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In Part 2 of our guide to collisionless fluid models, we concentrate on Landau fluid
closures. These closures were pioneered by Hammett and Perkins and allow for the
rigorous incorporation of collisionless Landau damping into a fluid framework. It
is Landau damping that sharply separates traditional fluid models and collisionless
kinetic theory, and is the main reason why the usual fluid models do not converge
to the kinetic description, even in the long-wavelength low-frequency limit. We
start with a brief introduction to kinetic theory, where we discuss in detail the
plasma dispersion function Z(ζ ), and the associated plasma response function
R(ζ )=1+ ζZ(ζ )=−Z′(ζ )/2. We then consider a one-dimensional (1-D) (electrostatic)
geometry and make a significant effort to map all possible Landau fluid closures that
can be constructed at the fourth-order moment level. These closures for parallel
moments have general validity from the largest astrophysical scales down to the
Debye length, and we verify their validity by considering examples of the (proton and
electron) Landau damping of the ion-acoustic mode, and the electron Landau damping
of the Langmuir mode. We proceed by considering 1-D closures at higher-order
moments than the fourth order, and as was concluded in Part 1, this is not possible
without Landau fluid closures. We show that it is possible to reproduce linear
Landau damping in the fluid framework to any desired precision, thus showing the
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convergence of the fluid and collisionless kinetic descriptions. We then consider a
3-D (electromagnetic) geometry in the gyrotropic (long-wavelength low-frequency)
limit and map all closures that are available at the fourth-order moment level. In
appendix A, we provide comprehensive tables with Padé approximants of R(ζ ) up to
the eighth-pole order, with many given in an analytic form.

Key words: astrophysical plasmas, space plasma physics, plasma waves
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1. Introduction
The incorporation of kinetic effects, such as Landau damping, into a fluid

description naturally requires some knowledge of kinetic theory. There are many
excellent plasma physics books available, for example Akhiezer et al. (1975), Swanson
(1989), Stix (1992), Gary (1993), Gurnett & Bhattacharjee (2005), Fitzpatrick (2015)
and many others. These books cover numerous topics in kinetic theory that need to
be addressed, if a plasma physics book wants to be considered complete. However,
the topics that are required for the construction of advanced fluid models are often
covered only briefly, or not covered at all. For example, the Padé approximation of
the Maxwellian plasma dispersion function Z(ζ ) or the plasma response function
R(ζ ) = 1 + ζZ(ζ ), which is a crucial technique for the construction of collisionless
fluid closures valid for all ζ , is not addressed by any of the cited plasma books.

A researcher interested in collisionless fluid models that incorporate kinetic effects
has to follow for example Hammett & Perkins (1990), Hammett, Dorland & Perkins
(1992), Snyder, Hammett & Dorland (1997), Passot & Sulem (2003), Goswami, Passot
& Sulem (2005), Passot & Sulem (2006, 2007), Passot, Sulem & Hunana (2012),
Sulem & Passot (2015) and references therein. The first three cited references are
written in the guiding-centre reference frame (gyrofluid), which is a very powerful
approach that enables the derivation of many results in an elegant way. However, the
calculations in guiding-centre coordinates can be very difficult to follow. The other
cited references are written in the usual laboratory reference frame (Landau fluid),
but, the kinetic effects considered are of an even higher degree of complexity and
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the papers can be very difficult to follow as well. There are other subtle differences
between gyrofluids and Landau fluids and the vocabulary is not strictly enforced.

Additionally, the cited papers assume that the reader is already fully familiar with
the nuances of the kinetic description, such as the definition of the plasma dispersion
function Z(ζ ) and the very confusing sign of the parallel wavenumber sign(k‖), that
almost every plasma book appears to treat slightly differently. This guide, which
is a companion paper to ‘An introductory guide to fluid models with anisotropic
temperatures. Part 1. CGL description and collisionless fluid hierarchy’, attempts to
be a simple introductory paper to the collisionless fluid models, and we focus on the
Landau fluid approach. The text is designed to be read as ‘lecture notes’, and may be
regarded as a detailed exposition of Hunana et al. (2018). We focus on collisionless
closures and use a technique pioneered by Hammett & Perkins (1990). Alternative
approaches, including incorporation of collisional effects, were presented for example
by Joseph & Dimits (2016), Ji & Joseph (2018), Jorge et al. (2019), Chen, Xu &
Lei (2019), Wang et al. (2019) and references therein.

In § 2, we introduce kinetic theory briefly, and we consider only aspects that are
necessary for the construction of advanced fluid models that contain Landau damping.
We focus on the integral

∫
e−x2

/(x− x0) dx that we call the Landau integral, see
figure 1. We discuss how this integral is expressed through the plasma dispersion
function Z(ζ ) and we discuss in detail the perhaps only technical (but very important)
difference between defining ζ = ω/(k‖vth) and ζ = ω/(|k‖|vth). Only the latter choice
allows one to use the original plasma dispersion function of Fried & Conte (1961),
and the former choice requires that the Z(ζ ) is redefined.

In § 3, we consider a one-dimensional (1-D) electrostatic geometry. We discuss
the concept of the Padé approximation to the plasma dispersion function Z(ζ ) and
the plasma response function R(ζ ). We introduce a new classification scheme for
approximants Rn,n′(ζ ) that we believe is slightly more natural than the classification
scheme introduced by Martín, Donoso & Zamudio-Cristi (1980) or the scheme of
Hedrick & Leboeuf (1992). Nevertheless, we provide conversion relations that allow
to convert one notation into the other. We verify the numerical values in table 1 of
Hedrick & Leboeuf (1992) analytically and find a typo in one coefficient of the quite
important Z3,1(ζ ) approximant previously used to construct closures. In figures 2
and 3 we compare precision of various approximants Rn,n′(ζ ) with the exact R(ζ ).
We proceed by mapping all plausible Landau fluid closures that can be constructed
at the level of fourth-order moment. For a brief summary of possible closures, see
(3.241)–(3.242). For the sake of clarity, all closures are provided in Fourier space as
well as in real space. Writing the closures in real space emphasizes the non-locality
of collisionless closures, since all closures contain the Hilbert transform, which in real
space should be calculated correctly by integration along the magnetic field lines. As
discussed in detail by Passot et al. (2014), neglecting the distortion of magnetic field
lines and calculating the Hilbert transform with respect to mean magnetic field B0

can lead to spurious instabilities. We compare the precision of the obtained closures
by calculating the dispersion relation of the ion-acoustic mode at wavelengths that
are much longer than the Debye length. For some closures, an interesting property
is observed in that the resulting fluid dispersion relation is analytically equivalent
to the kinetic dispersion relation, once R(ζ ) is replaced by the Rn,n′(ζ ) approximant,
and such closures are viewed as ‘reliable’, or physically meaningful. Subsequently,
all unreliable closures were eliminated; see the discussion below (3.242). The closure
with the highest power series precision is the R5,3(ζ ) closure.
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We note that electron Landau damping of the ion-acoustic mode can be correctly
captured, even if the electron inertia in the electron momentum equation is neglected
(the ratio me/mp still enters the electron heat flux and the fourth-order moment r̃). The
dispersion relation of such a fluid model is of course not analytically equivalent to
the kinetic dispersion relation (after R(ζ ) is replaced by the Rn,n′(ζ )), however, such a
fluid model provides great benefit for direct numerical simulations, since the electron
motion does not have to be resolved. In figure 5 we plot solutions for selected fluid
models without the electron inertia. In figure 6, the electron inertia is retained, and
we replot the fluid model with the R5,3(ζ ) closure to show that the differences are
negligible. We also plot additional closures and discuss a regime where the electron
temperature is much larger than the proton temperature, and where closures with
higher asymptotic precision yield better accuracy. We then investigate the precision
of the obtained closures by using the example of the Langmuir mode, see figures 7
and 8. These calculations were only noted but not presented in Hunana et al. (2018).

The case of 1-D geometry is then pursued further, and selected closures with fifth-
order and sixth-order moments are constructed. For an impatient reader, the entire
text can be perhaps summarized with figure 9, where the Landau damping of the ion-
acoustic mode is plotted for dynamic closures with the highest power-series precision
that can be constructed at a given fluid moment level. For the third-order moment (the
heat flux) it is R4,2(ζ ), for the fourth-order moment it is R5,3(ζ ), for the fifth-order
moment it is R6,4(ζ ) and for the sixth-order moment it is R7,5(ζ ) (we also briefly
checked that for the seventh-order moment it will be R8,6(ζ )). In figure 10, we also
plot solutions for the Langmuir mode with the R7,5(ζ ) closure. Additionally, it was
verified that all these closures are ‘reliable’.

The remarkable result that the reliable 1-D closures reproduce the exact kinetic
dispersion relation once R(ζ ) is replaced by Rn,n′(ζ ) leads us to the conjecture
that there exist reliable fluid closures that can be constructed for even higher-order
moments, i.e. satisfying the kinetic dispersion relation exactly, once R(ζ ) is replaced
by the Rn,n′(ζ ) approximant. Furthermore, for a given nth-order fluid moment, the
reliable closure with the highest power-series precision is the dynamic closure
constructed with Rn+1,n−1(ζ ). Indeed, for higher-order fluid moments one should
be able to construct closures with higher-order Rn+1,n−1(ζ ) approximants that will
converge to R(ζ ) with increasing precision. Thus, one can reproduce the linear
Landau damping in the fluid framework to any desired precision, which establishes
the convergence of fluid and kinetic descriptions.

In § 4, we consider a 3-D electromagnetic geometry in the gyrotropic limit, and
map all plausible Landau fluid closures at the fourth-order moment level. In a 3-D
electromagnetic geometry, the most difficult part of the calculations actually consists
in obtaining the perturbed distribution function f (1), since in the laboratory reference
frame that we use here, one needs to first calculate the fully kinetic integration around
the unperturbed orbit. Only then can the correct gyrotropic limit (where the gyroradius
and the frequency ω are small) be obtained. The integration around the unperturbed
orbit can be found in many plasma books, and can be found in appendix C. An
alternative and very illuminating derivation of f (1) is obtained by using the guiding-
centre reference frame. By writing the collisionless Vlasov equation in the guiding-
centre limit and by prescribing from the beginning that the magnetic moment has
to be conserved at the leading order, the same f (1) is obtained in a perhaps more
intuitive way. The various terms in f (1) can be identified with the conservation of
the magnetic moment, the electrostatic Coulomb force (which yields Landau damping)
and the magnetic mirror force (which yields transit-time damping). Usually Landau
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damping and its magnetic analogue, transit-time damping, are summarily described as
Landau damping, and we note that 3-D Landau fluid models contain both of these
collisionless damping mechanisms.

We show that the closures for the q‖ and r̃‖‖ moments are the same as for the
q and r̃ moments in a 1-D geometry. The closure for r̃⊥⊥ in the gyrotropic limit
is simply r̃⊥⊥ = 0. One therefore needs to consider only closures for the q⊥ and
r̃‖⊥ moments. For a summary of the q⊥ and r̃‖⊥ closures, see (4.145)–(4.146). We
did not compare the dispersion relation of the resulting fluid models with the fully
kinetic dispersion relation in the gyrotropic limit and therefore we cannot conclude
which closures are ‘reliable’. Nevertheless, by briefly considering parallel propagation
along B0, one closure was eliminated since it produced a growing higher-order mode.
There is only one static closure available for the perpendicular heat flux q⊥, which is
constructed with the R1(ζ ) approximant. As discussed later in the appendix A, the
simple R1(ζ ) = 1/(1 − i

√
πζ ) is a quite imprecise approximant of R(ζ ). This has

the important implication that 3-D Landau fluid simulations should not be performed
with static heat fluxes, and time-dependent heat flux equations have to be considered.
The closure with the highest power-series precision for r̃‖⊥ in the gyrotropic limit
is constructed with R3,0(ζ ). In appendix A, we provide tables of Padé approximants
of R(ζ ) up to the eight-pole approximation, and many solutions are provided in an
analytic form.

2. A brief introduction to kinetic theory
In this section we introduce some building blocks of kinetic theory starting from the

simple case of wave propagation along a mean magnetic field B0 in a homogeneous
plasma. Such an approach allows us to introduce the plasma dispersion function and
the hierarchy of linearized kinetic moments, preparing the ground for the next section
where various hierarchy closures will be described in detail. The collisionless Vlasov
equation in CGS units reads

∂fr

∂t
+ v · ∇fr +

qr

mr

(
E+

1
c
v×B

)
· ∇v fr = 0. (2.1)

It is often illuminating to work in the cylindrical coordinate system, where the particle
velocity v = (vx, vy, vz) is expressed as

v =

v⊥ cos φ
v⊥ sin φ
v‖

 , (2.2)

and the gyrating (azimuthal) angle φ= arctan(vy/vx). The reason is that it very nicely
clarifies the meaning of gyrotropy, where the distribution function and the expressions
that follow are independent of the angle φ. The velocity gradient in the cylindrical
coordinate system reads

∇v = v̂⊥
∂

∂v⊥
+ φ̂

1
v⊥

∂

∂φ
+ v̂‖

∂

∂v‖
, (2.3)

where the unit vectors

v̂⊥ =

cos φ
sin φ

0

 ; φ̂ =

−sinφ
cos φ

0

 ; v̂‖ =

0
0
1

 , (2.4)
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so the velocity gradient is

∇v =

cos φ ∂

∂v⊥
−

sin φ
v⊥

∂

∂φ

sin φ ∂

∂v⊥
+

cos φ
v⊥

∂

∂φ

∂

∂v‖

 . (2.5)

A straightforward calculation with B0 = (0, 0, B0) yields

v×B0 = B0

 v⊥ sin φ
−v⊥ cos φ

0

 , (2.6)

which further implies

(v×B0) · ∇v = v⊥ sin φB0

(
cos φ

∂

∂v⊥
−

sin φ
v⊥

∂

∂φ

)
− v⊥ cos φB0

(
sin φ

∂

∂v⊥
+

cos φ
v⊥

∂

∂φ

)
= −B0 sin2 φ

∂

∂φ
− B0 cos2 φ

∂

∂φ
=−B0

∂

∂φ
. (2.7)

Now we need to expand the Vlasov equation (2.1) around some equilibrium
distribution function f0, i.e. the entire distribution function is separated to two parts
as f = f0 + f (1). For the distribution function, we drop the species index r. The
magnetic field is separated as B=B0+B(1), where B0=B0ẑ, and the electric field as
E=E0 +E(1), but since there is no large-scale electric field in the system, E0 = 0.

The most important principle that is usually not emphasized enough, is that the
kinetic velocity v is an independent quantity, and is not linearized. The entire Vlasov
equation reads

∂( f0 + f (1))
∂t

+ v · ∇( f0+ f (1))+
qr

mr

[
E(1)
+

1
c
v× (B0 +B(1))

]
· ∇v( f0+ f (1))= 0, (2.8)

or equivalently by using the r-species cyclotron frequency Ωr = qrB0/(mrc)

∂( f0 + f (1))
∂t

+ v · ∇( f0 + f (1))+
qr

mr
E(1)
· ∇v( f0 + f (1))

+Ωr

[
v×

(
ẑ+

B(1)

B0

)]
· ∇v( f0 + f (1))= 0. (2.9)

The Vlasov equation is now expanded (i.e. linearized) by assuming that the ‘(1)’
components are small, and that terms containing 2 small ‘(1)’ quantities can be
neglected. At the leading order, the situation is similar as many times before, i.e. at
very low frequencies (ω�Ωr) and very long spatial scales, the term proportional to
Ωr dominates and must be by itself equal to zero

qr

mrc
(v×B0) · ∇v f0 = 0; ⇒ Ωr

∂

∂φ
f0 = 0, (2.10)
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where in the last step we used already calculated identity (2.7). The obtained result
implies that at the longest spatial scales, the distribution function cannot depend on
the azimuthal angle φ, or in another words, the distribution function must be isotropic
in the perpendicular velocity components and can depend only on v2

x + v
2
y = v

2
⊥

, i.e.
the distribution function must be gyrotropic. The second most important principle for
doing the linear kinetic hierarchy is to realize that the hierarchy is linear, and all
the quantities will have to be linearized. Additionally, we are interested only in a
simplified case where the plasma is perturbed around a homogeneous equilibrium state,
and we can assume that the equilibrium f0 does not depend on time and position, so
that ∂f0/∂t= 0 and ∇f0= 0. Therefore, the distribution f0 contains only density n0 that
is not (t, x) dependent, or in another words f (x, v, t) = f0(v) + f (1)(x, v, t). Perhaps
a different way of looking at it is that the f0 must satisfy the leading-order Vlasov
equation

∂f0

∂t
+ v · ∇f0 +

qr

mr

[
E0 +

1
c
v×B0

]
· ∇v f0 = 0, (2.11)

which at long spatial scales and low frequencies further implies gyrotropy (2.10) and
E0 = 0, together with ∂f0/∂t+ v · ∇f0 = 0.

Terms that contain 2 small (1) quantities in (2.8) can be neglected, and putting the
f (1) contributions to the left-hand side and the f0 contributions to the right-hand side
yields

∂f (1)

∂t
+ v · ∇f (1) +

qr

mrc
(v×B0) · ∇v f (1) =−

qr

mr

[
E(1)
+

1
c
v×B(1)

]
· ∇v f0. (2.12)

This is the starting equation that expresses f (1) with respect to f0 and that is used
in plasma physics books to derive the kinetic dispersion relation for waves in hot
magnetized plasmas. The second term on the left-hand side v · ∇f (1), introduces the
simplest forms of Landau damping. The most complicated term, by far, is the third
term Ωr(v×B0/B0) · ∇v f (1), since it introduces non-gyrotropic f (1) effects. This term
introduces the complicated integration around the unperturbed orbit with associated
sums over expressions containing Bessel functions, that are found in the full kinetic
dispersion relations. It is this third term that makes the collisionless damping (and the
kinetic theory) a very complicated process, even at the linear level. Without this third
term, life would much easier, and Landau fluid models would be an excellent match
for a full kinetic description, at least at the linear level.

The third term is obviously equal to zero if the f (1) distribution function is assumed
to be strictly gyrotropic (see (2.7)). Or, we can just neglect the term by hand,
assuming that we are at low frequencies and that ω�Ω , meaning, if we apply an
‘overly strict’ and slightly ad hoc performed low-frequency limit. However, as we will
see later in the 3-D geometry section, it turns out that even if a strictly gyrotropic
f (1) is assumed, the third term cannot be just eliminated from the onset. To obtain the
correct f (1) in the gyrotropic limit the third term has to be retained and the integration
around the unperturbed orbit performed. Only then can the term be eliminated in a
limit. It is emphasized that the sophisticated Landau fluid models of Passot & Sulem
(2007), that we do not address here, do not neglect this third term and these models
do not assume the f (1) to be gyrotropic. It is exactly the deviations from gyrotropy
that introduce the Bessel functions found in kinetic theory and sophisticated Landau
fluid models.
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Now, for a moment we do not perform any calculations, and just reformulate the
important equation (2.12). The first-order fields are typically transformed to Fourier
space (∼eik·x−iωt), but we will postpone that for now. By defining the operator

D
Dt
≡
∂

∂t
+ v · ∇+

qr

mrc
(v×B0) · ∇v, (2.13)

that represents a rate of change along an unperturbed orbit (zero-order trajectory), the
equation is rewritten as

Df (1)

Dt
=−

qr

mr

[
E(1)
+

1
c
v×B(1)

]
· ∇v f0. (2.14)

To obtain the f (1), one therefore has to calculate the integral of the above equation,
where also the integration of the right-hand side must be naturally done along the
zero-order trajectory (along the unperturbed orbit) in order to cancel the d/dt on
the left-hand side. The integration is denoted with prime quantities, and the integral
is performed along dt′. If the integral is performed from time t′ = t0 to t′ = t, the
integration of the left-hand side yields f (1)(x, v, t) − f (1)(x, v, t0), i.e. the result
depends on the initial condition at time t0. To remove this dependence, the integral
is performed from t0 = −∞ and it is typically stated that, in this case, the initial
condition f (1)(x, v, −∞) can be neglected. (This is however not that obvious and,
for example, Stix have a rather long discussion in this regard on page 249). The
distribution function f (1)(x, v, t) is therefore obtained by performing the integral

f (1)(x, v, t)=−
qr

mr

∫ t

−∞

[
E(1)(x′, t′)+

1
c
v′ ×B(1)(x′, t′)

]
· ∇v′ f0(v

′) dt′. (2.15)

The calculation of this integral is cumbersome because of the required change of
coordinates. We want to get the final f (1) expression and we will repeat the algebra
concerning how to obtain it, but before doing that, let us consider the simplest
possible case.

2.1. The simplest case: 1-D geometry, Maxwellian f0

Let us consider a particular situation, when (for whatever reason) the third term on
the left-hand side of equation (2.12) disappears, i.e. let us briefly consider

(v×B0) · ∇v f (1) = 0, (2.16)

which according to (2.10) implies that f (1) is gyrotropic (it does not depend on the
angle φ). Let us also consider the even more special case in which f0 is isotropic. In
such a case, that is a specific case of (2.16), the direction of B(1) does not matter at
all for f0 and naturally

(v×B(1)) · ∇v f0 = 0. (2.17)

To quickly double check the correctness of the above expression, for isotropic f0(v)
the velocity gradient is given by ∂f0/∂vi = (∂f0/∂v)(∂v/∂vi)= f ′0vi/v and the velocity
gradient ∇v f0= f ′0v̂ is in the direction of velocity v. The result (2.17) then immediately
follows since εijkvjB

(1)
k vi = 0. The equation (2.12) therefore reduces to

∂f (1)

∂t
+ v · ∇f (1) =−

qr

mr
E(1)
· ∇v f0. (2.18)

https://doi.org/10.1017/S0022377819000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000850


10 P. Hunana and others

Fourier transforming the first-order quantities and ∂/∂t→−iω, ∇→ ik yields

(−iω+ iv · k)f (1) =−
qr

mr
E(1)
· ∇v f0, (2.19)

which allows us to obtain an expression for f (1) in the form

f (1) =−i
qr

mr

E(1)
· ∇v f0

ω− v · k
. (2.20)

Even though it is not necessary, it is useful to express the (electrostatic) electric field
through the scalar potential E(1)

=−∇Φ, which in Fourier space reads E(1)
=−ikΦ,

yielding

f (1) =−
qr

mr
Φ

k · ∇v f0

ω− v · k
. (2.21)

Now, we want to integrate f (1), and obtain the linear ‘kinetic’ moments for density,
velocity (current), pressure (temperature), heat flux and the fourth-order moment r (or
the correction r̃). To continue, we have to prescribe some distribution function f0.

The 3-D (isotropic) Maxwellian distribution is

f0r = n0r

(αr

π

)3/2
e−αrv

2
, (2.22)

where the isotropic v2
= v2

x + v
2
y + v

2
z and αr =mr/(2T (0)r )= 1/v2

thr. For simplicity, let
us drop the species index r, except for the charge qr. The velocity gradient

∂f0

∂vi
= n0

(α
π

)3/2
(−α)2vie−αv

2
=−2αvif0 =−

m
T (0)

vif0,

∇v f0 = −
m

T (0)
vf0. (2.23)

Therefore, for a Maxwellian

f (1) =+
qr

T (0)
Φ

k · v
ω− v · k

f0. (2.24)

Before continuing, let us slightly rearrange the above expression for f (1) and add
0 = ω − ω to the numerator, otherwise we will have to do this each time, when
calculating the higher-order moments. The rearrangement yields

f (1) =+
qr

T (0)
Φ

k · v −ω+ω
ω− v · k

f0 =−
qr

T (0)
Φ

(
1+

ω

v · k−ω

)
f0. (2.25)

For clarity, let us simplify even further and discuss the simplest possible 1-D case,
for a 1-D Maxwellian distribution

f0 = n0

√
α

π
e−αv

2
; where α ≡

m
2T (0)

=
1
v2

th
. (2.26)

Here we consider fluctuations along the magnetic field B0 and the wavenumber is
therefore denoted as k‖. Note that the case is strictly one-dimensional, and the velocity
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fluctuations are along the B0 as well. For example from the MHD perspective, we
are therefore considering the parallel propagating ion-acoustic mode. The f (1) for a
Maxwellian f0 is expressed as (dropping all the species indices ‘r’ except for the
charge qr)

f (1) = i
qr

T (0)
E(1)

v

ω− vk‖
f0, (2.27)

f (1) =−
qr

T (0)
Φ

1+

ω

k‖

v −
ω

k‖

 f0. (2.28)

Now, we are ready to calculate the velocity integrals. Let us start with the density n(1),
by integrating

n(1) =
∫
∞

−∞

f (1) dv =−
qr

T (0)
Φ


∫
∞

−∞

f0 dv︸ ︷︷ ︸
=n0

+

∫
∞

−∞

ω

k‖
f0

v −
ω

k‖

dv

 . (2.29)

By using the prescribed Maxwellian f0, the second integral is rewritten as

∫
∞

−∞

ω

k‖
f0

v −
ω

k‖

dv = n0

√
α

π

ω

k‖

∫
∞

−∞

e−αv
2

v −
ω

k‖

dv

=

[ √
αv = x

√
αdv = dx

]
= n0

√
α

π

ω

k‖

∫
∞

−∞

e−x2

x−
ω

k‖

√
α

dx=
[
ω

k‖

√
α ≡ x0

]

=
n0
√

π
x0

∫
∞

−∞

e−x2

x− x0
dx. (2.30)

The notation [· · ·] just indicates change of a variable. We purposely wrote the integral
with

x0 ≡
ω

k‖

√
α =

ω

k‖vth
, (2.31)

instead of the usual ζ , since we want to define ζ slightly differently. The integral
is related to the famous plasma dispersion function Z(ζ ), that is responsible for
the famous Landau damping. Each plasma physics book devotes many pages to the
discussion of Landau damping, that was first correctly described by Landau (1946),
by considering an initial value problem and using Laplace transforms. It was later
shown by van Kampen (1955), that the Landau damping can be indeed obtained by
using Fourier analysis. We refer the reader for example to books by Swanson, Stix,
Akhiezer, Gary, Gurnett and Bhattacharjee, Fitzpatrick, etc. Let us call the integral
(2.30) the ‘Landau integral’. Nevertheless, the very-well-known secret is that, even
if one is armed with all these excellent books, the Landau damping effect can still
be very confusing (even at the linear level). We did not find any secret recipe that
explains the Landau damping in a simplified and different way, and the reader is
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referred to the thick plasma physics books. Here, we want to concentrate only how
to express the integral (2.30) through the plasma dispersion function.

Since the Landau integral can be very confusing and boring to explain, to increase
the ‘pedagogical’ value of this text, let us talk a bit more freely on the next few pages.
The plasma dispersion function can be defined with a short definition

Z(ζ )≡
1
√

π

∫
∞

−∞

e−x2

x− ζ
dx, for Im(ζ ) > 0. (2.32)

In the definition of x0, the thermal speed vth is always a positive real number, and
we do not have to worry about it. Now, considering the specific case k‖ > 0 and
Im(ω) > 0, where we indeed have Im(x0) > 0, we can directly use the plasma
dispersion function and the result of the Landau integral (2.30) is n0x0Z(x0). For this
case, we are done. Really? Yes, there is nothing else we can do for this case, we
calculated the Landau integral. Reeeaallyy?? Yes, because the Landau integral cannot
be analytically ‘calculated’, the integral cannot be expressed through elementary
functions, unless the Z(ζ ) function is somehow simplified, for example by expansion
for cases |ζ |� 1 or |ζ |� 1, or by considering the weak damping limit when Im(x0)
is small (see plasma physics books). We are not interested in these limits and the
Z(ζ ) function has to be calculated numerically or looked up in the table. We are
really done here!1 So why is the Landau integral so confusing for the other cases? It
is exactly because of that – basically nothing gets ‘really calculated’.

2.2. The dreadful Landau integral
∫

e−x2
/(x− x0) dx

There are many reasons why the ‘Landau integral’ (2.30) can be so confusing. The
first reason is, (i) that the integral (2.30) cannot be expressed by using only elementary
functions. If we did not arrive at this integral in the middle of a thick plasma physics
book, but instead encountered it during our undergraduate studies of complex analysis,
we would perhaps not have such a respect to this integral, and immediately attempt to
calculate it by using the residue theorem. The integral appears to be so simple. Instead
of calculating

∫
∞

−∞
, we would calculate a different integral over a closed contour in

the complex plane
∮

C. That integral can be calculated by using the residue theorem,
that states that

∮
C = 2πi

∑
Res, if the big path that encircles all the poles is counter-

clockwise.2 An equivalent statement is that the integral is equal to
∮

C =−2πi
∑

Res,
if the big path that encircles all the poles is clockwise. In our case, there is always
just one pole, at x= x0, and the residue of e−x2

/(x− x0) evaluated at x= x0 is actually
very simple, it is always

Res
x=x0

e−x2

x− x0
= e−x2

0, (2.33)

regardless of the value of x0, since for a general function f (x), the residue
Res
x=x0

f (x)/(x− x0)= f (x0).

However, to make the result
∮

C useful for the calculation of our integral on the real
axis

∫
∞

−∞
, we need to separate the closed contour integral to

∮
C=
∫
∞

−∞
+
∫

arc, where the

1In old times, a good barber would loudly shout: the next in line for shaving!
2As noted in the footnote of Appendix A of the book by Swanson, page 363, the rumour has it that the

famous Cauchy’s residue theorem, is actually due to Cauchy’s dog, that usually went around leaving residues
at every existing pole.
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Collisionless fluid models. Part 2 13∫
arc represents the big half-circle at infinitely large radius. To preserve the direction of

integration along the real axis
∫
∞

−∞
, if the pole is in the upper complex plane, i.e. if

Im(x0) > 0, we need to close the big arc contour in the upper half of the complex
plane counter-clockwise. Similarly, if the pole is in the lower complex plane, i.e. if
Im(x0) < 0, we need to close the big arc contour clockwise. Importantly, in contrast
to typical examples presented in basic complex analysis classes, the arc integral

∫
arc

does not disappear. The problem is, that the function f (x) = e−z2 is a very strongly
decaying function on the real axis (for z= x→±∞), however, this is not true at all
in the complex plane. Considering the purely Imaginary axis z = ±iy, the function
e−z2
= e+y2 is a very strongly diverging function as y increases, and the arc integral∫

arc cannot be neglected! This is a very sad news, since now we clearly see, that with∫
arc 6= 0, we will not be able to use the complex analysis to actually ‘calculate’ the

Landau integral (2.30).
We note that the well-known Gaussian integral I =

∫
∞

−∞
e−x2 dx =

√
π, is typically

calculated in the real plane by means of a trick which consists in evaluating I2 in
polar coordinates, I2

=
∫
∞

−∞
e−x2

−y2 dx dy = 2π
∫
∞

0 e−r2
r dr. The Gaussian integral can

still be calculated in the complex plane by using the residue theorem, even though
quite sophisticated tricks are required.3

The second reason why Landau damping is confusing is, (ii) the necessity of
analytic continuation. The third reason is very closely related to the second and it is
(iii) The analytic continuation has to be done differently for k‖ > 0 and for k‖ < 0.
The big result of Landau (1946) can be summarized as follows: if k‖ > 0, the path
of integration always has to pass below the pole x= x0. Therefore, starting with the
basic case in the upper complex plane Im(x0) > 0, nothing has to be done and the
integration is just along the real axis. Now, if the pole is moved to the real axis,
so Im(x0) = 0, one needs to go around that pole with a tiny half-circle from below.
This creates a contribution of 1/2 times 2πi times the residue at that pole, so the
contribution is πie−x2

0 . If the pole x0 is moved further down to the lower complex
plane, a full circle around the pole is required to enclose it from below, which yields
a contribution of 2πie−x2

0 . The situation is demonstrated in figure 1(a). The integral
(2.30) for k‖ > 0 is therefore ‘calculated’ as

∫
C

e−x2

x− x0
dx

k‖>0
=



∫
∞

−∞

e−x2

x− x0
dx, Im(ω) > 0; Im(x0) > 0;

V.P.
∫
∞

−∞

e−x2

x− x0
dx+πie−x2

0, Im(ω)= 0; Im(x0)= 0;∫
∞

−∞

e−x2

x− x0
dx+ 2πie−x2

0, Im(ω) < 0; Im(x0) < 0.

(2.34)

For the Cauchy principal value, we prefer the original French pronunciation ‘Valeur
Principale’, abbreviated as V.P.

The above result is completely consistent with the definition of the plasma
dispersion function, since the plasma dispersion function was developed exactly
to describe this integral. One starts with the definition in the upper complex plane

3For example, by considering
∮

eiπz2
/ sin(πz) dz, calculated along lines with a 45◦ angle with the real

axis, that encircle the pole at z= 0 and where the residue Res
z=0
= 1/π.
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(a) (b)

FIGURE 1. (a) Landau contours for k‖ > 0. (b) Landau contours for
k‖ < 0.

(2.32), and analytically continues this function to a lower complex plane, according to

Z(ζ )≡
1
√

π

∫
C

e−x2

x− ζ
dx=

1
√

π



∫
∞

−∞

e−x2

x− ζ
dx, Im(ζ ) > 0;

V.P.
∫
∞

−∞

e−x2

x− ζ
dx+πie−ζ

2
, Im(ζ )= 0;∫

∞

−∞

e−x2

x− ζ
dx+ 2πie−ζ

2
, Im(ζ ) < 0.

(2.35)

To save space in scientific papers and plasma physics books, the definition of Z(ζ )
is often abbreviated as (2.32), i.e. only as a first line of (2.35), with a powerful
statement that for Im(ζ ) < 0 the function is analytically continued. That statement
indeed completely defines Z(ζ ), since the powerful complex analysis tells us that
an analytic continuation of a function, if it exists, is unique. Another abbreviated
definition is by essentially writing down only the second (middle) line of (2.35). This
is the most useful 1-line abbreviation because one can immediately recognize how the
sign(k‖) was treated (as we will see soon). However, such a definition of Z(ζ ), only
specifying it for Im(ζ )= 0, would not be a complete definition of that function, and
no powerful statement regarding how the function is extended above and below from
the x-axis is available. So plasma physicists found a very smart workaround, how not
to write the Im(ζ )= 0 restriction in the second line of (2.35) and how to completely
define the Z(ζ ) with this 1-line statement. Let us still consider the case k‖> 0, where
our x0 and ζ are equivalent. It is often stated (e.g. Stix, bottom of page 190), that ‘the
principal value of an integral through an isolated singular point may be considered
the average of the two integrals that pass just above and just below the point’. For
example, for a specific situation when x0 lies on the real x-axis, integrating along a
horizontal line below the x-axis yields the first line of (2.35), and integration along
a horizontal line above the x-axis yields the third line of (2.35) since when the pole
is encountered we have to pass it from below. An average of the first line and third
line of (2.35) yields the second line. The idea can now be generalized to an entire
complex plane, for all values of Im(x0), where two integrals are done; one integral
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along a horizontal line that passes below the x0 point (where nothing has to be done)
and one integral along a horizontal line that passes above the x0 point (and where a
deformation that passes below the point has to be performed, accounting for the full
residuum). The average of these two integrals yields an abbreviated Z(ζ ) definition
for all values of ζ in the form

Z(ζ )=
1
√

π
V.P.

∫
∞

−∞

e−x2

x− ζ
dx+ i

√
πe−ζ

2
, for ∀ Im(ζ ), (2.36)

where the integration is said to go through the pole. Of course, no integration can
be really done ‘through’ a singular point, and what the wording means is that the
integration is done along the horizontal axis that goes through x0, i.e. the integration
is along horizontal axis Im(x0).

It is possible to look at it from another (perhaps more illuminating) perspective.
Consider the situation in which x0 is somewhere in the upper half of the complex
plane. One can perform the integral along the real axis, so that the first line of (2.35)
applies. Let us call this result c1. Alternatively, one can perform the integral along the
horizontal line that passes through Im(x0) (with the required tiny half-circle passing
below x0), and (2.36) applies. Let us call this result c2. These two different integrals
must be equal. Why? Because one can plot two vertical lines (passing through
Re(x0)=±∞) that, together with the two horizontal integration lines, enclose an area
that does not contain any pole, and integration around all four lines (in a circular
direction, let us say counter-clockwise) must yield zero. The two integrals along the
vertical lines cancel each other, yielding that c1 − c2 = 0, the minus sign in front
of c2 appears since the integration along c2 was now done in the opposite direction.
Even though it is perhaps a bit confusing when seen at first, the definition (2.36) is
very useful, and when encountered, it should be just interpreted as an abbreviated
definition of (2.35).

Unfortunately, the plasma dispersion function was obviously developed only with
the case k‖ > 0 in mind. The Landau result requires that for k‖ < 0, the path of
integration always encircles the pole from above, see figure 1(b). For k‖ < 0, the
Landau integral is defined as

∫
C

e−x2

x− x0
dx

k‖<0
=



∫
∞

−∞

e−x2

x− x0
dx, Im(ω) > 0; Im(x0) < 0;

V.P.
∫
∞

−∞

e−x2

x− x0
dx−πie−x2

0, Im(ω)= 0; Im(x0)= 0;∫
∞

−∞

e−x2

x− x0
dx− 2πie−x2

0, Im(ω) < 0; Im(x0) > 0.

(2.37)

The two different cases for k‖>0 and k‖<0 can be easily combined together by using
the sign of the wavenumber k‖ function, that is equal to +1 for k‖ > 0, and equal
to −1 for k‖ < 0. However, one needs to forget the sign of Im(x0), and arrange the
results only with respect to the sign of Im(ω). The Landau integral with x0=ω/(k‖vth)

therefore reads
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∫
C

e−x2

x−
ω

k‖vth

dx
∀k‖
=



∫
∞

−∞

e−x2

x− x0
dx, Im(ω) > 0;

V.P.
∫
∞

−∞

e−x2

x− x0
dx+ sign(k‖)πie−x2

0, Im(ω)= 0;∫
∞

−∞

e−x2

x− x0
dx+ sign(k‖)2πie−x2

0, Im(ω) < 0.

(2.38)

Obviously, it is the sign of Im(ω), and not the sign of Im(x0), that is the ‘natural
language’ of the Landau integral. However, the connection to the plasma dispersion
function Z(ζ ) is unnecessarily difficult. Sometimes, the definition of the plasma
dispersion function is then altered so that the above expression is satisfied. Stix, for
example, uses, in addition to the usual Z(ζ ), also a different function Z0(ζ ) that can
be defined with respect to the sign of Im(ω) instead of the sign of Im(ζ ), where as
noted on page 202, Z0(ζ )= Z(ζ ) for k‖ > 0, and, Z0(ζ )=−Z(−ζ ) for k‖ < 0. With
ζ =ω/(k‖vth), the function Z0(ζ ) is defined according to

Z0(ζ )=
1
√

π



∫
∞

−∞

e−x2

x− ζ
dx, Im(ω) > 0;

V.P.
∫
∞

−∞

e−x2

x− ζ
dx+ sign(k‖)πie−ζ

2
, Im(ω)= 0;∫

∞

−∞

e−x2

x− ζ
dx+ sign(k‖)2πie−ζ

2
, Im(ω) < 0.

(2.39)

Again, the function Z0(ζ ) can be defined in an abbreviated form as the first line of
(2.39), with analytic continuation for Im(ω)6 0 (Stix, page 206, equation (91)). The
second possible abbreviated definition of Z0(ζ ), valid for all values of Im(ω), is the
trick with the principal value (Stix, page 206, equation (92))

Z0(ζ )=
1
√

π
V.P.

∫
∞

−∞

e−x2

x− ζ
dx+ sign(k‖)i

√
πe−ζ

2
, for ∀ Im(ω), (2.40)

where the integration path goes ‘through’ the pole, i.e. the integration is done along
the horizontal line Im(ζ ). With the use of this new function Z0(ζ ) of Stix, we can
therefore express the dreadful Landau integral for all values of k‖ as

1
√

π

∫
C

e−x2

x−
ω

k‖vth

dx
∀k‖
= Z0(ζ ); where ζ =

ω

k‖vth
. (2.41)

However, we do not like this formulation with Z0. Here, we insist on using the
original plasma dispersion function Z. In our opinion, the most elegant solution is the
one that is used for example in the book by Peter Gary and in some Landau fluid
papers, and that is to use |k‖| in the definition of ζ , by defining

ζ ≡
ω

|k‖|vth
. (2.42)

This amazingly convenient definition simplifies the expressions and represents the
‘natural language’ of the plasma dispersion function. We note that |k‖| = sign(k‖)k‖,
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and also k‖ = sign(k‖)|k‖|. With the new definition of ζ , for k‖ > 0 obviously nothing
is changed since |k‖| = k‖. However, for k‖ < 0,∫

∞

−∞

e−x2

x− ω

k‖vth

dx
k‖<0
=

∫
∞

−∞

e−x2

x+ ζ
dx=

[
x=−y

dx=−dy

]

=

∫
−∞

∞

e−y2

−y+ ζ
(−dy)=

[
rename
y→ x

]
=−

∫
∞

−∞

e−x2

x− ζ
dx

= sign(k‖)
∫
∞

−∞

e−x2

x− ζ
dx, (2.43)

where in the last step we used −1 = sign(k‖). By examining the first and the last
expressions, the result is also obviously valid for k‖ > 0, and therefore for all k‖. Or
alternatively, (perhaps more confusingly, but keeping an exact track of the sign(k‖)),
for all values of k‖∫

∞

−∞

e−x2

x−
ω

k‖vth

dx
∀k‖
=

∫
∞

−∞

e−x2

x− sign(k‖)ζ
dx

= sign(k‖)
∫
∞

−∞

e−x2

sign(k‖)x− ζ
dx=

[
y= sign(k‖)x

dy= sign(k‖) dx

]
= sign(k‖)

∫
+∞sign(k‖)

−∞sign(k‖)

e−y2

y− ζ

(
dy

sign(k‖)

)
=

∫
+∞sign(k‖)

−∞sign(k‖)

e−y2

y− ζ
dy= sign(k‖)

∫
+∞

−∞

e−y2

y− ζ
dy

= sign(k‖)
∫
+∞

−∞

e−x2

x− ζ
dx, (2.44)

which is the same result as the one obtained above. The definition of ζ (2.42)
therefore yields

∫
C

e−x2

x−
ω

k‖vth

dx
∀k‖
= sign(k‖)



∫
∞

−∞

e−x2

x− ζ
dx, Im(ζ ) > 0;

V.P.
∫
∞

−∞

e−x2

x− ζ
dx+πie−ζ

2
, Im(ζ )= 0;∫

∞

−∞

e−x2

x− ζ
dx+ 2πie−ζ

2
, Im(ζ ) < 0.

