SPECTRA OF IRREDUCIBLE MATRICES

by HENRYK MINC \dagger
(Received 10th September 1973)

1. Introduction

A real matrix is called non-negative (positive) if all its entries are non-negative (positive). Two matrices A and B are said to be cogredient if there exists a permutation matrix Q such that $Q A Q^{\top}=B$. A square non-negative matrix is called reducible if it is cogredient to a matrix of the form

$$
\left[\begin{array}{ll}
X & Z \\
0 & Y
\end{array}\right]
$$

where the blocks X and Y are square. Otherwise it is called irreducible.
Frobenius (1) proved inter alia (see Section 3 below) that an irreducible matrix is cogredient to a matrix in the form

$$
\left[\begin{array}{cccccccc}
0 & A_{12} & 0 & . & . & . & 0 & 0 \tag{1}\\
0 & 0 & A_{23} & . & . & \cdot & 0 & 0 \\
. & . & . & \cdot & & & & . \\
. & . & & . & . & & & . \\
. & . & & & . & . & & . \\
. & . & & & & . & . & . \\
. & . & & . & . & . & 0 & A_{h-1, h} \\
0 & 0 & . & . & . & . & 0 & 0
\end{array}\right]
$$

where the zero blocks along the main diagonal are square and h is the index of imprimitivity of A, i.e. the number of eigenvalues of A of maximal modulus (see Lemma 1 (c) in Section 3 below).

Mirsky (5) showed that if $A_{12}, A_{23}, \ldots, A_{h 1}$ are any complex m-square matrices (here h is an arbitrary positive integer) and the eigenvalues of the product $A_{12} A_{23} \ldots A_{h 1}$ are $\omega_{1}, \ldots, \omega_{m}$, then the eigenvalues of the $h m$-square matrix in the form (1) with the $A_{i, i+1}$ in the indicated superdiagonal positions consist of all the h th roots of $\omega_{1}, \ldots, \omega_{m}$ (a h th root of zero being counted h times).

In this paper I extend Mirsky's result to all complex matrices in the form (1) where the superdiagonal blocks $A_{12}, \ldots, A_{h 1}$ are not necessarily square, and I use this theorem to gain new information about the structure of irreducible matrices and their spectra.
\dagger This research was supported by the Air Force Office of Scientific Research under Grant AFOSR-72-2164.

2. Main results

Theorem 1. Let A be an n-square complex matrix in the superdiagonal block form

$$
\left[\begin{array}{cccccccc}
0 & A_{12} & 0 & . & . & . & 0 & 0 \tag{2}\\
0 & 0 & A_{23} & . & . & . & 0 & 0 \\
. & . & . & . & & & & . \\
. & . & & . & . & & & . \\
. & . & & & . & . & & . \\
. & . & & & & . & . & . \\
. & . & & . & . & . & 0 & A_{k-1, k} \\
0 & 0 & . & . & . & . & 0 & 0 \\
A_{k 1} & 0 & . & . & . & \cdot
\end{array}\right],
$$

where the zero blocks along the main diagonal are square. Let $\omega_{1}, \ldots, \omega_{m}$ be the non-zero eigenvalues of the product $A_{12} A_{23} \ldots A_{k 1}$. Then the spectrum of A consists of $n-k m$ zeros and the $k m k t h$ roots of the numbers $\omega_{1}, \ldots, \omega_{m}$.

In order to exploit significantly Theorem 1 via the result of Frobenius to the case of irreducible non-negative matrices, we establish the following two auxiliary theorems which may be of interest in themselves.

Theorem 2. Let B_{1}, \ldots, B_{s} and C_{1}, \ldots, C_{i} be irreducible non-negative matrices. The direct sums

$$
G=\sum_{i=1}^{s} B_{i}
$$

and

$$
H=\sum_{i=1}^{t} C_{i}
$$

are cogredient if and only if $s=t$ and there exists a permutation σ such that B_{i} and $C_{\sigma(i)}$ are cogredient for $i=1, \ldots, s$.

