E.M.S.-19/3-Q

$$D^{-1}(\theta\lambda I_n - A)D = \theta(\lambda I_n - A),$$

so that

$$p(\theta\lambda, A) = \theta^n p(\lambda, A)$$

Hence

$$\theta^n \lambda^n + \sum_{t} b_t \theta^{m_t} \lambda^{m_t} = \theta^n \lambda^n + \sum_{t} b_t \theta^n \lambda^{m_t},$$

i.e.

$$\theta^{m_t} = \theta^n$$

for all t. Thus

$$\exp\left(2\pi i(n-m_t)/k\right)=1$$

for all t. The result follows.

4. Proofs

Proof of Theorem 1. The proof is similar to that of Mirsky's theorem (5). By Lemma 3, the spectrum of A^k consists of the numbers $\omega_1, \ldots, \omega_m$, each counted k times, and n-km zeros. Thus

$$p(\lambda, A^k) = \lambda^{n-km} \prod_{j=1}^m (\lambda - \omega_j)^k,$$
(3)

and therefore

$$p(\lambda, A) = \lambda^{n-km} \phi(\lambda),$$

where

$$\phi(\lambda) = \sum_{t=1}^{km} c_t \lambda^t$$

By Lemma 6, a coefficient c_t must vanish unless k divides

$$n - (n - km + t) = km - t.$$

It follows that $c_t = 0$ whenever k does not divide t. In other words, $\phi(\lambda)$ is a polynomial in λ^k :

$$\phi(\lambda) = \prod_{t=1}^{m} (\lambda^k - \zeta_t)$$

for some numbers $\zeta_1, ..., \zeta_m$. Hence

$$p(\lambda, A) = \lambda^{n-km} \prod_{\substack{t = 1 \\ 1 \leq j \leq k}}^{m} (\lambda^k - \zeta_t)$$
$$= \lambda^{n-km} \prod_{\substack{1 \leq j \leq m \\ 1 \leq j \leq k}} (\lambda - \zeta_t^{1/k} \theta^j), \qquad (4)$$

where $\theta = \exp(2\pi i/k)$ and $\zeta_t^{1/k}$ denotes any fixed kth root of ζ_t . Therefore the characteristic polynomial of A^k is

$$p(\lambda, A^k) = \lambda^{n-km} \prod_{t=1}^m (\lambda - \zeta_t)^k.$$
(5)

Comparing (3) and (5) it can be concluded that the numbers $\zeta_1, ..., \zeta_m$ are the same as the numbers $\omega_1, ..., \omega_m$, in some order. Thus the characteristic equation (4) of A reads

$$p(\lambda, A) = \lambda^{n-km} \prod_{\substack{1 \leq t \leq m \\ 1 \leq j \leq k}} (\lambda - \omega_t^{1/k} \theta^j),$$

and the theorem is established.

Proof of Theorem 2. The sufficiency of the conditions is quite obvious. To prove the necessity let P be a permutation matrix such that

$$P^{\mathsf{T}}GP = H$$

234

and let τ be the permutation corresponding to P, so that the (i, j) entry of G is permuted into the $(\tau(i), \tau(j))$ position of $H = P^{\mathsf{T}}GP$. For brevity the notation $\overline{\iota}$ is used in place of $\tau(i)$. Denote by $A[\mu_1, ..., \mu_a | \nu_1, ..., \nu_b]$ the submatrix of A lying in rows numbered $\mu_1, ..., \mu_a$ and columns numbered $\nu_1, ..., \nu_b$; the rows $\mu_1, ..., \mu_a$ of A (and the columns $\nu_1, ..., \nu_b$) are said to *intersect* the submatrix. Now suppose that for some $\nu, 1 \leq \nu \leq t$,

$$C_{v} = H[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}, \bar{\beta}_{p+1}, \ldots, \bar{\beta}_{q} \mid \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}, \bar{\beta}_{p+1}, \ldots, \bar{\beta}_{q}],$$