(2.45)

This result allows us to use the original plasma dispersion function definition (2.35),
and express the dreadful Landau integral for all k‖ simply as

1
√

π

∫
C

e−x2

x−
ω

k‖vth

dx
∀k‖
= sign(k‖)Z(ζ ); where ζ ≡

ω

|k‖|vth
. (2.46)
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Now we have calculated the Landau integral to our satisfaction, and we can continue
with the calculation of the linear kinetic hierarchy. Wait. We had basically the same
result several pages back! For the case k‖ > 0 and Im(ω) > 0. The Landau integral
was just expressed through the plasma dispersion function, basically the same result
as is done now, there is just one sign(k‖) in front of the integral and one in the
definition of ζ . Are we suggesting that all these calculations, contour drawings and
discussions, were done just to get a sign right? Affirmative. The Landau integral is
all about chasing minus signs, but to get the correct signs is very important. This is
exactly the reason why the Landau damping is so confusing, and why it needed the
genius of Landau to correctly figure it out. Nevertheless, that the Landau damping
(Landau 1946) is indeed very confusing can be understood from the fact that the effect
was questioned for almost 20 years before it was experimentally verified by Malmberg
& Wharton (1966).

To conclude, and to summarize the differences between the plasma physics books of
Stix and Peter Gary, we have two equivalent recipes to ‘calculate’ the Landau integral,
that can be written as

1
√

π

∫
∞

−∞

e−x2

x−
ω

k‖vth

dx A.C.
=

1
√

π

∫
C

e−x2

x−
ω

k‖vth

dx=


Z0(ζ ), ζ =

ω

k‖vth
;

sign(k‖)Z(ζ ), ζ =
ω

|k‖|vth
,

(2.47)
where the A.C. stands for analytic continuation. It is important to emphasize that some
plasma books, such as for example that by Gurnett and Bhattacharjee, take a different
approach and call the function Z0(ζ ) simply Z(ζ ), as is obvious from their expressions
for Z(ζ ) (pages 347–348) that contain the sign(k‖). Of course, this approach is fully
kosher, however, one needs to be extra careful when adopting a numerical routine
for the plasma dispersion function. The second choice in (2.47) appears inconvenient,
however, it is not, since the expression (2.30) contains

1
√

π

ω

k‖vth

∫
C

e−x2

x−
ω

k‖vth

dx=


ζZ0(ζ ), ζ =

ω

k‖vth
;

ω

k‖vth
sign(k‖)Z(ζ )= ζZ(ζ ), ζ =

ω

|k‖|vth
.

(2.48)

The book by Peter Gary, and many Landau fluid papers prefer the second choice, since
this small trick with redefining ζ allows the use of the original plasma dispersion
function Z(ζ ), that was tabulated by Fried & Conte (1961).4 We prefer it too, and
therefore, the integral that we will use frequently in the kinetic hierarchy is

x0
√

π

∫
∞

−∞

e−x2

x− x0
dx= ζZ(ζ ), where x0 =

ω

k‖vth
; ζ =

ω

|k‖|vth
, (2.49)

and obviously x0= sign(k‖)ζ . Now we are able to finish the calculation of the density
n(1), equation (2.29), that yields

n(1) =−
qr

T (0)
Φ (n0 + n0ζZ(ζ ))=−

qrn0

T (0)
Φ (1+ ζZ(ζ )) . (2.50)

4Peter Gary’s book indeed appears to be the only ‘recent’ plasma book, where |k‖| is used for the definition
of ζ . The only caveat of the book, which could be confusing, is the exclusion of the

√
2 in the definition of

the thermal speed vth. However, some Landau fluid papers (Hammett & Perkins 1990; Snyder et al. 1997)
use the same definition without the

√
2.
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The result can also be expressed by using the derivative Z′(ζ )=−2(1+ ζZ(ζ )). The
quantity 1 + ζZ(ζ ) appears very frequently in kinetic calculations with Maxwellian
distribution and it is called the plasma response function

R(ζ )= 1+ ζZ(ζ ). (2.51)

For a different (general) distribution function f0, the plasma response function
R(ζ ) can be defined according to what is obtained after calculating the density
n(1) = −(qrn0/T (0))ΦR(ζ ). The name is very appropriate, since the R(ζ ) describes,
how a plasma with some distribution function ‘responds’ to an applied electric field
(or a scalar potential).

2.3. Short afterthoughts, after the Landau integral
Why does some ‘analytic continuation’ have to be done? Even though we did
not manage to express the Landau integral (2.30) through elementary functions,
the integral appears to be well defined in both upper and lower halves of the
complex plane, regardless of where the x0 is. And it indeed is. So why the analytic
continuation? The very-deep reason why the analytic continuation is necessary, is that
the integral is not continuous when crossing the real axis Im(x0)= 0 in the complex
plane.5 If a function is not continuous, it is not analytic (a fancy well-defined language
that says that the function is not infinitely differentiable, basically meaning that it
matters from what direction that point is approached in the complex plane, very
similarly to a derivative of function |x| on the real axis). And if a function is analytic
in some area, and not analytic outside of that area, we can sometimes push/extend
the area of where the function is analytic, to/through the area where the function is
not analytic, therefore the term ‘analytic continuation’.

Why is the analytic continuation so important? Why is it a big problem that the
integral is not continuous when crossing the real axis? Because it directly relates to
the causality principle, that is, if something happens, then the response to this incident
must come after, and not before, the time in which that incident happened. This can
be perhaps more intuitively addressed by performing the Laplace transforms in time
(instead of the Fourier transforms), and considering an initial value problem, as was
done by Landau (1946). For more information, see plasma physics books, for example
Stix (1992), chapter 3 on causality etc.

The necessity of analytic continuation and the definition of the plasma dispersion
function can be nicely clarified by a formula from a higher complex analysis, known
as the Plemelj formula (Plemelj 1908), which can be written in the following
convenient form

lim
ε→0+

1
x− x0 ± iε

= V.P.
1

x− x0
∓ iπδ(x− x0). (2.52)

The formula (2.52) is meant to be applied on a function f (x) and integrated ‘through’
the pole, i.e. along the horizontal line Im(x0). The easiest is to consider x0 = 0 (or
Im(x0) = 0) with integration along the real axis. The Dirac delta function δ(x − x0)

in (2.52) represents contributions of the Landau residue. If the Landau residue is
neglected, i.e. if only the V.P. part in (2.52) is considered, as done by Vlasov (1945),

5What actually matters is not the x0, but the frequency ω, and the crossing of the real axis Im(ω)= 0.
This unfortunately yields that two separate cases for k‖ > 0 and for k‖ < 0 have to be considered.
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yields that there is no damping present. In § 3.3, we will construct Padé approximants
of Z(ζ ) and R(ζ ). One can easily check that, by neglecting the Landau residue in
the power-series expansions (the residue will be neglected in the asymptotic-series
expansions), yields no collisionless damping. Therefore, as shown by van Kampen
(1955), it is indeed possible to derive Landau damping by using Fourier analysis (an
approach adopted here), provided the Landau residue in (2.52) is retained. The formula
(2.52) is often attributed only to Plemelj (1908), for his rigorous proof. Sometimes it
is called the Sokhotski–Plemelj formula, because it is argued the formula was derived
in the doctoral thesis of Y. V. Sokhotski in 1873, with a proof that can be viewed
as sufficiently rigorous for mathematical standards that existed at those times, i.e. 35
years before the rigorous proof of Plemelj. The Sokhotski–Plemelj formula is used in
many areas of physics, from the theory of elasticity to quantum field theory.

2.4. Easy Landau integrals
∫

xne−x2
/(x− x0) dx

We want to calculate moments in velocity space all the way up to the fourth-order
moment r, and (including the 3-D geometry) we will need integrals only up to n= 5.
To this aim, we will use frequently (2.49), where we find it convenient to use x0 and
ζ instead of chasing the sign(k‖), and in the end we will just use the definition x0 =

sign(k‖)ζ . We already saw that the zeroth-order moment was

1
√

π

∫
∞

−∞

e−x2

x− x0
dx= sign(k‖)Z(ζ ). (2.53)

Let us now calculate the higher-order moments. Since we talked so much in the last
pages, we will remain silent for a moment and we will just enjoy the calculation,

1
√

π

∫
∞

−∞

xe−x2

x− x0
dx =

1
√

π

∫
∞

−∞

x− x0 + x0

x− x0
e−x2

dx

=
1
√

π

∫
∞

−∞

e−x2
dx︸ ︷︷ ︸

=1

+
x0
√

π

∫
∞

−∞

e−x2

x− x0
dx︸ ︷︷ ︸

=ζZ(ζ )

= 1+ ζZ(ζ )= R(ζ ). (2.54)

1
√

π

∫
∞

−∞

x2e−x2

x− x0
dx =

1
√

π

∫
∞

−∞

x2
− x2

0 + x2
0

x− x0
e−x2

dx

=
1
√

π

∫
∞

−∞

(x+ x0)e−x2
dx+

x2
0
√

π

∫
∞

−∞

e−x2

x− x0
dx︸ ︷︷ ︸

x0ζZ(ζ )

=
1
√

π

∫
∞

−∞

xe−x2
dx︸ ︷︷ ︸

=0

+
x0
√

π

∫
∞

−∞

e−x2
dx︸ ︷︷ ︸

=x0

+x0ζZ(ζ )= x0(1+ ζZ(ζ ))

= sign(k‖)ζR(ζ ). (2.55)

1
√

π

∫
∞

−∞

x3e−x2

x− x0
dx=

1
√

π

∫
∞

−∞

x3
− x3

0

x− x0
e−x2

dx︸ ︷︷ ︸
=(1/2)+x2

0

+
x3

0
√

π

∫
∞

−∞

e−x2

x− x0
dx︸ ︷︷ ︸

=ζ 3Z(ζ )

=
1
2
+ ζ 2R(ζ ).

(2.56)
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1
√

π

∫
∞

−∞

x4e−x2

x− x0
dx= sign(k‖)

(
1
2
ζ + ζ 3R(ζ )

)
. (2.57)

1
√

π

∫
∞

−∞

x5e−x2

x− x0
dx=

3
4
+
ζ 2

2
+ ζ 4R(ζ ). (2.58)

That was easy! If we ever need a higher order, we will just blindly calculate

1
√

π

∫
∞

−∞

xne−x2

x− x0
dx=

1
√

π

∫
∞

−∞

xn
− xn

0

x− x0
e−x2

dx+
xn

0
√

π

∫
∞

−∞

e−x2

x− x0
dx︸ ︷︷ ︸

=xn
0sign(k‖)Z(ζ )

=
1
√

π

∫
∞

−∞

(xn−1
+ xn−2x0 + xn−3x2

0 + · · · + xxn−2
0 + xn−1

0 )e−x2
dx

+ sign(k‖)n+1ζ nZ(ζ ), (2.59)

and we do not worry right now if this general case can be expressed in some smarter
way. Now we know how to calculate the kinetic Landau integrals, so let us use this
knowledge to calculate the first few integrals of the linear ‘kinetic hierarchy’.

3. One-dimensional geometry (electrostatic)
3.1. Kinetic moments for Maxwellian f0

With the previous integrals already calculated, the calculation of the linear kinetic
hierarchy is an easy process. However, it is important to emphasize that the hierarchy
is linear, and must be calculated as such. Again, as emphasized before, the kinetic
velocity v is an independent quantity, and is not linearized. The total density n =∫

f dv, and at the first order of course n0 =
∫

f0 dv. The expansion n0 + n(1) =
∫
( f0 +

f (1)) dv implies n(1) =
∫

f (1) dv. The density n(1), already calculated in (2.50), was
therefore calculated correctly, and using the plasma response function

n(1)

n0
=−

qr

T (0)
ΦR(ζ ). (3.1)

The velocity moment is nu=
∫
vf dv and at the first order n0u0 =

∫
vf0 dv. In our

specific case, because we do not consider any drifts in the distribution function, u0= 0.
Expanding (n0+n(1))(u0+u(1))=

∫
v( f0+ f (1)) dv and neglecting the nonlinear quantity

n(1)u(1), yields n0u(1) =
∫
vf (1) dv. The velocity moment calculates as

n0u(1) =
∫
vf (1) dv =−

qr

T (0)
Φ

∫
v

1+

ω

k‖

v −
ω

k‖

 f0 dv

= −
qr

T (0)
Φ

∫ vf0 dv︸ ︷︷ ︸
=n0u0=0

+

∫ v
ω

k‖

v −
ω

k‖

f0 dv


= −

qr

T (0)
Φn0

√
α

π

ω

k‖

∫
ve−αv

2

v −
ω

k‖

dv =
[ √

αv = x
√
α dv = dx

]
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= −
qr

T (0)
Φ

n0
√

π

√
α
√
α

ω

k‖

∫
xe−x2

x−
ω

k‖

√
α

dx

=

[
x0 =

ω

k‖

√
α

]
=−

qr

T (0)
Φ

n0
√
α

x0
√

π

∫
∞

−∞

xe−x2

x− x0
dx

= −
qr

T (0)
Φ

n0
√
α

sign(k‖)ζR(ζ ), (3.2)

and cancelling n0 and using 1/
√
α = vth =

√
2T (0)/m yields

u(1) =−
qr

T (0)
Φ

√
2T (0)

m
sign(k‖)ζR(ζ ). (3.3)

The definition of the scalar pressure is p = m
∫
(v − u)2f dv and at the first order

p0 = m
∫
v2f0 dv, because again u0 = 0. The quantity (v − u)2 = v2

− 2vu + u2 is
linearized as v2

− 2vu(1), and expanding p0 + p(1) = m
∫
(v2
− 2vu(1))( f0 + f (1)) dv,

further linearizing by neglecting u(1)f (1) and using u0 = 0 yields p(1) = m
∫
v2f (1) dv.

The pressure calculates as

p(1) = m
∫
v2f (1) dv =−

qr

T (0)
Φ

m
∫
v2f0 dv︸ ︷︷ ︸
=p0

+m
∫ v2 ω

k‖

v −
ω

k‖

f0 dv

= [ √αv = x
√
α dv = dx

]

= −
qr

T (0)
Φ

p0 +m
n0
√

π

√
α

α

ω

k‖

∫
x2e−x2

x−
ω

k‖

√
α

dx

= [x0 =
ω

k‖

√
α

]

= −
qr

T (0)
Φ

(
p0 +m

n0

α

x0
√

π

∫
x2e−x2

x− x0
dx

)
=−

qr

T (0)
Φ
(

p0 +m
n0

α
ζ 2R(ζ )

)
, (3.4)

and dividing by p0 and using p0 = n0T (0) to calculate mn0/(p0α) = 2, the pressure
moment reads

p(1)

p0
=−

qr

T (0)
Φ
(
1+ 2ζ 2R(ζ )

)
. (3.5)

We will also need the temperature T (1). The general temperature is defined as T =
p/n, i.e. the definition is nonlinear. The process of linearization is essentially like
doing a derivative

T =
p
n

lin.
→ T (1) =

p(1)

n0
−

p0

n2
0
n(1), (3.6)

and dividing by T (0) = p0/n0 yields

T (1)

T (0)
=

p(1)

p0
−

n(1)

n0
. (3.7)

If one does not like the ‘derivative’, the same result is obtained by writing p = Tn
instead, and linearizing (p0 + p(1)) = (T (0) + T (1))(n0 + n(1)). Which after subtracting
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p0 = T (0)n0, neglecting T (1)n(1), yields p(1) = T (1)n0 + T (0)n(1), which after dividing by
p0 yields (3.7). The temperature is therefore easily calculated as

T (1)

T (0)
=−

qr

T (0)
Φ
(
1+ 2ζ 2R(ζ )− R(ζ )

)
. (3.8)

The scalar heat flux is defined as q = m
∫
(v − u)3f dv and at the first order q0 =

m
∫
v3f0 dv, and for our case q0 = 0. The quantity (v − u)3 = v3

− 3v2u + 3vu2
−

u3 is linearized as v3
− 3v2u(1). Expanding q0 + q(1) = m

∫
(v3
− 3v2u(1))( f0 + f (1)) dv,

neglecting u(1)f (1), yields one contribution that is very easy to overlook, and that is of
the same order as the expected m

∫
v3f (1) dv, and that is proportional to m

∫
v2f0 dv=

p0. Therefore, the linearized heat flux q(1) must be correctly calculated according to

q(1) =m
∫
v3f (1) dv − 3p0u(1). (3.9)

The first term calculates as

m
∫
v3f (1) dv = −

qr

T (0)
Φ

m
∫
v3f0 dv︸ ︷︷ ︸
=q0=0

+m
∫ v3 ω

k‖

v −
ω

k‖

f0 dv

= [ √αv = x
√
α dv = dx

]

= −
qr

T (0)
Φm

n0
√

π

√
α

α3/2

ω

k‖

∫
x3e−x2

x−
ω

k‖

√
α

dx=
[

x0 =
ω

k‖

√
α

]

= −
qr

T (0)
Φm

n0

α3/2

x0
√

π

∫
x3e−x2

x− x0
dx

= −qrn0Φ

√
2T (0)

m
sign(k‖)

(
ζ + 2ζ 3R(ζ )

)
, (3.10)

where we used α−3/2
= (2T (0)/m)

√
2T (0)/m. And the entire heat flux (3.9) then reads

q(1) =−qrn0Φ

√
2T (0)

m
sign(k‖)

(
ζ + 2ζ 3R(ζ )− 3ζR(ζ )

)
. (3.11)

The scalar fourth-order moment is defined as r = m
∫
(v − u)4f dv and at the first

order of course r0=m
∫
v4f0 dv, since again u0= 0. Also, r0= 3p2

0/ρ0, where ρ0=mn0.
The quantity (v − u)4 is linearized as v4

− 4v3u(1). Expanding r0 + r(1) = m
∫
(v4
−

4v3u(1))( f0 + f (1)) dv, the quantity m
∫
v3f0 = q0 = 0, which yields a simple r(1) =

m
∫
v4f (1) dv. The fourth-order moment calculates as

r(1) = m
∫
v4f (1) dv =−

qr

T (0)
Φ

m
∫
v4f0 dv︸ ︷︷ ︸
=r0

+m
∫ v4 ω

k‖

v −
ω

k‖

f0 dv

= [ √αv = x
√
α dv = dx

]

= −
qr

T (0)
Φ

r0 +m
n0
√

π

√
α

α2

ω

k‖

∫
x4e−x2

x−
ω

k‖

√
α

dx

= [x0 =
ω

k‖

√
α

]

https://doi.org/10.1017/S0022377819000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000850


24 P. Hunana and others

= −
qr

T (0)
Φ

(
r0 +m

n0

α2

x0
√

π

∫
x4e−x2

x− x0
dx

)
=−

qrp0

m
Φ
(
3+ 2ζ 2

+ 4ζ 4R(ζ )
)
,

(3.12)

where we have used 1/α2
= 4T (0)2/m2, and mn0/α

2
= 4p2

0/ρ0.
The entire nonlinear r is decomposed as r = 3p2/ρ + r̃. The first term can be

linearized in a number of ways, and of course, all techniques must yield the same
result, since linearization must be unique. For example, by using the derivative(

p2

ρ

)′
=

1
ρ

2pp′ −
p2

ρ2
ρ ′ =

p2

ρ

(
2p′

p
−
ρ ′

ρ

)
, (3.13)

the term is easily linearized as

p2

ρ

lin.
=

p2
0

ρ0

(
2p(1)

p0
−
ρ(1)

ρ0

)
=

p2
0

ρ0

(
2p(1)

p0
−

n(1)

n0

)
, (3.14)

and by further using (3.7), also alternatively as

p2

ρ

lin.
=

p2
0

ρ0

(
2T (1)

T (0)
+

n(1)

n0

)
. (3.15)

Using r0 = 3p2
0/ρ0 therefore yields useful relations (valid for a Maxwellian)

r(1)

r0
= 2

p(1)

p0
−

n(1)

n0
+

r̃(1)

r0
= 2

T (1)

T (0)
+

n(1)

n0
+

r̃(1)

r0
. (3.16)

Another possibility (to double check the linearization), is to rewrite p2/ρ = (1/m)pT ,
so that r= (3/m)pT + r̃, and to linearize that one instead. Expanding that expression
into r0 + r(1) = (3/m)((p0 + p(1))(T (0) + T (1))) + r̃(1) (where by definition/construction
r̃(0) = 0), after subtracting r0 = (3/m)p0T (0), and neglecting p(1)T (1), yields r(1) =
(3/m)(p(1)T (0) + p0T (1))+ r̃(1). Dividing this expression by r0 yields

r(1)

r0
=

p(1)

p0
+

T (1)

T (0)
+

r̃(1)

r0
, (3.17)

which when used with (3.7), is equivalent to (3.16). Now we can easily calculate the
r̃(1) component as

r̃(1) = r(1) − 3
p2

0

ρ0

(
2p(1)

p0
−

n(1)

n0

)
, (3.18)

that directly yields

r̃(1) =−
qrp0

m
Φ
(
2ζ 2
+ 4ζ 4R(ζ )+ 3R(ζ )− 3− 12ζ 2R(ζ )

)
. (3.19)

Now we are ready to explore the possible closures.
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3.2. Exploring possibilities of a closure
Let us summarize the obtained linear hierarchy so that we can directly see the
similarities. Let us also for a moment introduce back the species index r, so that we
are completely clear

n(1)r

n0r
= −

qr

T (0)r

ΦR(ζr); (3.20)

u(1)r = −
qr

T (0)r

Φ

√
2T (0)r

mr
sign(k‖)ζrR(ζr); (3.21)

p(1)r

p0r
= −

qr

T (0)r

Φ(1+ 2ζ 2
r R(ζr)); (3.22)

T (1)r

T (0)r

= −
qr

T (0)r

Φ(1+ 2ζ 2
r R(ζr)− R(ζr)); (3.23)

q(1)r = −qrn0rΦ

√
2T (0)r

mr
sign(k‖)(ζr + 2ζ 3

r R(ζr)− 3ζrR(ζr)); (3.24)

r(1)r = −
qrp0r

mr
Φ(3+ 2ζ 2

r + 4ζ 4
r R(ζr)); (3.25)

r̃(1)r = −
qrp0r

mr
Φ(2ζ 2

r + 4ζ 4
r R(ζr)+ 3R(ζr)− 3− 12ζ 2

r R(ζr)), (3.26)

with an emphasis that the charge qr should not be confused with the heat flux q(1)r .
The ζr = ω/(|k‖|vthr) and the thermal speed vthr =

√
2T (0)r /mr. Note the presence

of sign(k‖) in the expressions for u(1)r and q(1)r . The presence of sign(k‖) can be
verified a posteriori, for example by considering the simplest situation when the
Landau damping is neglected, and the R(ζr) function yields only real numbers for
real valued ζr (i.e. the R(ζr) function can be approximated with Padé approximants
that contain only powers of ζ 2

r ). Simultaneously changing the signs of k‖ and ω in
a Fourier mode should give its complex conjugate, i.e. the real part of expressions
(3.20)–(3.26) cannot change its sign in that transformation. This is indeed true because
the expressions for u(1)r and q(1)r contain sign(k‖)ζr =ω/(k‖vthr).

To better understand what is meant by ‘a closure’, let us first examine what is not
a closure. Let us examine the density n(1) equation. Since in this specific example
we used the electrostatic electric field E(1)

=−∇φ, the only Maxwell equation left is
∇ ·E(1)

= 4π
∑

r qrnr, where qr is the charge and nr is the total density. Linearization
of this equation, and using the natural charge neutrality that must be satisfied at the
zeroth order

∑
r qrn0r = 0, yields ∇ · E(1)

= 4π
∑

r qrn(1)r , or written with the scalar
potential −∇2Φ = 4π

∑
r qrn(1)r , and transformed to Fourier space, k2Φ = 4π

∑
r qrn(1)r .

We consider 1-D propagation parallel to B0 with wavenumber k‖, and to be consistent,
we therefore continue with k‖ and

k2
‖
Φ = 4π

∑
r

qrn(1)r = 4π
∑

r

qrn0r
n(1)r

n0r
=−4π

∑
r

n0r
q2

r

T (0)r

ΦR(ζr), (3.27)

which can be rewritten as(
k2
‖
+ 4π

∑
r

n0r
q2

r

T (0)r

R(ζr)

)
Φ = 0. (3.28)
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Even though the system is now ‘closed’, the equation (3.28) does not represent a
fluid closure, and should be viewed only as a kinetic ‘dispersion relation’. To have
a non-trivial solution for the potential Φ, the expression inside of the bracket must
be equal to zero. By declaring that k‖ 6= 0 (the case k‖ = 0 is trivial since we need
some wavenumber), we can divide by k2

‖
. By using the definition of the Debye length

of r-species λDr = 1/kDr, where k2
Dr = 4πn0rq2

r/T
(0)
r , one obtains a dispersion relation6

1+
∑

r

1
k2
‖λ

2
Dr

R(ζr)= 0. (3.29)

If one replaces here k‖→ k, the expression is actually equivalent to a multi-species
dispersion relation, usually found in plasma physics books under the electrostatic
waves in hot unmagnetized plasmas, with Maxwellian f0r. See for example Gurnett
& Bhattachrjee, page 353, equation (9.4.18). We are not interested here in studying
unmagnetized plasmas, and instead, we will just remember (3.29) as the dispersion
relation of the parallel propagating (to B0) electrostatic mode in a magnetized plasma,
since this mode indeed does not contain any magnetic field fluctuations.

Let us consider only the proton and electron species, r= p, e, so that

1+
1

k2
‖λ

2
De

[
T (0)e

T (0)p

R(ζp)+ R(ζe)

]
= 0, (3.30)

where the proton Debye length was rewritten with the electron Debye length
λDe = λDp

√
T (0)e /T (0)p . For a general case, the dispersion relation has to be solved

numerically, and again, cannot be much simplified, unless one wants to consider the
long-wavelength limit k‖λDe� 1, where only the expression inside of the big brackets
can be used. The solution contains the usual Langmuir waves, that are obtained by
neglecting the ion term (by making the ions immobile) and by expanding the R(ζe) in
the limit |ζe|� 1, i.e. in the limit when the wave phase speed ω/k is much larger than
the electron thermal speed vthe. Langmuir waves propagate with speeds that are higher
than the electron plasma frequency ωpe =

√
4πne0e2/me, which for us are extremely

high frequencies. The solution also contains the ‘ion-acoustic mode’, which in plasma
books is obtained in the limit |ζp| � 1 and |ζe| � 1, i.e. in the limit where the wave
phase speed is much larger than the proton thermal speed, ω/k� vthp, but also where
the phase speed is much smaller than the electron thermal speed, ω/k� vthe, for the
result see for example Gurnett and Bhattacharjee, page 356, equation (9.4.28-29).

So what about the limit |ζp| � 1, when the phase speed is much smaller than the
proton thermal speed ω/k� vthp? Does the ion-acoustic mode not exist in this limit?
Unfortunately, in the classical long-wavelength limit, the phase speeds do not become
smaller and smaller, the phase speeds ω/k just become non-dispersive and constant.
In the CGL description (with cold electrons), the parallel propagating ion-acoustic
mode has a phase speed ω/k‖=±C‖, where the parallel sound speed C2

‖
= 3p(0)‖p /ρ0=

3T (0)‖p /mp. The limit |ζp|� 1 is never satisfied, because C‖� vth‖p means
√

3T (0)‖p /mp�√
2T (0)‖p /mp, which is never true. One can estimate the lowest possible value of |ζp| to

be roughly in the neighbourhood of |ζp|min ≈CCGL
‖
/vth‖p =

√
3/2, or in another words

6An interesting observation (that is perhaps obvious if one considers how the Debye length is derived), is
that the Debye length of r-species λDr does not depend on the mass mr .
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|ζp|min ≈ 1. There is no expansion of the Z(ζ ) for |ζ | ≈ 1 and the result has to be
found numerically.

So what constitutes a Landau fluid closure? We will use the following definition:
express the last retained moment through lower-order moments in such a way, that
the kinetic R(ζ ) function is eliminated (for example by using Padé approximation),
so that the closure is expressed only through fluid variables and it is prescribed for
all ζ values.

3.2.1. Preliminary closures for |ζ | � 1
As explained above, the limit |ζ | � 1 is actually a bit unphysical for the proton

species in the electrostatic limit, and is physically plausible only for the electron
species. Nevertheless, briefly exploring the linear kinetic hierarchy in this limit allows
us to explore what kind of closures might be possible. In this limit, the plasma
dispersion function can be expanded as

Z(ζ ) = i
√

πe−ζ
2
− 2ζ

[
1−

2
3
ζ 2
+

4
15
ζ 4
−

8
105

ζ 6
+ · · ·

+
(−2)nζ 2n

(2n+ 1)!!
+ · · ·

]
; |ζ | � 1, (3.31)

Z(ζ )= i
√

πe−ζ
2
− 2ζ +

4
3
ζ 3
−

8
15
ζ 5
+

16
105

ζ 7
+ · · · ; (3.32)

and the plasma response function as

R(ζ ) = 1+ iζ
√

πe−ζ
2
+

[
−2ζ 2

+
4
3
ζ 4
−

8
15
ζ 6
+

16
105

ζ 8
+ · · ·

+
(−2)n+1ζ 2n+2

(2n+ 1)!!
+ · · ·

]
; |ζ | � 1, (3.33)

and where for small ζ , e−ζ
2 is naturally expanded as

e−ζ
2
= 1− ζ 2

+
ζ 4

2!
−
ζ 6

3!
+ · · · +

(−1)nζ 2n

n!
+ · · · ; |ζ | � 1, (3.34)

yielding

|ζ | � 1 : Z(ζ ) = i
√

π− 2ζ − i
√

πζ 2
+

4
3
ζ 3
+ i
√

π

2
ζ 4

−
8

15
ζ 5
− i
√

π

6
ζ 6
+

16
105

ζ 7
+ · · · ; (3.35)

R(ζ ) = 1+ i
√

πζ − 2ζ 2
− i
√

πζ 3
+

4
3
ζ 4
+ i
√

π

2
ζ 5

−
8

15
ζ 6
− i
√

π

6
ζ 7
+

16
105

ζ 8
+ · · · (3.36)

For our purposes it is sufficient to keep the series only up to ζ 3, i.e. to work with the
precision o(ζ 3). The expressions entering the kinetic hierarchy in (3.20)–(3.26) are
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R(ζ ) = 1+ i
√

πζ − 2ζ 2
− i
√

πζ 3
+ · · · ; (3.37)

ζR(ζ ) = ζ + i
√

πζ 2
− 2ζ 3

; (3.38)
1+ 2ζ 2R(ζ ) = 1+ 2ζ 2

+ 2i
√

πζ 3
; (3.39)

1− R(ζ )+ 2ζ 2R(ζ ) = −i
√

πζ + 4ζ 2
+ 3i
√

πζ 3
; (3.40)

ζ + 2ζ 3R(ζ )− 3ζR(ζ ) = −2ζ − 3i
√

πζ 2
+ 8ζ 3

; (3.41)
3+ 2ζ 2

+ 4ζ 4R(ζ ) = 3+ 2ζ 2
+ 4ζ 4

; (3.42)
2ζ 2
+ 4ζ 4R(ζ )+ 3R(ζ )− 3− 12ζ 2R(ζ ) = 3i

√
πζ − 16ζ 2

− 15i
√

πζ 3. (3.43)

An interesting observation is that for small ζ , moments n(1), p(1) and r(1) are finite, and
moments u(1), T (1), q(1) and r̃(1) are proportional to ζ and therefore small. We want
to make a simple closure for the heat flux q(1) or the fourth-order correction r̃(1), and
thus, let us concentrate on the moments that are small. To clarify how the closure is
performed, let us write them down only up to the precision o(ζ 2

r ), so

u(1)r = −
qr

T (0)r

Φ

√
2T (0)r

mr
sign(k‖)(ζr + i

√
πζ 2

r ); (3.44)

T (1)r = −qrΦ
(
−i
√

πζr + 4ζ 2
r

)
; (3.45)

q(1)r = −qrn0rΦ

√
2T (0)r

mr
sign(k‖)(−2ζr − 3i

√
πζ 2

r ); (3.46)

r̃(1)r = −
qrp0r

mr
Φ(3i
√

πζr − 16ζ 2
r ). (3.47)

If we further restrict ourselves to only precision o(ζr) and neglect the ζ 2
r terms, we

can find an amazing result that we can express the heat flux q(1)r with respect to
temperature T (1)r according to

o(ζr) : q(1)r =−i
n0r
√

π

√
8T (0)r

mr
sign(k‖)T (1)r =−i

2n0r
√

π
vthrsign(k‖)T (1)r . (3.48)

The above result is of upmost importance, because it emphasizes the major difference
between collisionless and collisional systems. At this point, the result is derived only
with the assumption |ζ | � 1, even though we will see later that the result is not
restricted to this limit, and the result has a much wider applicability. The result is the
famous expression for collisionless heat flux, that here reads q∼−i sign(k‖)T , which
is in strong contrast to the usual collisional heat flux q∼−∇‖T that in Fourier space
reads q∼−ik‖T . We will come to this expression later.

With the precision o(ζr), other obvious possibilities are to express q(1)r with respect
to velocity u(1)r , or to express r̃(1) through u(1)r , T (1)r , q(1)r according to

o(ζr) : q(1)r = −2n0rT (0)r u(1)r =−2p0ru(1)r ; (3.49)

r̃(1)r = i 3
2

√
πvthrp0rsign(k‖)u(1)r ; (3.50)

r̃(1)r = −
3
2v

2
thrn0rT (1)r ; (3.51)

r̃(1)r = −i 3
4

√
πvthrsign(k‖)q(1)r . (3.52)
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However, if we did so much work that we consider the fourth-order moment, it
would be a shame not to increase the precision to o(ζ 2

r ). Obviously, we need to use
a combination of at least 2 different lower-order moments. For example, by trying

o(ζ 2
r ) : r̃(1)r = αqq(1)r + αTT (1)r . (3.53)

The proportionality constants αq, αT are easily obtained by separation to two equations
for ζr and ζ 2

r that must be satisfied

−
p0r

mr
3i
√

π=+2αqn0rvthrsign(k‖)+ iαT
√

π; (3.54)

16
p0r

mr
=+αqn0rvthrsign(k‖)3i

√
π− 4αT . (3.55)

Playing with the algebra little bit (for example p0r/mr = T (0)r n0r/mr = v
2
thrn0r/2), the

two equations can be solved easily for the unknown quantities αq, αT , and the final
result is

o(ζ 2
r ) : r̃(1)r =−i

2
√

π

3π− 8
vthrsign(k‖)q(1)r +

32− 9π

2(3π− 8)
v2

thrn0rT (1)r . (3.56)

There are naturally other possibilities and with the precision o(ζ 2
r ), one can search for

closures

o(ζ 2
r ) : q(1)r = αTT (1)r + αuu(1)r ; (3.57)

r̃(1)r = αqq(1)r + αuu(1)r ; (3.58)

r̃(1)r = αTT (1)r + αuu(1)r , (3.59)

where the first choice yields a closure

o(ζ 2
r ) : q(1)r =−i

√
π

4−π
n0rvthrsign(k‖)T (1)r +

3π− 8
4−π

n0rT (0)r u(1)r , (3.60)

and the other two choices yield

o(ζ 2
r ) : r̃(1)r = −i

16− 3π

2
√

π
vthrsign(k‖)q(1)r − i

32− 9π

2
√

π
vthrn0rT (0)r sign(k‖)u(1)r ;

(3.61)

r̃(1)r = −
16− 3π

8− 2π
v2

thrn0rT (1)r + i
2
√

π

π− 4
vthrn0rT (0)r sign(k‖)u(1)r . (3.62)

For completeness, one can easily find a closure for r̃(1)r with precision o(ζ 3
r ) (after

updating (3.44)–(3.47) to precision o(ζ 3
r )) by searching for a solution

o(ζ 3
r ) : r̃(1)r = αqq(1)r + αTT (1)r + αuu(1)r , (3.63)

and the solution reads

o(ζ 3
r ) : r̃(1)r =−i

√
π

10− 3π

16− 5π
vthrsign(k‖)q

(1)
r +

21π− 64
2(16− 5π)

v2
thrn0rT(1)r + i

√
π

9π− 28
16− 5π

vthrp0rsign(k‖)u
(1)
r .

(3.64)

We purposely kept the species index r in the calculations, to clearly show that the
closures are performed for each species separately, and no Maxwell equations or other
physical principles are used. The equations would be perhaps easier to read without
the index r.
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3.2.2. Exploring the case |ζ | � 1
For large value of |ζ |, we need to use an asymptotic expansion of the plasma

dispersion function that reads

Z(ζ ) = iσ
√

πe−ζ
2
−

1
ζ

[
1+

1
2ζ 2
+

3
4ζ 4
+

15
8ζ 6
+

105
16ζ 8

· · ·

+
(2n− 1)!!
(2ζ 2)n

+ · · ·

]
; |ζ | � 1, (3.65)

where

σ =


0, Im(ζ ) > 0;
1, Im(ζ )= 0;
2, Im(ζ ) < 0.

(3.66)

The term with σ comes directly from the definition of Z(ζ ) and there is not much one
can do further about it, since there is no further asymptotic expansion for exp(−ζ 2)
when ζ is large. The term is zero in the upper half of complex plane (σ = 0).
When very close to the real axis, i.e. when σ = 1, the term mainly contributes to
the imaginary part of Z(ζ ) (even though only very weakly) and for the real part of
Z(ζ ), its contribution can be neglected. However, when deeply down in the lower
half of complex plane, the term can become very large (for example if ζ = −iy,
exp(−ζ 2) = exp(y2) and if y is large the term obviously explodes). Deeply down in
the lower complex plane the term is a real trouble, and even some kinetic solvers
such as WHAMP (Rönnmark 1982) have trouble with calculations when the damping
is too large.

We will see shortly, that for our purposes the term can be completely neglected,
but let us keep it for a moment. The expansion of the Maxwellian plasma response
function therefore reads

R(ζ )= iσ
√

πζe−ζ
2
−

1
2ζ 2
−

3
4ζ 4
−

15
8ζ 6
−

105
16ζ 8

−
945

32ζ 10
· · · ; |ζ | � 1. (3.67)

Let us calculate the kinetic hierarchy, at least up to 1/ζ 4. After a short inspection,
one immediately sees that the hierarchy calculates a bit differently than in the previous
case, and to get the fourth-order moments with the precision o(1/ζ 4), it is important to
keep all the terms up to ∼1/ζ 8 in the R(ζ ) expression, since the fourth-order moments
contain ζ 4R(ζ ) terms. The expressions entering the kinetic hierarchy dully calculate
as

n(1) ∼ R(ζ )= iσ
√

πζe−ζ
2
−

1
2ζ 2
−

3
4ζ 4
+ o

(
1
ζ 4

)
; (3.68)

u(1) ∼ ζR(ζ )= iσ
√

πζ 2e−ζ
2
−

1
2ζ
−

3
4ζ 3
−

15
8ζ 5
; (3.69)

p(1) ∼ 1+ 2ζ 2R(ζ )= 2iσ
√

πζ 3e−ζ
2
−

3
2ζ 2
−

15
4ζ 4
; (3.70)

T (1) ∼ 1− R(ζ )+ 2ζ 2R(ζ )= iσ
√

πe−ζ
2
(2ζ 3
− ζ )−

1
ζ 2
−

3
ζ 4
; (3.71)

q(1) ∼ ζ + 2ζ 3R(ζ )− 3ζR(ζ )= iσ
√

πe−ζ
2
(2ζ 4
− 3ζ 2)−

3
2ζ 3
−

15
2ζ 5
; (3.72)

https://doi.org/10.1017/S0022377819000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000850


Collisionless fluid models. Part 2 31

r(1) ∼ 3+ 2ζ 2
+ 4ζ 4R(ζ )= 4iσ

√
πζ 5e−ζ

2
−

15
2ζ 2
−

105
4ζ 4
; (3.73)

r̃(1) ∼ 2ζ 2
+ 4ζ 4R(ζ )+ 3R(ζ )− 3− 12ζ 2R(ζ )= iσ

√
πe−ζ

2
(4ζ 5
− 12ζ 3

+ 3ζ )−
6
ζ 4
,

(3.74)
where for brevity we suppressed the proportionality constants, including the sign(k‖).
Interestingly, the velocity u(1) decreases the slowest, only as 1/ζ . The n(1), p(1), r(1)
and also the temperature T (1), decrease as 1/ζ 2. The heat flux q(1) decreases as 1/ζ 3

and the cumulant r̃(1) decreases the fastest, as 1/ζ 4. This is not good news, since it is
obvious that the direct closures that were easily obtained for the small ζ case, cannot
be easily done here.