Theorem 3. If A is an irreducible non-negative matrix and if A^{k} is cogredient to a direct sum of irreducible matrices C_{1}, \ldots, C_{k}, then k divides the index of imprimitivity of A, and all the C_{i} have the same non-zero eigenvalues.

By an application of the above theorems we obtain the following result.
Theorem 4. Let A be an irreducible non-negative n-square matrix and suppose that A^{k} is cogredient to a direct sum of irreducible matrices C_{1}, \ldots, C_{k}. If the nonzero eigenvalues of C_{1} are $\omega_{1}, \ldots, \omega_{m}$, then the spectrum of A consists of $n-k m$ zeros and the $k m k$ th roots of $\omega_{1}, \ldots, \omega_{m}$.

3. Preliminaries

Some known results are first stated for reference purposes.
Lemma 1 (Frobenius (1)). If A is an irreducible non-negative matrix, then:
(a) A has a real simple positive eigenvalue r which is greater than or equal to the moduli of its other eigenvalues (the number r is called the maximal eigenvalue of A);
(b) there exists a positive eigenvector corresponding to r;
(c) if A has h eigenvalues of modulus r, then these are the distinct roots of $\lambda^{h}-r^{h}=0$ (the number h is called the index of imprimitivity of A. If $h=1$, then A is said to be primitive);
(d) A is cogredient to a matrix in the form (1).

Lemma 2. If A is a complex matrix in the form (2), then

$$
A^{k}=\sum_{t=1}^{k} B_{t}
$$

where $B_{t}=A_{t, t+1} A_{t+1, t+2 \ldots} A_{t-1, t}, t=1, \ldots, k$.
Lemma 3 (Sylvester (6)). All the matrices B_{t} defined in Lemma 2 have】the same nonzero eigenvalues.

Lemma 4 (Minc (4)). Let A be an irreducible non-negative matrix with index of imprimitivity h. Then A is cogredient to a matrix in the form (2) with k nonzero blocks in the superdiagonal if and only if k divides h.

Lemma 5 (Minc (4)). If A is an irreducible non-negative matrix in the form (2) with k non-zero blocks in the superdiagonal, then

$$
A^{k}=\sum_{t=1}^{k} B_{t}
$$

where the blocks $B_{t}=A_{t, t+1} A_{t+1, t+2} \ldots A_{t-1, t}$ are irreducible.
The last auxiliary result is an extension to complex matrices of a theorem of Frobenius (1) on non-negative matrices.

Lemma 6. Let A be a complex $n \times n$ matrix in the form (2), and let

$$
\lambda^{n}+\Sigma b_{t} \lambda^{m_{t}}
$$

where the coefficients b_{t} are non-zero, be the characteristic polynomial of A. Then k divides $n-m_{t}$ for all t.

Proof of Lemma 6. Let $p(\lambda, M)$ denote the characteristic polynomial of M. Suppose that A is in the form (2), where the block $A_{t, t+1}$ is $n_{t} \times n_{t+1}, t=1, \ldots$, $n-1$, and $A_{k 1}$ is $n_{k} \times n_{1}$, and let
where $\theta=\exp (2 \pi i / k)$. Then

$$
D=\sum_{t=1}^{k} \theta^{t} I_{n_{t}}
$$

and therefore

$$
D^{-1} A D=\theta A
$$

$$
D^{-1}\left(\theta \lambda I_{n}-A\right) D=\theta\left(\lambda I_{n}-A\right)
$$

so that

$$
p(\theta \lambda, A)=\theta^{n} p(\lambda, A)
$$

Hence

$$
\theta^{n} \lambda^{n}+\sum_{t} b_{t} \theta^{m_{t}} \lambda^{m_{t}}=\theta^{n} \lambda^{n}+\sum_{t} b_{t} \theta^{n} \lambda^{m_{t}}
$$

i.e.

$$
\theta^{m_{t}}=\theta^{n}
$$

for all t. Thus

$$
\exp \left(2 \pi i\left(n-m_{\imath}\right) / k\right)=1
$$

for all t. The result follows.

