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REAL HARDY SPACES OF AN ANNULUS

HWAI-CHIUAN WANG

In this article we use real methods to study the Dirichlet and

the boundary value problems of an annulus. Then we establish

various properties of real Hardy spaces on the annulus, and give

some applications.

1. Introduction

Fix r. , 0 < rn < 1 . Let C be the complex numbers, and

A = {z 6 C : r» < \z\ < l} be an annulus. The boundary of A consists of

two pieces r = {z € (D : \z\ = p } , and T = {z € C : \z | = l} . Write

r = ro u ri •

In this article, we first study the Dirichlet and the boundary value

problems on the annulus A . Then we shall construct real Hardy spaces

tr (A) . We also study the relationships between hr (A) and some important

operators such as the Poisson kernel, the conjugate Poisson kernel and the

Hilbert transforms. Two related works should be mentioned. The first is

Sarason's monograph [4], where Hardy spaces have been studied through

complex methods, and then applied to study invariant theory. The second is

Goldberg [3], who studied real Hardy spaces on a strip

{z € C : 0 < Im 3 < l} . It is noted that a Hardy space of the annulus

does not go directly over to a Hardy space of the strip since circles

centered at 0 do not go over into lines parallel to the r-axis.
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Actually the Cayley transform (or its inverse) takes these lines into

circles tangent to the unit circle at the point -1 . Finally we give some

applications to plasma physics.

2. The Poisson kernel, the conjugate Poisson kernel,
and the Hilbert transform

To derive the Poisson kernel on the annulus A , we start with the

closed unit disk D minus the points 1 and -1 , apply a suitable

conformal mapping onto the upper half plane and then was another conformal

mapping onto the strip B = {z (. C : 0 < Im z < l} . Finally, we roll B

up to A .

Following Sarason [4], p. 22, consider the holomorphic function

Fit, r) = -± - tanh
0

where q = -log v , 0 < r < r < 1 , i € R , the real numbers. The

imaginary part Pit, r) and the real part Qit, r) of Fit, r) are as

follows:

(1/2?)cos [(ir/? )log(r/rj)]
Pir, t) = °- : ^ — ,

cosh(irt/qo)-sinQTT/£70)logfr/r^)]

Qit, r) =
cosh (ir*/?0)-sin t[-n/qQ) log [r/rQ)]

Thus P and Q are harmonic functions. Furthermore

(2.1) Pit, r) > 0 for rQ < r < 1 , t € R ,

f P(t, r)dt + f p\t, -j£(2 .2) I Pit, r)dt + I P\t, —\dt = 1 for r < r < 1 ,

(2.3) P(t+2TTfe, r) 5 min

for large k , 11| 5 TT .

Proof of (2.3). Since
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P(t+2-nk, r) =
[l/2qQ) cos [ frr/g ) log {?/**)

we have

cosh (TT/C70) (t+2TTfe)-sin |̂  ( i r /q j log [r/r*\ j

5 —r- for 111 5 IT and large fc ,

(l/2<7Q) cos (TT/<70) log (r /r^)

ecos

n
f o r

Similar arguments reveal

(2 .3 ' ) |p(t+2TTk, r ) | - f f r for | t | i n and large fc .

By (2.3) we have

ccos
( 2 . U )

(2.5)

1*1
for | t | < TT and large fe ,

(2.6)

S — for | t | £ TT and large fe ,
k2

2 — for | t | S TT and large k .

For | f c | s i r , r < r < 1 , define

p{t, r) = Y, P(t+2vk, r) .

By inequalities (2.l)-(2.6), we obtain
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(2-7) pit, r ) is harmonic on /} ,

(2.8) pit, r) > 0 for rQ < r < 1 , \t\ 5 ir ,

1 f 1 f f 0

(2.9) ^ j p(t,r)dt+±^ p\t, -£

(2.10) sup \p * f(t)\ < cMfit) for / € ̂ (T) where

Vr < 1

p (*) = pit, *") and Af/ is the Hardy-Littlewood maximal

function of f ,

(2.11) for any 6 , 0 < 6 < IT , we have

lim ^ I prit)dt = lim i j pp /rit)dt = 0 .

Proof of ( 2 . 1 1 ) . By i n e q u a l i t y ( 2 . U ) ,

ecos (ir/^ ) l o g ( r / r ^ )
|p ( t ) | 2 ' — <- ->• 0 almost everywhere as r" ->• 1 .

r 1*1
Similar ly p / (* ) •* • ( ) almost everywhere as r •+ r .