To understand how the terms contribute to the real frequency and damping, it is
useful to separate ζ = x+ iy and calculate expressions with y being small, i.e. the weak
growth-rate (actually weak damping) approximation. The exponential term entering
(3.67) can be approximated as

ζ 2
= (x+ iy)2 = (x2

− y2)+ 2ixy≈ x2
+ 2ixy;

e−ζ
2
≈ e−x2

e−2ixy
;

iζe−ζ
2
= i(x+ iy)e−(x+iy)2

≈ (−y+ ix)e−x2
e−2ixy, (3.75)

and the fractions of ζ are approximately

1
ζ
=

1
x+ iy

=
1

x
(

1+ i
y
x

) ≈ 1
x

(
1− i

y
x

)
=

1
x
− i

y
x2
; (3.76)

1
ζ 2
=

1

x2
(

1+ i
y
x

)2 ≈
1
x2

(
1− 2i

y
x

)
=

1
x2
− 2i

y
x3
; (3.77)

1
ζ 3
≈

1
x3
− 3i

y
x4
; (3.78)

1
ζ 4
≈

1
x4
− 4i

y
x5
, (3.79)

etc. For large x, the exponential term (3.75) is strongly suppressed as e−x2 (with
oscillations ei2xy). Additionally, the real part of (3.75) is proportional to y, which is
also small, and its contribution to the real part of R(ζ ) can be therefore completely
neglected. The imaginary part of the exponential term (3.75) has to be kept, if
one wants to match the approximate kinetic dispersion relations from plasma books
(usually calculated in the weak growth rate/damping approximation), for example for
the damping of the Langmuir mode or the ion-acoustic mode. However, even smart
plasma physics books have trouble analytically reproducing the full kinetic dispersion
relations that have to be solved numerically, see for example figures in Gurnett and
Bhattacharjee on pages 341 and 355, that compare the analytic and full solutions
for the Langmuir mode and the ion-acoustic mode. The trouble is that the damping
can become large, and the entire approach with the weak damping invalid. If kinetic
plasma books have trouble analytically reproducing the damping with full accuracy
under these conditions, we would be naive to think that we can do better with a fluid
model and we know we cannot be analytically exact for |ζ | � 1 if the damping is
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too large. If the damping is far too large, and the imaginary frequency starts to be
comparable to real frequency, the mode will be damped away very quickly.

In fact, even the well-known kinetic solver WHAMP, neglects this term in
calculation of Z(ζ ) for large ζ values, as can be verified in the WHAMP full
manual (Rönnmark 1982) from the asymptotic expansion of Z(ζ ), equation (III-6) on
page 10, and the discussion of numerical errors on page 13. The WHAMP solver uses
an eight-pole Padé approximant of Z(ζ ), which is a very precise approximant, and
imprecision starts to show up only if the damping become too large. For example, in
the very damped regime when the Im(ζ )=−Re(ζ )/2, the error in real and imaginary
values of Z(ζ ) is still less than 2 %–3 %, where the calculation should be stopped (in
a less damped regime, the precision is much higher).

If a full kinetic solver can neglect the exponential term for large ζ values, we can
surely neglect it as well. It should be emphasized that the term is neglected only for
large ζ values (i.e. in the asymptotic expansion), the exponential term is otherwise
fully retained and enters the Padé approximation through the power series expansion
for small ζ . To summarize, the ‘ideal’ large ζ asymptotic behaviour that we would
like to obtain reads

n(1)r

n0r
= −

qr

T (0)r

Φ

[
−

1
2ζ 2
−

3
4ζ 4
− · · ·

]
; (3.80)

u(1)r = −
qr

T (0)r

Φvthrsign(k‖)
[
−

1
2ζ
−

3
4ζ 3
− · · ·

]
; (3.81)

p(1)r

p0r
= −

qr

T (0)r

Φ

[
−

3
2ζ 2
−

15
4ζ 4
− · · ·

]
; (3.82)

T (1)r

T (0)r

= −
qr

T (0)r

Φ

[
−

1
ζ 2
−

3
ζ 4
− · · ·

]
; (3.83)

q(1)r = −qrn0rΦvthrsign(k‖)
[
−

3
2ζ 3
−

15
2ζ 5
− · · ·

]
; (3.84)

r(1)r = −
qrp0r

mr
Φ

[
−

15
2ζ 2
−

105
4ζ 4
− · · ·

]
; (3.85)

r̃(1)r = −
qrp0r

mr
Φ

[
−

6
ζ 4
− · · ·

]
. (3.86)

3.3. A brief introduction to Padé approximants
Padé approximants, i.e. Padé series approximation/expansion, is a very powerful
mathematical technique, comparable to the usual Taylor series and the Laurent series.
Nevertheless, for some unknown reason, Padé series seems to somehow disappear
from the modern educational system that a typical physicist encounters. The lack of
Padé series in classes is even more surprising, if one realizes that the technique is
in fact very simple, and anybody can fully grasp it in very short time. We therefore
make a quick introduction to the technique here.

Padé series consist of approximating a function as a ratio of two polynomials. If a
power series (e.g. Taylor series) of a function f (x) is known around some point with
coefficients cn, the goal is to express it as a ratio of two polynomials

c0 + c1x+ c2x2
+ c3x3

+ c4x4
+ · · · =

a0 + a1x+ a2x2
+ · · ·

1+ b1x+ b2x2 + · · ·
(3.87)
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The choice of b0 = 1 is an ad hoc choice and the entire decomposition can be done
without it, leading to the same results at the end. Multiplying the left-hand side by
the denominator 1+ b1x+ b2x2

+ · · · , and grouping the xn contributions together, that
must be satisfied independently, leads to the system of equations

a0 = c0;

a1 = c1 + c0b1;

a2 = c2 + c1b1 + c0b2;

a3 = c3 + c2b1 + c1b2 + c0b3;

a4 = c4 + c3b1 + c2b2 + c1b3 + c0b4;

a5 = c5 + c4b1 + c3b2 + c2b3 + c1b4 + c0b5;

a6 = c6 + c5b1 + c4b2 + c3b3 + c2b4 + c1b5 + c0b6, (3.88)

etc. The necessary condition for the system being solvable, is that the number
of variables is equivalent to the number of equations. Therefore, if we want to
approximate function f (x) with a ratio of two polynomials Pm/Qn, of degrees m and
n, we will need the Taylor series on the left-hand side of (3.87) up to the order
m+ n. The Padé approximation is sometimes denoted as Rm,n or using a function f (x)
that is being approximated as f (x)m,n or [ f (x)]m,n. If the Padé approximation exists,
it is unique.

For example, the function ex has a Taylor series around the point x= 0

ex
= 1+ x+

x2

2!
+

x3

3!
+ · · · (3.89)

Let us say we want to approximate ex as a ratio of two polynomials of zeroth and first
order ex

≈ a0/(1+ b1x), i.e. we want to find the Padé approximant [ex
]0,1. Respecting

the n+m rule, the approximation therefore consists of equating

c0︸︷︷︸
=1

+ c1︸︷︷︸
=1

x=
a0

1+ b1x
, (3.90)

that leads to the system of equations

a0 = c0 = 1;
a1 = 0 = c1 + b1 ⇒ b1 =−c1 =−1, (3.91)

yielding the Padé approximation

[ex
]0,1 =

1
1− x

. (3.92)

To feel confident with the Padé approximations, let us find another approximant of ex,
for example [ex

]1,2. The system is written as

1︸︷︷︸
=c0

+ 1︸︷︷︸
=c1

x+
1
2︸︷︷︸
=c2

x2
+

1
6︸︷︷︸
=c3

x3
=

a0 + a1x
1+ b1x+ b2x2

, (3.93)

and yields a system of equations
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a0 = 1;
a1 = 1+ b1;

a2 = 0 = 1
2 + b1 + b2;

a3 = 0 = 1
6 +

1
2 b1 + b2 + 0, (3.94)

which have a solution b1 =−2/3, b2 = 1/6, a1 = 1/3 and the Padé approximant

[ex
]1,2 =

1+ 1
3 x

1− 2
3 x+ 1

6 x2
=

6+ 2x
6− 4x+ x2

. (3.95)

It is just a straightforward algebraic exercise to find other Padé approximations, for
example

[ex
]1,1 =

1+ 1
2 x

1− 1
2 x
=

2+ x
2− x

;

[ex
]2,1 =

1+ 2
3 x+ 1

6 x2

1− 1
3 x

=
6+ 4x+ x2

6− 2x
;

[ex
]3,1 =

1+ 3
4 x+ 1

4 x2
+

1
24 x3

1− 1
4 x

=
24+ 18x+ 6x2

+ x3

24− 6x
, (3.96)

etc. Similarly, it is easy to find Padé approximations to a function e−x, and for
example (obviously)

[e−x
]1,2 =

6− 2x
6+ 4x+ x2

; [e−x
]1,1 =

2− x
2+ x

; [e−x
]2,1 =

6− 4x+ x2

6+ 2x
. (3.97)

The approximations were derived from Taylor expansion of e−x around x= 0, and all
3 choices naturally have the correct limit limx→0 e−x

= 1. However, we can see that,
by choosing the degree of the Padé approximation, we can also control what the
function is doing for large values of x. For example, for large values of x the Padé
approximations (3.97) go to 0, −1 and +∞. Obviously, the smart choice is [e−x

]1,2
which approximately reproduces the behaviour of e−x also for large x. The usefulness
of Padé approximation becomes especially apparent when considering analytically
difficult functions, for example the e−x2 , where the ‘smart’ lowest Padé approximants
are

[e−x2
]0,2 =

1
1+ x2

; [e−x2
]0,4 =

1
1+ x2 +

1
2 x4
; [e−x2

]2,4 =
6− 2x2

6+ 4x2 + x4
. (3.98)

Therefore, depending on the required precision of a physical problem, instead of
working with e−x2 (which for example does not have an indefinite integral that can be
expressed in elementary functions), one can approximate the function e−x2 for all x,
as 1/(1+ x2), that is much easier to work with. Curiously, the reader might recognize
that the 1/(1+ x2) is the Cauchy distribution function, often used in plasma physics
books to get a better understanding of the complicated Landau damping. The Cauchy
distribution therefore can be thought of as the simplest Padé approximation of the
Maxwellian distribution.
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Now we are ready to use the Padé approximation for the plasma dispersion
function Z(ζ ) or the plasma response function R(ζ ). We do not have to explore
all the possibilities, and we can immediately pick up only the smart choices. For
large ζ (by neglecting the exponential term as discussed in the previous section),
at the first order Z(ζ ) ∼ 1/ζ and R(ζ ) ∼ 1/ζ 2, and both functions approach zero
as ζ increases. Obviously, a smart choice worth exploring will always be a Padé
approximant [ ]m,n where n>m. In fact, we can be even more specific. We know the
asymptotic behaviour for large ζ , and obviously, even smarter choice is to concentrate
only on approximants [Z(ζ )]n−1,n and [R(ζ )]n−2,n, since such a choice will naturally
lead to the correct asymptotic behaviour

ζ � 1 : [Z(ζ )]n−1,n ∼
1
ζ
; [R(ζ )]n−2,n ∼

1
ζ 2
. (3.99)

Any other choice is not really interesting and therefore, the usual 2-digit notation of
the Padé approximation becomes redundant. We can just use 1-digit notation with ‘n’,
that represents the degree of a chosen polynomial in the denominator, and we can
omit writing the (n − 1) and (n − 2), since this will always be the case (except for
the R1(ζ )). The ‘n’ represents the number of poles, and we therefore talk about an
‘n-pole Padé approximation’ of Z(ζ ) or R(ζ ), and

Zn(ζ )=
a0 + a1ζ + · · · + an−1ζ

n−1

1+ b1ζ + · · · + bnζ n
; Rn(ζ )=

a0 + a1ζ + · · · + an−2ζ
n−2

1+ b1ζ + · · · + bnζ n
. (3.100)

Note that one can directly work with Padé approximants for both Zn(ζ ) and Rn(ζ ), and
that in general, according to definitions (3.100), the approximants are not automatically
equivalent. The difference is as if one does approximations to a function f (x) or its
derivative f ′(x). Usually in papers, the approximant Zn(ζ ) is calculated, and Rn(ζ )

is just defined according to Rn(ζ ) = 1 + ζZn(ζ ). One can choose another (and
better approach in our opinion) and to calculate directly approximants Rn(ζ ), and
if really required (which should not be the case), obtain Zn(ζ ) approximants as
Zn(ζ )= (Rn(ζ )− 1)/ζ .

Moreover, we can do even better than (3.100). We shall not be satisfied just by
approximating the asymptotic trend ∼1/ζ for ζ � 1, and hope for the best. For large
ζ , the correct asymptotic expansions are Z(ζ )→ −1/ζ and R(ζ )→ −1/(2ζ 2). By
prescribing an−1/bn = −1 for Z(ζ ), and an−2/bn = −1/2 for R(ζ ), we will obtain
correct asymptotic behaviour of these functions, at least at the first order. By doing
this, we are not ‘destroying’ the Padé approximation, since it is easy to argue that
if an n-pole approximation is determined to be sufficient for small ζ values, we can
just add one more pole and use that one to control the asymptotic behaviour for large
ζ values. Of course, we will always use at least the first term in the expansion for
ζ � 1, that yields a0 = i

√
π for Zn(ζ ) and a0 = 1 for Rn(ζ ), otherwise the functions

will have incorrect values at ζ = 0. The ‘smart’ choices worth considering therefore
can be summarized as

Zn(ζ ) =
i
√

π+ a1ζ + · · · + an−1ζ
n−1

1+ b1ζ + · · · + bn−1ζ n−1 − an−1ζ n
;

Rn(ζ ) =
1+ a1ζ + · · · + an−2ζ

n−2

1+ b1ζ + · · · + bn−1ζ n−1 − 2an−2ζ n
, (3.101)
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and have a property to correctly match the Z and R functions at ζ = 0 and, have the
correct first-order asymptotic expansion at ζ � 1. The one-pole approximant R1(ζ ) is
an exception, and can be defined only as R1(ζ )= 1/(1+ b1ζ ). This function obviously
cannot have correct asymptotic expansion ∼1/ζ 2 and the only possibility is to use
ζ � 1 expansion R1(ζ )= 1/(1+ b1ζ )= 1+ i

√
πζ , which yields b1 =−i

√
π and

R1(ζ )=
1

1− i
√

πζ
. (3.102)

The one-pole approximant Z1(ζ ) can be obtained directly from the definition (3.101),
that yields

Z1(ζ )=
i
√

π

1− i
√

πζ
, (3.103)

and that has correct asymptotic behaviour Z1(ζ )→ −1/ζ for large ζ values, even
though it has only precision o(ζ 0) for small ζ values. Perhaps curiously, in this case
R1(ζ )=1+ ζZ1(ζ ) exactly. Alternatively, if the precision for small ζ is more important
than the exact asymptotic expansion for large ζ , it is possible to increase the Z1
precision to o(ζ 1) and write Z1(ζ ) = i

√
π/(1 − 2iζ/

√
π). In this case R1(ζ ) 6= 1 +

ζZ1(ζ ) exactly, and the functions are equal only for small ζ and only with precision
o(ζ 1).

Right now, in the definition (3.101), we just used 1 pole for the asymptotic
series of Z(ζ ) and R(ζ ), but one can naturally use more poles. By opening the
possibility of increasing the number of matching asymptotic points in the n-pole Padé
approximation (3.101), the number of possible approximants for a given n naturally
increases. To keep track of all the possibilities, we obviously need some kind of
classification scheme. It is useful to modify the usual 1-index Padé series notation
for Zn(ζ ) and Rn(ζ ) functions (that only specify the number of poles), to a two index
notation Zn,n′(ζ ), Rn,n′(ζ ). Now we have a wide range of possibilities how to define
n, n′ and there is no clear ‘natural’ winner.

There are two different existing notations (likely more), introduced by Martín et al.
(1980) and by Hedrick & Leboeuf (1992), that consider Zn,n′(ζ ) Padé approximants.
The first reference defines n= number of points (equations) used in the power-series
expansion, and n′ = number of points (equations) used in the asymptotic series
expansion. Even though perhaps clear, for example three-pole approximants in this
notation are expressed as Z5,1, Z4,2, Z3,3 etc., to get the number of poles (which is the
most important information), one has to calculate (n + n′)/2. When using a lot of
different approximants, this notation is a bit confusing and is rarely used.

The notation of Hedrick & Leboeuf (1992) can be interpreted as defining Zn,n′ with
n = number of poles (which we like), and n′ = number of additional poles in the
asymptotic expansion that is used, compared to some ‘minimally interesting’ or ‘basic’
definition Zn, that can be denoted as Zn,0 (which we like too). The problem with the
notation of Hedrick & Leboeuf (1992) is with the definition of the ‘basic’ Zn,0, since
the number of asymptotic points used in the definition of Zn,0 keeps changing with n
(and is actually equal to n). The notation is physically motivated, but the motivation is
difficult to follow. The Z2,0 is defined with 2 asymptotic points, Z3,0 with 3 asymptotic
points and so on. This can be easily deduced from their definitions of Z2− Z5, as we
will discuss later. We find this notation confusing.

Importantly, both mentioned notations consider the Padé approximants to Z(ζ ). We
do not really care about Z(ζ ), since all the kinetic moments are formulated with R(ζ )
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at this stage. We want to calculate direct Padé approximants to R(ζ ), which is actually
slightly less analytically complicated for a given n. Here we define the 2-index Padé
approximation to the plasma response function R(ζ ) simply as

Rn,0(ζ )=
1+ a1ζ + a2ζ

2
+ · · · + an−2ζ

n−2

1+ b1ζ + b2ζ 2 + · · · + bn−1ζ n−1 − 2an−2ζ n
, (3.104)

i.e. as having asymptote −1/(2ζ 2) for large ζ , and notation Rn,n′(ζ ) means that n′
additional asymptotic points are used compared to the basic definition Rn,0(ζ ). The
notation feels natural, and the n′= 0 index helps us to orient in the hierarchy of many
possible R(ζ ) approximants. It is easy to remember that this asymptotic profile is the
minimum ‘desired’ profile that correctly captures the zeroth-order (density) moment,
and any profile with less asymptotic points should be avoided if possible. The Rn,0(ζ )
has power-series precision o(ζ 2n−3) and asymptotic-series precision o(ζ−2), so Rn,n′(ζ )
has precision o(ζ 2n−3−n′) and o(ζ−2−n′).

Of course, we want to make the Rn,n′(ζ ) and Zn,n′(ζ ) definitions fully consistent, and
Zn,n′(ζ ) is defined so that

Rn,n′(ζ )= 1+ ζZn,n′(ζ ), (3.105)

is satisfied. This dictates that in comparison to Zn(ζ ) definition (3.101), two additional
asymptotic points must be used to define the Zn,0(ζ ). We have no other choice and
when calculating the Zn,n′(ζ ), we have to start counting from n′ =−2, and we define

Zn,−2(ζ )=
i
√

π+ a1ζ + · · · + an−1ζ
n−1

1+ b1ζ + · · · + bn−1ζ n−1 − an−1ζ n
. (3.106)

When calculating the hierarchy of plasma dispersion functions Z(ζ ), the −2 index
is actually a nice reminder that we are two asymptotic points short of the ‘desired’
profile (3.104) for the plasma response function R(ζ ). We want to feel fully confident
that we understand both Padé approximants R(ζ ) and Z(ζ ), and we will calculate
two-pole and three-pole approximants for both functions. For four-pole approximants
and above, we will only work with R(ζ ).

Padé approximants were also used for other interesting physical problems, such
as developing analytic models for the Rayleigh–Taylor and Richtmyer–Meshkov
instabilities (Zhou 2017a,b).

3.3.1. Two-pole approximants of R(ζ ) and Z(ζ )
Let us be patient and go slowly. A general two-pole Padé approximant to R(ζ ) is

R2(ζ )=
a0

1+ b1ζ + b2ζ 2
, (3.107)

where a0 = 1. The asymptotic expansion for large ζ values calculates as
a0

1+ b1ζ + b2ζ 2
=

a0

b2ζ 2

(
1

b2ζ 2
+

b1

b2ζ
+ 1
)

=
a0

b2ζ 2

[
1−

(
b1

b2ζ
+

1
b2ζ 2

)
+

(
b1

b2ζ
+

1
b2ζ 2

)2

+ · · ·

]

=
a0

b2ζ 2
− a0

b1

b2
2ζ

3
+ a0

b2
1 − b2

b3
2ζ

4
+ · · · ; ζ � 1, (3.108)
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and must be matched with the asymptotic expansion (3.67)

R(ζ )=−
1

2ζ 2
−

0
ζ 3
−

3
4ζ 4
+ · · · ; ζ � 1. (3.109)

Matching the first point implies b2 =−2a0, and this is how R2,0(ζ ) is defined. Then,
matching with 2 equations for the small ζ expansion, equation (3.36), the classical
Padé approach yields

R2,0(ζ )=
a0

1+ b1ζ − 2a0ζ 2
= 1︸︷︷︸
=c0

+ i
√

π︸︷︷︸
=c1

ζ ; ⇒ R2,0(ζ )=
1

1− i
√

πζ − 2ζ 2
. (3.110)

To match additional asymptotic point (and to potentially find R2,1(ζ )), dictates
that b1 = 0. However, the resulting function R2,1(ζ ) = 1/(1 − 2ζ 2) does not have
any imaginary part for real valued ζ , since it uses too many asymptotic points and
the Landau residue is not accounted for. Therefore, the R2,1(ζ ) does not represent a
valuable approximation of R(ζ ), and this approximant is eliminated.

Let us now explore possible two-pole approximations of Z(ζ ). A general two-pole
approximant is defined as

Z2(ζ )=
a0 + a1ζ

1+ b1ζ + b2ζ 2
, (3.111)

and has the following asymptotic expansion for large ζ values

a0 + a1ζ

1+ b1ζ + b2ζ 2
=

(
a1

b2

)
1
ζ
+

(
a0

b2
−

a1b1

b2
2

)
1
ζ 2

+

(
−

a0b1

b2
2
+

a1(b2
1 − b2)

b3
2

)
1
ζ 3
+ · · · ; ζ � 1. (3.112)

The Z(ζ ) has asymptotic expansion

Z(ζ )=−
1
ζ
−

0
ζ 2
−

1
2ζ 3
+ · · · ; ζ � 1, (3.113)

so by matching with 1/ζ implies b2 =−a1 (as already used previously) that defines
Z2,−2 (remember, we are starting to count with n′ = −2). By further matching with
1/ζ 2 implies b1 =−a0, that defines Z2,−1, and by further matching with 1/ζ 3 implies
a1 = 2, that defines Z2,0.

The calculation is continued by matching with the power series for small ζ values,
i.e. by using the classical Padé approach, that is described as

Z2,−2(ζ )=
a0 + a1ζ

1+ b1ζ − a1ζ 2
= i
√

π︸︷︷︸
=c0

−2︸︷︷︸
=c1

ζ −i
√

π︸ ︷︷ ︸
=c2

ζ 2, (3.114)

and the solution is

Z2,−2(ζ )=

i
√

π+
4−π

π− 2
ζ

1−
i
√

π

π− 2
ζ −

4−π

π− 2
ζ 2

. (3.115)
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Continuing with Z2,−1(ζ ), i.e. by using one more additional asymptotic term that
dictates b1 =−a0, the matching with the power series yields

Z2,−1(ζ )=
a0 + a1ζ

1− a0ζ − a1ζ 2
= i
√

π− 2ζ ; ⇒ Z2,−1(ζ )=
i
√

π+ (π− 2)ζ
1− i
√

πζ − (π− 2)ζ 2
.

(3.116)
Similarly, considering Z2,0(ζ ) yields

Z2,0(ζ )=
a0 + 2ζ

1− a0ζ − 2ζ 2
= i
√

π; ⇒ Z2,0(ζ )=
i
√

π+ 2ζ
1− i
√

πζ − 2ζ 2
. (3.117)

Obviously, R2,0(ζ )= 1+ ζZ2,0(ζ ) exactly.

3.3.2. Three-pole approximants of R(ζ ) and Z(ζ )
A general three-pole approximant of R(ζ ) is

R3(ζ )=
a0 + a1ζ

1+ b1ζ + b2ζ 2 + b3ζ 3
. (3.118)

The asymptotic expansion calculates as

1
1+ b1ζ + b2ζ 2 + b3ζ 3

=
1

b3ζ 3

(
1

b3ζ 3
+

b1

b3ζ 2
+

b2

b3ζ
+ 1
)

=
1

b3ζ 3

[
1−

(
b2

b3ζ
+

b1

b3ζ 2
+

1
b3ζ 3

)

+

(
b2

b3ζ
+

b1

b3ζ 2
+

1
b3ζ 3

)2

+ · · ·

]

=
1

b3ζ 3

[
1−

1
ζ

b2

b3
+

1
ζ 2

(
−

b1

b3
+

b2
2

b2
3

)
+ · · ·

]
=

1
b3ζ 3
−

b2

b2
3ζ

4
+

b2
2 − b1b3

b3
3ζ

5
+ · · · , (3.119)

so that

a0 + a1ζ

1+ b1ζ + b2ζ 2 + b3ζ 3
=

a1

b3ζ 2
+

1
ζ 3

(
a0

b3
−

a1b2

b2
3

)
+

1
ζ 4

(
−

a0b2

b2
3
+ a1

b2
2 − b1b3

b3
3

)
+ · · · (3.120)

For R3,0(ζ ) this implies b3=−2a1, for R3,1(ζ ) additionally b2=−2a0 and for R3,2(ζ )
also b1 = 3a1. The asymptotic expansions (3.120) can become very long for higher
orders of ζ , especially when more poles are considered. It is beneficial to write down
the following scheme, where in each line, we advance the matching with one more
asymptotic point,

a0 + a1ζ

1+ b1ζ + b2ζ 2 + b3ζ 3
=

a1

b3︸︷︷︸
=−1/2

1
ζ 2
+ · · · ⇒ b3 =−2a1; (3.121)
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R3,0(ζ ) =
a0 + a1ζ

1+ b1ζ + b2ζ 2 − 2a1ζ 3

= −
1

2ζ 2
−

a0 +
b2

2
2a1︸ ︷︷ ︸
=0

1
ζ 3
+ · · · ⇒ b2 =−2a0; (3.122)

R3,1(ζ ) =
a0 + a1ζ

1+ b1ζ − 2a0ζ 2 − 2a1ζ 3

= −
1

2ζ 2
−

b1

4a1︸︷︷︸
=3/4

1
ζ 4
+ · · · ⇒ b1 = 3a1; (3.123)

R3,2(ζ ) =
a0 + a1ζ

1+ 3a1ζ − 2a0ζ 2 − 2a1ζ 3

= −
1

2ζ 2
−

3
4ζ 4
−

1− 3a0

4a1︸ ︷︷ ︸
=0

1
ζ 5
+ · · · ⇒ a1→∞. (3.124)

In the last expression the a1→∞ since a0 = 1, implying the R3,3(ζ ) does not make
sense and it is not defined. The scheme can be very quickly verified by using Maple
(or Mathematica) software, by using command asympt(expression(ζ ), ζ , n), where ζ
is the variable, and n prescribes the precision of the expansion that is calculated up
to the o(ζ−n) order. Now by matching with the power series for small ζ values

R3,0(ζ ) =
a0 + a1ζ

1+ b1ζ + b2ζ 2 − 2a1ζ 3
= 1+ i

√
πζ − 2ζ 2

− i
√

πζ 3
; (3.125)

R3,1(ζ ) =
a0 + a1ζ

1+ b1ζ − 2a0ζ 2 − 2a1ζ 3
= 1+ i

√
πζ − 2ζ 2

; (3.126)

R3,2(ζ ) =
a0 + a1ζ

1+ 3a1ζ − 2a0ζ 2 − 2a1ζ 3
= 1+ i

√
πζ ; (3.127)

and the solutions are

R3,0(ζ ) =

1− i
√

π
π− 3
4−π

ζ

1− i
√

π

4−π
ζ −

3π− 8
4−π

ζ 2 + 2i
√

π
π− 3
4−π

ζ 3

; (3.128)

R3,1(ζ ) =

1− i
4−π
√

π
ζ

1−
4i
√

π
ζ − 2ζ 2 + 2i

4−π
√

π
ζ 3

; (3.129)

R3,2(ζ ) =
1−

i
√

π

2
ζ

1−
3i
√

π

2
ζ − 2ζ 2 + i

√
πζ 3

. (3.130)

A general three-pole approximant of Z(ζ ) is

Z3(ζ )=
a0 + a1ζ + a2ζ

2

1+ b1ζ + b2ζ 2 + b3ζ 3
, (3.131)
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and has the following asymptotic expansion

a0 + a1ζ + a2ζ
2

1+ b1ζ + b2ζ 2 + b3ζ 3
=

a2

b3ζ
+

(
a1

b3
−

a2b2

b2
3

)
1
ζ 2

+

(
a0

b3
−

a1b2

b2
3
+

a2(b2
2 − b1b3)

b3
3

)
1
ζ 3
+ · · · (3.132)

Matching the first asymptotic term implies b3 = −a2, which defines Z3,−2(ζ ). For
Z3,−1(ζ ) the second term is matched as well and b2=−a1. For Z3,0(ζ ) the third term
is also matched and b1 = −a0 + a2/2. To go higher requires higher-order expansion
(3.132). It is again easier to write down the asymptotic expansion scheme step
by step

a0 + a1ζ + a2ζ
2

1+ b1ζ + b2ζ 2 + b3ζ 3
=

a2

b3︸︷︷︸
=−1

1
ζ
+ · · · ; ⇒ b3 =−a2; (3.133)

Z3,−2(ζ )=
a0 + a1ζ + a2ζ

2

1+ b1ζ + b2ζ 2 − a2ζ 3
=−

1
ζ
−

a1 + b2

a2︸ ︷︷ ︸
=0

1
ζ 2
+ · · · ⇒ b2 =−a1;

(3.134)

Z3,−1(ζ ) =
a0 + a1ζ + a2ζ

2

1+ b1ζ − a1ζ 2 − a2ζ 3

= −
1
ζ
−

0
ζ 2
−

a0 + b1

a2︸ ︷︷ ︸
=1/2

1
ζ 3
+ · · · ⇒ b1 =

a2

2
− a0; (3.135)

Z3,0(ζ ) =
a0 + a1ζ + a2ζ

2

1+
(a2

2
− a0

)
ζ − a1ζ 2 − a2ζ 3

= −
1
ζ
−

1
2ζ 3
−

2− a1

2a2︸ ︷︷ ︸
=0

1
ζ 4
+ · · · ⇒ a1 = 2; (3.136)

Z3,1(ζ ) =
a0 + 2ζ + a2ζ

2

1+
(a2

2
− a0

)
ζ − 2ζ 2 − a2ζ 3

= −
1
ζ
−

1
2ζ 3
−

a2 − 2a0

4a2︸ ︷︷ ︸
=3/4

1
ζ 5
+ · · · ⇒ a2 =−a0; (3.137)

Z3,2(ζ )=
a0 + 2ζ − a0ζ

2

1− 3
2 a0ζ − 2ζ 2 + a0ζ 3

. (3.138)

Matching these results with an expansion for small ζ values is done according to

Z3,−2(ζ )=
a0 + a1ζ + a2ζ

2

1+ b1ζ + b2ζ 2 − a2ζ 3
= i
√

π− 2ζ − i
√

πζ 2
+

4
3
ζ 3
+ i
√

π

2
ζ 4
;

(3.139)
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Z3,−1(ζ )=
a0 + a1ζ + a2ζ

2

1+ b1ζ − a1ζ 2 − a2ζ 3
= i
√

π− 2ζ − i
√

πζ 2
+

4
3
ζ 3
; (3.140)

Z3,0(ζ )=
a0 + a1ζ + a2ζ

2

1+
(
−a0 +

a2

2

)
ζ − a1ζ 2 − a2ζ 3

= i
√

π− 2ζ − i
√

πζ 2
; (3.141)

Z3,1(ζ )=
a0 + 2ζ + a2ζ

2

1+
(a2

2
− a0

)
ζ − 2ζ 2 − a2ζ 3

= i
√

π− 2ζ ; (3.142)

Z3,2(ζ )=
a0 + 2ζ − a0ζ

2

1− 3
2 a0ζ − 2ζ 2 + a0ζ 3

= i
√

π, (3.143)

and the solutions are

Z3,−2(ζ )=

i
√

π+
3π2
− 30π+ 64

2(5π− 16)
ζ +

i
√

π(9π− 28)
6(5π− 16)

ζ 2

1−
i
√

π(3π− 10)
2(5π− 16)

ζ +
21π− 64

6(5π− 16)
ζ 2 −

i
√

π(9π− 28)
6(5π− 16)

ζ 3

; (3.144)

Z3,−1(ζ )=

i
√

π+
10− 3π

3(π− 3)
ζ +

i(5π− 16)
3
√

π(π− 3)
ζ 2

1−
i(3π− 8)

3
√

π(π− 3)
ζ −

10− 3π

3(π− 3)
ζ 2 −

i(5π− 16)
3
√

π(π− 3)
ζ 3

; (3.145)

Z3,0(ζ )=

i
√

π+
3π− 8
4−π

ζ − 2i
√

π
π− 3
4−π

ζ 2

1−
i
√

π

4−π
ζ −

3π− 8
4−π

ζ 2 + 2i
√

π
π− 3
4−π

ζ 3

. (3.146)

Z3,1(ζ )=

i
√

π+ 2ζ − 2i
4−π
√

π
ζ 2

1− i
4
√

π
ζ − 2ζ 2 + 2i

4−π
√

π
ζ 3

; (3.147)

Z3,2(ζ )=
i
√

π+ 2ζ − i
√

πζ 2

1− 3
2 i
√

πζ − 2ζ 2 + i
√

πζ 3
. (3.148)

Of course, the following relations now hold exactly

R3,0(ζ )= 1+ ζZ3,0(ζ ); (3.149)
R3,1(ζ )= 1+ ζZ3,1(ζ ); (3.150)
R3,2(ζ )= 1+ ζZ3,2(ζ ). (3.151)

3.3.3. Four-pole approximants of R(ζ ) and Z(ζ )
As before, the procedure of matching with asymptotic expansion yields (for

simplicity already assuming a0 = 1)

1+ a1ζ + a2ζ
2

1+ b1ζ + b2ζ 2 + b3ζ 3 + b4ζ 4
=

a2

b4︸︷︷︸
=−1/2

1
ζ 2
+ · · · ⇒ b4 =−2a2; (3.152)
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R4,0(ζ ) =
1+ a1ζ + a2ζ

2

1+ b1ζ + b2ζ 2 + b3ζ 3 − 2a2ζ 4

= −
1

2ζ 2
−

a1 +
b3

2
2a2︸ ︷︷ ︸
=0

1
ζ 3
+ · · · ⇒ b3 =−2a1; (3.153)

R4,1(ζ ) =
1+ a1ζ + a2ζ

2

1+ b1ζ + b2ζ 2 − 2a1ζ 3 − 2a2ζ 4

= −
1

2ζ 2
−

1+
b2

2
2a2︸ ︷︷ ︸
=3/4

1
ζ 4
+ · · · ⇒ b2 = 3a2 − 2; (3.154)

R4,2(ζ ) =
1+ a1ζ + a2ζ

2

1+ b1ζ + (3a2 − 2)ζ 2 − 2a1ζ 3 − 2a2ζ 4

= −
1

2ζ 2
−

3
4ζ 4
−

b1 − 3a1

4a2︸ ︷︷ ︸
=0

1
ζ 5
+ · · · ⇒ b1 = 3a1; (3.155)

R4,3(ζ ) =
1+ a1ζ + a2ζ

2

1+ 3a1ζ + (3a2 − 2)ζ 2 − 2a1ζ 3 − 2a2ζ 4

= −
1

2ζ 2
−

3
4ζ 4
−

9
2 a2 − 2

4a2︸ ︷︷ ︸
=15/8

1
ζ 6
+ · · · ⇒ a2 =−

2
3
; (3.156)

R4,4(ζ ) =
1+ a1ζ −

2
3ζ

2

1+ 3a1ζ − 4ζ 2 − 2a1ζ 3 +
4
3ζ

4

= −
1

2ζ 2
−

3
4ζ 4
−

15
8ζ 6
−

9a1

8︸︷︷︸
=0

1
ζ 7

⇒ a1 = 0, (3.157)

where the last relation implies a possible approximant R4,5(ζ )= (1− 2
3ζ

2)/(1− 4ζ 2
+

4
3ζ

4). However, such an approximant is not well behaved (it has zero imaginary part
for real valued ζ ) and the R4,5(ζ ) is eliminated. Matching with the power series is
performed according to

R4,0(ζ ) =
1+ a1ζ + a2ζ

2

1+ b1ζ + b2ζ 2 + b3ζ 3 − 2a2ζ 4

= 1+ i
√

πζ − 2ζ 2
− i
√

πζ 3
+

4
3
ζ 4
+ i
√

π

2
ζ 5
; (3.158)

R4,1(ζ )=
1+ a1ζ + a2ζ

2

1+ b1ζ + b2ζ 2 − 2a1ζ 3 − 2a2ζ 4
= 1+ i

√
πζ − 2ζ 2

− i
√

πζ 3
+

4
3
ζ 4
; (3.159)

R4,2(ζ )=
1+ a1ζ + a2ζ

2

1+ b1ζ + (3a2 − 2)ζ 2 − 2a1ζ 3 − 2a2ζ 4
= 1+ i

√
πζ − 2ζ 2

− i
√

πζ 3
; (3.160)
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R4,3(ζ )=
1+ a1ζ + a2ζ

2

1+ 3a1ζ + (3a2 − 2)ζ 2 − 2a1ζ 3 − 2a2ζ 4
= 1+ i

√
πζ − 2ζ 2

; (3.161)

R4,4(ζ )=
1+ a1ζ −

2
3ζ

2

1+ 3a1ζ − 4ζ 2 − 2a1ζ 3 +
4
3ζ

4
= 1+ i

√
πζ , (3.162)

and the results are

R4,0(ζ )=

1+ i
√

π

2
(12π2

− 67π+ 92)
(6π2 − 29π+ 32)

ζ −
(9π2
− 69π+ 128)

6(6π2 − 29π+ 32)
ζ 2

1− i
√

π

2
(9π− 28)

(6π2 − 29π+ 32)
ζ +

(36π2
− 195π+ 256)

6(6π2 − 29π+ 32)
ζ 2 − i

√
π(33π− 104)

6(6π2 − 29π+ 32)
ζ 3 +

(9π2
− 69π+ 128)

3(6π2 − 29π+ 32)
ζ 4

;

(3.163)

R4,1(ζ )=

1− i
√

π

3
(9π− 28)
(16− 5π)

ζ −
(6π2
− 29π+ 32)

3(16− 5π)
ζ 2

1− i
2
√

π

3
(10− 3π)

(16− 5π)
ζ −

(21π− 64)
3(16− 5π)

ζ 2 + i
2
√

π

3
(9π− 28)
(16− 5π)

ζ 3 +
2(6π2

− 29π+ 32)
3(16− 5π)

ζ 4

;

(3.164)

R4,2(ζ )=

1− i
√

π
(10− 3π)

(3π− 8)
ζ −

(16− 5π)

(3π− 8)
ζ 2

1− i
√

π
2

(3π− 8)
ζ −

(32− 9π)

(3π− 8)
ζ 2 + i

√
π

2(10− 3π)

(3π− 8)
ζ 3 +

2(16− 5π)

(3π− 8)
ζ 4

(3.165)

R4,3(ζ )=
1− i
√

π

2
ζ −

(3π− 8)
4

ζ 2

1− i
3
√

π

2
ζ −

(9π− 16)
4

ζ 2 + i
√

πζ 3 +
(3π− 8)

2
ζ 4

; (3.166)

R4,4(ζ )=
1− i
√

π

2
ζ −

2
3
ζ 2

1− i
3
√

π

2
ζ − 4ζ 2 + i

√
πζ 3 +

4
3ζ

4

. (3.167)

Of the four-pole approximants, perhaps the most well-known one is R4,3(ζ ) used for
example by Hammett & Perkins (1990), Passot & Sulem (2007) etc., and which can
be written in a convenient form

R4,3(ζ )=
4− 2i

√
πζ − (3π− 8)ζ 2

4− 6i
√

πζ − (9π− 16)ζ 2 + 4i
√

πζ 3 + 2(3π− 8)ζ 4
. (3.168)

Here we do not double check the derivation of the Z4(ζ ) approximants ‘from
scratch’, and for a given R4 coefficients, the Z4 coefficients are of course easily
obtained by

R4(ζ )=
1+ a1ζ + a2ζ

2

1+ b1ζ + b2ζ 2 + b3ζ 3 + b4ζ 4
⇒ Z4(ζ )=

(a1 − b1)+ (a2 − b2)ζ − b3ζ
2
− b4ζ

3

1+ b1ζ + b2ζ 2 + b3ζ 3 + b4ζ 4
. (3.169)

For completeness, the corresponding results are

Z4,0(ζ )=

i
√

π−
(15π2

− 88π+ 128)
2(6π2 − 29π+ 32)

ζ + i
√

π(33π− 104)
6(6π2 − 29π+ 32)

ζ 2
−
(9π2
− 69π+ 128)

3(6π2 − 29π+ 32)
ζ 3

1− i
√

π

2
(9π− 28)

(6π2 − 29π+ 32)
ζ +

(36π2
− 195π+ 256)

6(6π2 − 29π+ 32)
ζ 2 − i

√
π(33π− 104)

6(6π2 − 29π+ 32)
ζ 3 +

(9π2
− 69π+ 128)

3(6π2 − 29π+ 32)
ζ 4

;

(3.170)
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Z4,1(ζ )=

i
√

π−
2(3π2

− 25π+ 48)
3(16− 5π)

ζ − i
2
√

π

3
(9π− 28)
(16− 5π)