and that rows and columns $\alpha_1, ..., \alpha_p$ of G intersect block B_u but none of rows nor columns $\beta_{p+1}, ..., \beta_q$ of G intersect B_u . However, the only non-zero entries in the rows $\alpha_1, ..., \alpha_p$ of G are in the columns $\alpha_1, ..., \alpha_p$. Thus

and therefore

 $G[\alpha_1, \ldots, \alpha_p \mid \beta_{p+1}, \ldots, \beta_q] = 0,$

$$H[\bar{\alpha}_1, \ldots, \bar{\alpha}_p \mid \bar{\beta}_{p+1}, \ldots, \bar{\beta}_q] = 0$$

But this would imply that C_v is reducible. Hence the supposition is impossible, and each of the C_j can intersect only rows and columns corresponding to rows and columns that intersect a single B_i . Since $\sum_{i=1}^{t} C_i$ and $\sum_{i=1}^{s} B_i$ are cogredient, the result follows.

Proof of Theorem 3. It is first shown that k must divide the index of imprimitivity h of A. Let r be the maximal eigenvalue of A and let x be a positive eigenvector corresponding to r. Then x is an eigenvector of A^k corresponding to r^k . Now, A^k is cogredient to $\sum_{t=1}^{k} C_t$ and therefore r^k is an eigenvalue (clearly of maximal modulus) of each C_t . Since the C_t are irreducible, the eigenvalue r^k is simple and therefore A^k has exactly k eigenvalues equal to r^k . But Lemma 1 (c) implies that there are $d = \gcd(h, k)$ such eigenvalues. Hence d = k and thus k divides h.

It now follows from Lemma 4 in conjunction with Lemma 2 and Lemma 3 that A^k is cogredient to

$$\sum_{t=1}^{k} B_t$$

where the B_t are irreducible and all the B_t have the same non-zero eigenvalues. But then $\sum_{t=1}^{k} B_t$ and $\sum_{t=1}^{k} C_t$ are cogredient, and all the B_t and all the C_t are irreducible. Thus by Theorem 2 the B_1, \ldots, B_k are cogredient to the C_1, \ldots, C_k , in some order, and the result follows.

Proof of Theorem 4. By Theorem 3, k divides the index of imprimitivity of A, and thus by Lemma 4, the matrix A is cogredient to a matrix in the form (2) with blocks $A_{12}, A_{23}, ..., A_{k1}$ in the superdiagonal. Then A^k is cogredient to $\sum_{t=1}^{k} B_t$, where $B_t = A_{t,t+1}A_{t+1,t+2}...A_{t-1,t}$, t = 1, ..., k, and all the B_t have

HENRYK MINC

the same non-zero eigenvalues. Hence by Theorem 2 and Theorem 3, the matrices B_1 and C_1 have the same non-zero eigenvalues. The result now follows by virtue of Theorem 1.

REFERENCES

(1) G. FROBENIUS, Über Matrizen aus nicht negativen Elementen, S.-B. Deutsch. Akad. Wiss. Berlin Math.-Nat. Kl. (1912), 456-477.

(2) F. R. GANTMACHER, *The Theory of Matrices*, vol. II (Chelsea Publishing Company, New York, 1959).

(3) H. MINC, Irreducible matrices, Linear and Multilinear Algebra 1 (1974), 337-342.

(4) H. MINC, The structure of irreducible matrices, *Linear and Multilinear Algebra* 2 (1974), 85-90.

(5) L. MIRSKY, An inequality for characteristic roots and singular values of complex matrices, *Monatsh. Math.* 70 (1966), 357-359.

(6) J. J. SYLVESTER, On the equation to the secular inequalities in the planetary theory, *Philos. Mag.* (5) 16 (1883), 267-269.

INSTITUTE FOR ALGEBRA AND COMBINATORICS UNIVERSITY OF CALIFORNIA SANTA BARBARA, 93106, U.S.A.

236