Using |p r (* : ) | - e / | * | on 6 S | t | S TT and the Lebesgue dominated

convergence theorem,

l im T= f pjt)dt = lim ^- \ pjt)dt = 0 .

This proves the assertion.

Set p*(*) = pr(t) and p°(t) = p^ / r ( t ) .

THEOREM 1. Let fQ € c[TQ) J f± € C ^ ) . Then

uit, r) = p° */J(t) +pJ * ^(t)

solves the Dirichlet problem on A .

Proof. By ( 2 . 7 ) , pit, r) i s harmonic on A . Write
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= (PJ * /0(*)-/0(*)) + (pi •/!<*>-/!<*>]
= h \ p0

PM\f0^)-f0(t)\du - i j pi(M)/o

•i/picol^*--)-/^*
For e > 0 take 6 > 0 such that

||1f0(t-M)-/>
0(t)||oo < ^ - whenever \u\ < 6 .

But

h \ plM\fQ{t-u)-fQ{t)\du\ 5 i I p°(«)|/o(t-M)-/o(t)|du

E a s r ->• rQ ,

^ { pi(«)/0 - h l]f0ll°°° COS ^ 1 O S T I + 0 as r - 1 .

The estimates of the third and the fourth terms are similar. Hence

lim u(t, r) = fAt) and lim u(t, r) = fAt) .
r+1 ± t^rQ

This completes the proof.

We come to the boundary value problem on A .

T H E O R E M 2 . Suppose u i s h a r m o n i c on A , l < p < ° ° . Then

rd.T\

sup -±- \u(t, r)\Pdt
d J
d

if and only if
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for some fQ € ̂ \rQ) and f± € ̂ ( T J .

Proof. It suffices to prove the only if part.

Let

(2
sup ^ r [ \u(t, r)\Pdt

c <r<l ^ 0
0

By the Banach-Alauglu theorem, there exists / € If [T ) , f t iF \j )

such that

u[t, rk) •* fQ(t) as rk •+ 1 ,

" ( * . s
k) -* /x(

s
k + r

0 '

in the w*-topology.

Note that gk(t) = w(t, rfc) € c(rQ) and ftfe(t) = w(t, sfc) € C ^ )

By Theorem 1,

u[x, r )p\t-x)dx + w(x, ajp°(t-x)da;
as r

By the uniqueness of harmonic functions on A , and

\u{t, rk) as r •* 1 ,

liyl^" fil oc y* •+ y>
MlC> SI,J a S r + P

n !

we obtain

U t , u[x, rk)p^(t-x)dx + \ u{x,

l e t t i n g s, -»• r and r , •+ 1 , we have

u(t, r) = fQ{x)p°r(t-x)dx

This completes the proof.
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Theorem 2 can be extended to the Sobolev space ^ ( F ) o f order k .

THEOREM 3. For 1 5 p < " , k a positive integer,

(a) For fQ € L ^ ) , f± € i£ [Tj , let

, r) =/ Q ° jp

Then u(t, r) is harmonic on A ,

lim u{t, r) = / n ( t ) almost everywhere,

lim uit, r) = f-.it) almost everywhere,

\\u(t, r)||

/or aZZ r , rQ < r < 1 .

ffcj Suppose u(t, r) is harmonic on A . Assume there is c > 0

for some p , 1 5 p 5 °° ,

< e /or aZi r , r. < r < 1 .

Then

(i) for 1 < p < °° ,

u(t, r) = fQ * p°p(t) + fx * pj(t)

for some fQ € ij frQ) , ̂  € ̂ ( r j ;

(ii) for p = X : if {/ } is Cauchy in L -norm as r •* 1

and r + rQ where f (t) = u(t, r) , then

u(t, r) = /Q * p°(t) + /x * pj,(t)

/or some /Q € ̂ (rQ) awd f± € L J ^ ) .

Proof. It suffices to prove (b) (i). By Theorem 2, take
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f0 ( if{r0) , /? i rftg with

$ (> : *

Taking the Fourier transforms of the above two equations, we obtain

This completes the proof.