ζ 2
−

2(6π2
− 29π+ 32)

3(16− 5π)
ζ 3

1− i
2
√

π

3
(10− 3π)

(16− 5π)
ζ −

(21π− 64)
3(16− 5π)

ζ 2 + i
2
√

π

3
(9π− 28)
(16− 5π)

ζ 3 +
2(6π2

− 29π+ 32)
3(16− 5π)

ζ 4

;

(3.171)

Z4,2(ζ )=

i
√

π+
4(4−π)

(3π− 8)
ζ − i
√

π
2(10− 3π)

(3π− 8)
ζ 2
−

2(16− 5π)

(3π− 8)
ζ 3

1− i
√

π
2

(3π− 8)
ζ −

(32− 9π)

(3π− 8)
ζ 2 + i

√
π

2(10− 3π)

(3π− 8)
ζ 3 +

2(16− 5π)

(3π− 8)
ζ 4

(3.172)

Z4,3(ζ )=
i
√

π+
3π− 4

2
ζ − i
√

πζ 2
−
(3π− 8)

2
ζ 3

1− i
3
√

π

2
ζ −

(9π− 16)
4

ζ 2 + i
√

πζ 3 +
(3π− 8)

2
ζ 4

; (3.173)

Z4,4(ζ )=
i
√

π+ 10
3 ζ − i

√
πζ 2
−

4
3ζ

3

1− i
3
√

π

2
ζ − 4ζ 2 + i

√
πζ 3 +

4
3ζ

4

. (3.174)

3.4. Conversion of our 2-index Rn,n′(ζ ) notation to other notations
For clarity, we provide conversion tables of Padé approximants in the notation of
Martín et al. (1980) and Hedrick & Leboeuf (1992) to our notation. Comparing our
analytic results to those of Martín et al. (1980) (introducing superscript M), can be
done easily according to

ZM
3,1 = Z2,−2; ZM

2,2 = Z2,−1; ZM
1,3 = Z2,0; (3.175)

ZM
5,1 = Z3,−2; ZM

4,2 = Z3,−1; ZM
3,3 = Z3,0; (3.176)

ZM
5,3 = Z4,0, (3.177)

and the general conversion can be written as

ZM
n,n′ = Zn+n′/2,n′−3. (3.178)

The table 1 of Martín et al. (1980) can be now easily verified, which reveals a small
obvious typo in their ZM

4,2, where the coefficient p2 is missing the imaginary i number.
To compare our results to those of Hedrick & Leboeuf (1992), it is useful to

calculate asymptotic expansions of their Zn definitions (that is defined as Zn,0), that
calculate as

ZHL
2 =−

a1 − ζ

a0 + a1ζ − ζ 2
=−

1
ζ
−

0
ζ 2
+ o

(
1
ζ 2

)
; (3.179)

ZHL
3 =−

ζ 2
− a2ζ − a1 +

1
2

ζ 3 − a2ζ 2 − a1ζ − a0
=−

1
ζ
−

1
2ζ 3
+ o

(
1
ζ 3

)
; (3.180)

ZHL
4 =−

ζ 3
− a3ζ

2
− (a2 −

1
2ζ )− (a1 + a3/2)

ζ 4 − a3ζ 3 − a2ζ 2 − a1ζ − a0
=−

1
ζ
−

1
2ζ 3
−

0
ζ 4
+ o

(
1
ζ 4

)
;

(3.181)
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ZHL
5 = −

ζ 4
− a4ζ

3
− (a3 −

1
2)ζ

2
− (a2 + a4/2)ζ − (a1 + a3/2− 3

4)

ζ 5 − a4ζ 4 − a3ζ 3 − a2ζ 2 − a1ζ − a0

= −
1
ζ
−

1
2ζ 3
−

3
4ζ 5
+ o

(
1
ζ 5

)
, (3.182)

where ‘HL’ stands for Hedrick & Leboeuf (1992). As one can see, the number of
asymptotic points used in their basic definition of Zn, increases with the number of
poles n. Compared to our definition, their Z2,0 is defined as having another asymptotic
point (for a total of 2), Z3,0 has another asymptotic point (for a total of 3), Z4,0 another
one (for a total of 4), and so on. Essentially, in their notation the basic Zn,0 is defined
as having ‘n’ asymptotic points, and asymptotic precision o(1/ζ n). The conversion
between their and our notation is easy, and

ZHL
2,0 = Z2,−1; ZHL

2,1 = Z2,0; (3.183)

ZHL
3,1 = Z3,1; ZHL

3,2 = Z3,2; (3.184)

ZHL
4,1 = Z4,2; ZHL

4,2 = Z4,3; ZHL
4,3 = Z4,4; (3.185)

ZHL
5,1 = Z5,3; ZHL

5,2 = Z5,4; ZHL
5,3 = Z5,5; ZHL

5,4 = Z5,6, (3.186)

or the general conversion can be written as

ZHL
n,n′ = Zn,n′+n−3. (3.187)

We checked the table 1 of Hedrick & Leboeuf (1992) that provides coefficients for
the Padé approximants (3.183)–(3.186) and we can confirm that the table is essentially
correct, except for one coefficient.7 The coefficient where a simple typo is suspected
is the coefficient a1 in Z3,1. Rewriting our three-pole approximant R3(ζ ) to the form
used by Passot & Sulem (2007) and Hedrick & Leboeuf (1992) (that corresponds to
the ZHL

3 as written in (3.180)) yields

R3(ζ )=
−

1
2ζ − a0

ζ 3 − a2ζ 2 − a1ζ − a0
, (3.188)

which further yields

R3,1(ζ )=

−
1
2
ζ −

i
√

π

2(4−π)

ζ 3 +
i
√

π

(4−π)
ζ 2 −

2
(4−π)

ζ −
i
√

π

2(4−π)

; (3.189)

R3,2(ζ )=

−
1
2
ζ −

i
√

π

ζ 3 +
2i
√

π
ζ 2 −

3
2
ζ −

i
√

π

, (3.190)

and our approximants are

R3,1(ζ ) : a0 =
i
√

π

2(4−π)
= 1.03241i; a1 =

2
4−π

= 2.32990;

7Compared to our exact analytic expressions, there are also some rounding errors in the last 1–2 digits in
ZHL

4,1, ZHL
5,1, ZHL

5,2.
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a2 = −
i
√

π

4−π
=−2.06482i; (3.191)

R3,2(ζ ) : a0 =
i
√

π
= 0.56419i; a1 =

3
2
;

a2 = −
2i
√

π
=−1.12838i. (3.192)

For the a1 coefficient in R3,1, both Hedrick & Leboeuf (1992) and Passot & Sulem
(2007) use a1 = 2.23990 instead of the correct a1 = 2.32990. The differences are of
course small. Nevertheless, the new correct value explains the observation made by
Passot & Sulem (2007), in the paragraph below their figure 1, where they write: ‘It
is conspicuous that R3,2 provides a fit that is slightly better for small ζ , but turns out
to be globally less accurate than R3,1’. The authors obviously noticed that something
is not right, since for small ζ , the R3,1 has precision o(ζ 2) and R3,2 only o(ζ ), so the
R3,1 should be more precise. And it indeed is, the authors were just misguided by the
wrong value of a1 introduced by Hedrick & Leboeuf (1992).

3.5. Precision of R(ζ ) approximants
It is useful to compare the Padé approximants to the exact R(ζ )= 1+ ζZ(ζ ), where
the plasma dispersion function can be conveniently calculated (for example in Maple)
according to

Z(ζ )= i
√

πe−ζ
2
(1+ erf(iζ )) , (3.193)

where erf(z) = (2/
√

π)
∫ z

0 e−t2 dt is the well-known error function, defined for any
complex z. We plot only approximants for which we were able to obtain closures.
The exact R(ζ ) is plotted as a black solid line in all the figures. Figure 2 top
shows one-pole and two-pole approximants R1(ζ ) (red dashed line) and R2,0(ζ ) (blue
dot-dashed line). Figure 2 bottom shows three-pole approximants R3,0(ζ ) (red dashed
line), R3,1(ζ ) (green dotted line) and R3,2(ζ ) (blue dot-dashed line). Figures in the left
column show the imaginary part and figures in the right column show the real part.
The input variable ζ plotted on the x-axis is prescribed to be real, i.e. states in the
weak growth-rate/damping approximation are explored (one might as well prescribe
Im(ζ )=±0.01Re(ζ ) and plot essentially the same graphs, with only small differences
in solutions).

As expected, the very simple approximant R1(ζ ) is unprecise for larger values of ζ ,
and above ζ > 1, the ReR1(ζ ) even has a wrong sign. Nevertheless, the approximant
is still a good approximant for small ζ � 1 values, and it is also very valuable from
a theoretical perspective, since it is the only approximant that provides a quasi-static
closure for the perpendicular heat flux q⊥ (see the 3-D geometry § 4, closure (4.108)).
This has one important implication:
If one renders the approximant R1 as not satisfactory (which is true unless ζ � 1 or
at least ζ < 1), 3-D simulations with fluid models that contain Landau damping can
be only performed with time-dependent heat flux equations. All other approximants in
figure 2 perform reasonably well, and the most precise is R3,0(ζ ), followed by R3,1(ζ ).

Figure 3 shows selected four-pole and five-pole approximants for which we were
able to obtain closures. Unfortunately, approximants R4,4(ζ ) and R5,6(ζ ) show a bit
unpleasant behaviour, and the associated closures obtained with these approximants
are therefore difficult to recommend, unless the considered domain is ζ � 1 or
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(a) (b)

(c) (d)

FIGURE 2. One-pole, two-pole (a,b) and three-pole (c,d) Padé approximants of R(ζ ).
(a,c) ImR(ζ ), (b,d) ReR(ζ ), for ζ being real.

ζ � 1, or more specifically, at least ζ < 0.5 or ζ > 2. The behaviour is not surprising,
since approximants R4,4(ζ ) and R5,6(ζ ) have the maximum available number of
poles devoted to the asymptotic expansion ζ � 1, without being ill posed. The
closures are therefore specifically suitable for ζ � 1 regime, for example in the
low-temperature limit, or, in the high-frequency (actually high phase speed) limit
(since ζ = ω/(|k‖|vth‖)). For R4,4(ζ ), the corresponding closures are the quasi-static
closure (3.268) and time-dependent closures (3.295), (3.297), (3.299). For R5,6(ζ ),
the corresponding closure is time dependent (3.325) and naturally, this is the most
precise closure in the ζ � 1 regime, with precision o(ζ−8). Noticeably, the asymptotic
precision is even better than the R8,3(ζ ) approximant used in the WHAMP code,
which has a precision o(ζ−5).

All other approximants in figure 3 are very precise in the entire considered range
of ζ . To clearly see the precision, it is useful to calculate the maximum relative errors

Im
(

Rn,n′(ζ )− R(ζ )
R(ζ )

)
100 %; Re

(
Rn,n′(ζ )− R(ζ )

R(ζ )

)
100 %, (3.194)

which we define this way instead of for example Re(Rn,n′(ζ ) − R(ζ ))/ReR(ζ ), since
the real part of R(ζ ) is going through zero. The maximum relative errors typically
appear for ζ ∈ (0, 4), even though some reported values are outside of this range. The
R1(ζ ) approximant is excluded from the table since its relative error of the imaginary
part increases with ζ . We omit if errors are positive or negative and the results are:

https://doi.org/10.1017/S0022377819000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000850


Collisionless fluid models. Part 2 49

(a) (b)

(c) (d)

FIGURE 3. Four-pole (a,b) and five-pole (c,d) Padé approximants of R(ζ ).

Two-pole and three-pole approximants
R2,0 R3,0 R3,1 R3,2

error Im % 35 16.4 13.3 44
error Re % 44 14.7 16.6 53

Four-pole approximants
R4,0 R4,1 R4,2 R4,3 R4,4

error Im % 6.2 4.66 4.57 11.6 49
error Re % 5.3 4.3 5.7 12.3 51

Five-pole approximants
R5,0 R5,1 R5,2 R5,3 R5,4 R5,5 R5,6

error Im % 1.9 1.42 1.34 1.46 3.4 10.3 40
error Re % 2.0 1.26 1.26 1.81 3.4 10.0 31

Six-pole approximants
R6,0 R6,1 R6,2 R6,3 R6,4 R6,5 R6,6 R6,7 R6,8

error Im % 0.58 0.37 0.35 0.38 0.45 1.0 2.5 7.6 30
error Re % 0.64 0.40 0.31 0.36 0.54 0.9 2.5 7.7 39

Seven-pole approximants
R7,0 R7,1 R7,2 R7,3 R7,4 R7,5 R7,6 R7,7 R7,8 R7,9 R7,10

error Im % 0.18 0.10 0.080 0.087 0.10 0.13 0.29 0.65 1.8 6.2 35
error Re % 0.2 0.11 0.089 0.080 0.10 0.16 0.26 0.65 1.9 6.6 33

Eight-pole approximants
R8,0 R8,1 R8,2 R8,3 R8,4 R8,5 R8,6 R8,7 R8,8 R8,9

error Im % 0.06 0.03 0.021 0.018 0.022 0.028 0.04 0.08 0.17 0.43
error Re % 0.06 0.03 0.022 0.020 0.020 0.027 0.04 0.07 0.17 0.46
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The numbers of course do not reveal the entire story, since the maximum error can
occur for different ζ values. For example, from the plots of ImR(ζ ) in figure 2, the
approximant R3,0(ζ ) captures the maximum (the peak around ζ ∼ 1) with much better
accuracy than the approximant R3,1(ζ ). However, according to the above table, the
R3,1(ζ ) appears to be more precise globally. The discrepancy is easily understood from
figure 4, where % errors of both approximants are plotted with respect to ζ . A similar
table and figures can be created for the heavily damped regime, for example for ζ with
the imaginary part Im(ζ )=−Re(ζ )/2, where the Padé approximants are less precise.

3.6. Landau fluid closures – fascinating closures for all ζ
Now, let us use various Padé approximations of the plasma response function R(ζ ),
and calculate the kinetic moments. Let us start with the simplest choice of replacing
the exact R(ζ ) with approximant R1(ζ )= 1/(1− i

√
πζ ). Let us drop the index r. The

linear kinetic moments (3.20)–(3.26) calculate as

R1(ζ ) :
n(1)

n0
= −

qr

T (0)
Φ

1
1− i
√

πζ
[1] ; (3.195)

u(1) = −
qr

T (0)
Φvthsign(k‖)

1
1− i
√

πζ
[ζ ] ; (3.196)

p(1)

p0
= −

qr

T (0)
Φ

1
1− i
√

πζ

[
2ζ 2
− i
√

πζ + 1
]
; (3.197)

T (1) = −qrΦ
1

1− i
√

πζ

[
2ζ 2
− i
√

πζ
]
; (3.198)

q(1) = −qrn0Φvthsign(k‖)
1

1− i
√

πζ

[
2ζ 3
− i
√

πζ 2
− 2ζ

]
; (3.199)

r(1) = −qr
n0

2
v2

thΦ
1

1− i
√

πζ

[
4ζ 4
− 2i
√

πζ 3
+ 2ζ 2

− 3i
√

πζ + 3
]
;

(3.200)

r̃(1) = −qr
n0

2
v2

thΦ
1

1− i
√

πζ

[
4ζ 4
− 2i
√

πζ 3
− 10ζ 2

+ 3i
√

πζ
]
. (3.201)

We are looking for a closure, and we want to express either q(1) or r̃(1), as a linear
combination of lower-order moments. To immediately see possible closures, it is
always useful to pull the denominator of the Padé approximant out (as done above),
and concentrate only on the expressions inside the big brackets. Also, similarly to the
closures explored for small ζ , it is useful to forget the n(1), p(1) and r(1) moments, and
just concentrate at the u(1), T (1), q(1) and r̃(1) moments. Nevertheless, we will keep
the n(1) moment, since it helps us to understand the expressions and to somehow
‘maintain touch with reality’.

By exploring the expressions inside of the brackets, it is obvious that it is
impossible to express q(1) or r̃(1) as a linear combination of lower-order moments
that eliminate the ζ dependence. Moreover, for large ζ , the moments q(1) ∼ ζ 2 and
r̃(1)∼ ζ 3, which does not make physical sense, since these quantities should converge
to zero with increasing ζ , as explored in the ζ � 1 limit, see equations (3.80)–(3.86).
The R1(ζ ) approximant therefore does not yield a closure. The same conclusion
is obtained by using the R2,0(ζ ) approximant, where no closure for q(1) or r̃(1) is
possible. We note that the approximant R2,1(ζ ), that was eliminated because it is not
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FIGURE 4. The % error of the imaginary parts of R3,0(ζ ) (red line), and R3,1(ζ ) (green
line).

a good approximant of R(ζ ) yields a closure q(1) =−2p0u(1), which is equivalent to
the closure (3.49), that was obtained for small ζ with the precision o(ζ ). This closure
is therefore disregarded.

Let us try the three-pole Padé approximants. The moments with R3,1(ζ ) approximant
are proportional to

R3,1(ζ ) : n(1) ∼
1

1−
4i
√

π
ζ − 2ζ 2 + 2i

4−π
√

π
ζ 3

[
1+

i
√

π
(π− 4)ζ

]
; (3.202)

u(1) ∼
1

1−
4i
√

π
ζ − 2ζ 2 + 2i

4−π
√

π
ζ 3

[
i
√

π
(π− 4)ζ 2

+ ζ

]
; (3.203)

T (1) ∼
1

1−
4i
√

π
ζ − 2ζ 2 + 2i

4−π
√

π
ζ 3

[
−i
√

πζ
]
; (3.204)

q(1) ∼
1

1−
4i
√

π
ζ − 2ζ 2 + 2i

4−π
√

π
ζ 3

[
−

i
√

π
(3π− 8)ζ 2

− 2ζ
]
; (3.205)

r̃(1) ∼
1

1−
4i
√

π
ζ − 2ζ 2 + 2i

4−π
√

π
ζ 3

[
−

2i
√

π
(3π− 8)ζ 3

− 4ζ 2
+ 3i
√

πζ

]
,

(3.206)

where we have suppressed writing all the multiplicative factors including the minus
signs (it does not mean that these were neglected, full expressions are considered, we
are just not writing down the full expressions, which helps in spotting the possible
closures). There is a possibility of expressing q(1) through the combination of the
lower moments T (1) and u(1). The full expressions of these moments are

R3,1(ζ ) : D =
(

1−
4i
√

π
ζ − 2ζ 2

+ 2i
4−π
√

π
ζ 3

)
; (3.207)
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u(1) = −
qr

T (0)
Φvthsign(k‖)

1
D

[
i
√

π
(π− 4)ζ 2

+ ζ

]
; (3.208)

T (1) = −qrΦ
1
D

[
−i
√

πζ
]
; (3.209)

q(1) = −qrn0Φvthsign(k‖)
1
D

[
−

i
√

π
(3π− 8)ζ 2

− 2ζ
]
, (3.210)

where we have used a convenient notation D for the denominator of the plasma
response function, and the closure is

R3,1(ζ ) : q(1) =
3π− 8
4−π

n0T (0)u(1) − i
√

π

4−π
n0vthsign(k‖)T (1), (3.211)

which is equivalent to the (3.60) closure (which was obtained for small ζ with the
precision o(ζ 2)). Continuing with the next approximant R3,2(ζ ), the moments calculate
as

R3,2(ζ ) : D =
(

1−
3i
√

π

2
ζ − 2ζ 2

+ i
√

πζ 3

)
; (3.212)

n(1) ∼
1
D

[
1−

i
√

π

2
ζ

]
; (3.213)

u(1) ∼
1
D

[
−

i
√

π

2
ζ 2
+ ζ

]
; (3.214)

T (1) ∼
1
D

[
−i
√

πζ
]
; (3.215)

q(1) ∼
1
D

[−2ζ ] ; (3.216)

r̃(1) ∼
1
D

[
−4ζ 2

+ 3i
√

πζ
]
. (3.217)

It is possible to express (1) q(1) through T (1); (2) r̃(1) through the combination of u(1)
and q(1); (3) r̃(1) through the combination of u(1) and T (1). The first choice yields a
closure

R3,2(ζ ) : q(1) =−i
2
√

π
n0vthsign(k‖)T (1), (3.218)

that is equivalent to the (3.48) closure obtained for small ζ with the precision o(ζ ).
This is indeed the famous simplest possible Landau fluid closure that expresses the
collisionless heat flux with respect to temperature, and it equivalent to equation (7)
of Hammett & Perkins (1990).8 The closure is written here in Fourier space. The
important part is the isign(k‖) that typically written as ik‖/|k‖|, and that in real space
rewrites as a Hilbert transform, which we will address later. The R3,2(ζ ) was obtained
with o(ζ ) power-series expansion, and o(1/ζ 4) asymptotic-series expansion. How good
is this closure? By exploring expressions (3.212)–(3.216), the quantities n(1), u(1), T (1)
have all correct asymptotic expansion for large ζ (including the proportionality

8With their later found constant χ1 = 2/
√

π, and remembering that their thermal speeds are defined as
vth =

√
T(0)/m, whereas ours are vth =

√
2T(0)/m.
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constants), however, the heat flux decreases only as q(1) ∼ 1/ζ 2 instead of the correct
∼1/ζ 3, see (3.84). For large ζ , the heat flux is therefore overestimated by this
simple closure, which typically leads to an overestimation of the Landau damping in
fluid models that use this simplest closure. Nevertheless, the closure is very beneficial
because it clarifies the distinction between the collisional and collisionless heat fluxes.

The other two possible closures with R3,2(ζ ) are

R3,2(ζ ) : r̃(1) = −
4i
√

π
vthn0T (0)sign(k‖)u(1) − i

(3π+ 8)
4
√

π
vthsign(k‖)q(1); (3.219)

r̃(1) = −
4i
√

π
vthn0T (0)sign(k‖)u(1) −

(3π+ 8)
2π

v2
thn0T (1), (3.220)

and one can go from (3.219) to (3.220) by using (3.218). Obviously, it would
be also possible to construct a closure r̃(1) = αuu(1) + αqq(1) + αTT (1), where
αu = −(4i/

√
π)vthn0T (0)sign(k‖), and where αq and αT are related by satisfying

2n0vthsign(k‖)αq+ i
√

παT =−iv2
thn0((3π+ 8)/2

√
π), i.e. one could consider a closure

with a free parameter, which we will not consider. Additionally, all constructed
closures should be checked with respect to obtained dispersion relations, and closures
(3.219), (3.220) will be later disregarded as not well behaved (see the discussion
below equations (3.242), (3.382) and (3.399)).

For R4,2(ζ ), the kinetic moments calculate as

R4,2(ζ ) : D =
(

1− i
√

π
2

(3π− 8)
ζ −

(32− 9π)

(3π− 8)
ζ 2

+ i
√

π
2(10− 3π)

(3π− 8)
ζ 3
+

2(16− 5π)

(3π− 8)
ζ 4

)
; (3.221)

n(1) ∼
1
D

[
(5π− 16)
(3π− 8)

ζ 2
+ i
√

π
(3π− 10)
(3π− 8)

ζ + 1
]
; (3.222)

u(1) ∼
1
D

[
(5π− 16)
(3π− 8)

ζ 3
+ i
√

π
(3π− 10)
(3π− 8)

ζ 2
+ ζ

]
; (3.223)

T (1) ∼
1
D

[
2(5π− 16)
(3π− 8)

ζ 2
− i
√

πζ

]
; (3.224)

q(1) ∼
1
D

[
−i
√

π
(9π− 28)
(3π− 8)

ζ 2
− 2ζ

]
; (3.225)

r̃(1) ∼
1
D

[
−i
√

π
2(9π− 28)
(3π− 8)

ζ 3
−

2(21π− 64)
(3π− 8)

ζ 2
+ 3i
√

πζ

]
. (3.226)

The only possibility is to express r̃(1) through a combination of u(1), T (1) and q(1), and
the solution is

R4,2(ζ ) : r̃(1) =−i
√

π
(10− 3π)

(16− 5π)
vthsign(k‖)q(1) +

(21π− 64)
2(16− 5π)

v2
thn0T (1)

+ i
√

π
(9π− 28)
(16− 5π)

vthT (0)n0sign(k‖)u(1), (3.227)

which is equivalent to the closure (3.64), that was obtained for small ζ with precision
o(ζ 3). Obviously such a closure is precise for small values of ζ , however for large

https://doi.org/10.1017/S0022377819000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000850


54 P. Hunana and others

values of ζ , the asymptotic behaviour of q(1) ∼ ζ−2 and r̃(1) ∼ ζ−1, instead of the
correct ζ−3, ζ−4 profiles (see (3.84), (3.86)), and these quantities will be therefore
overestimated. Nevertheless, the solution is interesting and we are not aware of it
being reporting in any literature.

Continuing with R4,3(ζ ), the kinetic moments calculate as

R4,3(ζ ) : D =
(

1− i
3
√

π

2
ζ −

(9π− 16)
4

ζ 2
+ i
√

πζ 3
+
(3π− 8)

2
ζ 4

)
;

(3.228)

n(1) ∼
1
D

[
(8− 3π)

4
ζ 2
− i
√

π

2
ζ + 1

]
; (3.229)

u(1) ∼
1
D

[
(8− 3π)

4
ζ 3
− i
√

π

2
ζ 2
+ ζ

]
; (3.230)

T (1) ∼
1
D

[
(8− 3π)

2
ζ 2
− i
√

πζ

]
; (3.231)

q(1) ∼
1
D

[−2ζ ] ; (3.232)

r̃(1) ∼
1
D

[
(9π− 32)

2
ζ 2
+ 3i
√

πζ

]
. (3.233)

It is possible to express r̃(1) through the combination of q(1) and T (1) and the result
is

R4,3(ζ ) : r̃(1) =−i
2
√

π

(3π− 8)
vthsign(k‖)q(1) +

(32− 9π)

2(3π− 8)
v2

thn0T (1), (3.234)

which is equivalent to the closure (3.56), that was obtained for small ζ with the
precision o(ζ 2). The heat flux has a correct asymptotic behaviour q(1) ∼ ζ−3 (even
though with incorrect proportionality constant), and the quantity r̃(1) ∼ ζ−2 instead of
the correct ∼ ζ−4. The closure was first reported by Hammett & Perkins (1990), and
is equivalent to the (non-numbered) expression between their equations (10) and (11).

Continuing with R4,4(ζ ) approximant, the kinetic moments are (let us stop writing
down n(1) from now on since we know we can get it from u(1))

R4,4(ζ ) : D =
(

1− i
3
√

π

2
ζ − 4ζ 2

+ i
√

πζ 3
+

4
3
ζ 4

)
; (3.235)

u(1) ∼
1
D

[
−

2
3
ζ 3
−

i
2
√

πζ 2
+ ζ

]
; (3.236)

T (1) ∼
1
D

[
−

4
3
ζ 2
− i
√

πζ

]
; (3.237)

q(1) ∼
1
D

[−2ζ ] ; (3.238)

r̃(1) ∼
1
D

[
3i
√

πζ
]
. (3.239)

It is possible to express r̃(1) through q(1) and the closure is

R4,4(ζ ) : r̃(1) =−i 3
4

√
πvthsign(k‖)q(1). (3.240)
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The result is equivalent to the (3.52) closure, that was obtained for small ζ with
precision o(ζ ). This very simple closure has only precision o(ζ ), however, it does
have the correct asymptotic behaviour of the heat flux q(1) ∼ −3/(2ζ 3) (including
the proportionality constant), and r̃(1) ∼ ζ−3 that is closer to the correct ζ−4 than the
previous closure.

3.7. Table of moments (u‖, T‖, q‖, r̃‖‖) for various Padé approximants
To clearly see possibilities of a closure, it is useful to create the following
summarizing table, that is self-explanatory after reading the previous section, i.e.
all the proportionality constants (including the minus signs) are suppressed. Even
though the table here is created for a 1-D geometry, we will see that exactly the
same table is constructed for a 3-D geometry, where all the quantities are given a
‘parallel’ sub-index, i.e. u(1)→ u(1)‖ , T (1)→ T (1)‖ , q(1)→ q(1)‖ and r̃(1)→ r̃(1)‖‖ . The table
is therefore useful to spot all the possible closures that can be constructed in a 1-D
geometry for quantities q(1), r̃(1), as well as in a 3-D geometry for quantities q(1)‖ and
r(1)‖‖ . The approximants R2,1,R4,5,R6,9 and R8,13 are marked with an asterisk ‘*’. These
approximants are not well behaved (because the Landau residue is not accounted for)
and are provided only for completeness, these approximants should be disregarded.

One-pole and two-pole approximants
R1 R2,0 R∗2,1

u(1) ζ ζ ζ

T(1) ζ 2, ζ ζ 0
q(1) ζ 3, ζ 2, ζ ζ 2, ζ ζ

r̃(1) ζ 4
· · · ζ ζ 3, ζ 2, ζ ζ 2

Three-pole approximants
R3,0 R3,1 R3,2

u(1) ζ 2, ζ ζ 2, ζ ζ 2, ζ

T(1) ζ 2, ζ ζ ζ

q(1) ζ 3, ζ 2, ζ ζ 2, ζ ζ

r̃(1) ζ 4
· · · ζ ζ 3, ζ 2, ζ ζ 2, ζ

Four-pole approximants
R4,0 R4,1 R4,2 R4,3 R4,4 R∗4,5

u(1) ζ 3, ζ 2, ζ ζ 3, ζ 2, ζ ζ 3, ζ 2, ζ ζ 3, ζ 2, ζ ζ 3, ζ 2, ζ ζ 3, ζ

T(1) ζ 3, ζ 2, ζ ζ 2, ζ ζ 2, ζ ζ 2, ζ ζ 2, ζ ζ 2

q(1) ζ 4
· · · ζ ζ 3, ζ 2, ζ ζ 2, ζ ζ ζ ζ

r̃(1) ζ 5
· · · ζ ζ 4

· · · ζ ζ 3, ζ 2, ζ ζ 2, ζ ζ 0
Five-pole approximants

R5,0 R5,1 R5,2 R5,3 R5,4 R5,5 R5,6
u(1) ζ 4

· · · ζ ζ 4
· · · ζ ζ 4

· · · ζ ζ 4
· · · ζ ζ 4

· · · ζ ζ 4
· · · ζ ζ 4

· · · ζ

T(1) ζ 4
· · · ζ ζ 3, ζ 2, ζ ζ 3, ζ 2, ζ ζ 3, ζ 2, ζ ζ 3, ζ 2, ζ ζ 3, ζ 2, ζ ζ 3, ζ 2, ζ

q(1) ζ 5
· · · ζ ζ 4

· · · ζ ζ 3, ζ 2, ζ ζ 2, ζ ζ 2, ζ ζ 2, ζ ζ 2, ζ

r̃(1) ζ 6
· · · ζ ζ 5

· · · ζ ζ 4
· · · ζ ζ 3, ζ 2, ζ ζ 2, ζ ζ ζ

Six-pole approximants
R6,0 R6,1 R6,2 R6,3 R6,4 R6,5 R6,6 R6,7 R6,8 R∗6,9

u(1) ζ 5
· · · ζ ζ 5

· · · ζ ζ 5
· · · ζ ζ 5

· · · ζ ζ 5
· · · ζ ζ 5

· · · ζ ζ 5
· · · ζ ζ 5

· · · ζ ζ 5
· · · ζ ζ 5, ζ 3, ζ

T (1) ζ 5
· · · ζ ζ 4

· · · ζ ζ 4
· · · ζ ζ 4

· · · ζ ζ 4
· · · ζ ζ 4

· · · ζ ζ 4
· · · ζ ζ 4

· · · ζ ζ 4
· · · ζ ζ 4, ζ 2

q(1) ζ 6
· · · ζ ζ 5

· · · ζ ζ 4
· · · ζ ζ 3

· · · ζ ζ 3
· · · ζ ζ 3

· · · ζ ζ 3
· · · ζ ζ 3

· · · ζ ζ 3
· · · ζ ζ 3, ζ

r̃(1) ζ 7
· · · ζ ζ 6

· · · ζ ζ 5
· · · ζ ζ 4

· · · ζ ζ 3
· · · ζ ζ 2, ζ ζ 2, ζ ζ 2, ζ ζ 2, ζ ζ 2
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It is obvious by now that any higher-order Padé approximants will not help to
achieve a closure. Or is it? One might still hope for ‘a miracle’ thinking that perhaps
the seven-pole and eight-pole approximants with the maximum possible number
of poles devoted to the asymptotic series – R7,10 and R8,12 – might yield a closure.
However, this is unfortunately not the case, and the table for seven-pole and eight-pole
approximants reads

R7,0 R7,1 · · · R7,10 R8,0 R8,1 · · · R8,12 R∗8,13

u(1) ζ 6
· · · ζ ζ 6

· · · ζ · · · ζ 6
· · · ζ ζ 7

· · · ζ ζ 7
· · · ζ · · · ζ 7

· · · ζ ζ 7, ζ 5, ζ 3, ζ

T (1) ζ 6
· · · ζ ζ 5

· · · ζ · · · ζ 5
· · · ζ ζ 7

· · · ζ ζ 6
· · · ζ · · · ζ 6

· · · ζ ζ 6, ζ 4, ζ 2

q(1) ζ 7
· · · ζ ζ 6

· · · ζ · · · ζ 4
· · · ζ ζ 8

· · · ζ ζ 7
· · · ζ · · · ζ 5

· · · ζ ζ 5, ζ 3, ζ

r̃(1) ζ 8
· · · ζ ζ 7

· · · ζ · · · ζ 3
· · · ζ ζ 9

· · · ζ ζ 8
· · · ζ · · · ζ 4

· · · ζ ζ 4, ζ 2

By observing the entire table, there are 7 possible quasi-static closures (that were
already addressed),

R3,1 : q(1) X
= αuu(1) + αTT (1);

R3,2 : q(1) X
= αTT (1); ((((

((((
((

r̃(1) !
= αuu(1) + αqq(1) ; ((((

((((
((

r̃(1) x
= αuu(1) + αTT (1) ;

R4,2 : r̃(1) X
= αuu(1) + αTT (1) + αqq(1);

R4,3 : r̃(1) X
= αTT (1) + αqq(1);

R4,4 : r̃(1) X
= αqq(1). (3.241)

There are also 13 time-dependent closures (that are addressed in the next section),

R3,2 : ζq(1) + αqq(1) X
= αuu(1); (((

((((
(

ζq(1) x
= αuu(1) + αT T (1) ;

R4,2 : ζq(1) + αqq(1) X
= αuu(1) + αT T (1);

R4,3 : ζq(1) + αqq(1) X
= αT T (1); ((((

(((
(((

ζ r̃(1) + αr r̃(1)
!
= αuu(1) + αqq(1) ;

((((
(((

((((
ζ r̃(1) x
= αuu(1) + αT T (1) + αqq(1) ;

R4,4 : ζq(1) + αqq(1) X
= αT T (1); ζ r̃(1) + αr r̃(1)

X
= αT T (1); ((((

((((ζ r̃(1) x
= αT T (1) + αqq(1) ;

R5,3 : ζ r̃(1) + αr r̃(1)
X
= αuu(1) + αT T (1) + αqq(1);

R5,4 : ζ r̃(1) + αr r̃(1)
X
= αT T (1) + αqq(1);

R5,5 : ζ r̃(1) + αr r̃(1)
X
= αqq(1);

R5,6 : ζ r̃(1) + αr r̃(1)
X
= αqq(1). (3.242)

New closures should be always checked. Later on, we will consider propagation of
the ion-acoustic mode, satisfying kinetic dispersion relation (3.366). We believe that a
good ‘reliable’ closure of a fluid model obtained with the Rn,n′(ζ ) approximant, should
yield a fluid dispersion relation that is equivalent to (3.366), after R(ζ ) is replaced
with Rn,n′(ζ ) (equivalent to the numerator of (3.366) once both terms are written with
the common denominator). Closures that satisfy this requirement are marked with ‘X’
in the above table. Closures that do not satisfy this requirement were eliminated, and
can be further split to two categories. Both eliminated categories actually appear to
describe the ion-acoustic mode with the same accuracy as a corresponding ‘reliable’
closure satisfying (3.366), however, the difference is in the higher-order modes. The
first category of eliminated closures, marked with ‘x’, produces higher-order modes
with positive growth rate, and these closures cannot be used for numerical simulations.
The second category, marked with ‘!’, produces higher-order modes that are damped,
and these closures can still be useful. However, there is no guarantee that these
closures will behave well in different circumstances (for example when used in a 3-D
geometry) and these closures were therefore eliminated.
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3.8. Going back from Fourier space to real space – the Hilbert transform
The quasi-static Landau fluid closures explored in the previous section were
constructed in Fourier space. For direct numerical simulations that can use Fourier
transforms (that are usually restricted to periodic boundaries), or for solving dispersion
relations ω(k), this is the easiest and natural way how to implement these closures.
Nevertheless, it is very beneficial to see how these advanced fluid closures translate
to real space.

Provided all equations are linear (and homogeneous), transformation between real
and Fourier space is usually very easy and so far we just needed

∂

∂t
→−iω; ∇→ ik; f (x, t)→ f̂ (k, ω), (3.243)

where we did not even bother to write the hat symbol on the quantities in Fourier
space, since it was obvious and not necessary.

With equations encountered in simple fluid models, transformation back to real
space is easy and one can usually just flip the direction of the arrow in relations
(3.243). However, the constructed Landau fluid closures contain an unusual operator
isign(k‖) = ik‖/|k‖|. How does this operator transforms to real space? Considering
spatial 1-D transformation between coordinates z ↔ k‖, a general function Fourier
transforms according to

f (z)=
1

2π

∫
∞

−∞

f̂ (k‖)eik‖z dk‖ ≡F−1 f̂ (k‖); (3.244)

f̂ (k‖)=
∫
∞

−∞

f (z)e−ik‖z dz≡F f (z), (3.245)

where the first equation is the inverse/backward Fourier transform and the second
equation is the forward Fourier transform. As usual, we often do not bother to write
the hat symbols on quantities in Fourier space. The location of the normalization
factor 1/(2π) is an ad hoc choice, but one has to be consistent, especially when
calculating convolutions. As a first step, we need to calculate F−1 of a function
sign(k‖). However, if such an integral is calculated directly, one will find out that the
result is not clearly defined.

It is beneficial to use a small trick, where instead of a function sign(k‖), one
considers the function sign(k‖)e−α|k‖|, where α is some small positive constant α > 0.
And after the calculation, one performs the limit α→ 0. The considered function is

sign(k‖)e−α|k‖| =

{
−e+αk‖; k‖ < 0;
+e−αk‖; k‖ > 0,

(3.246)

and the integral calculates as∫
∞

−∞

sign(k‖)e−α|k‖|eik‖z dk‖ =
∫ 0

−∞

(−1)e+αk‖eik‖z dk‖ +
∫
∞

0
(+1)e−αk‖eik‖z dk‖

= −

∫ 0

−∞

e(+α+iz)k‖ dk‖ +
∫
∞

0
e(−α+iz)k‖ dk‖

= −
1

(α + iz)
e(+α+iz)k‖

∣∣∣∣0
k‖=−∞

+
1

(−α + iz)
e(−α+iz)k‖

∣∣∣∣∞
k‖=0
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= −
1

(α + iz)
−

1
(−α + iz)

=
−(α − iz)+ (α + iz)
(α + iz)(α − iz)

=
2iz

α2 + z2
, (3.247)

further yielding

F−1
[
i sign(k‖)e−α|k‖|

]
=

1
2π

∫
∞

−∞

i sign(k‖)e−α|k‖|eik‖z dk‖ =−
z

π(α2 + z2)
. (3.248)

By taking the limit α→ 0,

F−1
[
i sign(k‖)

]
=

1
2π

∫
∞

−∞

i sign(k‖)eik‖z dk‖ =−
1
πz
. (3.249)

In Landau fluid closures, the operator isign(k‖) acts on a variable f̂ (k‖), and to
transform this to real space, we need to use a convolution theorem for Fourier
transforms. To make sure that we get the normalization factors right, let us calculate
it in detail. The convolution between two real functions is defined as

f (z) ∗ g(z)≡
∫
∞

−∞

f (z− z′)g(z′) dz′. (3.250)

For brevity, let us temporarily suppress the parallel subscript on k‖ and use only k.
By decomposing the function f (z− z′) to waves (using the inverse Fourier transform),
f (z− z′)= (1/2π)

∫
∞

−∞
f̂ (k‖)eik(z−z′) dk, splitting the eik(z−z′)

= eikze−ikz′ and changing the
order of integrals∫

∞

−∞

f (z− z′)g(z′) dz′ =
∫
∞

−∞

[
1

2π

∫
∞

−∞

f̂ (k)eik(z−z′) dk
]

g(z′) dz′

=
1

2π

∫
∞

−∞

[ ∫ ∞
−∞

g(z′)e−ikz′ dz′︸ ︷︷ ︸
=ĝ(k)

]
f̂ (k)eikz dk

=
1

2π

∫
∞

−∞

f̂ (k)ĝ(k)eikz dk=F−1
[f̂ (k)ĝ(k)]. (3.251)

For normalizations (3.244), (3.245), the required convolution theorem therefore reads

F−1
[f̂ (k‖)ĝ(k‖)] = [F−1 f̂ (k‖)] ∗ [F−1ĝ(k‖)] = f (z) ∗ g(z), (3.252)

and of course, f (z) ∗ g(z) = g(z) ∗ f (z). Now it is straightforward to calculate how
isign(k‖)f̂ (k‖) transforms to real space

F−1
[isign(k‖)f̂ (k‖)] = [F−1isign(k‖)] ∗ [F−1 f̂ (k‖)] =−

1
πz
∗ f (z). (3.253)

The convolution of 1/πz with a function f (z) is a famous transformation, called the
Hilbert transform. According to the definition (3.250), the convolution (1/z) ∗ f (z)
should be defined as

∫
∞

−∞
f (z′)/(z− z′) dz′. However, because of the singularity

1/(z− z′), such an integral will likely not exist, and the convolution integral is
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defined with a principal value. The definition of the Hilbert transform ‘H’ that is
acting on a function f (z) reads

Hf (z)≡
1
πz
∗ f (z)≡

1
π

V.P.
∫
∞

−∞

f (z′)
z− z′

dz′. (3.254)

The use of the Hilbert transform allows a very elegant notation for how the
isign(k‖)f̂ (k‖) transforms to real space, it is

F−1
[isign(k‖)f̂ (k‖)] =−

1
πz
∗ f (z)=−Hf (z). (3.255)

Performing a lot of calculations, we like shortcuts, and the quantity isign(k‖) can
be viewed as an operator, that is acting on many possible f̂ (k‖) variables, such as
the velocity u(1), the heat flux q(1), etc. (see the Landau fluid closures). Therefore,
in addition to the usual shortcuts (3.243), we can write an elegant shortcut for the
operator isign(k‖), that is very useful for advanced fluid models when transforming
from Fourier to real space, and that reads

isign(k‖)→−H. (3.256)

Thus, the operator isign(k‖) in Fourier space, is the negative Hilbert transform operator
in real space. Curiously, does the Hilbert transform integral

∫
∞

−∞
f (z′)/(z− z′) dz′

remind us of something? What about if we prescribe the quantity f (z′) to be a
Maxwellian f (z′) = e−z′2? Oh yes, this is the dreadful Landau integral! This is how
the plasma dispersion function was essentially defined. This is indeed the reason, why
the paper by Fried & Conte (1961), that is well known for tabulating the properties
of the plasma dispersion function, has a full title: ‘The Plasma Dispersion Function.
The Hilbert Transform of the Gaussian’.