4. Proofs

Proof of Theorem 1. The proof is similar to that of Mirsky's theorem (5). By Lemma 3, the spectrum of A^{k} consists of the numbers $\omega_{1}, \ldots, \omega_{m}$, each counted k times, and $n-k m$ zeros. Thus

$$
\begin{equation*}
p\left(\lambda, A^{k}\right)=\lambda^{n-k m} \prod_{j=1}^{m}\left(\lambda-\omega_{j}\right)^{k} \tag{3}
\end{equation*}
$$

and therefore

$$
p(\lambda, A)=\lambda^{n-k m} \phi(\lambda)
$$

where

$$
\phi(\lambda)=\sum_{t=1}^{k m} c_{t} \lambda^{t}
$$

By Lemma 6, a coefficient c_{t} must vanish unless k divides

$$
n-(n-k m+t)=k m-t
$$

It follows that $c_{t}=0$ whenever k does not divide t. In other words, $\phi(\lambda)$ is a polynomial in λ^{k} :

$$
\phi(\lambda)=\prod_{t=1}^{m}\left(\lambda^{k}-\zeta_{t}\right)
$$

for some numbers $\zeta_{1}, \ldots, \zeta_{m}$. Hence

$$
\begin{align*}
& p(\lambda, A)=\lambda^{n-k m} \prod_{t=1}^{m}\left(\lambda^{k}-\zeta_{t}\right) \\
&=\lambda^{n-k m} \prod_{t \leq m}\left(\lambda-\zeta_{t}^{1 / k} \theta^{j}\right), \tag{4}\\
& 1 \leq \frac{j}{\leq} \leq k
\end{align*}
$$

where $\theta=\exp (2 \pi i / k)$ and $\zeta_{t}^{1 / k}$ denotes any fixed k th root of ζ_{t}. Therefore the characteristic polynomial of A^{k} is

$$
\begin{equation*}
p\left(\lambda, A^{k}\right)=\lambda^{n-k m} \prod_{t=1}^{m}\left(\lambda-\zeta_{t}\right)^{k} \tag{5}
\end{equation*}
$$

Comparing (3) and (5) it can be concluded that the numbers $\zeta_{1}, \ldots, \zeta_{m}$ are the same as the numbers $\omega_{1}, \ldots, \omega_{m}$, in some order. Thus the characteristic equation (4) of A reads

$$
p(\lambda, A)=\lambda^{n-k m} \prod_{\substack{1 \\ 1 \leq i \leq j \leq m}}\left(\lambda-\omega_{t}^{1 / k} \theta^{j}\right),
$$

and the theorem is established.
Proof of Theorem 2. The sufficiency of the conditions is quite obvious. To prove the necessity let P be a permutation matrix such that

$$
P^{\top} G P=H
$$

and let τ be the permutation corresponding to P, so that the (i, j) entry of G is permuted into the ($\tau(i), \tau(j)$) position of $H=P^{\top} G P$. For brevity the notation \bar{i} is used in place of $\tau(i)$. Denote by $A\left[\mu_{1}, \ldots, \mu_{a} \mid v_{1}, \ldots, v_{b}\right]$ the submatrix of A lying in rows numbered μ_{1}, \ldots, μ_{a} and columns numbered v_{1}, \ldots, v_{b}; the rows μ_{1}, \ldots, μ_{a} of A (and the columns v_{1}, \ldots, ν_{b}) are said to intersect the submatrix. Now suppose that for some $v, 1 \leqq v \leqq t$,

$$
C_{v}=H\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}, \bar{\beta}_{p+1}, \ldots, \bar{\beta}_{q} \mid \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}, \bar{\beta}_{p+1}, \ldots, \bar{\beta}_{q}\right]
$$