Consider next the A -spaces, for 1 5 p < oo , let

A?(T) = / € LV) : I |?(«)|P < 4

under the norm

ll/ll p = \\f\\x I I?(»)|P
1/P

A(T) forms a Banach space; for the basic properties of A-spaces, see

Wang [7].

THEOREM 4. (a) For fQ € / ( r Q ) , fx C ^ f r J , let

u(t, r) = fQ * p°(t) + / x * p^(

w is harmonic on A ,

lim w(t, r) = f-.it) almost everywhere,
r+1 L

lim u( t , r) = / n ( t ) almost everywhere,

\\u(t, r)\ r <r
U
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(b) Let u(t, r) be harmonic on A , and \f } be Cauchy in

L -norm as r •*• 1 and r •*• r . Assume there is c > 0 , for some p ,

S p

Then

\\u(t, r)\\ < c for rQ < r < 1 .
A

u(t, r) = fQ *p°r(t) + f±

for some fQ € Ar{TQ) , f± € tffrj .

P r o o f . I t s u f f i c e s t o p r o v e ( b ) . B y T h e o r e m 2 , t a k e f Q
i L ( r

0 ) »

f± € i 1 ^ ) w i t h

"(*, P) = fQ *PJ(*) + f± * P ^ t ) '

l i m f (t) = f (t) i n t h e W*-topology,

l im / (*) = / (*) i n t h e x*- topo logy .

Therefore

lim f («) = / (n) ,

lim fin) = / (n) ,

for every integer n . Therefore, by the Fatou lemma,

? < » > l p

Slim I |?r(«)|P

5 e .

Similarly £ |?0(«)|P « e .
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Thus / € AP[?Q) a n d f± € i4P (r ) . This proves the assertion.

In Theorem It, i f p is restricted to l i e between 1 and 2 then we

can weaken our assumptions.

THEOREM 4 ' . Let u(t, r) be harmonic on A . Assume there is

c > 0 , and some p , 1 < p < 2 3 with

\\u(t, r)\\ p 5 a for rQ < r < 1 .

Then

u(t, r) = fQ * p°r(t) + f± * p\{t)

for some fQ € ^1^ VF
03 , f± « ^ l ^ J

Proof. By the assumption

\\u(t, r) 2 a ,

take u € ^^r) > " t h e measure algebra on T , and u € M{T ) such that

M ( t , r ) = u0 * p ° ( t ) + u± * p*(t) .

Along the same line of the proofs of Theorem k, we obtain

I |&0(n)|P<- ,

By the Hausdorff-Young theorem, u € 1^ [V ) , u € ̂ (r.) , where

1/p + 1/q = 1 . Therefore uQ € L
1(ro) , M;L € L

1 ^ ) or wQ € A
P[TQ) ,

u € ̂ ( r ) . This completes the proof.

We are now in a position to describe the conjugate Poisson kernel

q{t, r) on A and the Hilbert transform Hf of f on T . Let

pit, r) = p°(t) + pXr(t)
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then p(i , r) = p(t, s) where rs = r .

By a theorem of Goldberg [3], (1-iJOi sgn(£)/(S) is the Hilbert

transform of a function / on the boundary of the strip

{z (. C : 0 < Im 2 < l} , where ty is a testing function with iKO) = 1 •

Following a well-known result of de Leeuw (see Stein and Weiss [6,

p. 260]), there is a multiplier H of LP(T) to LP(T) such that

(Hf)"(n) = (i-i|i)i sgn(n)/(n)

for all integer n where

LP(T) = {/ : r - C : / = fQ+fv

fQ(t) = f±(t) almost everywhere, fQ £

We call this H the Hilbert transform of / . Note that

* Pr(*)]"(m) = f(m)(l-<C)i sgn(w)pr(m)

for all integer m . Define

[q(t, r) ]"(m) = (l-i|>)i sgn(n)pr(m)

for a l l integers m . Then <7(i, r ) i s harmonic on A with

\\q(t, r ) | | < 4 | | p r | |

S W for 1 < p < °° .

, r) i s called the conjugate Poisson kernel of p(t, r) .