Now we are ready to reformulate the Landau fluid closures in real space. Purely
for convenience, often in modern Landau fluid papers another operator H is defined
that is equivalent to the negative Hilbert transform, and that absorbs the minus sign,
i.e.

H=−H. (3.257)

This ‘H’ operator is therefore defined as

Hf (z)≡−
1
πz
∗ f (z) ≡ −

1
π

V.P.
∫
∞

−∞

f (z′)
z− z′

dz′ =
1
π

V.P.
∫
∞

−∞

f (z′)
z′ − z

dz′

= −
1
π

V.P.
∫
∞

−∞

f (z− z′)
z′

dz′, (3.258)

and allows us to write

F−1
[isign(k‖)f̂ (k‖)] =Hf (z), (3.259)

or in the operator shortcut
isign(k‖)→H. (3.260)

This new definition is of course not necessary. However, it is often used in Landau
fluid papers, and there is indeed some logic behind it. First of all, we do not have
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to remember another minus sign, and we will make less typos, perhaps. Second, the
definition is consistent with another ‘spatial’ operator Fourier shortcut ik‖→ ∂z. Third,
the Landau integral and the plasma dispersion function were defined with integrals∫

f (x)/(x− x0) dx, and not as
∫

f (x)/(x0 − x) dx, and the H operator therefore can feel
more natural than H. Whatever the choice, we now talked about it in detail, and all
possible confusion between H and H should be clarified. We will use the H operator
henceforth.

3.9. Quasi-static closures in real space
With our new shortcut (3.260) as discussed above, the transformation of closures from
Fourier space to real space is very easy. For example, the heat flux closure obtained
for R3,2(ζ ) that in Fourier space reads q(1)=−i(2/

√
π)n0vthsign(k‖)T (1), is transferred

to real space as

R3,2(ζ ) : q(1)(z)=−
2
√

π
n0vthHT (1)(z). (3.261)

Again, the H operator shows its slight advantage over H operator, because it is
easy to remember that for the usual collisional heat flux q ∼ −∂zT , whereas for the
collisionless heat flux q∼−HT .

Let us rewrite the Hilbert transform a bit further, so that we can clearly see what
this distinction means physically. Rewriting the principal value

Hf (z)=−
1
π

V.P.
∫
∞

−∞

f (z− z′)
z′

dz′ =−
1
π

lim
ε→+0

[∫
−ε

−∞

+

∫
∞

ε

]
f (z− z′)

z′
dz′, (3.262)

using the substitution z′ =−y in the first integral (so that dz′ =−dy and −∞→∞,
−ε→ ε),

Hf (z)=−
1
π

lim
ε→+0

[∫ ε

∞

f (z+ y)
−y

(−dy)+
∫
∞

ε

f (z− z′)
z′

dz′
]
, (3.263)

and renaming back y→ z′, the H operator reads

Hf (z) = −
1
π

lim
ε→+0

∫
∞

ε

[
−

f (z+ z′)
z′

dz′ +
f (z− z′)

z′
dz′
]

=
1
π

lim
ε→+0

∫
∞

ε

f (z+ z′)− f (z− z′)
z′

dz′. (3.264)

Instead of remembering the limit, it is more elegant to write the final result as
V.P.

∫
∞

0 . In the simplest closure (3.261), the collisionless heat flux is therefore
expressed with respect to the temperature as

R3,2(ζ ) : q(1)(z)=−
2

π3/2
n0vthV.P.

∫
∞

0

T (1)(z+ z′)− T (1)(z− z′)
z′

dz′, (3.265)

which is equivalent to the equation (8) of Hammett & Perkins (1990). Writing
the Hilbert transform and the collisionless heat flux in this form is very useful,
because it reveals what the Hilbert transform of the temperature means physically.
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The equation says that to obtain the heat flux in real space, one has to calculate
integrals – and sum the differences between temperatures according to (3.265) –
along the entire considered coordinate z. Here, we calculated the expressions in the
linear setting/approximation, and in reality, the integrals (3.265) should be performed
along the magnetic field lines.

What is perhaps most non-intuitive and most surprising about the expression (3.265),
is that the expression is telling us that the entire temperature profile along a magnetic
field line is important, since it will be encountered in the integral (3.265). Therefore,
the collisionless heat flux q(z) at some spatial point z, depends on the temperature
difference between that point, and the temperature along the entire magnetic field line.
This effect is summarized with an appropriate word of non-locality of the collisionless
heat flux, since it is in strong contrast with the usual collisional heat flux, that depends
only at the local gradient of the temperature at that point. For time-evolving systems,
this effect is also directly associated with the ‘isotropization’ of temperature along
the magnetic field lines. Physically, the effect of non-locality in collisionless plasma
is caused by particles that can freely stream along the magnetic field lines. Locality
in collisional transport is caused by collisions, which introduces a mean free path.

To rewrite the other quasi-static closures that were explored in the previous section
to the real space is trivial, and for example the quasi-static closure (3.234) of Hammett
& Perkins (1990) obtained with R4,3(ζ ) reads

R4,3(ζ ) : r̃(1)(z)=−
2
√

π

(3π− 8)
vthHq(1)(z)+

(32− 9π)

2(3π− 8)
v2

thn0T (1)(z). (3.266)

The closure (3.227) obtained with four-pole approximant R4,2(ζ ) is rewritten to real
space as

R4,2(ζ ) : r̃(1)(z)=−
√

π(10− 3π)

(16− 5π)
vthHq(1)(z)+

(21π− 64)
2(16− 5π)

v2
thn0T (1)(z)+

√
π(9π− 28)
(16− 5π)

vthT (0)n0Hu(1)(z),

(3.267)

the closure (3.240) obtained with R4,4(ζ ) is rewritten as

R4,4(ζ ) : r̃(1)(z)=− 3
4

√
πvthHq(1)(z), (3.268)

and the closure (3.211) obtained with R3,1(ζ ) reads

R3,1(ζ ) : q(1) =
(3π− 8)
(4−π)

n0T (0)u(1) −
√

π

(4−π)
n0vthHT (1). (3.269)

The closures (3.219), (3.220) obtained with R3,2(ζ ) read

R3,2(ζ ) : r̃(1) = −
4
√

π
vthn0T (0)Hu(1) −

(3π+ 8)
4
√

π
vthHq(1); (3.270)

R3,2(ζ ) : r̃(1) = −
4
√

π
vthn0T (0)Hu(1) −

(3π+ 8)
2π

v2
thn0T (1), (3.271)

however, these closures are not ‘reliable’ and will be eliminated, see the discussion
below equations (3.242), (3.382) and (3.399). To summarize, we obtained altogether 7
quasi-static closures. Additionally, one closure was disregarded since it was obtained
with approximant R2,1(ζ ) that is not a well-behaved approximant.
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3.10. Time-dependent (dynamic) closures
In addition to the ‘quasi-static’ closures explored above (sometimes called simply
‘static’), it is possible to construct a different class of closures that we can call
‘time-dependent’ closures, or ‘dynamic’ closures. For example, for the approximant
R4,3(ζ ), the temperature T (1) and the heat flux q(1) read

R4,3(ζ ) : T (1) = −qr
Φ

D

[
8− 3π

2
ζ 2
− i
√

πζ

]
; (3.272)

q(1) = −qr
Φ

D
n0vthsign(k‖) [−2ζ ] , (3.273)

where D is the denominator of R4,3(ζ ) defined in (3.228). Calculating the ratio

T (1)

q(1)
=

1
n0vthsign(k‖)

[
3π− 8

4
ζ +

i
√

π

2

]
, (3.274)

using the definition ζ = ω/|k‖|vth and multiplying by |k‖|vth and n0vthsign(k‖), allows
us to formulate a closure

R4,3(ζ ) :

[
3π− 8

4
ω+ i

√
π

2
vth|k‖|

]
q(1) = n0v

2
thk‖T (1), (3.275)

that is further rewritten as

R4,3(ζ ) :

[
−iω+

2
√

π

(3π− 8)
vth|k‖|

]
q(1) =−

4n0v
2
th

(3π− 8)
ik‖T (1). (3.276)

To go back to real space, we need a recipe for the inverse Fourier transform of
operator |k‖|, that acts on a general quantity f̂ (k‖). The transform calculates easily by
using |k‖| =−(ik‖)isign(k‖) and writing

F−1
[
|k‖|f̂ (k‖)

]
=

1
2π

∫
∞

−∞

(−1)(ik‖)isign(k‖)f̂ (k‖)eik‖z dk‖

= −
∂

∂z
1

2π

∫
∞

−∞

isign(k‖)f̂ (k‖)eik‖z dk‖

= −
∂

∂z
F−1

[
isign(k‖)f̂ (k‖)

]
=−

∂

∂z
Hf (z), (3.277)

that allows us to write a useful shortcut

|k‖|→−
∂

∂z
H. (3.278)

The closure (3.276) therefore transforms to real space as[
∂

∂t
−

2
√

π

(3π− 8)
vth
∂

∂z
H
]

q(1)(z)=−
4n0v

2
th

(3π− 8)
∂

∂z
T (1)(z), (3.279)
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and represents the time-dependent evolution equation for the heat flux. The last step in
these types of Landau fluid closures is to recover Galilean invariance, that is achieved
by substituting ∂/∂t with the convective derivative d/dt, and the final closure reads

R4,3(ζ ) :

[
d
dt
−

2
√

π

(3π− 8)
vth
∂

∂z
H
]

q(1)(z)=−
4n0v

2
th

(3π− 8)
∂

∂z
T (1)(z). (3.280)

To easily compare this expression with the existing literature, a small rearrangement
yields  d

dt
+

√
π

4
(

1−
3π

8

)vth
∂

∂z
H

 q(1)(z)=
n0v

2
th

2
(

1−
3π

8

) ∂

∂z
T (1)(z). (3.281)

The expression is equal for example to equation (57) in Passot & Sulem (2003) for
the parallel heat flux q‖ (where in that paper vth=

√
T (0)/m is used, whereas ours here

is vth =
√

2T (0)/m).
The time-dependent closure (3.280) was obtained with the approximant R4,3(ζ ).

Interestingly, if the derivative d/dt is neglected, the closure is equivalent to the
quasi-static closure (3.261) obtained with R3,2(ζ ) (which can be easily seen in Fourier
space, or by using HH=−1). Also, it is useful to compare the time-dependent (3.280)
with the quasi-static closure (3.266), that was obtained for the same approximant
R4,3(ζ ). To compare these closures, we need to use a time-dependent heat flux
equation where the closure for r̃ will be applied. In Part 1 of this guide, we derived
nonlinear ‘fluid’ equation for the parallel heat flux q‖ (see Part 1, section ‘Collisionless
damping in fluid models – Landau fluid models’). Quickly rewriting it in the 1-D
parallel geometry that we use here yields (dropping the parallel subscript)

∂q
∂t
+ ∂z(qu)+ ∂zr̃+ 3p∂z

(
p
ρ

)
+ 3q∂zu= 0, (3.282)

where for brevity ∂/∂z = ∂z. The equation can be of course obtained by direct
integration of the 1-D Vlasov equation ∂f /∂t + v∂zf + (qr/mr)E∂f /∂v = 0, as done
by Hammett & Perkins (1990), and prescribing a Maxwellian by r= 3p2/ρ + r̃. The
equation is nonlinear and to compare closures that were done at the linear level,
we need to linearize the heat flux equation. This eliminates the second and the last
term, the fourth term is linearized as 3(p0/m)∂zT (1), and since p0/m = n0v

2
th/2, the

linearized equation reads

∂q(1)

∂t
+ ∂zr̃(1) +

3
2

n0v
2
th∂zT (1) = 0. (3.283)

This is just a 1-D linear heat flux equation, where no closure was imposed yet. The
quantities q(1), r̃(1),T (1) were not calculated from kinetic theory by using approximants
to R(ζ ), etc. The equation was obtained by a general ‘fluid approach’, that we
heavily used before we started to consider kinetic calculations (perturbations around
a Maxwellian are assumed here because of the prescribed r). The equation (3.283)
greatly clarifies relations between the quasi-static and time-dependent Landau fluid
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closures. For example, by using the quasi-static closure (3.266) in the heat flux
equation (3.283), the time-dependent closure (3.279) is immediately recovered.

Often, time-dependent closures cannot be straightforwardly constructed by a simple
division of two moments, as done above. It is useful to learn a new technique that
will allow us to see and construct possible closures in a quicker way. Let us explore
the closure (3.276). It is apparent that whenever we attempt to use ∂/∂t of some
moment (in this case ∂q(1)/∂t), it is logical to also use the same moment without the
time derivative (q(1)) in the construction of the considered closure, i.e. in this case we
search for a closure

R4,3(ζ ) :
(
ζ + αq

)
q(1) = αTT (1), (3.284)

where αq, αT need to be determined. By using expressions for q(1), T (1), the above
closure is separated to 2 equations for ζ and ζ 2 that must be satisfied independently
if the closure is valid for all ζ , and solving these 2 equations yields

αq = i
2
√

π

(3π− 8)
; αT =

4n0vth

(3π− 8)
sign(k‖). (3.285)

The closure therefore reads

R4,3(ζ ) :

[
ζ + i

2
√

π

(3π− 8)

]
q(1) =

4n0vth

(3π− 8)
sign(k‖)T (1), (3.286)

and is of course equivalent to (3.276).
We are now ready to construct all other possible time-dependent closures. Still

considering the R4,3(ζ ) approximant, another possible closure is

R4,3(ζ ) : (ζ + αr )̃r(1) = αuu(1) + αqq(1), (3.287)

which when separated into 3 equations for ζ , ζ 2 and ζ 3 that must each be satisfied
yields

αr =
i16
√

π

(32− 9π)(3π− 8)
; αu =

(32− 9π)

(3π− 8)
vthn0T (0)sign(k‖);

αq =
(81π2

− 552π+ 1024)
2(32− 9π)(3π− 8)

vthsign(k‖), (3.288)

the closure reads

R4,3(ζ ) :

[
−iω+

16
√

π

(32− 9π)(3π− 8)
vth|k‖|

]
r̃(1) = −

(32− 9π)

(3π− 8)
v2

thn0T (0)ik‖u(1) −
(81π2

− 552π+ 1024)
2(32− 9π)(3π− 8)

v2
thik‖q(1);[

d
dt
−

16
√

π

(32− 9π)(3π− 8)
vth∂zH

]
r̃(1) = −

(32− 9π)

(3π− 8)
v2

thn0T (0)∂zu(1) −
(81π2

− 552π+ 1024)
2(32− 9π)(3π− 8)

v2
th∂zq(1),

(3.289)

and this closure will be eliminated.
Another closure with R4,3(ζ ) can be constructed as

R4,3(ζ ) : ζ r̃(1) = αuu(1) + αTT (1) + αqq(1); (3.290)

αu =
(32− 9π)

(3π− 8)
vthn0T (0)sign(k‖); αT =−i

8
√

π

(3π− 8)2
v2

thn0;
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αq = −
(27π2

− 160π+ 256)
2(3π− 8)2

vthsign(k‖),

so the closure reads

R4,3(ζ ) : −iωr̃(1) = −
(32− 9π)

(3π− 8)
v2

thn0T(0)ik‖u
(1)
−

8
√

π

(3π− 8)2
v3

thn0|k‖|T
(1)
+
(27π2

− 160π+ 256)
2(3π− 8)2

v2
thik‖q

(1)
;

d
dt

r̃(1) = −
(32− 9π)

(3π− 8)
v2

thn0T(0)∂zu(1) +
8
√

π

(3π− 8)2
v3

thn0∂zHT(1) +
(27π2

− 160π+ 256)
2(3π− 8)2

v2
th∂zq(1),

(3.291)

and this closure will be eliminated as well. The time-dependent closures (3.290) and
(3.287) are of course closely related, and one can go from one to another by using
the quasi-static closure (3.266) that expresses r̃(1) as a combination of T (1) and q(1).

Continuing with the R4,2(ζ ) approximant, it is possible to construct the following
closure

R4,2(ζ ) : (ζ + αq)q(1) = αTT (1) + αuu(1); (3.292)

αq = i
√

π
10− 3π

16− 5π
; αT = n0vthsign(k‖)

3π− 8
16− 5π

; αu = in0T (0)
√

π
9π− 28
16− 5π

,

that implies[
−iω+

√
π

10− 3π

16− 5π
vth|k‖|

]
q(1)=−n0v

2
th

3π− 8
16− 5π

ik‖T (1)+ n0T (0)vth
√

π
9π− 28
16− 5π

|k‖|u(1);

R4,2(ζ ) :

[
d
dt
−
√

π
10− 3π

16− 5π
vth∂zH

]
q(1) =−n0v

2
th

3π− 8
16− 5π

∂zT (1) − n0T (0)vth
√

π
9π− 28
16− 5π

∂zHu(1),

(3.293)

and the result is consistent with using the quasi-static closure (3.267) in the linearized
heat flux equation (3.283).

Continuing with R4,4(ζ ), it is possible to construct

R4,4(ζ ) : (ζ + αq)q(1) = αTT (1); (3.294)

αq = i
3
√

π

4
; αT =

3
2

n0vthsign(k‖),

and the closure reads [
−iω+

3
√

π

4
vth|k‖|

]
q(1) =−

3
2

n0v
2
thik‖T (1);

R4,4(ζ ) :

[
d
dt
−

3
√

π

4
vth∂zH

]
q(1) =−

3
2

n0v
2
th∂zT (1). (3.295)

The obtained closure is related to the quasi-static closure (3.268), since by using the
quasi-static closure (3.268) in the linear heat flux equation (3.283), the time-dependent
closure (3.295) is recovered.
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Another closure with R4,4(ζ ) is

R4,4(ζ ) : (ζ + αr )̃r(1) = αTT (1); (3.296)

αr = i
3
√

π

4
; αT =−i

9
√

π

8
v2

thn0;[
−iω+

3
√

π

4
vth|k‖|

]
r̃(1) =−

9
√

π

8
v3

thn0|k‖|T (1);

R4,4(ζ ) :

[
d
dt
−

3
√

π

4
vth∂zH

]
r̃(1) =+

9
√

π

8
v3

thn0∂zHT (1). (3.297)

And yet another closure with R4,4(ζ )

R4,4(ζ ) : ζ r̃(1) = αTT (1) + αqq(1); (3.298)

αT =−i
9
√

π

8
v2

thn0; αq =−
9π

16
vthsign(k‖);

−iωr̃(1) =−
9
√

π

8
v3

thn0|k‖|T (1) +
9π

16
v2

thik‖q(1);

d
dt

r̃(1) =
9
√

π

8
v3

thn0∂zHT (1) +
9π

16
v2

th∂zq(1). (3.299)

The closure (3.299) is related to the closure (3.297), because one can use the quasi-
static closure (3.268) to express r̃(1) through q(1), however, the closure (3.299) will be
eliminated.

The R4,5(ζ ) was eliminated because it is not a well-behaved approximant (see
discussion above), nevertheless, for completeness the following closure can be
constructed

R4,5(ζ ) : ζq(1) = αTT (1); αT =
3
2 n0vthsign(k‖); (3.300)

−iωq(1) =−
3
2

n0v
2
thik‖T (1);

d
dt

q(1) =−
3
2

n0v
2
th∂zT (1).

With R3,2(ζ ), the following time-dependent closure can be constructed

R3,2(ζ ) :
(
ζ + αq

)
q(1) = αuu(1); (3.301)

αq =
2i
√

π
; αu =−

4i
√

π
n0T (0);[

−iω+
2
√

π
vth|k‖|

]
q(1) =−

4
√

π
n0T (0)vth|k‖|u(1);

R3,2(ζ ) :

[
d
dt
−

2
√

π
vth∂zH

]
q(1) =+

4
√

π
n0T (0)vth∂zHu(1), (3.302)

and similarly, yet another one

R3,2(ζ ) : ζq(1) = αuu(1) + αTT (1); (3.303)

αu =−
4i
√

π
n0T (0); αT =−

4
π

n0vthsign(k‖);
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−iωq(1) =−
4
√

π
n0T (0)vth|k‖|u(1) +

4
π

n0v
2
thik‖T (1);

d
dt

q(1) =+
4
√

π
n0T (0)vth∂zHu(1) +

4
π

n0v
2
th∂zT (1), (3.304)

however, the last closure will be eliminated.

3.11. Time-dependent closures with five-pole approximants
Now we can use this technique to construct time-dependent closures with five-pole
approximants of R(ζ ). Starting with the R5,4(ζ ) approximant

R5,4(ζ )=
1+ a1ζ + a2ζ

2
+ a3ζ

3

1+ 3(a1 + a3)ζ + (3a2 − 2)ζ 2 + (3a3 − 2a1)ζ 3 − 2a2ζ 4 − 2a3ζ 5
, (3.305)

where the constants a1, a2, a3 are given in (A 8), the kinetic moments calculate as

R5,4(ζ ) : D =
(
1+ 3(a1 + a3)ζ + (3a2 − 2)ζ 2

+ (3a3 − 2a1)ζ
3
− 2a2ζ

4
− 2a3ζ

5
)
;

(3.306)

u(1) = −
qr

T (0)
Φvthsign(k‖)

1
D

[
a3ζ

4
+ a2ζ

3
+ a1ζ

2
+ ζ
]
; (3.307)

T (1) = −qrΦ
1
D

[
2a3ζ

3
+ 2a2ζ

2
+ (2a1 + 3a3)ζ

]
; (3.308)

q(1) = −qrn0Φvthsign(k‖)
1
D

[
3a3ζ

2
− 2ζ

]
; (3.309)

r̃(1) = −qr
n0

2
v2

thΦ
1
D

[
−(6a2 + 4)ζ 2

− (6a1 + 9a3)ζ
]
. (3.310)

It is possible to construct time-dependent closure for r̃(1), by searching for a solution

(ζ + αr )̃r(1) = αTT (1) + αqq(1). (3.311)

Separating the equation to 3 equations for ζ , ζ 2, ζ 3, the solution is

αr =
a2

a3
; αT =−n0v

2
th

3a2 + 2
2a3

; αq =−vthsign(k‖)
2a1 + 3a3

2a3
, (3.312)

that evaluates as

αr = i
21π− 64
√

π(9π− 28)
; αT = in0v

2
th

256− 81π

2(9π− 28)
√

π
; αq = vthsign(k‖)

32− 9π

2(9π− 28)
.

(3.313)
The R5,4(ζ ) closure therefore reads[
−iω+

21π− 64
√

π(9π− 28)
vth|k‖|

]
r̃(1)= n0v

3
th

256− 81π

2(9π− 28)
√

π
|k‖|T (1)− v2

th
32− 9π

2(9π− 28)
ik‖q(1),

(3.314)
and transformation to real space yields

R5,4(ζ ) :

[
d
dt
−

21π− 64
√

π(9π− 28)
vth∂zH

]
r̃(1) =−n0v

3
th

256− 81π

2(9π− 28)
√

π
∂zHT (1) − v2

th
32− 9π

2(9π− 28)
∂zq(1).

(3.315)
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The closure is interesting, since the R5,4(ζ ) is a very precise o(ζ 3), o(1/ζ 6)

approximant, and it is therefore only one of two closures that have precision o(ζ 3).
For large ζ , the moments have correct asymptotic behaviour up to the heat flux
q(1) ∼−3/(2ζ 3) (including the proportionality constant) and the r̃(1) ∼ 1/ζ 3, which is
not bad either. Additionally, the closure does not contain u(1), which is advantageous.

Constructing a closure with R5,5(ζ ) is done quickly, by using a2 = −2/3 in the
kinetic moments for R5,4(ζ ), so

R5,5(ζ ) : D =
(
1+ 3(a1 + a3)ζ − 4ζ 2

+ (3a3 − 2a1)ζ
3
+

4
3ζ

4
− 2a3ζ

5
)
;

(3.316)

q(1) = −qrn0Φvthsign(k‖)
1
D

[
i
(32− 9π)

3
√

π
ζ 2
− 2ζ

]
; (3.317)

r̃(1) = −qr
n0

2
v2

thΦ
1
D
[3i
√

πζ ], (3.318)

where a1, a3 are given in (A 9). Searching for a closure (ζ + αr )̃r(1) = αqq(1) has a
solution [

ζ + i
6
√

π

(32− 9π)

]
r̃(1) =

9π

2(32− 9π)
vthsign(k‖)q(1); (3.319)[

−iω+
6
√

π

(32− 9π)
vth|k‖|

]
r̃(1) =−

9π

2(32− 9π)
v2

thik‖q(1),

and the closure in real space reads

R5,5(ζ ) :

[
d
dt
−

6
√

π

(32− 9π)
vth∂zH

]
r̃(1) =−

9π

2(32− 9π)
v2

th∂zq(1). (3.320)

The R5,5(ζ ) approximant has precision o(ζ 2), o(1/ζ 7). The increase of the asymptotic
precision reproduces the correct asymptote r̃(1)∼1/ζ 4, even though with proportionality
constant r̃(1) ∼−(27π/2(32− 9π)ζ 4)=−11.38/ζ 4 instead of the correct −6/ζ 4.

Continuing with the approximant R5,6(ζ ), the kinetic moments calculate as

R5,6(ζ ) : D =
(

1− i
√

π
15
8
ζ − 4ζ 2

+ i
√

π
5
2
ζ 3
+

4
3
ζ 4
− i
√

π

2
ζ 5

)
; (3.321)

q(1) = −qrn0Φvthsign(k‖)
1
D

[
3i
√

π

4
ζ 2
− 2ζ

]
; (3.322)

r̃(1) = −qr
n0

2
v2

thΦ
1
D

[
3i
√

πζ
]
, (3.323)

which yields a closure [
ζ + i

8
3
√

π

]
r̃(1) = 2vthsign(k‖)q(1); (3.324)[

−iω+
8

3
√

π
vth|k‖|

]
r̃(1) = −2v2

thik‖q(1),
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that in real space reads

R5,6(ζ ) :

[
d
dt
−

8
3
√

π
vth∂zH

]
r̃(1) =−2v2

th∂zq(1). (3.325)

The R5,6(ζ ) approximant has precision o(ζ ), o(1/ζ 8). Even though the precision for
small ζ is relatively low, the closure correctly reproduces the asymptotic behaviour
r̃(1) ∼−6/ζ 4 (including the proportionality constant).

Finally, it is indeed possible to construct a closure with precision o(ζ 4), by using
R5,3(ζ ). The approximant R5,3(ζ ) is defined as

R5,3(ζ )=
1+ a1ζ + a2ζ

2
+ a3ζ

3

1+ b1ζ + (3a2 − 2)ζ 2 + (3a3 − 2a1)ζ 3 − 2a2ζ 4 − 2a3ζ 5
, (3.326)

where the constants a1,a2,a3,b1 are given in (A 7). Using this approximant, the kinetic
moments calculate as

R5,3(ζ ) : D =
(
1+ b1ζ + (3a2 − 2)ζ 2

+ (3a3 − 2a1)ζ
3
− 2a2ζ

4
− 2a3ζ

5
)
; (3.327)

u(1) = −
qr

T (0)
Φvthsign(k‖)

1
D

[
a3ζ

4
+ a2ζ

3
+ a1ζ

2
+ ζ
]
; (3.328)

T (1) = −qrΦ
1
D

[
2a3ζ

3
+ 2a2ζ

2
+ (b1 − a1)ζ

]
; (3.329)

q(1) = −qrn0Φvthsign(k‖)
1
D

[
(b1 − 3a1)ζ

2
− 2ζ

]
; (3.330)

r̃(1) = −qr
n0

2
v2

thΦ
1
D

[
(2b1 − 6a1 − 6a3)ζ

3
− (6a2 + 4)ζ 2

+ (3a1 − 3b1)ζ
]
.

(3.331)

It is possible to search for a closure

R5,3(ζ ) : (ζ + αr) r̃(1) = αuu(1) + αTT (1) + αqq(1), (3.332)

and the solution is

αr =
a2

a3
; αu =−vthn0T (0)

(3a1 + 3a3 − b1)

a3
sign(k‖);

αT = −n0v
2
th
(3a2 + 2)

2a3
; αq =−vth

(2a1 + 3a3)

2a3
sign(k‖). (3.333)

The correctness of the algebra can be quickly checked by prescribing b1 = 3a1 +

3a3, which immediately recovers the closure (3.311)–(3.312) that was obtained for
R5,4(ζ ) with only asymptotic expansion coefficients (and the power-series coefficients
unspecified), which yields αu = 0. The R5,3(ζ ) closure reads

R5,3(ζ ) :

[
−iω− i

a2

a3
vth|k‖|

]
r̃(1) = v2

thn0T (0)
(3a1 + 3a3 − b1)

a3
ik‖u(1)

+ in0v
3
th
(3a2 + 2)

2a3
|k‖|T (1) + v2

th
(2a1 + 3a3)

2a3
ik‖q(1).

(3.334)
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By using the calculated coefficients from (A 7),

a2

a3
= i

(104− 33π)
√

π

2(9π2 − 69π+ 128)
≡ iα̃r;

3a1 + 3a3 − b1

a3
=
(135π2

− 750π+ 1024)
2(9π2 − 69π+ 128)

≡ α̃u;

3a2 + 2
2a3

= i
3(160− 51π)

√
π

4(9π2 − 69π+ 128)
≡ iα̃T;

2a1 + 3a3

2a3
=
(54π2

− 333π+ 512)
2(9π2 − 69π+ 128)

≡ α̃q,

(3.335)

the closure in Fourier and real space then reads

R5,3(ζ ) :
[
−iω+ α̃rvth|k‖|

]
r̃(1) = v2

thn0T (0)α̃uik‖u(1) − n0v
3
thα̃T |k‖|T (1) + v2

thα̃qik‖q(1);
(3.336)[

d
dt
− α̃rvth∂zH

]
r̃(1) = v2

thn0T (0)α̃u∂zu(1) + n0v
3
thα̃T∂zHT (1) + v2

thα̃q∂zq(1),

(3.337)

where the perhaps complicated appearing proportionality constants (that come from
the Padé approximation) are just constants, that are numerically evaluated as

α̃r = 5.13185; α̃u = 1.78706; α̃T =−5.20074; α̃q =−10.53748. (3.338)

For numerical simulations, we of course recommend to re-calculate these constants
from the above analytic expressions, to fully match the numerical precision of the
considered simulation. For complete clarity, the fully expressed closure in real space
reads

R5,3(ζ ) :

[
d
dt
−

(104− 33π)
√

π

2(9π2 − 69π+ 128)
vth∂zH

]
r̃(1)

= v2
thn0T (0)

(135π2
− 750π+ 1024)

2(9π2 − 69π+ 128)
∂zu(1)

+ n0v
3
th

3(160− 51π)
√

π

4(9π2 − 69π+ 128)
∂zHT (1)

+ v2
th
(54π2

− 333π+ 512)
2(9π2 − 69π+ 128)

∂zq(1). (3.339)

This is the only closure with precision o(ζ 4), and the asymptotic precision is o(1/ζ 5).
To conclude, we have altogether obtained 13 time-dependent closures. Additionally,
we have also obtained 1 time-dependent closure for R4,5(ζ ) that was disregarded since
R4,5(ζ ) is not a well-behaved approximant.

3.12. Parallel ion-acoustic (sound) mode, cold electrons
After all the calculations, it is advisable to verify whether we obtained anything useful.
Let us consider only the proton species, make the electrons cold and neglect electron
inertia, so we have only a 1-fluid model. Let us continue to work in physical units
and later we will switch to normalized units. From Part 1 of this guide, the linearized
fluid equations (obtained by direct integration of the Vlasov equation for a general
distribution function f ) can be written in physical units as

−ω
n(1)

n0
+ k‖u(1)z = 0; (3.340)
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−ωu(1)z +
v2

th‖

2
k‖

p(1)‖
p(0)‖
= 0; (3.341)

−ω
p(1)‖
p(0)‖
+ 3k‖u(1)z + k‖

q(1)‖
p(0)‖
= 0; (3.342)

−ω
q(1)‖
p(0)‖
+

3
2
v2

th‖k‖

(
p(1)‖
p(0)‖
−

n(1)

n0

)
+ k‖

r̃(1)‖‖
p(0)‖
= 0, (3.343)

where the fluctuating parallel temperature T (1)‖ is linearized as

T (1)‖
T (0)‖
=

p(1)‖
p(0)‖
−

n(1)

n0
. (3.344)

The superscript (1) on quantities n(1), u(1)z , p(1)‖ , q(1)‖ (and T (1)‖ ) signifies that these are
just fluctuating quantities, the superscript does not mean here that these quantities are
obtained by integration over the kinetic f (1). This fluid model is accompanied by a
closure for r̃(1)‖‖ , and that one was obtained from linear kinetic theory by integrating
over the kinetic f (1). Let us choose the R4,3(ζ ) closure, equation (3.234)

r̃(1)‖‖
p(0)‖
=

32− 9π

2(3π− 8)
v2

th‖

(
p(1)‖
p(0)‖
−

n(1)

n0

)
−

2
√

π

3π− 8
vth‖isign(k‖)

q(1)‖
p(0)‖

. (3.345)

Now the model is closed, and calculating the determinant yields the following
dispersion relation

ω4
+

2i
√

π

3π− 8
k‖vth‖sign(k‖)ω3

−
(9π− 16)
2(3π− 8)

k2
‖
v2

th‖ω
2

−
3i
√

π

3π− 8
k3
‖
v3

th‖sign(k‖)ω+
2

3π− 8
k4
‖
v4

th‖ = 0. (3.346)

By examining the expression, an obvious substitution offers itself

ζ =
ω

sign(k‖)k‖vth‖
=

ω

|k‖|vth‖
, (3.347)

that transforms the polynomial to a completely dimensionless form

ζ 4
+

2i
√

π

3π− 8
ζ 3
−

9π− 16
2(3π− 8)

ζ 2
−

3i
√

π

3π− 8
ζ +

2
3π− 8

= 0. (3.348)

The ζ is obviously a very useful quantity, and one could rewrite the fluid equations
(3.340)–(3.343) directly with this quantity. The polynomial (3.348) can be solved
numerically, and the approximate solutions are (writing only 3 decimal digits)

ζ =±1.359− 0.534i; ζ =±0.392− 0.710i, (3.349)

yielding solutions in physical units

ω= |k‖|vth‖(±1.359− 0.534i); ω= |k‖|vth‖(±0.392− 0.710i). (3.350)
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The first solution is the ion-acoustic (sound) mode and the second solution is ‘a
higher-order mode’. Both solutions are highly damped, and the higher-order mode
has actually a higher damping rate than its real frequency. We can now also see
how important was to keep track of the sign(k‖), since the modes are damped for
both k‖ > 0 and k‖ < 0. If we had ignored the sign(k‖), we would obtain that, for
k‖ < 0, the sound mode has a positive growth rate and is unstable, which would be
unphysical.

Of course, each closure will yield a different dispersion relation. Exploring the
simplest closure with quasi-static heat flux q(1)‖ obtained with R3,2(ζ ), equations
(3.340)–(3.342) are closed by

q(1)‖
p(0)‖
=−

2
√

π
vth‖isign(k‖)

(
p(1)‖
p(0)‖
−

n(1)

n0

)
, (3.351)

which yields a polynomial

ζ 3
+

2i
√

π
ζ 2
−

3
2
ζ −

i
√

π
= 0. (3.352)

Numerical solutions are ζ =±1.041− 0.327i; ζ =−0.474i, showing that, in this case,
the higher-order mode does not propagate and is purely damped. The ion-acoustic
mode is also very damped and has a dispersion relation

ω= |k‖|vth‖(±1.041− 0.327i). (3.353)

We examine two more closures. The most precise quasi-static closure (3.227)
obtained with R4,2(ζ ) yields the analytic dispersion relation

ζ 4
+ i
√

π
10− 3π

16− 5π
ζ 3
−

32− 9π

32− 10π
ζ 2
−

i
√

π

16− 5π
ζ +

3π− 8
32− 10π

= 0, (3.354)

and the solutions are

ω= |k‖|vth‖(±1.294− 0.790i); ω= |k‖|vth‖(±0.385− 0.956i), (3.355)

the first one being the ion-acoustic mode. Finally, the only available o(ζ 4) closure
(3.339) obtained with R5,3(ζ ) yields the analytic dispersion relation

ζ 5
+ iα̃rζ

4
+ (α̃q − 3)ζ 3

− i(3α̃r − α̃T)ζ
2
+

1
2

(
α̃u − 3α̃q +

3
2

)
ζ +

i
4
(3α̃r − 2α̃T)= 0,

(3.356)
where the coefficients are specified in (3.335), and the numerical solutions are

ω=|k‖|vth‖(±1.589−0.908i); ω=|k‖|vth‖(±0.710−1.084i); ω=|k‖|vth‖(−1.147i),
(3.357)

the first being the ion-acoustic mode.
Let us compare the obtained results. Perhaps curiously, it appears that, as the

precision of closures increases, so does i the real frequency and the damping rate of
the ion-acoustic mode, and the differences are quite significant. So what is the correct
kinetic result, i.e. how close did we get to the kinetic theory? That is not as easy a
question as it appears to be. By opening kinetic books, there is no such discussion
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on the long-wavelength limit of the ion-acoustic mode, when the electrons are cold.
Even the exact numerical solutions are usually considered only for Te/Tp > 1, see for
example figure 9.18 on page 355 in Gurnett and Bhattacharjee.

Let us examine the analytic dispersion relations (3.348), (3.352), (3.354) and
(3.356), that were obtained with approximants R4,3(ζ ), R3,2(ζ ), R4,2(ζ ) and R5,3(ζ ).
One notices that the dispersion relations exactly match the denominators of the
associated Padé approximants! Or in another words, without doing any calculations
whatsoever, it appears that if a closure of a 1-D fluid model is available for a Rn,n′(ζ )
approximant, the dispersion relation is equivalent to the denominator of that Rn,n′(ζ ).
How is this possible? The explanation is simple if one considers the electrostatic
kinetic dispersion relation for the proton and electron species (3.30), which at scales
that are much longer than the Debye length simplifies to (3.366). Prescribing massless
electrons yields R(ζe) = 1, implying dispersion relation R(ζp) = −T (0)p /T (0)e . For cold
electrons, both real and imaginary parts of R(ζp) obviously diverge, so that

1
R(ζp)

= 0.

The above expression can be considered the electrostatic dispersion relation of a
proton–electron plasma, where the electrons are massless and completely cold. The
reason why such an expression cannot be found in any plasma book is that, from
the kinetic perspective, such an expression cannot be solved and is ill defined. The
function R(ζ ) is directly related to the derivative of Z(ζ ) according to Z′(ζ )=−2R(ζ ).
Infinitely large R(ζ ) means that Z(ζ ) has infinitely large derivatives, i.e. that Z(ζ )
is not continuous and not analytic, which contradicts the entire definition of Z(ζ )
and how the function was constructed. However, when Padé approximants of these
functions are considered, and when R(ζ ) is replaced by Rn,n′(ζ ), so that

1
Rn,n′(ζp)

= 0, (3.358)

such an expression does make sense, and is equivalent to the denominator of Rn,n′(ζ )
being zero, i.e. it directly yields the dispersion relations of the considered fluid models.
We note that while the plasma dispersion function corresponding to a Maxwellian
distribution function does not display singularities at finite distance in the complex
plane, this is not the case when considering kappa distribution functions, see e.g.
Podesta (2004).