and that rows and columns $\alpha_{1}, \ldots, \alpha_{p}$ of G intersect block B_{u} but none of rows nor columns $\beta_{p+1}, \ldots, \beta_{q}$ of G intersect B_{u}. However, the only non-zero entries in the rows $\alpha_{1}, \ldots, \alpha_{p}$ of G are in the columns $\alpha_{1}, \ldots, \alpha_{p}$. Thus
and therefore

$$
G\left[\alpha_{1}, \ldots, \alpha_{p} \mid \beta_{p+1}, \ldots, \beta_{q}\right]=0
$$

$$
H\left[\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p} \mid \bar{\beta}_{p+1}, \ldots, \bar{\beta}_{q}\right]=0 .
$$

But this would imply that C_{v} is reducible. Hence the supposition is impossible, and each of the C_{j} can intersect only rows and columns corresponding to rows and columns that intersect a single B_{i}. Since $\sum_{i=1}^{t} C_{i}$ and $\sum_{i=1}^{s} B_{i}$ are cogredient, the result follows.

Proof of Theorem 3. It is first shown that k must divide the index of imprimitivity h of A. Let r be the maximal eigenvalue of A and let x be a positive eigenvector corresponding to r. Then x is an eigenvector of A^{k} corresponding to r^{k}. Now, A^{k} is cogredient to $\sum_{t=1}^{k} C_{t}$ and therefore r^{k} is an eigenvalue (clearly of maximal modulus) of each C_{r}. Since the C_{t} are irreducible, the eigenvalue r^{k} is simple and therefore A^{k} has exactly k eigenvalues equal to r^{k}. But Lemma $1(c)$ implies that there are $d=\operatorname{gcd}(h, k)$ such eigenvalues. Hence $d=k$ and thus k divides h.

It now follows from Lemma 4 in conjunction with Lemma 2 and Lemma 3 that A^{k} is cogredient to

$$
\sum_{t=1}^{k} B_{t}
$$

where the B_{t} are irreducible and all the B_{t} have the same non-zero eigenvalues. But then $\sum_{t=1}^{k} B_{t}$ and $\sum_{t=1}^{k} C_{t}$ are cogredient, and all the B_{t} and all the C_{t} are irreducible. Thus by Theorem 2 the B_{1}, \ldots, B_{k} are cogredient to the C_{1}, \ldots, C_{k}, in some order, and the result follows.

Proof of Theorem 4. By Theorem 3, k divides the index of imprimitivity of A, and thus by Lemma 4, the matrix A is cogredient to a matrix in the form (2) with blocks $A_{12}, A_{23}, \ldots, A_{k 1}$ in the superdiagonal. Then A^{k} is cogredient to $\sum_{t=1}^{k} B_{t}$, where $B_{t}=A_{t, t+1} A_{t+1, t+2} \ldots A_{t-1, t}, t=1, \ldots, k$, and all the B_{t} have
the same non-zero eigenvalues. Hence by Theorem 2 and Theorem 3, the matrices B_{1} and C_{1} have the same non-zero eigenvalues. The result now follows by virtue of Theorem 1 .

REFERENCES

(1) G. Frobenius, Über Matrizen aus nicht negativen Elementen, S.-B. Deutsch. Akad. Wiss. Berlin Math.-Nat. Kl. (1912), 456-477.
(2) F. R. Gantmacher, The Theory of Matrices, vol. II (Chelsea Publishing Company, New York, 1959).
(3) H. Minc, Irreducible matrices, Linear and Multilinear Algebra 1 (1974), 337-342.
(4) H. Minc, The structure of irreducible matrices, Linear and Multilinear Algebra 2 (1974), 85-90.
(5) L. Mirsky, An inequality for characteristic roots and singular values of complex matrices, Monatsh. Math. 70 (1966), 357-359.
(6) J. J. Sylvester, On the equation to the secular inequalities in the planetary theory, Philos. Mag. (5) 16 (1883), 267-269.

Institute for Algebra and Combinatorics University of California Santa Barbara, 93106, U.S.A.