For p > 0 , define

= U, w) : sup
{ rQ<r<l

f ̂  [\u(t,
J0

where u, v are conjugate harmonic functions on A , and

u(t, r) = u(t, s) with rs = i» . Following Fefferman and Stein [7,

p. IT't], u can be recovered from u and

lim u(t, r) = f

exists in the sense of distributions. So Jr{A) can be identified with

https://doi.org/10.1017/S0004972700011515 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011515


102 H w a i - c h i u a n Wang

space 1rr (F) of distributions on P . In particular, for p > 1 ,

>P(T) = If : T •* C : f(t) = fQlt)+f (t) a l m o s t e v e r y w h e r e ,

/ 0 ( t ) = fx(t) almost everywhere, fQ i £P

By Theorem k' and Ste in [ 5 , p . 221 ] , we ob ta in

PROPOSITION 5 . f € h V ) i f and only if f € L ^ T ) , Hf €

Let T : (t, r) •*• re1 where r S r S l , 0 < t S 2n .

T{t) = \(t', r ) : \t-t'\ < r-rQ, rQ < r < —•-

1+r>n
; ' , r) : | t - t ' | < 1-r, --jj— < r

Y(t) = r(r(*)) ,

u*it) = sup \u(t', r)| .

PROPOSITION 6. if p > 0 tfrew M € ^ ( 4 ) if and only if

u* € i ^ ( r , ) . For each 0 < p < » , t ^ e r e t s an V̂ so t h a t

5 =

f2TT

awd i f ip i. C ( r . ) i<rit?i iji )S 0 , then the iF-norms of the following

functions are equivalent: u* s sup l^ * f ( t ' ) | ,
( ' ) ( ) r

sup |<J> * f ( t ) | j and sup sup U * f ( t ) | where f € h^CT) and
r <r<l r_,<r<l U)6B

0 0
w(t, r ) = p r * fit) .

PROPOSITION 7. I f ip € C°°(r ) , ^ - \p = 1 and \ xatyix)dx = 0
Jo Jo

for a l l a t 0 , then

||f - <J» * f|| S e||f||
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In particular f£}P^f-ty*ft1r where W is the Hardy space on

the unit disk D on the plane.

PROPOSITION 8. The following spaces are identical:

(1) the dual of h1 ;

(2) \b : b = bQ+Hbx, 2>0, b 1 € 1°°} ;

(3) \b € L1 : sup -AT I b - ~^-r i) < » ,
1 | « |<1 IWI >Q | y | }Q

1 ( i i 1
sup \n\ I |£» 1 < °°, Q cubes on v r ;

€ BMO(D) : \p * b € L°} for some (p €

/•2ir/•2ir f2TT

^ - ^(x)dx = 1 3 and xa

J0 J0
= 0

Proofs of Propositions 6-8 run parallel to proofs in Goldberg C3].

3. Some applications

For r , 0 < r < 1 , let

Ap = \z 6 C : | a | < rQ} ,

Av = {s 6 C : rQ < | * | < 1} ,

rQ = (a € C : | * | = rQ} ,

Tx = {z I C : \z\ = 1} .

Here if we consider A as the domain filled by a plasma and A as

the domain corresponding to the vacuum, then our results can be applied to

solve a special problem in plasma physics.

THEOREM 9. Given two boundary data functions f. € lP[Y.) ,

i = 0, 1 j l < p < » j there is a function u defined on the closed unit

disk D = {z € C : \z\ 2 1} such that
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Aw = -A u on A ,

Aw = 0 on A ,

u = fi on Vi ' * = 1 . 2 .

Proof. Take a function v on the closed unit disk D satisfying

Au = -*22°QU on {z € C : \z\ < 1} ,

V = 0 on {s € C : \z\ = l}

(see Folland [2, p. 137]. Let

w(x) = v[x/r )

and p , P • as in Theorem 2. Then

is our candidate.

Finally we ask whether our theory can be extended to general domains.

1. If we extend the annulus A = \z £ (C : r < \z \ < l} to a general

domain B which is an elliptic annulus possessing two elliptic boundaries,

then can our theory apply or not? The affirmative answer is usual for

number theory.

2 . F o r 0 < r < l < j ? < « ° , l e t T = {z d C : \z\ = l] ,

Ti = {z € C : \z\ = r^ , r 2 = {z £ C : \z\ = r^ . L e t

C = {z € C : r < \z\ < l} , and C„ = {s € C : 1 < |s| < r } . Given

boundary data functions /. on P. , t = 0, 1, 2 , can we apply our
"is Is

theory to solve the generalized Dirichlet problem

2
Aw = -A u on C ,

hu = 0 on C ,
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