3.12.1. The proton Landau damping does not disappear at long wavelengths
There are several extremely interesting phenomena worth discussing. (i) In the

dispersion relation for the ion-acoustic (sound) mode (3.350), the usual phase speed
ω/k‖ is constant, implying that the Landau damping (of the parallel propagating
sound mode) does not disappear, however long wavelengths are considered. With
cold electrons, as considered here, the parallel sound mode is always heavily damped,
and disappears in a few wavelengths, even on large astrophysical scales. A very good
discussion can be found for example in Howes (2009), who concluded that, in general
(unless electrons are hot), the MHD sound mode represents an unphysical spurious
wave that does not exist in collisionless plasma. (ii) The equations (3.340)–(3.343)
do not even contain the parallel electric field E‖. This might sound surprising, but
the parallel electric field completely disappears at long wavelengths, even though the
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Landau damping (as expressed through the constant phase speed), does not disappear.
The parallel electric field does not disappear, if electrons have finite temperature, it
also enters (very weakly), if the electron inertia is included. In the 1-D linearized
geometry considered here, the contributions will be

E‖ =−
1

en0
∂zp‖e −

me

e
∂uze

∂t
. (3.359)

(iii) The presence of Landau damping in the long-wavelength limit is exactly the
reason why usual fluid models such as MHD, or even the much more sophisticated
CGL description, do not converge to the collisionless kinetic theory, whatever long
wavelengths and low frequencies are considered. There is always a mismatch in
dispersion relations when the phase speed is plotted that, depending on plasma
parameters, can be quite large. This does not concern only the damping rate (which
in MHD and CGL is of course zero), the differences in the real frequency, which
is always coupled to the imaginary frequency (for example through the polynomial
(3.348) for that specific closure), can be large too. (iv) If the heat flux q(1)‖ is
prescribed to be zero, i.e. if a CGL model is prescribed, the dispersion relation
of the parallel propagating sound mode is determined only by the parallel velocity
equation (3.341) and parallel pressure equation (3.342), yielding the CGL result
ω2
=

3
2v

2
th‖k

2
‖
, so that

ωCGL
=±|k‖|vth‖

√
3
2 =±|k‖|vth‖1.225. (3.360)

For comparison, the MHD result can be written with the usual MHD sound speed
C2

s = γ (p0/ρ0)= (γ /2)v2
th where γ = 5/3, so

ωMHD
=±|k‖|vth

√
5
6 =±|k‖|vth0.913. (3.361)

It is important to examine the influence of isothermal electron species.

3.13. Proton Landau damping, influence of isothermal electrons
Let us prescribe electrons to be isothermal, with some finite electron temperature,
but let us neglect the electron inertia. The proton momentum equation is changed to
(3.372), the electron pressure equation reads

−ω
p(1)‖e
p(0)‖p
+ k‖τu(1)z = 0; τ ≡

T (0)‖e
T (0)‖p

, (3.362)

where for brevity, we define the ratio of electron and proton temperature as τ . Using
the R4,3(ζ ) closure as before, the coupled dispersion relation reads

ζ 4
+

2i
√

π

3π− 8
ζ 3
−

9π− 16+ (3π− 8)τ
2(3π− 8)

ζ 2
−

i
√

π(3+ τ)
3π− 8

ζ +
2(1+ τ)
3π− 8

= 0. (3.363)

The above expression is equivalent to (A6) in Hunana et al. (2011).9 The R4,2(ζ )
closure yields dispersion relation

9Dispersion relations in the Appendix of that paper assumed k> 0. We later noticed that (3.363), (3.364)
are equivalent to the dispersion relation τRn,n′ (ζp)+ 1= 0. We also noticed that for isothermal electrons the
R4,2(ζ ) closure with (3.364), can produce positive growth rate for high electron temperatures. The R4,2(ζ )
behaves correctly when the electron Landau damping is introduced, see the next § 3.14.
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ζ 4
+

i
√

π(10− 3π)

16− 5π
ζ 3
−

32− 9π+ (16− 5π)τ

32− 10π
ζ 2

−
i
√

π(2+ (10− 3π)τ )

32− 10π
ζ +

(3π− 8)(1+ τ)
32− 10π

= 0. (3.364)

Let us use (3.363) and focus on the ion-acoustic mode, since the higher-order mode
is always highly damped. Solutions for a few different τ values are

τ = 0 : ζ = ±1.359− 0.534i;
τ = 0.1 : ζ = ±1.367− 0.514i;
τ = 0.5 : ζ = ±1.409− 0.439i;
τ = 1.0 : ζ = ±1.481− 0.361i;
τ = 2.0 : ζ = ±1.640− 0.260i;
τ = 5.0 : ζ = ±2.054− 0.131i;
τ = 10.0 : ζ = ±2.591− 0.061i;
τ = 100.0 : ζ = ±7.180− 0.001i. (3.365)

This is excellent, as in kinetic books, with increasing electron temperature, the Landau
damping of the ion-acoustic mode decreases. Compared to kinetic calculations (see the
last column in (3.381)), the total Landau damping is here of course underestimated,
especially for high electron temperatures, since here in the fluid model, only the
proton Landau damping is contributing, and the electron Landau damping is turned
off. Let us turn it on.

3.14. Proton and electron Landau damping
Considering wavelengths much longer than the Debye length, the exact kinetic
dispersion relation reads

T (0)‖e
T (0)‖p

R(ζp)+ R(ζe)= 0, (3.366)

where the electron thermal velocity

vth‖e = vth‖p

√
mp

me

√√√√T (0)‖e
T (0)‖p

, (3.367)

is of course much higher than the proton thermal velocity (unless the electrons are
cold), and by using the abbreviated

τ ≡
T (0)‖e
T (0)‖p
; µ≡

me

mp
, (3.368)

so that

ζp =
ω

|k‖|vth‖p
; ζe =

ω

|k‖|vth‖e
= ζp

√
µ

τ
, (3.369)

and the exact kinetic dispersion relation reads

τR(ζp)+ R
(
ζp

√
µ/τ

)
= 0. (3.370)
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Let us see how close we got. One of the greatest advantages of Landau fluid models
is that we do not have to resolve electron motion to obtain the correct form of
electron Landau damping at long wavelengths, and the electron inertia in the electron
momentum equation can be neglected. The correct electron–proton mass ratio can
enter equations for the electron heat flux q‖e and the fourth-order moment r̃‖‖e, and
the electron inertia influences the solutions only insignificantly. However, let us keep
the electron inertia for a moment. The equations for the proton species read

−ω
n(1)

n0
+ k‖u(1)z = 0; (3.371)

−ωu(1)z +
v2

th‖p

2
k‖

(
p(1)‖p
p(0)‖p
+

p(1)‖e
p(0)‖p

)
−ω

me

mp
u(1)z = 0; (3.372)

−ω
p(1)‖p
p(0)‖p
+ 3k‖u(1)z + k‖

q(1)‖p
p(0)‖p
= 0; (3.373)

−ω
q(1)‖p
p(0)‖p
+

3
2
v2

th‖pk‖

(
p(1)‖p
p(0)‖p
−

n(1)

n0

)
+ k‖

r̃(1)‖‖p
p(0)‖p
= 0, (3.374)

and the electron inertia represents the last term in (3.372). The electron equations are
written in a form so that they are normalized with respect to the proton pressure

−ω
p(1)‖e
p(0)‖p
+ 3k‖τu(1)z + k‖

q(1)‖e
p(0)‖p
= 0; (3.375)

−ω
q(1)‖e
p(0)‖p
+

3
2
v2

th‖p
mp

me
k‖τ

(
p(1)‖e
p(0)‖p
− τ

n(1)

n0

)
+ k‖

r̃(1)‖‖e
p(0)‖p
= 0. (3.376)

Note that the electron fluid speed u(1)ze = u(1)zp (so we omitted the index p). The fluid
equations are accompanied by a closure from kinetic theory, for example the R4,3(ζ )
closure

r̃(1)‖‖p
p(0)‖p
=

32− 9π

2(3π− 8)
v2

th‖p

(
p(1)‖p
p(0)‖p
−

n(1)

n0

)
−

2
√

π

3π− 8
vth‖pisign(k‖)

q(1)‖p
p(0)‖p

, (3.377)

r̃(1)‖‖e
p(0)‖p
=

32− 9π

2(3π− 8)
v2

th‖p
mp

me
τ

(
p(1)‖e
p(0)‖p
− τ

n(1)

n0

)
−

2
√

π

3π− 8
vth‖p

√
mp

me

√
τ isign(k‖)

q(1)‖e
p(0)‖p

.

(3.378)

The equations (3.371)–(3.378) now represents a fluid description of the ion-acoustic
mode, and contain both proton and electron Landau damping. It is rather mesmerizing
that the relatively complicated dispersion relation of this fluid model can be shown to
be equivalent to the ‘simple looking’ kinetic dispersion relation

τR4,3(ζp)+ R4,3

(
ζp

√
µ/τ

)
= 0, (3.379)

i.e. equivalent to the full kinetic dispersion relation (3.370), where the exact R(ζ ) is
replaced with the R4,3(ζ ) approximant (by transferring the proton and electron terms of
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R4,3(ζ ) in the expression (3.379) to the common denominator and making the resulting
numerator of that expression equal to zero, Maple is great in this regard).

Nevertheless, here, we want clearly demonstrate that the electron inertia can be
neglected and the electron Landau damping still nicely captured, and we use fluid
dispersion relations obtained from the system (3.371)–(3.378), where the last term in
(3.372) is neglected. It is important to normalize properly and, for example, the R4,2(ζ )

closure for electrons reads

r̃(1)‖‖e
p(0)‖p
= −i

√
π
(10− 3π)

(16− 5π)
vth‖p

√
mp

me

√
τ sign(k‖)

q(1)‖e
p(0)‖p

+
(21π− 64)
2(16− 5π)

v2
th‖p

mp

me
τ

(
p(1)‖e
p(0)‖p
− τ

n(1)

n0

)

+ i
√

π
(9π− 28)
(16− 5π)

vth‖p

√
mp

me
τ 3/2sign(k‖)u(1)z . (3.380)

In the table below, we compare these fluid solutions of the quasi-static R4,3(ζ ) and the
R4,2(ζ ) closures, and the time-dependent R5,3(ζ ) closure to the exact kinetic solutions,
calculated from (3.366), for various electron temperatures.

R4,3(ζ ) closure R4,2(ζ ) closure R5,3(ζ ) closure Exact
τ = 1.0 ζ = 1.487− 0.373i 1.434− 0.506i 1.511− 0.591i 1.457− 0.627i
τ = 2.0 ζ = 1.645− 0.276i 1.629− 0.372i 1.691− 0.393i 1.692− 0.425i
τ = 5.0 ζ = 2.057− 0.154i 2.080− 0.212i 2.116− 0.188i 2.136− 0.189i
τ = 10.0 ζ = 2.593− 0.094i 2.627− 0.123i 2.635− 0.089i 2.640− 0.072i
τ = 20.0 ζ = 3.417− 0.069i 3.446− 0.075i 3.432− 0.052i 3.421− 0.046i
τ = 50.0 ζ = 5.157− 0.078i 5.170− 0.072i 5.156− 0.070i 5.153− 0.073i
τ = 100.0 ζ = 7.180− 0.105i 7.186− 0.099i 7.179− 0.102i 7.177− 0.103i

(3.381)
Instead of a table, we can create a figure. The Landau damping of the ion-acoustic

sound mode is nicely demonstrated, for example, in the plasma book of Gurnett and
Bhattacharjee (figure 9.18, page 355), where on the x-axis is τ , and on the y-axis
(logarithmic), is the ratio of the damping and real frequencies. The same parameters
are plotted in figure 5(a), and in figure 5(b) we extend the plot to higher electron
temperatures. The figure shows that both new closures are very precise in the very
important regime, where the electron temperature τ ranges between τ = 1 and τ = 5.
The R5,3(ζ ) closure is the most globally precise closure. If static closures are preferred,
the comparison between R4,2(ζ ) and R4,3(ζ ) is more difficult to summarize; R4,2(ζ )

is definitely preferred in the regime τ ∈ [1, 5] and perhaps also for τ ∈ [25, 60],
however, the Hammett and Perkins closure R4,3(ζ ) is the better fit in the regime τ ∈
[5, 25] and also for τ ∈ [60, 100]. We checked that the inclusion of electron inertia is
insignificant for all 3 fluid closures, and by eye inspection, it appears that the largest
global difference is seen for the R5,3(ζ ) closure, roughly for τ ∈ [30, 60], making
the closure (very slightly) more precise. In figure 6, we calculate the other selected
obtained closures. We use the full dispersion relations with electron inertia included.
The figure shows that, if static closures are preferred, for a value of roughly τ > 15,
the best closure is actually the static closure R4,4(ζ ). The most precise closure for τ >
15 is by far the time-dependent R5,6(ζ ) closure, which achieves an excellent accuracy
for high values of τ . If a global accuracy for all values of τ is required, our favourite
closures are R5,3(ζ ) and R5,4(ζ ).
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(a) (b)

FIGURE 5. Landau damping of the ion-acoustic (sound) mode. The black solid curve is
the solution of exact kinetic dispersion relation (3.366). The other curves are dispersion
relations of a fluid model (3.371)–(3.376) where the electron inertia is neglected,
supplemented by a closure for r(1)‖‖r. The red dashed line is the R4,3(ζ ) closure of Hammett
& Perkins (1990), the green dash-dotted line is our new static closure R4,2(ζ ) and the blue
dotted line is the new time-dependent closure R5,3(ζ ).

(a) (b)

FIGURE 6. Similar to figure 5, but different closures are compared, and electron inertia
is retained. The R5,3(ζ ) closure (blue dotted curve) is kept in the figure so that the
comparison to other closures can be done easily. Also, by comparing the R5,3(ζ ) solution
with figure 5, it is shown that the effect of electron inertia is negligible. The R4,4(ζ ) is
the only static closure, and all other closures are time dependent.

With the help of Maple software, we analytically investigated dispersion relations
of all the obtained fluid closures, and we investigated if the resulting dispersion
relation (including the electron inertia) is equivalent to the kinetic result (3.366), after
replacing the R(ζ ) with Rn,n′(ζ ), i.e. if the fluid dispersion relation is equivalent to
the numerator of

T (0)‖e
T (0)‖p

Rn,n′(ζp)+ Rn,n′(ζe)= 0. (3.382)

All the closures considered in this subsection satisfied this requirement, however,
some other previously obtained closures did not. We concluded that satisfying (3.382)
should be indeed considered as a strong requirement for a physically meaningful
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closure, and closures that did not satisfy this requirement were therefore eliminated.
The results are summarized in the § 3.6 ‘Table of moments (u‖, T‖, q‖, r̃‖‖) for various
Padé approximants’, equations (3.241), (3.242).

3.15. Electron Landau damping of the Langmuir mode
In addition to the ion-acoustic mode, let us calculate the Landau damping for the
second (perhaps first) typical example, of how Landau damping is addressed in plasma
physics books, the Langmuir mode. Focusing on the electron species and making the
proton species cold and ‘very heavy’ with mp→∞, i.e. immobile with u(1)zp = 0, the
proton species completely decouples from the system, and their role is just to conserve
the leading-order charge neutrality n0p = n0e = n0. Since we have not dealt with such
a system so far (not even in Part 1 of the text), let us write down the basic equation
nicely in real space in physical units. Neglecting the electron heat flux, the basic
system of linearized equations reads

∂n(1)e

∂t
+ n0∂zu(1)ze = 0; (3.383)

∂u(1)ze

∂t
+

1
men0

∂zp
(1)
‖e +

e
me

E‖ = 0; (3.384)

∂p(1)‖e
∂t
+ 3p(0)‖e ∂zu(1)ze = 0. (3.385)

Using the general electrostatic Maxwell equation for the current (including the
displacement current)

j=
∑

r

qrnrur =
��

��
�c

4π
∇×B −

1
4π

∂E
∂t
, (3.386)

that in our specific 1-D linear case considered here reads

j‖ =−en0u(1)ze =−
1

4π

∂E‖
∂t
, (3.387)

prescribes the electric field time evolution, and the system of equations is closed. By
applying ∂/∂t to the momentum equation (3.384), the equations can be combined,
yielding a wave equation [

∂2

∂t2
−

3p(0)‖e
men0

∂2
z +ω

2
pe

]
u(1)ze = 0, (3.388)

where the electron plasma frequency ω2
pe = 4πe2n0/me. This wave equation describes

the basic plasma physics mode, known as the Langmuir mode, and the dispersion
relation is

ω2
=ω2

pe +
3T (0)‖e
me

k2
‖
. (3.389)

If we ignored the displacement current ∂E‖/∂t, the ω2
pe term would be absent. By

dividing with ω2
pe and by using the Debye length λDe=1/kDe where k2

De=4πe2n0e/T
(0)
‖e ,

so that the Debye length λ2
De = T (0)‖e /(meω

2
pe), the dispersion relation (3.389) reads

ω2

ω2
pe

= 1+ 3λ2
Dek

2
‖
. (3.390)
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Obviously, the electron plasma frequency and the electron Debye length are the natural
normalizing units of this system, and one should use normalized quantities ω/ωpe and
k‖λDe. A useful relation also is λ2

De = v
2
th‖e/(2ω

2
pe).

Often, in plasma physics books, the CGL adiabatic index γ‖ = 3 in the above two
equations, is substituted with a general adiabatic index γe, so that a more ‘general’
case can be considered. This is especially useful if the Langmuir waves, which are
the basic waves of plasma physics, are introduced early on (in an early chapter of
a book), where the correct CGL value of γ‖ = 3 is difficult to introduce. Again,
we have an advantage of not being a plasma book, and we are not describing the
general electrostatic case, we are describing the fully electromagnetic case, but we
are focusing only on one mode – the electrostatic mode that propagates parallel
to B0. In the view presented here, and as elaborated in Part 1 of the text, playing
with adiabatic indices does not make much sense. No adiabatic index can match the
CGL and the MHD, the CGL is always different from MHD, even for an isotropic
distribution function with T (0)‖ = T (0)⊥ . Therefore, we are not introducing any adiabatic
index, and the correct CGL value is used, and fixed to 3. Instead, we introduce the
electron heat flux and get closer to the kinetic theory in a much more sophisticated
way.

The basic linearized fluid equations in Fourier space read

−ω
n(1)e

n0
+ k‖u(1)ze = 0;

−ωu(1)ze +
1
2
v2

th‖ek‖
p(1)‖e
p(0)‖e
+

1
2
v2

th‖e

λ2
De

u(1)ze

ω
= 0;

−ω
p(1)‖e
p(0)‖e
+ 3k‖u(1)ze + k‖

q(1)‖e
p(0)‖e
= 0; (3.391)

−ω
q(1)‖e
p(0)‖e
+

3
2
v2

th‖ek‖

(
p(1)‖e
p(0)‖e
−

n(1)e

n0

)
+ k‖

r̃(1)‖‖e
p(0)‖e
= 0, (3.392)

and are accompanied for example by the R4,3(ζ ) closure

r̃(1)‖‖e
p(0)‖e
=

32− 9π

2(3π− 8)
v2

th‖e

(
p(1)‖e
p(0)‖e
−

n(1)e

n0

)
−

2
√

π

3π− 8
vth‖eisign(k‖)

q(1)‖e
p(0)‖e

. (3.393)

The dispersion relation of this fluid model reads (suppressing e in the electron Debye
length λDe)

ζ 4
e +

2i
√

π

3π− 8
ζ 3

e −
3π− 8+ (9π− 16)k2

‖
λ2

D

2(3π− 8)k2
‖λ

2
D

ζ 2
e −

i
√

π(1+ 3k2
‖
λ2

D)

(3π− 8)k2
‖λ

2
D
ζe+

2(1+ k2
‖
λ2

D)

(3π− 8)k2
‖λ

2
D
= 0,

(3.394)
where

ζe =
ω

|k‖|vth‖e
=
ω

ωpe

1
√

2|k‖|λD

. (3.395)

The exact kinetic dispersion relation reads

1+
1

k2
‖λ

2
D

R(ζe)= 0. (3.396)
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As can be verified, the fluid dispersion relation (3.394) is equivalent to the kinetic one,
if R(ζe) is replaced by R4,3(ζe).

Using the static R4,2(ζ ) closure, the dispersion relation reads

ζ 4
e + i
√

π
10− 3π

16− 5π
ζ 3

e −
16− 5π+ (32− 9π)k2

‖
λ2

D

2(16− 5π)k2
‖λ

2
D

ζ 2
e

− i
√

π
10− 3π+ 2k2

‖
λ2

D

2(16− 5π)k2
‖λ

2
D
ζe +

(3π− 8)(1+ k2
‖
λ2

D)

2(16− 5π)k2
‖λ

2
D
= 0, (3.397)

using the static R4,4(ζ ) closure yields

ζ 4
e + i
√

π
3
4
ζ 3

e −
1+ 6k2

‖
λ2

D

2k2
‖λ

2
D

ζ 2
e − i
√

π
3(1+ 3k2

‖
λ2

D)

8k2
‖λ

2
D

ζe +
3(1+ k2

‖
λ2

D)

4k2
‖λ

2
D
= 0, (3.398)

and the simplest static R3,2(ζ ) closure yields

ζ 3
e +

2i
√

π
ζ 2

e −
1+ 3k2

‖
λ2

D

2k2
‖λ

2
D

ζe −
i(1+ k2

‖
λ2

D)
√

πk2
‖λ

2
D
= 0. (3.399)

All dispersion relations are fully consistent with the kinetic dispersion relation (3.396)
when R(ζe) is replaced by the corresponding R4,2(ζe), R4,4(ζe) and R3,2(ζe) (equivalent
to the numerator of the resulting expression). We verified that this is also true for the
static closure R3,1(ζe) and actually all the ‘reliable’ closures marked in (3.241), (3.242)
with ‘X’, including the time-dependent closures R3,2(ζe), R4,2(ζe), R4,3(ζe), R4,4(ζe),
R5,3(ζe), R5,4(ζe), R5,5(ζe), R5,6(ζe). To clearly understand the obtained solutions, let
us solve the simple R3,2(ζe) dispersion relation (3.399) for a few values of k‖λD,

k‖λD = 0.001 : ζe =±707.1− 1.13i× 10−6
; ζe =−1.13i;

k‖λD = 0.01 : ζe =±70.7− 1.13i× 10−4
; ζe =−1.13i;

k‖λD = 0.1 : ζe =±7.17− 1.07i× 10−2
; ζe =−1.11i;

k‖λD = 0.2 : ζe =±3.73− 3.73i× 10−2
; ζe =−1.05i;

k‖λD = 0.3 : ζe =±2.63− 0.07i; ζe =−0.99i;
k‖λD = 1.0 : ζe =±1.28− 0.23i; ζe =−0.67i.

The first mode is the Langmuir mode, and the second mode is a purely damped
higher-order mode. In the complete limit k‖λD → 0, the Langmuir mode becomes
undamped with a solution ζe = 1/(

√
2|k‖|λD), which corresponds to oscillations with

electron plasma frequency ω = ωpe; and the higher-order mode has a solution ζe =

−2i/
√

π. Considering the weak damping limit ζe= x+ iy, where x� y, at the leading
order ζ 2

e = x2
+ i2xy and ζ 3

e = x3
+ i3x2y, which when used in the dispersion relation

(3.399) that is separated into real and imaginary parts yields

x3
−

4
√

π
xy−

1+ 3k2
‖
λ2

D

2k2
‖λ

2
D

x= 0;

3x2y+
2
√

π
x2
−

1+ 3k2
‖
λ2

D

2k2
‖λ

2
D

y−
1
√

π

1+ k2
‖
λ2

D

k2
‖λ

2
D
= 0,

and for x� y at the leading order

x2
=

1+ 3k2
‖
λ2

D

2k2
‖λ

2
D
; y=−

1
√

πx2
=−

2
√

π

k2
‖
λ2

D

(1+ 3k2
‖λ

2
D)
, (3.400)
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which approximates the above numerical solutions reasonably well up to let us say
k‖λD = 0.3, and from (3.395) the x, y expressions are equivalent to

ω2
r =ω

2
pe(1+ 3k2

‖
λ2

D); ωi =−

√
8
π

|k‖|3λ3
D

1+ 3k2
‖λ

2
D
ωpe. (3.401)

For k‖λD� 1, the Landau damping of the Langmuir mode goes to zero, however, the
damping rate is very overestimated. The approximate kinetic result found in plasma
books (see for example Gurnett & Bhattacharjee (2005), page 349) has of course the
same real frequency, however, the damping rate reads

ω2
r =ω

2
pe(1+ 3k2

‖
λ2

D); ωi =−

√
π

8
ωpe

|k‖|3λ3
D

e−1+3k2
‖
λ2

D/2k2
‖
λ2

D . (3.402)

Since k‖λD� 1, Landau (1946) writes (see his equations (16) and (17))

ωr =ωpe

(
1+

3
2

k2
‖
λ2

D

)
; ωi =−

√
π

8
ωpe

|k‖|3λ3
D

e−1/2k2
‖
λ2

D . (3.403)

For k‖λD� 1, i.e. approaching long wavelengths, the exponential term suppresses the
Landau damping much quicker than our result (3.401). To understand the discrepancy,
let us quickly consider how the kinetic result (3.402) was obtained. The result is
obtained by considering asymptotic expansion |ζe|� 1 of the exact kinetic dispersion
relation (3.396), which in the weak growth-rate approximation (see (3.67) with σ = 1)
reads

1+
1

k2
‖λ

2
D

[
−

1
2ζ 2

e

−
3

4ζ 4
e

+ i
√

πζee−ζ
2
e

]
= 0. (3.404)

Using ζe = x + iy with x � y and k‖λD � 1 yields at the leading order x2
= (1 +

3k2
‖
λ2

D)/2k2
‖
λ2

D which agrees with (3.400) and the damping rate is y = −
√

πx4e−x2 ,
which recovers (3.402). The e−x2 term in the damping rate comes from the last term in
(3.404), and as discussed previously, this term is neglected in the asymptotic expansion
when constructing the Padé approximants of R(ζ ) (it is however included in the power-
series expansion), explaining the discrepancy.

The damping rate of the Langmuir mode is plotted in figure 7 and the real
frequency in figure 8, where solutions of various fluid models are compared with
exact kinetic dispersion relation (3.396), depicted as the black solid line. Additionally,
the asymptotic kinetic solution (3.402) from plasma physics books is plotted as
the black dotted line. Figure 7 is plotted in log–log scale and figure 8 uses linear
scales. It is shown that for k‖λD > 0.2, fluid models can reproduce the damping of
the Langmuir mode quite accurately, and the most accurate closure is R5,3(ζ ). This
closure also reproduces the real frequency of the Langmuir mode very accurately and
actually better than the asymptotic kinetic solution (3.402).

Nevertheless, as discussed above, because of the missing exponential factor in fluid
models, the Landau damping becomes very overestimated at scales k‖λD<0.2, i.e. it is
the long-wavelength limit (and not the short-wavelength limit) that represents trouble.
This is because in the long-wavelength limit, the frequency of Langmuir mode does
not go to zero but approaches the electron plasma frequency ωpe, and so the phase
speed ωr/k‖ (and the variable ζe) becomes large and for k‖λD → 0 goes to infinity,
where the fluid closures become imprecise. Landau fluid simulations of the Langmuir
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(a) (b)

FIGURE 7. Landau damping of the Langmuir mode. Numerical solution of the exact
kinetic dispersion relation (3.396) is the black solid line, and asymptotic kinetic solution
(3.402) is the black dotted line.

(a) (b)

FIGURE 8. Real frequency of the Langmuir mode.

mode should be therefore restricted to scales k‖λD> 0.2. At longer wavelengths, some
closures can actually become ill posed and instead of Landau damping, can produce
a small positive growth rate. For example, if one insists on numerical simulations in
the domain below k‖λD < 0.2, the closures that have to be eliminated are closures
R4,2(ζ ), R5,3(ζ ), R5,4(ζ ), since they produce a small positive growth rate. We briefly
checked, and all other closures seems to be well behaved all the way up to k‖λD =

10−4. At even longer scales, such as k‖λD= 10−5, two other closures become ill posed,
the R5,5(ζ ) and R5,6(ζ ), and the remaining closures R3,1(ζ ),R3,2(ζ ),R4,3(ζ ),R4,4(ζ ) do
not appear to have a length-scale restriction. It is useful to note that this is not only
a problem of Landau fluid closures, but at long wavelengths, it is actually the kinetic
theory itself that becomes very difficult to solve, and in the region k‖λD<0.1, we were
often not able to obtain correct numerical solution when solving the exact dispersion
relation (3.396).

3.16. Selected closures for the fifth-order moment
Let us work in the 1-D geometry and continue with the hierarchy. In Part 1 of this
text, we called the nth-order moment X(n). However, when linearizing, we want to use
our (1) superscript as before. Therefore, here we move the (n) index of the nth-order
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moment down, and refer to the nth moment simply as Xn. The fifth-order moment
X5 =m

∫
(v − u)5f dv is linearized according to

X(1)
5 =m

∫
v5f (1) dv − 5u(1) m

∫
v4f0 dv︸ ︷︷ ︸
r0

, (3.405)

and direct calculation yields (dropping species index r everywhere except on
charge qr)

X(1)
5 =−qrΦ

√
2T (0)

m
p0

m
sign(k‖)

(
3ζ + 2ζ 3

+ 4ζ 5R(ζ )− 15ζR(ζ )
)
, (3.406)

and alternatively p0/m= n0v
2
th/2.

The most precise (power-series) static closure can be constructed with the R5,3(ζ )
approximant

R5,3(ζ ) : X(1)
5 = −

(104− 33π)
√

π

2(9π2 − 69π+ 128)
isign(k‖)vthr̃(1) −

(81π− 256)
2(9π2 − 69π+ 128)

v2
thq(1)

−
3(160− 51π)

√
π

4(9π2 − 69π+ 128)
isign(k‖)v3

thn0T (1)

−
(135π2

− 750π+ 1024)
2(9π2 − 69π+ 128)

v2
thn0T (0)u(1), (3.407)

and other static closures with the R5,4(ζ ) approximant

R5,4(ζ ) : X(1)
5 = −

(21π− 64)
(9π− 28)

√
π

isign(k‖)vthr̃(1) +
(45π− 136)
2(9π− 28)

v2
thq(1)

+
(256− 81π)

2(9π− 28)
√

π
isign(k‖)n0v

3
thT (1), (3.408)

with the R5,5(ζ ) approximant

R5,5(ζ ) : X(1)
5 =

6
√

π

(9π− 32)
isign(k‖)vthr̃(1) +

3(15π− 64)
2(9π− 32)

v2
thq(1), (3.409)

and with the R5,6(ζ ) approximant

R5,6(ζ ) : X(1)
5 = −

8
3
√

π
isign(k‖)vthr̃(1) + 5v2

thq(1). (3.410)

In Part 1 of this guide, we derived directly from fluid hierarchy that at the linear level

∂

∂t
r̃(1) + ∂zX

(1)
5 − 3v2

th∂zq(1) = 0. (3.411)

Now, importantly, by using this equation, it is directly shown that the above static
closures with X(1)

5 , are equivalent to time-dependent (dynamic) closures with r̃(1)
obtained for the same R(ζ ) approximants, closures (3.339), (3.315), (3.320), (3.325).
The process can be viewed as a verification procedure. Indeed, it should be always
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possible to double check a dynamic closure, by calculating a static closure at the
next moment with the same Padé approximant.

The most precise (power-series) dynamic closure with X5, is constructed with
approximant R6,4(ζ ), by searching for a solution

[ζ + αx5]X
(1)
5 = αr r̃(1) + αqq(1) + αtT (1) + αuu(1), (3.412)

and the closure in real space reads

R6,4(ζ ) :

[
d
dt
−

3(180π2
− 1197π+ 1984)

√
π

(801π2 − 5124π+ 8192)
vth∂zH

]
X(1)

5

=−v2
th

3(675π2
− 4728π+ 8192)

2(801π2 − 5124π+ 8192)
∂zr̃(1)

+ v3
th

3(285π− 896)
√

π

2(801π2 − 5124π+ 8192)
∂zHq(1)

− v4
thn0

3(945π2
− 8184π+ 16384)

4(801π2 − 5124π+ 8192)
∂zT (1)

+ v3
thn0T0

9(450π2
− 2799π+ 4352)

√
π

(801π2 − 5124π+ 8192)
∂zHu(1). (3.413)

The closure has precision o(ζ 5), o(ζ−6). It was verified that the closure is reliable,
i.e. it satisfies (3.366) once R(ζ ) is replaced by R6,4(ζ ). The closure is plotted in
figure 9 with the orange line.

3.17. Selected closures for the sixth-order moment

The sixth-order moment X6 = m
∫
(v − u)6f dv is linearized simply as X(1)

6 =

m
∫
v6f (1) dv, and since

1
√

π

∫
x6e−x2

x− x0
dx= sign(k‖)

(
3
4
ζ +

1
2
ζ 3
+ ζ 5R(ζ )

)
, (3.414)

and direct calculation yields

X(1)
6 =−qrΦn0

p2
0

ρ2
0

(
15+ 6ζ 2

+ 4ζ 4
+ 8ζ 6R(ζ )

)
, (3.415)

and alternatively p0/ρ0 = v
2
th/2. Separating the deviation of this moment with tilde

(similarly to r̃, see also Part 1 of this guide) is done according to

X̃(1)
6 = X(1)

6 − 15
p3

0

ρ2
0

(
3

p(1)

p0
− 2

n(1)

n0

)
, (3.416)

which directly yields

X̃(1)
6 =−qrΦn0

p2
0

ρ2
0

(
30R(ζ )− 30+ 6ζ 2

− 90ζ 2R(ζ )+ 4ζ 4
+ 8ζ 6R(ζ )

)
. (3.417)
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FIGURE 9. Landau damping of the ion-acoustic mode, calculated with exact R(ζ ) – black
line; R4,2(ζ ) – green line; R5,3(ζ ) - blue line; R6,4(ζ ) – orange line; and R7,5(ζ ) – red line.
The solutions represent the most precise dynamic closures that can be constructed for the
third-order moment (heat flux), fourth-order moment, fifth-order moment and sixth-order
moment. It was analytically verified that all closures are ‘reliable’, i.e. equivalent to the
kinetic dispersion relation once R(ζ ) is replaced by the associated Rn,n′(ζ ) approximant.
The next most precise closure constructed for the seventh-order moment is R8,6(ζ ), which
is not plotted, but we checked that the solution is basically not distinguishable (by eye)
from the exact R(ζ ) solution. The figure shows that it is possible to reproduce Landau
damping in the fluid framework to any desired precision.

Considering static closures, the most precise power-series closure is constructed with
R6,4(ζ ) and the closure reads

R6,4(ζ ) : X̃(1)
6 = −

3(180π2
− 1197π+ 1984)

√
π

(801π2 − 5124π+ 8192)
vthHX(1)

5

+
3(675π2

− 4728π+ 8192)
2(801π2 − 5124π+ 8192)

v2
thr̃(1)

−
3(285π− 896)

√
π

2(801π2 − 5124π+ 8192)
v3

thHq(1)

−
3(7065π2

− 43056π+ 65536)
4(801π2 − 5124π+ 8192)

n0v
4
thT (1)

−
9(450π2

− 2799π+ 4352)
√

π

(801π2 − 5124π+ 8192)
n0T0v

3
thHu(1). (3.418)

This verifies that the dynamic R6,4(ζ ) closure (3.413) was calculated correctly, since
from the simple fluid approach (Part 1), the static and dynamics closures (3.418),
(3.413) must be related by

∂

∂t
X(1)

5 + ∂zX̃
(1)
6 +

15
2

n0v
4
th∂zT (1) = 0. (3.419)
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The most precise (power-series) dynamic closure for X̃(1)
6 can be constructed with

approximant R7,5(ζ ), by searching for a solution

[ζ + αx6]X̃
(1)
6 = αx5X

(1)
5 + αr r̃(1) + αqq(1) + αtT (1) + αuu(1), (3.420)

and the closure in real space reads

R7,5(ζ ) :

[
d
dt
+

18(1545π2
− 9743π+ 15360)

√
π

(10800π3 − 120915π2 + 440160π− 524288)
vth∂zH

]
X̃(1)

6

=+
3(52425π2

− 331584π+ 524288)
2(10800π3 − 120915π2 + 440160π− 524288)

v2
th∂zX

(1)
5

+
3(7875π2

− 50490π+ 80896)
√

π

(10800π3 − 120915π2 + 440160π− 524288)
v3

th∂zHr̃(1)

+
3(162000π3

− 1758825π2
+ 6263040π− 7340032)

4(10800π3 − 120915π2 + 440160π− 524288)
v4

th∂zq(1)

−
27(15825π2

− 99260π+ 155648)
√

π

2(10800π3 − 120915π2 + 440160π− 524288)
v5

thn0∂zHT (1)

+
3(189000π3

− 1612215π2
+ 4534656π− 4194304)

2(10800π3 − 120915π2 + 440160π− 524288)
v4

thn0T0∂zu(1). (3.421)

The closure has precision o(ζ 6), o(ζ−7), and it was verified that the closure is reliable.
The closure is plotted in figure 9 with the red line.

3.18. Convergence of fluid and kinetic descriptions
In general, for a given Xn, the most precise (power-series) closures are of course
dynamic closures, and we have seen that for the third-order moment it is R4,2(ζ ), for
the fourth-order moment it is R5,3(ζ ), for the fifth-order moment it is R6,4(ζ ) and for
the sixth-order moment it is R7,5(ζ ). Therefore, it is reasonable to make a conjecture
that for an nth-order moment Xn, the most precise closure will be constructed with
approximant Rn+1,n−1(ζ ).

The dynamic closures above are directly related to the most precise (power-series)
static closures that can be constructed, and we have seen that for the third-order
moment it is with approximant R3,1(ζ ), for the fourth-order moment it is R4,2(ζ ), for
the fifth-order moment it is R5,3(ζ ) and for the sixth-order moment it is R6,4(ζ ), and
therefore for an nth-order moment, it will be with approximant Rn,n−2(ζ ). Regardless
if dynamic or static closures are used, this implies that one can reproduce the (linear)
Landau damping phenomenon in the fluid framework, to any desired precision, which
establishes convergence of fluid and kinetic descriptions.

The convergence was shown here in a 1-D (electrostatic) geometry, by considering
the long-wavelength low-frequency ion-acoustic mode. Nevertheless, the 1-D closures
have general validity, and are of course valid also for the Langmuir mode, that
we considered in § 3.14. However, see the discussion about the limitations of the
Langmuir mode modelling at the end of that section, since the closures can become
unstable for k‖λD < 0.2, i.e. in the long-wavelength limit. For a curious reader, the
damping and real frequencies of the Langmuir mode obtained with R7,5(ζ ), are plotted
in figure 10.
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(a) (b)

FIGURE 10. Landau damping of the Langmuir mode (a), and real frequency (b),
calculated with the exact R(ζ ) – black line, and R7,5(ζ ) – red line.

If one wants to pursue a proof of our conjecture, the general Landau integral with
xn can be calculated, for example by considering separate cases for ‘n’ being odd and
even. The result can be expressed as

n= odd :
1
√

π

∫
∞

−∞

xne−x2

x− x0
dx= ζ n−1R(ζ )+

(n−3)/2∑
l=0

(n− 2l− 2)!!
2(n−2l−1)/2 ζ 2l

;

n= even :
1
√

π

∫
∞

−∞

xne−x2

x− x0
dx= sign(k‖)

ζ n−1R(ζ )+
(n−4)/2∑

l=0

(n− 2l− 3)!!
2(n−2l−2)/2 ζ 2l+1

 ,
(3.422)

and it is valid for n > 3. Alternatively, one could say that the result is valid for
n > 1 and that the sums are zero when the upper index is negative. One can write
expressions for the general nth moment X(1)

n , and the moment is proportional to
ζ nR(ζ ). Therefore, considering static closures where the X(1)

n is expressed through all
the lower-order moments X(1)

m ; m= 1 . . . n− 1 (for even moments the deviations X̃(1)

have to be considered), it is obvious that the closure has to be achieved with the
nth-order Padé approximant of R(ζ ). Similarly, considering dynamic closures where
the ζX(1)

n ∼ ζ
n+1R(ζ ) is expressed through all the lower-order moments, the closure

has to be achieved with the (n+ 1)th-order Padé approximant of R(ζ ). To finish the
proof, one needs to show that the number of required asymptotic points corresponds
to Rn,n−2(ζ ) and Rn+1,n−1(ζ ), and that such a closure is ‘reliable’.

The next logical step would be to establish such analytic convergence of fluid
and kinetic descriptions in a 3-D electromagnetic geometry in the gyrotropic limit.
However, in three dimensions, for a given nth-order tensor X n, the number of its
gyrotropic moments is equal to 1+ int[n/2] and increases with n. Therefore, it might
be much more difficult to show the convergence in three dimensions, even though
the convergence should still exist.

4. Three-dimensional geometry (electromagnetic)
Considering gyrotropic f0, let us remind ourselves of the linearized Vlasov equation

(2.12), that reads
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∂f (1)

∂t
+ v · ∇f (1) −

qrB0

mrc
∂f (1)

∂φ
=−

qr

mr

(
E(1)
+

1
c
v×B(1)

)
· ∇v f0. (4.1)

We want to describe the simplest kinetic effects and we demand that f (1) must be
gyrotropic as well, so ∂f (1)/∂φ = 0. This eliminates the third term on the left-hand
side of (4.1) that is responsible for complicated non-gyrotropic effects with associated
Bessel functions. However, even without this term the equation still appears to be
complicated. For gyrotropic f0, the operator on the right-hand side can be shown to
be (see B, equation (B 9), written in Fourier space)(

E+
1
c
v×B

)
· ∇vf0 = (Exvx + Eyvy)

[(
1−

v‖k‖
ω

)
1
v⊥

∂f0

∂v⊥
+

k‖
ω

∂f0

∂v‖

]
+Ez

[
∂f0

∂v‖
−
vxkx + vyky

ω

(
∂f0

∂v‖
−
v‖

v⊥

∂f0

∂v⊥

)]
. (4.2)

Written in the cylindrical coordinate system

v =

v⊥ cos φ
v⊥ sin φ
v‖

 , k=

k⊥ cosψ
k⊥ sinψ

k‖

 , (4.3)

so that

vxkx + vyky = v⊥k⊥ cos φ cosψ + v⊥k⊥ sin φ sinψ = v⊥k⊥ cos(φ −ψ); (4.4)
v · k= v‖k‖ + v⊥k⊥ cos(φ −ψ), (4.5)

which yields(
E+

1
c
v×B

)
· ∇vf0 = (Ex cos φ + Ey sin φ)

[(
1−

v‖k‖
ω

)
∂f0

∂v⊥
+
v⊥k‖
ω

∂f0

∂v‖

]
+Ez

[
∂f0

∂v‖
−

k⊥ cos(φ −ψ)
ω

(
v⊥
∂f0

∂v‖
− v‖

∂f0

∂v⊥

)]
. (4.6)

The Vlasov equation in Fourier space now reads

−i
(
ω− v‖k‖ − v⊥k⊥ cos(φ −ψ)

)
f (1)

=−
qr

mr

{
(Ex cos φ + Ey sin φ)

[(
1−

v‖k‖
ω

)
∂f0

∂v⊥
+
v⊥k‖
ω

∂f0

∂v‖

]
+Ez

[
∂f0

∂v‖
−

k⊥ cos(φ −ψ)
ω

(
v⊥
∂f0

∂v‖
− v‖

∂f0

∂v⊥

)]}
. (4.7)

This equation is not very useful. If the equation is divided by (ω − v · k) to obtain
f (1), and integration over

∫ 2π

0 dφ is attempted, this leads to integrals that are not
well defined. On the other hand, if (4.7) is directly integrated over dφ (each side
separately), almost all the terms disappear since

∫ 2π

0 cos(φ − ψ) dφ = 0 etc., except

− i
(
ω− v‖k‖

)
f (1) =−

qr

mr
Ez
∂f0

∂v‖
, (4.8)

and the system reduces to the simplest case of Landau damping that we have already
described in detail (even though only in a 1-D geometry). We could divide (4.8) by
(ω− v‖k‖), integrate the system in a 3-D geometry and consider Landau fluid closures,
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but this would be a bit boring right now. We want to get a few more kinetic effects out
of the system. We need a different approach and we need to obtain a better gyrotropic
limit for f (1).

It turns out that to obtain the correct gyrotropic limit for f (1), the third term in
the Vlasov equation (4.1) cannot just be straightforwardly neglected. The term has
to be kept there, the relatively complicated integration around the unperturbed orbit
has to be performed (see appendix C), and only then can the term be removed in
a limit. This is very similar to other mathematical techniques that were encountered
earlier, for example when calculating the Fourier transform of sign(k‖), where instead
of that function, one needs to consider sign(k‖)e−α|k‖|, and only after the calculation
is the term removed with the limit α → 0. Without the additional term e−α|k‖| that
was removed later, the calculations were not clearly defined, and a very similar
situation is encountered now. Nevertheless, it is indeed mind boggling that the
complicated integration around the unperturbed orbit has to be performed to recover
the gyrotropic limit. This is exactly why the 3-D case is so much more complicated
than the previously studied 1-D case, even though the Landau fluid closures will not
be more complicated at all, as we will see later. An alternative approach that we will
discuss only very briefly, is to use the guiding-centre variables where the gyrotropic
limit is recovered perhaps more naturally. However, we will skip a huge amount of
calculations that lead to the guiding-centre approach, so the amount of complexity is
probably similar in the end.

4.1. Gyrotropic limit for f (1)

We need to consider the full kinetic f (1) with all non-gyrotropic effects, that is
obtained in appendix C, equation (C 47). By using the z-component of the induction
equation ∂B/∂t = −c∇ × E written in Fourier space (C 71) (that is an equation of
general validity not introducing any simplifications), the general f (1) (C 47) is slightly
rewritten as

f (1)r = −
iqr

mr

∞∑
n=−∞

∞∑
m=−∞

e+i(m−n)(φ−ψ)

ω− k‖v‖ − nΩr
Jm(λr)

{[
nJn(λr)

λr

(
Ex cosψ + Ey sinψ

)
+ iJ′n(λr)

ω

ck⊥
Bz

] [(
1−

k‖v‖
ω

)
∂f0r

∂v⊥
+

k‖v⊥
ω

∂f0r

∂v‖

]
+EzJn(λr)

[
∂f0r

∂v‖
−

nΩr

ω

(
∂f0r

∂v‖
−
v‖

v⊥

∂f0r

∂v⊥

)]}
. (4.9)

This f (1) contains all the information of linear kinetic theory, with associated Bessel
functions Jn(λr), where λr = k⊥v⊥/Ωr and Ωr = qrB0/(mrc). Two summations through
integers ‘n’ and ‘m’ are present in (4.9), that originate from using identities (C 10),
(C 11). The general (4.9) contains ‘singularities’ where ω− k‖v‖− nΩr becomes zero,
that are called wave–particle resonances. For n= 0 the resonance is called the Landau
resonance, and resonances for n 6= 0 are called cyclotron resonances. To get rid of
the summations and Bessel functions, we want to consider the dynamics at spatial
scales that are much larger than the particle gyroradius, which corresponds to limit
λr � 1. Additionally, we will need to consider low-frequency limit ω/Ωr � 1. We
find it illuminating to first separate the n= 0 resonance from all the other expressions,
without performing any approximations, i.e. we want to separate

f (1)r = f (1)r |n=0 + f (1)r |n6=0. (4.10)
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Separating the n= 0 case directly yields

f (1)r |n=0 = −
iqr

mr

∞∑
m=−∞

e+im(φ−ψ)

ω− k‖v‖
Jm(λr)

×

{
iJ′0(λr)

Bz

ck⊥

[(
ω− k‖v‖

) ∂f0r

∂v⊥
+ k‖v⊥

∂f0r

∂v‖

]
+ EzJ0(λr)

∂f0r

∂v‖

}
. (4.11)

Note that nJn(x)/x = (Jn−1(x) + Jn+1(x))/2, which when evaluated for n = 0 is zero
exactly, since J−1(x)+ J1(x)= 0 exactly. Since there is no dependence on angles φ, ψ
inside of the big brackets, the sum can be summed (or put to its original form where
it came from)

f (1)r |n=0 = −
qr

mr

e+iλr sin(φ−ψ)

ω− k‖v‖

{
−J′0(λr)

Bz

ck⊥

[(
ω− k‖v‖

) ∂f0r

∂v⊥
+ k‖v⊥

∂f0r

∂v‖

]
+ iEzJ0(λr)

∂f0r

∂v‖

}
. (4.12)

Very interestingly, for one Bz term, the complicated denominator ω− k‖v‖ cancels out,
yielding

f (1)r |n=0 = −
qr

mr
e+iλr sin(φ−ψ)

{
−J′0(λr)

Bz

ck⊥

[
∂f0r

∂v⊥
+

k‖v⊥
ω− k‖v‖

∂f0r

∂v‖

]
+ J0(λr)

iEz

ω− k‖v‖

∂f0r

∂v‖

}
. (4.13)

This is an exact kinetic expression for f (1) corresponding to n= 0 resonances, that is
accompanied by an expression for all the other resonances f (1)|n6=0 (that is equivalent to
(4.9) where n 6= 0 is added below the sum with n). Now considering the limit λr� 1,
the Bessel functions J0(λr)= 1, J′0(λr)=−λr/2, the exponential term disappears, which
yields the final f (1) in the gyrotropic limit that reads

f (1)r =−
v⊥

2
Bz

B0

[
∂f0r

∂v⊥
+

k‖v⊥
(ω− k‖v‖)

∂f0r

∂v‖

]
−

qr

mr

iEz

(ω− k‖v‖)
∂f0r

∂v‖
, (4.14)

or alternatively

f (1)r =−
Bz

2B0
v⊥
∂f0r

∂v⊥︸ ︷︷ ︸
µ=const.

−
Bz

2B0

k‖v2
⊥

(ω− k‖v‖)
∂f0r

∂v‖︸ ︷︷ ︸
magnetic mirror force

−
qr

mr

iEz

(ω− k‖v‖)
∂f0r

∂v‖︸ ︷︷ ︸
Coulomb force

. (4.15)

As we will see shortly in § 4.2, the expression has a very nice physical interpretation,
where the first term comes from the conservation of the magnetic moment µ, the
second term comes from the magnetic mirror force and the third term comes from
the Coulomb force. The same expression is obtained by directly picking up the m= 0,
n= 0 contributions from the general (4.9). Up to replacing Bz with |B|, the expression
agrees for example with (19) of Ferrière & André (2002), and is of course equivalent
to expressions of Snyder et al. (1997) (formulated in the gyrofluid formalism). In
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those works, the expression is derived perhaps more elegantly, in the so-called guiding-
centre limit of the Vlasov equation (see Kulsrud 1983). The difference between Bz and
|B| arises, because the fully kinetic f (1) in (4.9) is linearized completely.

Note that to obtain the gyrotropic limit (4.14), we did not have to explicitly perform
the low-frequency limit ω/Ωr� 1. However, it is important to emphasize that by only
picking up the n= 0 resonances, we have performed the low-frequency limit implicitly.
The power-series expansion of the Bessel functions for n> 0 reads (with integer n)

Jn(x)=
∞∑

s=0

(−1)s

s!(n+ s)!

( x
2

)n+2s
; J−n(x)=

∞∑
s=0

(−1)n+s

s!(n+ s)!

( x
2

)n+2s
, (4.16)

where the second expression can be easily replaced by J−n(x)= (−1)nJn(x). The first
few terms are

J0(x)= 1−
x2

4
+

x4

64
+ · · · ; J1(x)=

x
2
−

x3

16
+ · · · ; J2(x)=

x2

8
−

x4

96
+ · · · ;

J−1(x)=−
x
2
+

x3

16
+ · · · ; J−2(x)=

x2

8
−

x4

96
+ · · · , (4.17)

and the derivatives of these functions read

J′0(x)=−
x
2
+

x3

16
+ · · · ; J′1(x)=

1
2
−

3x2

16
+ · · · ; J′2(x)=

x
4
−

x3

24
+ · · · ;

J′
−1(x)=−

1
2
+

3x2

16
+ · · · ; J′

−2(x)=
x
4
−

x3

24
+ · · · , (4.18)

and the derivatives can be also calculated by using identity J′n(x) = (Jn−1(x) −
Jn+1(x))/2. In the full equation (4.9), the term with Ex, Ey components contains
Jm(x)(Jn−1(x)+ Jn+1(x)), so for m= 0 terms with resonances n=±1 do not disappear
in the limit λr � 1. Similar situation is for the Bz components (which for n 6= 0 is
actually easier to reformulate to the original formulation without the Bz induction
equation to recover the correct limit). Whether we like it or not, to get rid of these
terms and to obtain the gyrotropic limit (4.14), one has to do the low-frequency limit
ω�Ωr as well.

A few notes are in order. (i) If we now calculate the kinetic moments with f (1)
described by (4.14), which was obviously obtained in the low-frequency limit, and
find possible fluid closures for the heat fluxes q‖, q⊥ or the fourth-order moments
r̃‖‖, r̃‖⊥, r̃⊥⊥, such a fluid model will not become necessarily restricted only to a low-
frequency regime ω� Ω . At the linear level, the parallel propagating ion-cyclotron
and whistler modes are completely independent of the Landau fluid closures, and these
modes remain undamped.10 For example figure 6 in Part 1 remains unchanged, and
the simplest ion-cyclotron resonance where ω→Ω for high wavenumbers (neglecting
FLRs), will not be suddenly ‘removed’ by using a low-frequency Landau fluid closure.
All figures for the (strictly) parallel firehose instability remain unchanged, and the
same applies to the perpendicular fast mode.

(ii) There is nothing ‘esoteric’ about ion-cyclotron resonances. Similarly to the
kinetic effect of Landau damping, the ion-cyclotron resonances just represent some

10The situation is different in nonlinear numerical simulations, where the modes are damped by nonlinear
coupling with the strongly Landau damped ion-acoustic (sound) mode, see for example Landau fluid simulations
of Hunana et al. (2011).
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integral, which indeed has some wave–particle ‘resonance’, i.e. the integral has
some singularity in the denominator. Similarly to Landau damping, in the case of
a bi-Maxwellian f0 this singularity can be expressed through the plasma dispersion
function Z(ζ ) (similar generalizations exist for a bi-kappa distribution etc.). The
variable ζ is only modified to include the resonances, and for n=±1 one can work
with

ζ+1 =
(ω+Ω)

√
α‖

|k‖|
=
(ω+Ω)

|k‖|vth‖
; ζ−1 =

(ω−Ω)
√
α‖

|k‖|
=
(ω−Ω)

|k‖|vth‖
, (4.19)

or for general n with ζn= (ω+ nΩ)/(|k‖|vth‖). No new discussion on how to treat this
singularity is required. The singular point x0 in the complex plane is only moved to
some other location, and all the previous discussion about the Landau integral fully
applies. We could potentially integrate over all the ion-cyclotron resonances and obtain
expressions for the heat flux or the fourth-order moments (with the same techniques
as plasma physics books do, even though they usually stop at the first-order velocity
moment, since it is enough to obtain the kinetic dispersion relation). Even though
complicated in detail, these would be just standard kinetic calculations. The difference
between the advanced fluid and kinetic descriptions is that we need to find a closure
after all of these kinetic calculations, i.e. we need to find a way to express the last
considered moment through lower-order moments, such that the closure is valid for all
the ζ values, for example, by using the Padé approximation for R(ζ ). Such a closure
remains elusive for the ion-cyclotron resonances.

(iii) Advanced fluid models are not restricted to work with f (1) in the gyrotropic
limit (4.14). In the Landau fluid models of Passot & Sulem (2007), no assumption
about the size of the gyroradius is made, and only the low-frequency condition is
used and, therefore, the f (1) of these fluid models contain Bessel functions Jn(λr). The
integrals over dv⊥ are slightly more difficult, and for example if a term proportional to
J0(λ)J0(λ)f0 is encountered, the integration over dv⊥ (d3v=v⊥ dv⊥ dv‖ dφ) is calculated
as ∫

∞

0
xJ2

n(ax)e−x2
dx= 1

2 e−a2/2In(a2/2), (4.20)

implying∫
∞

0
J2

0

(
k⊥
Ω
v⊥

)
e−α⊥v

2
⊥v⊥ dv⊥ =

[
x=
√
α⊥v⊥

]
=

1
α⊥

∫
∞

0
J2

0

(
k⊥

Ω
√
α⊥

x
)

e−x2
x dx

=
1

2α⊥
e−bI0(b), (4.21)

where the new parameter b (which should not be confused with the magnetic field
unit vector b̂) is

b=
k2
⊥

2Ω2α⊥
=

k2
⊥
v2

th⊥

2Ω2
=

k2
⊥

T (0)⊥
mΩ2

=
1
2

k2
⊥

r2
L. (4.22)

Calculations like this lead to the functions Γ0(b)= e−bI0(b) and Γ1(b)= e−bI1(b). We
note that the limit b→ 0 yields Γ0(b)→ 1 and Γ1(b)→ 0.

https://doi.org/10.1017/S0022377819000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000850


94 P. Hunana and others

4.2. Coulomb force and mirror force (Landau damping and transit-time damping)
The gyrotropic limit (4.14) has a very meaningful physical interpretation. To clearly
understand what kind of forces are present in such a system, one needs to consider
that a particle quickly gyrates around its slower moving centre, called the ‘guiding
centre’, and express the full velocity of a particle v as being composed of the quick
gyration vgyro, and a motion of the guiding centre, that is further decomposed to its
free motion parallel to the magnetic field line v‖b̂, and all the possible drifts of the
guiding centre: the ExB drift uE, the grad-B drift, the curvature drift, the polarization
drift etc. The plasma physics books by Fitzpatrick and Gurnett & Bhattacharjee (2005)
have detailed introductions about single-particle motions in the presence of a Lorentz
force, where the drifts of the guiding centre are calculated. Then one should follow
the gyrofluid approach, and by performing integrals over dφ (gyro-averaging) and by
expanding for example with respect to Larmor radius, one should get the ‘guiding-
centre limit’ of the Vlasov equation and the expression for f (1). One should follow
Kulsrud (1983), Snyder et al. (1997) etc. A very useful paper is also that of Ferrière
& André (2002), that explores the discrepancy between the usual CGL and the long-
wavelength low-frequency kinetic theory in great detail and that we follow here.

Without going through the lengthy derivation, it can be shown that at the leading
order (for low frequencies ω/Ω and long wavelengths krL), it is sufficient to consider
the motion of the guiding centre with velocity

v = v‖b̂+ uE; uE = c
E×B
|B|2

, (4.23)

where the perpendicular equation of motion satisfies the conservation of the magnetic
moment

µ=
mv2
⊥

2|B|
= const.; ⇒

d
dt

(
v2
⊥

|B|

)
= 0; ⇒

dv⊥
dt
=

v⊥

2|B|
d|B|
dt
, (4.24)

and the parallel equation of motion satisfies

m
dv‖
dt
= qE‖ −µb̂ · ∇|B| −mb̂ ·

duE

dt
, (4.25)

where E‖ = b̂ · E and d/dt = ∂/∂t + v · ∇ = ∂/∂t + (v‖b̂ + uE) · ∇. The first term
on the right-hand side of the above equation is the Coulomb force, responsible
for acceleration of particles along the magnetic field lines. The second term is the
magnetic mirror force, responsible for trapping of particles in the magnetic bottle.
The third term is a non-inertial force associated with the time dependence of the ExB
drift of the gyrocentre. The similarity of the Coulomb force and the magnetic mirror
force can be emphasized by using the scalar potential Φ and rewriting E‖ = −∇Φ,
which yields

m
dv‖
dt
=−qb̂ · ∇Φ︸ ︷︷ ︸

Coulomb

−µb̂ · ∇|B|︸ ︷︷ ︸
mirror

−mb̂ ·
duE

dt
. (4.26)

The similarity is immediately apparent, one just needs to replace the charge of the
particle with its magnetic moment q → µ and replace Φ → |B|. Therefore, in a
similar way to a charged particle reacting to electric field, a gyrating particle has a
magnetic moment that reacts with the gradient of the strength (absolute value) of the
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magnetic field. The damping effects associated with the Coulomb force are called
Landau damping. The damping effects associated with the mirror force are called
transit-time damping or Barnes damping (Barnes 1966). Therefore, it is often stated
that the transit-time damping is a ‘magnetic analogue’ of Landau damping. Often, the
two effects are not separated since both represent the n = 0 particle resonance and
one talks only about Landau damping. Nevertheless, it is emphasized that Landau
fluid models in a 3-D geometry contain both damping mechanisms, and these models
contain both the Coulomb force and the mirror force.11

The equations of motion (4.24), (4.25) should be used in the gyro-averaged Vlasov
equation

∂f
∂t
+ (v‖b̂+ uE) · ∇f +

[
dv⊥
dt

∂

∂v⊥
+

dv‖
dt

∂

∂v‖

]
f = 0, (4.27)

and the equation should be expanded f = f0 + f (1). We are interested only in linear
solutions, and we can simplify. To avoid discussing compatibility conditions for f0 (see
Kulsrud 1983), we can just simply claim that f0 does not have any time or spatial
dependence. By further noticing that linearization of uE

lin
=u(0)E +u(1)E yields u(0)E = cE0×

B0/B2
0 = 0 since E0 = 0, we can immediately write that at the linear level

∂f (1)

∂t
+ v‖∂zf (1) =−

[
dv⊥
dt

∂

∂v⊥
+

dv‖
dt

∂

∂v‖

]
f0. (4.28)

Noticing that the ExB drift uE is always perpendicular to the direction of B (and
also E) implies b̂ · uE = 0, and the last term in the dv‖/dt equation (4.25) rewrites
as

− b̂ ·
duE

dt
=−

d
dt
(b̂ · uE︸ ︷︷ ︸
=0

)+ uE ·
db̂
dt
, (4.29)

which at the linear level disappears, since

uE ·
db̂
dt

lin
= u(0)E︸︷︷︸

=0

·
db̂

(1)

dt
+ u(1)E ·

db̂
(0)

dt︸ ︷︷ ︸
=0

= 0. (4.30)

The magnetic mirror force contains ∂z|B| = ∂z

√
B2

x + B2
y + B2

z = b̂ · ∂zB, where

linearization yields ∂z|B|
lin
= ∂zBz. Similarly, the dv⊥/dt equation (4.24) contains

d|B|/dt = b̂ · dB/dt that linearizes as d|B|/dt lin
= (∂/∂t + v‖∂z)Bz. The linearized

equations of motion therefore read

dv‖
dt

lin
=

q
m

E‖ −
v2
⊥

2B0
∂zBz; (4.31)

dv⊥
dt

lin
=
v⊥

2B0

(
∂

∂t
+ v‖∂z

)
Bz, (4.32)

11In the 1-D geometry where only v‖ is considered, the gyration of particles, the magnetic mirror force
and the transit-time damping of course disappears, since these effects naturally require v⊥ as well.
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yielding the final expression for f (1) in real space(
∂

∂t
+ v‖∂z

)
f (1) =−

v⊥

2B0

(
∂

∂t
+ v‖∂z

)
Bz
∂f0

∂v⊥
−

(
q
m

E‖ −
v2
⊥

2B0
∂zBz

)
∂f0

∂v‖
, (4.33)

which when Fourier transformed recovers the f (1) in the gyrotropic limit (4.14). Instead
of fully linearized equations with Bz, one can also work with |B|, i.e. one can write
the leading-order equations of motion as

dv‖
dt
=

q
m

E‖ −
v2
⊥

2B0
∂z|B|; (4.34)

dv⊥
dt
=
v⊥

2B0

(
∂

∂t
+ v‖∂z

)
|B|, (4.35)

which yields analogous equations (4.33), (4.14) where Bz is just replaced by |B|.

4.3. Kinetic moments for bi-Maxwellian f0

Since in the Vlasov expansion the gyrotropic f0 was assumed to depended only on
v, i.e. f0(v

2
⊥
, v2
‖
) and be x, t independent, the fluid velocity u is removed from the

distribution function and the ‘pure’ bi-Maxwellian is

f0 = n0

√
α‖

π

α⊥

π
e−α‖v

2
‖
−α⊥v

2
⊥, (4.36)

where
α‖ =

m

2T (0)‖
; α⊥ =

m

2T (0)⊥
, (4.37)

or in the language of thermal speeds,

v2
th‖ =

2T (0)‖
m
= α−1

‖
; v2

th⊥ =
2T (0)⊥

m
= α−1

⊥
. (4.38)

We prefer the α notation instead of the thermal speed vth, since in long analytic
calculations, there is a lesser chance of an error. We work without the species index
r except for charge qr and mass mr. It is straightforward to calculate that

∂f0

∂v‖
=−2α‖v‖ f0 =−

mr

T (0)‖
v‖ f0; (4.39)

∂f0

∂v⊥
=−2α⊥v⊥ f0 =−

mr

T (0)⊥
v⊥ f0. (4.40)

Instead of Ez, we will work with the scalar potential Φ as before

Ez =−∇‖Φ; ⇒ iEz = k‖Φ. (4.41)

The f (1) that we want to integrate reads

f (1) =
Bz

B0
α⊥

[
v2
⊥

f0 +
α‖

α⊥

k‖v‖v2
⊥

(ω− k‖v‖)
f0

]
+Φ

qr

mr
2α‖

k‖v‖
(ω− k‖v‖)

f0, (4.42)
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or alternatively expressed with temperatures

f (1) =
Bz

B0

mr

2T (0)⊥

[
v2
⊥

f0 +
T (0)⊥
T (0)‖

k‖v‖v2
⊥

(ω− k‖v‖)
f0

]
+Φ

qr

T (0)‖

k‖v‖
(ω− k‖v‖)

f0. (4.43)

Now we want to calculate the linear ‘kinetic’ moments over this distribution function.
The kinetic moments are

n(1) =
∫

f (1)d3v; u(1)‖ =
1
n0

∫
v‖f (1) d3v; (4.44)

p(1)‖ =mr

∫
v2
‖
f (1) d3v; p(1)⊥ =

mr

2

∫
v2
⊥

f (1) d3v; (4.45)

q(1)‖ =mr

∫
v3
‖
f (1) d3v − 3p(0)‖ u(1)‖ ; q(1)⊥ =

mr

2

∫
v‖v

2
⊥

f (1) d3v − p(0)⊥ u(1)‖ ; (4.46)

r(1)‖‖ =mr

∫
v4
‖
f (1) d3v; r(1)‖⊥ =

mr

2

∫
v2
‖
v2
⊥

f (1) d3v; r(1)⊥⊥ =
mr

4

∫
v4
⊥

f (1) d3v. (4.47)

We have so far avoided integration in the cylindrical coordinate system, and all the
previous integrals were done in the Cartesian coordinate system. In the cylindrical
system, d3v= v⊥ dv⊥ dv‖ dφ and the integral with respect to v⊥ is from 0 to ∞. The
Gaussian integrals are∫

∞

0
e−ax2

dx=
1
2

√
π

a
;

∫
∞

0
xe−ax2

dx=
1

2a
;∫

∞

0
x2e−ax2

dx=
1
4a

√
π

a
;

∫
∞

0
x3e−ax2

dx=
1

2a2
;∫

∞

0
x4e−ax2

dx=
3

8a2

√
π

a
;

∫
∞

0
x5e−ax2

dx=
1
a3
;∫

∞

0
x6e−ax2

dx=
15

16a3

√
π

a
;

∫
∞

0
x7e−ax2

dx=
3
a4
.

Therefore, integrating over dv⊥ dφ is straightforward and∫
f0v⊥ dv⊥ dφ = 2π

∫
∞

0
f0v⊥ dv⊥

= 2πn0

√
α‖

π
e−α‖v

2
‖

α⊥

π

∫
∞

0
v⊥e−α⊥v

2
⊥ dv⊥︸ ︷︷ ︸

=1/(2α⊥)

= n0

√
α‖

π
e−α‖v

2
‖ , (4.48)

and similarly∫
f0v

3
⊥

dv⊥ dφ = n0

√
α‖

π
e−α‖v

2
‖

1
α⊥
;

∫
f0v

5
⊥

dv⊥ dφ = n0

√
α‖

π
e−α‖v

2
‖

2
α2
⊥

;∫
f0v

7
⊥

dv⊥ dφ = n0

√
α‖

π
e−α‖v

2
‖

6
α3
⊥

, (4.49)
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and these are all of integrals over dv⊥ that are needed right now. The basic integrals
(without singularity) calculate as∫

f0 d3v = n0;

∫
v‖f0 d3v = 0;

∫
v2
‖
f0 d3v = n0

1
2α‖
;∫

v3
‖
f0 d3v = 0;

∫
v4
‖
f0 d3v = n0

3
4α2
‖

, (4.50)

and each integral yields further 3 cases from (4.49) just by multiplying, so∫
v2
⊥

f0 d3v = n0
1
α⊥
;

∫
v4
⊥

f0 d3v = n0
2
α2
⊥

;

∫
v6
⊥

f0 d3v = n0
6
α3
⊥

;∫
v2
‖
v2
⊥

f0 d3v = n0
1

2α‖

1
α⊥
;

∫
v2
‖
v4
⊥

f0 d3v = n0
1

2α‖

2
α2
⊥

;∫
v2
‖
v6
⊥

f0 d3v = n0
1

2α‖

6
α3
⊥

;∫
v4
‖
v2
⊥

f0 d3v = n0
3

4α2
‖

1
α⊥
;

∫
v4
‖
v4
⊥

f0 d3v = n0
3

4α2
‖

2
α2
⊥

;∫
v4
‖
v6
⊥

f0 d3v = n0
3

4α2
‖

6
α3
⊥

. (4.51)

By using Landau integrals (2.54)–(2.58), the following integrals can be calculated∫
k‖v‖ f0

ω− k‖v‖
d3v =−n0R(ζ );

∫ k‖v2
‖
f0

ω− k‖v‖
d3v =−

n0
√
α‖

sign(k‖)ζR(ζ );∫ k‖v3
‖
f0

ω− k‖v‖
d3v =−

n0

α‖

(
1
2
+ ζ 2R(ζ )

)
;∫ k‖v4

‖
f0

ω− k‖v‖
d3v =−

n0

α
3/2
‖

sign(k‖)
(

1
2
ζ + ζ 3R(ζ )

)
;∫ k‖v5

‖
f0

ω− k‖v‖
d3v =−

n0

α2
‖

(
3
4
+
ζ 2

2
+ ζ 4R(ζ )

)
, (4.52)

and each of these integrals yields further 3 cases from (4.49) just by multiplying, so
that ∫

k‖v‖v2
⊥

f0

ω− k‖v‖
d3v =−n0R(ζ )

1
α⊥
;

∫
k‖v‖v4

⊥
f0

ω− k‖v‖
d3v =−n0R(ζ )

2
α2
⊥

;∫
k‖v‖v6

⊥
f0

ω− k‖v‖
d3v =−n0R(ζ )

6
α3
⊥

; (4.53)∫ k‖v2
‖
v2
⊥

f0

ω− k‖v‖
d3v =−

n0
√
α‖

sign(k‖)ζR(ζ )
1
α⊥
;∫ k‖v2

‖
v4
⊥

f0

ω− k‖v‖
d3v =−

n0
√
α‖

sign(k‖)ζR(ζ )
2
α2
⊥

;
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‖
v6
⊥

f0

ω− k‖v‖
d3v =−

n0
√
α‖

sign(k‖)ζR(ζ )
6
α3
⊥

; (4.54)∫ k‖v3
‖
v2
⊥

f0

ω− k‖v‖
d3v =−

n0

α‖

(
1
2
+ ζ 2R(ζ )

)
1
α⊥
;∫ k‖v3

‖
v4
⊥

f0

ω− k‖v‖
d3v =−

n0

α‖

(
1
2
+ ζ 2R(ζ )

)
2
α2
⊥

;∫ k‖v3
‖
v6
⊥

f0

ω− k‖v‖
d3v =−

n0

α‖

(
1
2
+ ζ 2R(ζ )

)
6
α3
⊥

; (4.55)∫ k‖v4
‖
v2
⊥

f0

ω− k‖v‖
d3v =−

n0

α
3/2
‖

sign(k‖)
(

1
2
ζ + ζ 3R(ζ )

)
1
α⊥
;∫ k‖v4

‖
v4
⊥

f0

ω− k‖v‖
d3v =−

n0

α
3/2
‖

sign(k‖)
(

1
2
ζ + ζ 3R(ζ )

)
2
α2
⊥

;∫ k‖v4
‖
v6
⊥

f0

ω− k‖v‖
d3v =−

n0

α
3/2
‖

sign(k‖)
(

1
2
ζ + ζ 3R(ζ )

)
6
α3
⊥

; (4.56)∫ k‖v5
‖
v2
⊥

f0

ω− k‖v‖
d3v =−

n0

α2
‖

(
3
4
+
ζ 2

2
+ ζ 4R(ζ )

)
1
α⊥
;∫ k‖v5

‖
v4
⊥

f0

ω− k‖v‖
d3v =−

n0

α2
‖

(
3
4
+
ζ 2

2
+ ζ 4R(ζ )

)
2
α2
⊥

;∫ k‖v5
‖
v6
⊥

f0

ω− k‖v‖
d3v =−

n0

α2
‖

(
3
4
+
ζ 2

2
+ ζ 4R(ζ )

)
6
α3
⊥

. (4.57)

Now it is easy to calculate the kinetic moments.

Density
The density calculates as

n(1) =
Bz

B0
α⊥

[∫
v2
⊥

f0 d3v +
α‖

α⊥

∫
k‖v‖v2

⊥

(ω− k‖v‖)
f0 d3v

]
+Φ

qr

mr
2α‖

∫
k‖v‖

(ω− k‖v‖)
f0 d3v

=
Bz

B0
α⊥

[
n0

α⊥
+
α‖

α⊥
(−n0)R(ζ )

1
α⊥

]
+Φ

qr

mr
2α‖(−n0)R(ζ ),

so that the ratio

n(1)

n0
=

Bz

B0

[
1−

α‖

α⊥
R(ζ )

]
−Φ

qr

mr
2α‖R(ζ ),

and the final result reads

n(1)

n0
=

Bz

B0

[
1−

T (0)⊥
T (0)‖

R(ζ )

]
−Φ

qr

T (0)‖
R(ζ ). (4.58)
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Parallel velocity
The parallel velocity calculates as

n0u(1)‖ =
Bz

B0
α⊥

∫ v‖v
2
⊥

f0 d3v︸ ︷︷ ︸
=0

+
α‖

α⊥

∫ k‖v2
‖
v2
⊥

(ω− k‖v‖)
f0 d3v


+Φ

qr

mr
2α‖

∫ k‖v2
‖

(ω− k‖v‖)
f0 d3v

= −
Bz

B0

n0
√
α‖

α‖

α⊥
sign(k‖)ζR(ζ )−Φ

qr

mr
2α‖

n0
√
α‖

sign(k‖)ζR(ζ )

= −
n0
√
α‖

sign(k‖)ζR(ζ )
[

Bz

B0

α‖

α⊥
+Φ

qr

mr
2α‖

]
, (4.59)

so that

u(1)‖ =−

√
2T (0)‖
mr

sign(k‖)ζR(ζ )

[
Bz

B0

T (0)⊥
T (0)‖
+Φ

qr

T (0)‖

]
. (4.60)

Parallel pressure
The parallel pressure calculates as

p(1)‖ = mr
Bz

B0
α⊥

[∫
v2
‖
v2
⊥

f0 d3v +
α‖

α⊥

∫ k‖v3
‖
v2
⊥

(ω− k‖v‖)
f0 d3v

]

+mrΦ
qr

mr
2α‖

∫ k‖v3
‖

(ω− k‖v‖)
f0 d3v

= mr
Bz

B0
α⊥

[
n0

2α‖α⊥
−
α‖

α⊥

n0

α‖

(
1
2
+ ζ 2R(ζ )

)
1
α⊥

]
−mrΦ

qr

mr
2α‖

n0

α‖

(
1
2
+ ζ 2R(ζ )

)
,

so that

p(1)‖
n0
=mr

Bz

B0

1
2α‖

[
1−

α‖

α⊥

(
1+ 2ζ 2R(ζ )

)]
−Φqr

(
1+ 2ζ 2R(ζ )

)
,

and

p(1)‖
p(0)‖
=

Bz

B0

[
1−

T (0)⊥
T (0)‖

(
1+ 2ζ 2R(ζ )

)]
−Φ

qr

T (0)‖

(
1+ 2ζ 2R(ζ )

)
=

Bz

B0
−
(
1+ 2ζ 2R(ζ )

) [Bz

B0

T (0)⊥
T (0)‖
+Φ

qr

T (0)‖

]
. (4.61)

https://doi.org/10.1017/S0022377819000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000850


Collisionless fluid models. Part 2 101

Parallel temperature
The parallel temperature calculates (linearizing p‖ = T‖n) as

T (1)‖
T (0)‖
=

p(1)‖
p(0)‖
−

n(1)

n0
, (4.62)

that yields

T (1)‖
T (0)‖
= −

Bz

B0

T (0)⊥
T (0)‖

(
1+ 2ζ 2R(ζ )− R(ζ )

)
−Φ

qr

T (0)‖

(
1+ 2ζ 2R(ζ )− R(ζ )

)
= −

(
1+ 2ζ 2R(ζ )− R(ζ )

) [Bz

B0

T (0)⊥
T (0)‖
+Φ

qr

T (0)‖

]
. (4.63)

Perpendicular pressure
The perpendicular pressure calculates as

p(1)⊥ =
mr

2
Bz

B0
α⊥

[∫
v4
⊥

f0 d3v +
α‖

α⊥

∫
k‖v‖v4

⊥

(ω− k‖v‖)
f0 d3v

]
+

mr

2
Φ

qr

mr
2α‖

∫
k‖v‖v2

⊥

(ω− k‖v‖)
f0 d3v

=
mr

2
Bz

B0
α⊥

[
n0

2
α2
⊥

+
α‖

α⊥
(−n0)R(ζ )

2
α2
⊥

]
+

mr

2
Φ

qr

mr
2α‖(−n0)R(ζ )

1
α⊥
,

so that
p(1)⊥
n0
=mr

Bz

B0

1
α⊥

[
1−

α‖

α⊥
R(ζ )

]
−Φqr

α‖

α⊥
R(ζ ), (4.64)

further yielding
p(1)⊥
p(0)⊥
=

Bz

B0
2

[
1−

T (0)⊥
T (0)‖

R(ζ )

]
−Φ

qr

T (0)‖
R(ζ ). (4.65)

Perpendicular temperature
The perpendicular temperature calculates (linearizing p⊥ = T⊥n) as

T (1)⊥
T (0)⊥
=

p(1)⊥
p(0)⊥
−

n(1)

n0
, (4.66)

that yields
T (1)⊥
T (0)⊥
=

Bz

B0

[
1−

T (0)⊥
T (0)‖

R(ζ )

]
. (4.67)

We might be tired of calculations at this stage, but this result nicely shows that (at the
linear level and at the long scales and low frequencies considered here) the Landau
damping (∼Ez) does not influence the perpendicular temperature, however, the transit-
time damping still does.
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Parallel heat flux
The parallel heat flux calculates as

q(1)‖ = mr
Bz

B0
α⊥

∫ v3
‖
v2
⊥

f0 d3v︸ ︷︷ ︸
=0

+
α‖

α⊥

∫ k‖v4
‖
v2
⊥

(ω− k‖v‖)
f0 d3v


+mrΦ

qr

mr
2α‖

∫ k‖v4
‖

(ω− k‖v‖)
f0 d3v − 3p(0)‖ u(1)‖

= −mr
Bz

B0
α‖

n0

α
3/2
‖

sign(k‖)
(
ζ

2
+ ζ 3R(ζ )

)
1
α⊥

−mrΦ
qr

mr
2α‖

n0

α
3/2
‖

sign(k‖)
(
ζ

2
+ ζ 3R(ζ )

)
− 3p(0)‖ u(1)‖

= −
n0mr

α
3/2
‖

sign(k‖)
(
ζ

2
+ ζ 3R(ζ )

) [
Bz

B0

α‖

α⊥
+Φ

qr

mr
2α‖

]
− 3p(0)‖ u(1)‖ ,

so that

q(1)‖
p(0)‖
= −

1
√
α‖

sign(k‖)
(
ζ + 2ζ 3R(ζ )

) [Bz

B0

α‖

α⊥
+Φ

qr

mr
2α‖

]
− 3u(1)‖

= −
1
√
α‖

sign(k‖)
(
ζ + 2ζ 3R(ζ )− 3ζR(ζ )

) [Bz

B0

α‖

α⊥
+Φ

qr

mr
2α‖

]
, (4.68)

or alternatively

q(1)‖ =−

√
2T (0)‖
mr

n0T (0)‖ sign(k‖)
(
ζ + 2ζ 3R(ζ )− 3ζR(ζ )

) [Bz

B0

T (0)⊥
T (0)‖
+Φ

qr

T (0)‖

]
. (4.69)

Perpendicular heat flux
The perpendicular heat flux calculates as

q(1)⊥ =
mr

2
Bz

B0
α⊥

∫ v‖v
4
⊥

f0 d3v︸ ︷︷ ︸
=0

+
α‖

α⊥

∫ k‖v2
‖
v4
⊥

(ω− k‖v‖)
f0 d3v


+

mr

2
Φ

qr

mr
2α‖

∫ k‖v2
‖
v2
⊥

(ω− k‖v‖)
f0 d3v − p(0)⊥ u(1)‖

= −
mr

2
Bz

B0
α‖n0

1
√
α‖

sign(k‖)ζR(ζ )
2
α2
⊥

−
mr

2
Φ

qr

mr
2α‖n0

1
√
α‖

sign(k‖)ζR(ζ )
1
α⊥
− p(0)⊥ u(1)‖

= −
mr

2
n0
√
α‖

sign(k‖)ζR(ζ )
1
α⊥

[
Bz

B0

2α‖
α⊥
+Φ

qr

mr
2α‖

]
− p(0)⊥ u(1)‖ ,

so that
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q(1)⊥
p(0)⊥
= −

1
√
α‖

sign(k‖)ζR(ζ )
[

Bz

B0

2α‖
α⊥
+Φ

qr

mr
2α‖

]
− u(1)‖

= −
1
√
α‖

sign(k‖)ζR(ζ )
Bz

B0

α‖

α⊥
, (4.70)

or alternatively

q(1)⊥ =−

√
2T (0)‖
mr

p(0)⊥
T (0)⊥
T (0)‖

sign(k‖)ζR(ζ )
Bz

B0
. (4.71)

The perpendicular heat flux q(1)⊥ (similarly to the perpendicular temperature T (1)⊥ ),
is also not directly influenced by the Landau damping (∼Ez), even though it is
influenced by the transit-time damping (∼Bz).

Fourth-order moment r‖‖
The fourth-order moment r‖‖ calculates as

r(1)‖‖ = mr
Bz

B0
α⊥

[∫
v4
‖
v2
⊥

f0 d3v +
α‖

α⊥

∫ k‖v5
‖
v2
⊥

(ω− k‖v‖)
f0 d3v

]

+mrΦ
qr

mr
2α‖

∫ k‖v5
‖

(ω− k‖v‖)
f0 d3v

= mr
Bz

B0
α⊥

[
n0

3
4α2
‖α⊥
+
α‖

α⊥

(−n0)

α2
‖

(
3
4
+
ζ 2

2
+ ζ 4R(ζ )

)
1
α⊥

]
+mrΦ

qr

mr
2α‖

(−n0)

α2
‖

(
3
4
+
ζ 2

2
+ ζ 4R(ζ )

)
= mr

Bz

B0
n0

3
4α2
‖

−mrn0

(
3
4
+
ζ 2

2
+ ζ 4R(ζ )

)
1
α2
‖

[
Bz

B0

α‖

α⊥
+Φ

qr

mr
2α‖

]
, (4.72)

so that

r(1)‖‖ =
p(0)‖ T (0)‖

mr

{
3

Bz

B0
−
(
3+ 2ζ 2

+ 4ζ 4R(ζ )
) [Bz

B0

T (0)⊥
T (0)‖
+Φ

qr

T (0)‖

]}
. (4.73)

Fourth-order moment deviation r̃‖‖
The fourth-order moment ‘deviation’ r̃(1)‖‖ calculates as (linearizing

r‖‖ = (3/mr)p‖T‖ + r̃‖‖ with definitions r(0)‖‖ = (3/mr)p
(0)
‖ T (0)‖ and r̃(0)‖‖ = 0)

r(1)‖‖
r(0)‖‖
=

p(1)‖
p(0)‖
+

T (1)‖
T (0)‖
+

r̃(1)‖‖
r(0)‖‖
, (4.74)

or equivalently

r̃(1)‖‖ = r(1)‖‖ −
3

mr
p(0)‖ T (0)‖

(
p(1)‖
p(0)‖
+

T (1)‖
T (0)‖

)
, (4.75)

which yields

r̃(1)‖‖ =−
p(0)‖ T (0)‖

mr

(
2ζ 2
+ 4ζ 4R(ζ )+ 3R(ζ )− 3− 12ζ 2R(ζ )

) [Bz

B0

T (0)⊥
T (0)‖
+Φ

qr

T (0)‖

]
. (4.76)
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Fourth-order moment r‖⊥
The fourth-order moment r‖⊥ calculates as

r(1)‖⊥ =
mr

2
Bz

B0
α⊥

[∫
v2
‖
v4
⊥

f0 d3v +
α‖

α⊥

∫ k‖v3
‖
v4
⊥

(ω− k‖v‖)
f0 d3v

]

+
mr

2
Φ

qr

mr
2α‖

∫ k‖v3
‖
v2
⊥

(ω− k‖v‖)
f0 d3v

=
mr

2
Bz

B0
α⊥

[
n0

α‖α
2
⊥

−
α‖

α⊥
n0

2
α‖α

2
⊥

(
1
2
+ ζ 2R(ζ )

)]
−

mr

2
Φ

qr

mr
2α‖

n0

α‖α⊥

(
1
2
+ ζ 2R(ζ )

)
=

mr

2
Bz

B0

n0

α‖α⊥
−mrn0

(
1
2
+ ζ 2R(ζ )

)
1

α‖α⊥

[
Bz

B0

α‖

α⊥
+

1
2
Φ

qr

mr
2α‖

]
, (4.77)

so that

r(1)‖⊥ =
p(0)‖ T (0)⊥

mr

{
2

Bz

B0
−
(
2+ 4ζ 2R(ζ )

) [Bz

B0

T (0)⊥
T (0)‖
+

1
2
Φ

qr

T (0)‖

]}
. (4.78)

Fourth-order moment deviation r̃‖⊥
The fourth-order moment ‘deviation’ r̃(1)‖⊥ calculates as (for example linearizing r‖⊥=

(1/mr)p‖T⊥ + r̃‖⊥ with definitions r(0)‖⊥ = (1/mr)p
(0)
‖ T (0)⊥ and r̃(0)‖⊥ = 0)

r(1)‖⊥
r(0)‖⊥
=

p(1)‖
p(0)‖
+

T (1)⊥
T (0)⊥
+

r̃(1)‖⊥
r(0)‖⊥
, (4.79)

or equivalently

r̃(1)‖⊥ = r(1)‖⊥ −
1

mr
p(0)‖ T (0)⊥

(
p(1)‖
p(0)‖
+

T (1)⊥
T (0)⊥

)
, (4.80)

and the result is

r̃(1)‖⊥ =−
p(0)⊥ T (0)⊥

mr

Bz

B0

(
1+ 2ζ 2R(ζ )− R(ζ )

)
. (4.81)

Fourth-order moment r⊥⊥
The fourth-order moment r⊥⊥ calculates as

r(1)⊥⊥ =
mr

4
Bz

B0
α⊥

[∫
v6
⊥

f0 d3v +
α‖

α⊥

∫
k‖v‖v6

⊥

(ω− k‖v‖)
f0 d3v

]
+

mr

4
Φ

qr

mr
2α‖

∫
k‖v‖v4

⊥

(ω− k‖v‖)
f0 d3v

=
mr

4
Bz

B0
α⊥

[
n0

6
α3
⊥

−
α‖

α⊥
n0R(ζ )

6
α3
⊥

]
−

mr

4
Φ

qr

mr
2α‖n0R(ζ )

2
α2
⊥

, (4.82)

and the result is

r(1)⊥⊥ =
2p(0)⊥ T (0)⊥

mr

{
3

Bz

B0

(
1−

T (0)⊥
T (0)‖

R(ζ )

)
−Φ

qr

T (0)‖
R(ζ )

}
. (4.83)
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Fourth-order moment deviation r̃⊥⊥
The fourth-order moment deviation r̃(1)⊥⊥ calculates as (for example linearizing

r⊥⊥ = (2/mr)p⊥T⊥ + r̃⊥⊥ with definitions r(0)⊥⊥ = (2/mr)p
(0)
⊥ T (0)⊥ and r̃(0)⊥⊥ = 0)

r(1)⊥⊥
r(0)⊥⊥
=

p(1)⊥
p(0)⊥
+

T (1)⊥
T (0)⊥
+

r̃(1)⊥⊥
r(0)⊥⊥

, (4.84)

or equivalently

r̃(1)⊥⊥ = r(1)⊥⊥ −
2p(0)⊥ T (0)⊥

mr

(
p(1)⊥
p(0)⊥
+

T (1)⊥
T (0)⊥

)
, (4.85)

which yields
r̃(1)⊥⊥ = 0. (4.86)

This is excellent news, since we will not have to consider closures for r̃(1)⊥⊥.

4.4. Landau fluid closures in three dimensions
Let us separate the kinetic moments into two groups. The first group

u(1)‖ = −

√
2T (0)‖
mr

sign(k‖)ζR(ζ )

[
Bz

B0

T (0)⊥
T (0)‖
+Φ

qr

T (0)‖

]
; (4.87)

T (1)‖
T (0)‖
= −

(
1+ 2ζ 2R(ζ )− R(ζ )

) [Bz

B0

T (0)⊥
T (0)‖
+Φ

qr

T (0)‖

]
; (4.88)

q(1)‖ = −

√
2T (0)‖
mr

n0T (0)‖ sign(k‖)
(
ζ + 2ζ 3R(ζ )− 3ζR(ζ )

) [Bz

B0

T (0)⊥
T (0)‖
+Φ

qr

T (0)‖

]
;

(4.89)

r̃(1)‖‖ = −
p(0)‖ T (0)‖

mr

(
2ζ 2
+ 4ζ 4R(ζ )+ 3R(ζ )− 3− 12ζ 2R(ζ )

) [Bz

B0

T (0)⊥
T (0)‖
+Φ

qr

T (0)‖

]
.

(4.90)

And the second group

T (1)⊥
T (0)⊥
=

[
1−

T (0)⊥
T (0)‖

R(ζ )

]
Bz

B0
; (4.91)

q(1)⊥ = −

√
2T (0)‖
mr

p(0)⊥
T (0)⊥
T (0)‖

sign(k‖)ζR(ζ )
Bz

B0
; (4.92)

r̃(1)‖⊥ = −
p(0)⊥ T (0)⊥

mr

(
1+ 2ζ 2R(ζ )− R(ζ )

) Bz

B0
. (4.93)

One immediately notices that the moments in the first group, are extremely similar
to the moments we obtained in the simplified case of a 1-D geometry, where we
neglected the transit-time damping, i.e. in the system (3.20)–(3.26). In fact, the system
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is completely the same, if the variable (Bz/B0)(T
(0)
⊥ /T

(0)
‖ )+Φ(qr/T

(0)
‖ ) is replaced by

Φ(qr/T
(0)
‖ ). Therefore, there is nothing more we can do here, and all the discussion

and closures from the 1-D geometry, apply here in the 3-D geometry to closures for
q(1)‖ and r̃(1)‖‖ without any changes. So for example,

R3,2(ζ ) : q(1)‖ =−
2
√

π
n0vth‖isign(k‖)T

(1)
‖ ; (4.94)

R4,3(ζ ) : r̃(1)‖‖ =−
2
√

π

(3π− 8)
vth‖isign(k‖)q

(1)
‖ +

(32− 9π)

2(3π− 8)
v2

th‖n0T (1)‖ , (4.95)

and similarly for all the other closures that we considered in the 1-D geometry.

4.4.1. Closures for q⊥ and r̃‖⊥
For the second group, we do not have many choices and the calculations are simpler.

In comparison to the first group, the expressions for q(1)⊥ and r̃(1)‖⊥ contain only powers
ζ and ζ 2. On one hand, this is good news since the analytic calculations are simpler
and we will explore all possible cases of closure very quickly. On the other hand,
this means that we will be able to use only relatively low-order Padé approximants
to R(ζ ), implying that the closures will be less accurate.

To easily spot closures, it is perhaps beneficial to use

vth‖ =

√
2T (0)‖
mr
; ap =

T (0)⊥
T (0)‖
; B̃z =

Bz

B0
, (4.96)

and the moments read

T (1)⊥
T (0)⊥
= B̃z

[
1− apR(ζ )

]
; (4.97)

q(1)⊥ = −vth‖p
(0)
⊥ apsign(k‖)B̃z [ζR(ζ )] ; (4.98)

r̃(1)‖⊥ = −v
2
th‖p

(0)
⊥

ap

2
B̃z
[
1+ 2ζ 2R(ζ )− R(ζ )

]
. (4.99)

Before proceeding with Padé approximants, it is very beneficial to briefly consider the
limit ζ � 1, where R(ζ )→ 1. And a problem is immediately apparent. The quantities
q(1)⊥ and r̃(1)‖⊥ are small and converge to zero, however, this is in general not true for the
perpendicular temperature T (1)⊥ , where the result depends on the temperature anisotropy
ratio ap. With anisotropic mean temperatures (ap 6= 1), the quantity T (1)⊥ will remain
finite and will not converge to zero due to coupling with magnetic field perturbations
Bz, essentially because of conservation of the magnetic moment. The quantity T (1)⊥ , at
least as it is written now, is therefore not suitable for the construction of closures.
Or in another words, the technique with Padé approximants of R(ζ ) will not work,
since the technique is based on matching the expressions for all ζ values. To consider
closures, we have to separate this finite contribution, so that the Padé technique can
be used, i.e. by writing

T (1)⊥
T (0)⊥
= B̃z

[
1− ap + ap − apR(ζ )

]
= B̃z(1− ap)+ B̃zap [1− R(ζ )] , (4.100)
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and by moving the finite contribution to the left-hand side

T (1)⊥
T (0)⊥
+ B̃z(ap − 1)︸ ︷︷ ︸
=T⊥

= B̃zap [1− R(ζ )] . (4.101)

Therefore, instead of looking for closures with T (1)⊥ , we have to look for closures with
a quantity that is proportional to the left-hand side of this equation, that we call T⊥
(T written with the ‘mathcal’ command in latex), and for clarity written with the full
notation

T⊥ ≡
T (1)⊥
T (0)⊥
+

(
T (0)⊥
T (0)‖
− 1

)
Bz

B0
; T⊥ =

Bz

B0

T (0)⊥
T (0)‖

[1− R(ζ )] , (4.102)

where on the left is the definition of the new quantity, and on the right is the kinetic
moment that this new quantity satisfies. Only now we are ready to use the Padé
approximants of R(ζ ) and construct closures.

4.4.2. One-pole closure
By using approximant R1(ζ ), the moments calculate as

R1(ζ ) : D =
(
1− i
√

πζ
)
; (4.103)

T⊥ = apB̃z
1
D

[
−i
√

πζ
]
; (4.104)

q(1)⊥ = −vth‖p
(0)
⊥ apsign(k‖)B̃z

1
D

[ζ ] ; (4.105)

r̃(1)‖⊥ = −v
2
th‖p

(0)
⊥

ap

2
B̃z

1
D

[
2ζ 2
− i
√

πζ
]
, (4.106)

and the heat flux q(1)⊥ can be directly expressed through T⊥ according to

R1(ζ ) : q(1)⊥ =−
p(0)⊥
√

π
vth‖isign(k‖)T⊥, (4.107)

and using full notation and transforming to real space

R1(ζ ) : q(1)⊥ =−
p(0)⊥
√

π
vth‖H

[
T (1)⊥
T (0)⊥
+

(
T (0)⊥
T (0)‖
− 1

)
Bz

B0

]
. (4.108)

Up to the replacement of Bz with |B|, the closure is equivalent, for example, to (40)
of Snyder et al. (1997) (their thermal speeds do not contain the factors of 2). The
closure is similar to the corresponding closure for the parallel heat flux (4.94), and for
isotropic temperatures the term ∼ Bz disappears. The closure is therefore very useful
for understanding the collisionless heat flux, however, the closure is not very accurate
and for ζ � 1, the heat flux (4.105) does not disappear and instead, converges to an
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asymptotic value. Alternatively, since later on, the normalization is always done with
respect to parallel quantities

R1(ζ ) :
q(1)⊥
p(0)‖
=−

vth‖
√

π
H
[

T (1)⊥
T (0)‖
+ ap

(
ap − 1

) Bz

B0

]
, (4.109)

and when the temperature T (1)⊥ is expressed through the pressure and density, it is
useful to note the difference between

T (1)⊥
T (0)⊥
=

p(1)⊥
p(0)⊥
−

n(1)

n0
;

T (1)⊥
T (0)‖
=

p(1)⊥
p(0)‖
− ap

n(1)

n0
. (4.110)

4.4.3. Two-pole closures
Continuing with the R2,0(ζ ) approximant, the moments calculate as

R2,0(ζ ) : D =
(
1− i
√

πζ − 2ζ 2
)
; (4.111)

T⊥ = apB̃z
1
D

[
−2ζ 2

− i
√

πζ
]
; (4.112)

q(1)⊥ = −vth‖p
(0)
⊥ apsign(k‖)B̃z

1
D

[ζ ] ; (4.113)

r̃(1)‖⊥ = −v
2
th‖p

(0)
⊥

ap

2
B̃z

1
D

[
−i
√

πζ
]
. (4.114)

The r̃(1)‖⊥ can be expressed through q(1)⊥ and the closure reads

R2,0(ζ ) : r̃(1)‖⊥ =−
√

π

2
vth‖isign(k‖)q

(1)
⊥ , (4.115)

or in real space

R2,0(ζ ) : r̃(1)‖⊥ =−
√

π

2
vth‖Hq(1)⊥ . (4.116)

The closure with R2,0(ζ ) is naturally more precise that the closure with R1(ζ ), and
both q(1)⊥ and r̃(1)‖⊥ at least converge to zero for ζ� 1. The closure is equivalent to (35)
of Snyder et al. (1997).

There are 3 another closures that can be constructed with R2,0(ζ ), all of them time
dependent. The first one is obtained by searching for (ζ + αq)q

(1)
⊥ = αTT⊥, and the

solution is

R2,0(ζ ) :

[
ζ +

i
√

π

2

]
q(1)⊥ =

p(0)⊥
2
vth‖sign(k‖)T⊥;[

−iω+
√

π

2
vth‖|k‖|

]
q(1)⊥ = −

p(0)⊥
2
v2

th‖ik‖T⊥, (4.117)
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and in real space

R2,0(ζ ) :

[
d
dt
−

√
π

2
vth‖∂zH

]
q(1)⊥ =−

p(0)⊥
2
v2

th‖∂z

[
T (1)⊥
T (0)⊥
+

(
T (0)⊥
T (0)‖
− 1

)
Bz

B0

]
. (4.118)

Alternatively, considering future normalization with parallel quantities

R2,0(ζ ) :

[
d
dt
−

√
π

2
vth‖∂zH

]
q(1)⊥
p(0)‖
=−

v2
th‖

2
∂z

[
T (1)⊥
T (0)‖
+ ap

(
ap − 1

) Bz

B0

]
. (4.119)

The closures (4.118) and (4.116) are related. In the companion paper (Part 1), we
derived a ‘fluid’ nonlinear equation for the perpendicular heat flux ∂q⊥/∂t. Linearizing
this equation yields

∂q(1)⊥
∂t
+ ∂zr̃

(1)
‖⊥ +

n0

2
v2

th‖∂zT
(1)
⊥ +

p(0)⊥
2
v2

th‖(ap − 1)∂z
Bz

B0
= 0, (4.120)

where since at the linear level ∂zb̂z
lin
= 0, the quantity ∇ · b̂ lin

= (1/B0)(∂xBx + ∂yBy) =

−(1/B0)∂zBz. Now, plugging the quasi-static closure (4.116) into the linearized heat
flux equation (4.120), immediately recovers the time-dependent closure (4.118). As
discussed before, the difference between Bz and |B| again arises only from how
‘deeply’ the linearization is done. For example, exact calculation of ∇ · b̂ yields

∇ · b̂=∇ ·
(

B
|B|

)
=

1
|B|
∇ ·B︸ ︷︷ ︸
=0

+B · ∇
(

1
|B|

)
=−

b̂
|B|
· ∇|B|, (4.121)

and instead of linearizing completely, it is possible to stop the linearization at the level
∇ · b̂ lin

=−(1/B0)∂z|B|.
Another closure can be constructed by searching for (ζ + αr)r

(1)
‖⊥ = αTT⊥, and the

solution is

R2,0(ζ ) :

[
ζ +

i
√

π

2

]
r(1)‖⊥ = −

i
√

π

4
p(0)⊥ v

2
th‖T⊥; (4.122)[

−iω+
√

π

2
vth‖|k‖|

]
r(1)‖⊥ = −

√
π

4
p(0)⊥ v

3
th‖|k‖|T⊥;[

d
dt
−

√
π

2
vth‖∂zH

]
r(1)‖⊥ = +

√
π

4
p(0)⊥ v

3
th‖∂zH

[
T (1)⊥
T (0)⊥
+

(
T (0)⊥
T (0)‖
− 1

)
Bz

B0

]
,

(4.123)

and yet another related one by searching for ζ r(1)‖⊥ = αqq(1)⊥ + αTT⊥, with solution

R2,0(ζ ) : ζ r(1)‖⊥ = −
π

4
vth‖sign(k‖)q

(1)
⊥ −

i
√

π

4
p(0)⊥ v

2
th‖T⊥; (4.124)

− iωr(1)‖⊥ = +
π

4
v2

th‖ik‖q
(1)
⊥ −

√
π

4
p(0)⊥ v

3
th‖|k‖|T⊥;
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d
dt

r(1)‖⊥ = +
π

4
v2

th‖∂zq
(1)
⊥ +

√
π

4
p(0)⊥ v

3
th‖∂zH

[
T (1)⊥
T (0)⊥
+

(
T (0)⊥
T (0)‖
− 1

)
Bz

B0

]
.

(4.125)

The last closure (4.125) can also be directly obtained from (4.123) by using the
quasi-static closure (4.116) and HH = −1. Both closures (4.125), (4.123) are not
very interesting, since the quasi-static closure (4.116) for r(1)‖⊥ and the time-dependent
closure (4.118) for the heat flux q(1)⊥ are of the same precision and much simpler to
implement. Importantly, after checking the dispersion relations, closure (4.125) has to
be disregarded since it can produce positive growth rate.

For completeness, there is also 1 time-dependent closure with R2,1 approximant
ζq(1)⊥ = αTT⊥ that is not considered and is disregarded, since that approximant is not
well behaved.

4.4.4. Three-pole closures
As in the 1-D case, we can suppress writing the proportionality constants (including

the minus signs) and concentrate only on expressions inside of the big brackets.
Continuing with the R3,1(ζ ) approximant

R3,1(ζ ) : D =
(

1−
4i
√

π
ζ − 2ζ 2

+ 2i
(4−π)
√

π
ζ 3

)
; (4.126)

T⊥ ∼
1
D

[
2i
(4−π)
√

π
ζ 3
− 2ζ 2

− i
√

πζ

]
; (4.127)

q(1)⊥ ∼
1
D

[
−i
(4−π)
√

π
ζ 2
+ ζ

]
; (4.128)

r̃(1)‖⊥ ∼
1
D

[
−i
√

πζ
]
. (4.129)

No quasi-static closures are possible. A time-dependent closure can be constructed by
searching for (ζ + αr )̃r

(1)
‖⊥ = αqq(1)⊥ , and the solution reads

R3,1(ζ ) :

[
ζ +

i
√

π

4−π

]
r̃(1)‖⊥ = vth‖

π

2(4−π)
sign(k‖)q

(1)
⊥ ;[

−iω+
√

π

4−π
vth‖|k‖|

]
r̃(1)‖⊥ = −v

2
th‖

π

2(4−π)
ik‖q

(1)
⊥ , (4.130)

and in real space

R3,1(ζ ) :

[
d
dt
−

√
π

4−π
vth‖∂zH

]
r̃(1)‖⊥ =−v

2
th‖

π

2(4−π)
∂zq

(1)
⊥ . (4.131)

Continuing with the R3,2(ζ ) approximant

R3,2(ζ ) : D =
(

1−
3
2

i
√

πζ − 2ζ 2
+ i
√

πζ 3

)
; (4.132)

T⊥ ∼
1
D

[
i
√

πζ 3
− 2ζ 2

− i
√

πζ
]
; (4.133)
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q(1)⊥ ∼
1
D

[
−

i
2
√

πζ 2
+ ζ

]
; (4.134)

r̃(1)‖⊥ ∼
1
D

[
−i
√

πζ
]
. (4.135)

Searching for (ζ + αr )̃r
(1)
‖⊥ = αqq(1)⊥ , yields a closure

R3,2(ζ ) :

[
ζ +

2i
√

π

]
r̃(1)‖⊥ = vth‖sign(k‖)q

(1)
⊥ ;[

−iω+
2
√

π
vth‖|k‖|

]
r̃(1)‖⊥ = −v

2
th‖ik‖q

(1)
⊥ , (4.136)

and in real space

R3,2(ζ ) :

[
d
dt
−

2
√

π
vth‖∂zH

]
r̃(1)‖⊥ =−v

2
th‖∂zq

(1)
⊥ . (4.137)

Closures (4.131), (4.137) are equivalent to the closures of Passot & Sulem (2007),
after one prescribes the gyrotropic limit in that paper (and replaces the wrong
coefficient in the R3,1(ζ ) closure introduced by Hedrick & Leboeuf (1992)).

Finally, it is indeed possible to construct an o(ζ 3) closure for the perpendicular
quantities considered, by using the R3,0(ζ ) approximant. The moments calculate as

R3,0(ζ ) : D =
(

1− i
√

π

4−π
ζ −

3π− 8
4−π

ζ 2
+ 2i
√

π
π− 3
4−π

ζ 3

)
; (4.138)

T⊥ ∼
1
D

[
2i
√

π
π− 3
4−π

ζ 3
−

3π− 8
4−π

ζ 2
− i
√

πζ

]
; (4.139)

q(1)⊥ ∼
1
D

[
−i
√

π
π− 3
4−π

ζ 2
+ ζ

]
; (4.140)

r̃(1)‖⊥ ∼
1
D

[
16− 5π

4−π
ζ 2
− i
√

πζ

]
, (4.141)

and by searching for (ζ + αr )̃r
(1)
‖⊥ = αqq(1)⊥ + αTT⊥ yields a closure

R3,0(ζ ) :

[
ζ +

i
2
√

π

(3π− 8)
(π− 3)

]
r̃(1)‖⊥ = vth‖

4−π

2(π− 3)
sign(k‖)q

(1)
⊥

+ p(0)⊥ v
2
th‖

i
4
√

π

(16− 5π)

(π− 3)
T⊥;[

−iω+
(3π− 8)

2
√

π(π− 3)
vth‖|k‖|

]
r̃(1)‖⊥ = −v

2
th‖

4−π

2(π− 3)
ik‖q

(1)
⊥

+ p(0)⊥ v
3
th‖

(16− 5π)

4
√

π(π− 3)
|k‖|T⊥, (4.142)

and the full expression in real space reads (Hunana et al. 2018)

R3,0(ζ ) :

[
d
dt
−

(3π− 8)
2
√

π(π− 3)
vth‖∂zH

]
r̃(1)‖⊥ =−v

2
th‖

4−π

2(π− 3)
∂zq

(1)
⊥

− p(0)⊥ v
3
th‖

(16− 5π)

4
√

π(π− 3)
∂zH

[
T (1)⊥
T (0)⊥
+

(
T (0)⊥
T (0)‖
− 1

)
Bz

B0

]
, (4.143)
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or again considering normalization with respect to parallel quantities

R3,0(ζ ) :

[
d
dt
−

(3π− 8)
2
√

π(π− 3)
vth‖∂zH

]
r̃(1)‖⊥
p(0)‖
=−v2

th‖
4−π

2(π− 3)
∂z

q(1)⊥
p(0)‖

− v3
th‖

(16− 5π)

4
√

π(π− 3)
∂zH

[
T (1)⊥
T (0)‖
+ ap

(
ap − 1

) Bz

B0

]
. (4.144)

The R3,0(ζ ) has precision o(ζ 3), o(1/ζ 2).

4.5. Table of moments (T⊥, q⊥, r̃‖⊥) for various Padé approximants

The following summarizing table for quantities T⊥(T (1)⊥ ), q(1)⊥ , r̃(1)‖⊥ is created to clearly
see the possibilities of a closure. All the proportionality constants (including the
minus signs) and including the common denominator of R(ζ ), are suppressed here.
The approximants R2,1, R4,5, R6,9, R8,13 are marked with an asterisk ‘*’, because these
do not account for the Landau residue and are not well behaved. These approximants
are provided only for completeness and should be disregarded.

One-pole and two-pole approximants
R1 R2,0 R∗2,1

T⊥ ζ ζ 2, ζ ζ 2

q(1)⊥ ζ ζ ζ

r̃(1)‖⊥ ζ 2, ζ ζ 0
Three-pole approximants

R3,0 R3,1 R3,2

T⊥ ζ 3, ζ 2, ζ ζ 3, ζ 2, ζ ζ 3, ζ 2, ζ

q(1)⊥ ζ 2, ζ ζ 2, ζ ζ 2, ζ

r̃(1)‖⊥ ζ 2, ζ ζ ζ

Four-pole approximants
R4,0 R4,1 R4,2 R4,3 R4,4 R∗4,5

T⊥ ζ 4
· · · ζ ζ 4

· · · ζ ζ 4
· · · ζ ζ 4

· · · ζ ζ 4
· · · ζ ζ 4, ζ 2

q(1)⊥ ζ 3
· · · ζ ζ 3

· · · ζ ζ 3
· · · ζ ζ 3

· · · ζ ζ 3
· · · ζ ζ 3, ζ

r̃(1)‖⊥ ζ 3
· · · ζ ζ 2, ζ ζ 2, ζ ζ 2, ζ ζ 2, ζ ζ 2

Five-pole and six-pole approximants
R5,0 R5,1 · · · R5,6 R6,0 R6,1 · · · R6,8 R∗6,9

T⊥ ζ 5
· · · ζ ζ 5

· · · ζ · · · ζ 5
· · · ζ ζ 6

· · · ζ ζ 6
· · · ζ · · · ζ 6

· · · ζ ζ 6, ζ 4, ζ 2

q(1)⊥ ζ 4
· · · ζ ζ 4

· · · ζ · · · ζ 4
· · · ζ ζ 5

· · · ζ ζ 5
· · · ζ · · · ζ 5

· · · ζ ζ 5, ζ 3, ζ

r̃(1)‖⊥ ζ 4
· · · ζ ζ 3

· · · ζ · · · ζ 3
· · · ζ ζ 5

· · · ζ ζ 4
· · · ζ · · · ζ 4

· · · ζ ζ 4, ζ 2

Seven-pole and eight-pole approximants
R7,0 R7,1 · · · R7,10 R8,0 R8,1 · · · R8,12 R∗8,13

T ζ 7
· · · ζ ζ 7

· · · ζ · · · ζ 7
· · · ζ ζ 8

· · · ζ ζ 8
· · · ζ · · · ζ 8

· · · ζ ζ 8, ζ 6, ζ 4, ζ 2

q(1)⊥ ζ 6
· · · ζ ζ 6

· · · ζ · · · ζ 6
· · · ζ ζ 7

· · · ζ ζ 7
· · · ζ · · · ζ 7

· · · ζ ζ 7, ζ 5, ζ 3, ζ

r̃(1)‖⊥ ζ 6
· · · ζ ζ 5

· · · ζ · · · ζ 5
· · · ζ ζ 7

· · · ζ ζ 6
· · · ζ · · · ζ 6

· · · ζ ζ 6, ζ 4, ζ 2

https://doi.org/10.1017/S0022377819000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000850


Collisionless fluid models. Part 2 113

By observing the table, there are altogether 2 possible quasi-static closures,

R1 : q(1)⊥ = αTT⊥;
R2,0 : r̃(1)‖⊥ = αqq(1)⊥ , (4.145)

and 6 time-dependent closures,

R2,0 : (ζ + αq)q
(1)
⊥ = αTT⊥; (ζ + αr )̃r

(1)
‖⊥ = αTT⊥; ((((

((((
((

ζ r̃(1)‖⊥ = αqq(1)⊥ + αTT⊥ ;
R3,0 : (ζ + αr )̃r

(1)
‖⊥ = αqq(1)⊥ + αTT⊥;

R3,1 : (ζ + αr )̃r
(1)
‖⊥ = αqq(1)⊥ ;

R3,2 : (ζ + αr )̃r
(1)
‖⊥ = αqq(1)⊥ . (4.146)

We briefly checked the dispersion relations that these closures yield for parallel
propagation (proton species only, electrons cold), where the q(1)⊥ and r̃(1)‖⊥ closures
produce only higher-order modes. This eliminated one R2,0 closure that produced
a growing mode. The R1 closure yields ζ = −i/

√
π; the remaining R2,0 closures

yield ζ = ±
√

8−π/4 − i
√

π/4 (result reported also in the Appendix of Hunana
et al. (2011)), the R3,0 closure yields ζ =±0.92− 0.91i; ζ =−1.02i; the R3,1 closure
yields ζ =±0.96− 0.64i; ζ =−0.78i; and the R3,2 closure yields ζ =±1.04− 0.33i;
ζ =−0.47i.

5. Conclusions

We offer a brief summary of the major results discussed throughout the text.

• The kinetic Vlasov equation implicitly contains ‘singularities’ in velocity
space, referred to as wave–particle resonances. These resonances occur because
particles of a given species travelling along magnetic field lines with a velocity
component v‖ interact with plasma waves propagating in that system with a
parallel phase speed (ω+ nΩ)/k‖, where Ω is the cyclotron frequency for that
given species and n= 0,±1,±2 . . . is an integer. Wave–particle resonances can
be separated into Landau resonances (n= 0) and cyclotron resonances (n 6= 0).

• The presence of wave–particle resonances in the Vlasov equation is revealed
by considering perturbations f (1) = f − f0 around an equilibrium distribution
function f0, and by obtaining an explicit expression for f (1) that satisfies the
Vlasov equation. For example, in a simplified 1-D electrostatic geometry (which
can be viewed as electrostatic propagation along B0), the perturbations read
f (1) =−(iqE‖/m)(∂f0/∂v‖)/(ω− v‖k‖), and contain Landau resonances.

• Obtaining f (1) in a general 3-D electromagnetic geometry requires quite a
complicated procedure of integration along an unperturbed orbit (zero-order
trajectory, from time t′ = −∞ to t′ = t), see (2.15). The procedure can be
considered as a core of any plasma book and here it is summarized in
appendix C. General f (1) perturbations around a gyrotropic f0 are given by (C 47).
Prescribing a bi-Maxwellian f0 yields (C 53), and prescribing a bi-kappa f0 yields
(C 57). Obviously, perturbations f (1) ∼ 1/(ω− v‖k‖ − nΩ), and contain Landau
resonances and cyclotron resonances.
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• After an f (1) is obtained, integration over velocity space can be performed,
eventually yielding an infinite hierarchy of ‘kinetic’ moments. Combining
Maxwell’s equations ∇ × B= (4π/c)j+ (1/c)∂E/∂t and ∇ × E=−(1/c)∂B/∂t
yields the following wave equation

k× (k×E)+
ω2

c2

(
4πi
ω

j+E
)
= 0. (5.1)

Therefore, to obtain the full dispersion relation of kinetic theory, it is sufficient
to stop the hierarchy at the first-order (velocity) moment, which determines the
current j =

∑
r qrnrur = σ · E. Calculations of pressure or higher-order kinetic

moments are not necessary and are thus typically omitted (provided that the full
non-gyrotropic f (1) is considered, so that the perpendicular velocity moments u⊥
are non-zero). In addition to the conductivity tensor σ , one can also use the
susceptibility tensor χ = (4πi/ω)σ , and the dielectric tensor ε = χ + I (the I is
a unit matrix and here it represents contributions of the displacement current).
The definitions of χ and ε are naturally motivated by the wave equation (5.1).

• In Landau fluid models, the kinetic hierarchy has to be calculated at least
up to the third-order (heat flux) moment, or preferably, the fourth-order
moment r (or beyond). Importantly, a closure has to be found where the last
retained moment is expressed through lower-order moments. Subsequently,
a simplification of f (1) is necessary, and in general one needs to impose
a low-frequency limit ω/Ω � 1, which eliminates the n 6= 0 cyclotron
resonances. The exception is the 1-D electrostatic geometry, where the
low-frequency restriction is not required, and closures for arbitrary frequencies
(and wavelengths) can be obtained.

• In the 3-D electromagnetic geometry, we restricted our attention to perturbations
f (1) in the gyrotropic limit, see (4.14). In this geometry, in addition to the
low-frequency limit, one also assumes that the gyroradius is small, which
corresponds to the limit k⊥v⊥/Ω � 1 (the gyroradius is defined as vth⊥/Ω ,
but here the limit is applied directly on f (1) before integration over velocity
space). It is rather mind boggling that to obtain the correct f (1) in the laboratory
reference frame, one needs to first calculate the complicated integration around
the unperturbed orbit, and only then prescribe the gyrotropic limit.

• Alternatively, the f (1) in the gyrotropic limit can be derived by using the
guiding-centre reference frame, and by imposing the conservation of the
magnetic moment in the Vlasov equation from the beginning. Then, it is
possible to show that various terms in f (1) correspond to the conservation of
magnetic moment, electrostatic Coulomb force (which yields Landau damping),
and magnetic mirror force (which yields transit-time damping, also called Barnes
damping), see (4.15) and § 4.2.

• We considered Landau fluid closures only for a bi-Maxwellian f0 (which in the
1-D geometry simplifies to a Maxwellian f0), even though one should be able to
construct closures for a different f0 with a similar technique.

• In the 1-D electrostatic geometry, the kinetic hierarchy calculated up to the
fourth-order moment is given by (3.20)–(3.26). All the moments contain the
plasma response function R(ζ )= 1+ ζZ(ζ ), where Z(ζ ) is the plasma dispersion
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function defined by (2.35), and the variable ζ = ω/(|k‖|vth‖). Importantly, the ζ
variable is here defined with |k‖| = sign(k‖)k‖. If the ζ variable is defined with
k‖, the plasma dispersion function has to be redefined to Z0(ζ ), equation (2.39).
The R(ζ ) in the kinetic hierarchy can be quickly interpreted according to (2.49).

• It is impossible to find any ‘direct’ rigorously exact fluid closure in the kinetic
hierarchy of moments. In other words, it is impossible to take the last retained
nth-order moment, and directly express it through lower-order moments by using
exact un-approximated R(ζ ) function, in such a way that the closure eliminates
the R(ζ ) function. Technically, such a closure is possible only when n→∞.

• To find a closure, the R(ζ ) in the kinetic hierarchy needs to be analytically
approximated, for example by a suitable Padé approximant Rn,n′(ζ ) (as a ratio
of two polynomials in ζ ). Approximants Rn,n′(ζ ) are constructed by matching
power-series expansions |ζ | � 1 of R(ζ ), see (3.33), and asymptotic-series
expansions |ζ | � 1, see (3.67). Perhaps the most convenient is to expand
(3.193).

• Importantly, contributions from the Landau residue ∼ ζe−ζ
2 in R(ζ ) are retained

in the power-series expansion, however, the contributions are eliminated in the
asymptotic series expansion (since there is no asymptotic expansion of e−ζ

2).
The same procedure is used in the kinetic solver WHAMP. Consequently, deeply
down in the lower complex plane where damping becomes very large, Padé
approximants of R(ζ ) become less accurate.

• Another example is the Langmuir mode, see § 3.15, where in the long-
wavelength limit the frequency ω does not decrease, but is equal to the plasma
frequency. Thus, |ζ |� 1, and the Landau damping of the Langmuir mode in the
long-wavelength limit typically disappears much more rapidly in kinetic theory
than in Landau fluid models (see figure 7), which is a direct consequence of
the missing ζe−ζ

2 in the asymptotic expansions of R(ζ ). Nevertheless, at spatial
scales that are shorter than five Debye lengths, the damping of the Langmuir
mode can be captured very accurately in a fluid framework, see closure (3.421)
and figure 10. Notably, it was indeed the example of the Langmuir mode that
was used by Landau (1946) to predict this collisionless damping phenomenon.

• We introduced a new classification scheme, that we consider more natural than
previous classifications. The n index in Rn,n′(ζ ) represents the number of poles,
and the ‘basic’ approximant Rn,0(ζ ) is defined as having the correct (leading-
order) asymptote −1/(2ζ 2), see (3.104). The Rn,0(ζ ) therefore correctly captures
the asymptotic profile of the zeroth-order (density) moment, and approximants
with less asymptotic points should be avoided if possible. The Rn,n′(ζ ) is defined
as using n′ additional points in the asymptotic-series expansion in comparison to
Rn,0(ζ ). The exception is the one-pole approximant R1(ζ )=1/(1− i

√
πζ ), which

obviously does not have the correct asymptote.

• Approximant Rn,n′(ζ ) has power-series precision o(ζ 2n−3−n′) and asymptotic-
series precision o(ζ−2−n′). Analytic forms of two-pole approximants of R(ζ )
and Z(ζ ) are given in § 3.3.1, three-pole approximants in § 3.3.2 and four-pole
approximants in § 3.3.3. In appendix A, we provide valuable tables of five-,
six-, seven- and eight-pole approximants of R(ζ ), many in an analytic form.
The precision of all approximants is compared in § 3.5.
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• The limit |ζ | � 1 can be viewed as an isothermal limit, and |ζ | � 1 can be
viewed as an adiabatic limit. Therefore, classical adiabatic fluid models discussed
in Part 1 can be obtained by considering a high phase-speed limit |ω/k‖|� vth‖.
The exception is the generalized isothermal (‘static’) closure used to capture the
mirror instability, where a low phase-speed limit |ω/k‖| � vth‖ must be used.

• In many instances, solely expanding in |ζ |� 1 or |ζ |� 1 is not appropriate, and
the R(ζ ) together with Z(ζ ) can be viewed as the most important functions of
kinetic theory. For example, considering a proton–electron plasma at scales that
are much longer than the Debye length, the dispersion relation of the parallel
ion-acoustic mode is given by (3.366), and for equal proton and electron
temperatures it reads R(ζp)+ R(ζe)= 0. No expansion of R(ζ ) is possible, since
the numerical solution is ζp =±1.46− 0.63i. Only when electrons are hot and
T (0)‖e � T (0)‖p , can a simplified dispersion relation for the ion-acoustic mode be
obtained by prescribing |ζp|� 1 and |ζe|� 1. By employing Padé approximants
Rn,n′(ζ ) in Landau fluid closures, the R(ζ ) function is analytically approximated
for all ζ values, see figures 2 and 3.

• For the 1-D electrostatic geometry, all the Landau fluid closures that can be
constructed for the heat flux q and the fourth-order moment perturbation r̃ =
r − 3p2/ρ, are summarized in (3.241)–(3.242). The same closures are obtained
in the 3-D electromagnetic geometry for parallel moments q‖ and r̃‖‖. These
closures do not have any restrictions for frequencies and wavenumbers, and are
therefore valid from the largest astrophysical scales down to the Debye length.

• Landau fluid closures can be separated into two categories. (I) A closure is
called static (or quasi-static), when the last retained moment Xl is directly
expressed through lower-order moments. (II) A closure is called dynamic (or
time dependent), when ζXl + αXl is expressed through lower-order moments
(where α is a coefficient). After a dynamic closure is transformed to real
space, ∂/∂t is replaced by the convective derivative d/dt to preserve Galilean
invariance.

• In real space, all the closures contain the negative Hilbert transform operator H,
defined according to Hf (z) = −(1/πz) ∗ f (z) = −(1/π)V.P.

∫
∞

−∞
f (z− z′)/z′ dz′,

where ∗ represents convolution. The H operator in closures comes from Fourier
space, where it is equal to isign(k‖). In real space, the H operator represents
non-locality of closures, and, ideally, the integrals in Hf (z) should be calculated
along magnetic field lines. The effect is pronounced in numerical simulations,
where calculating the Hilbert transform along the ambient magnetic field B0 can
cause instabilities, see Passot et al. (2014).

• For example, the simplest closure for the heat flux q‖ is given by (3.261)
of Hammett & Perkins (1990) (or equivalently by (4.94) when written in the
3-D geometry). The simplest closure for the heat flux q⊥ is given by (4.108)
of Snyder et al. (1997). Both closures are proportional to the Hilbert transform
of temperatures T‖, T⊥. Therefore, Landau fluid closures yield gyrotropic heat
fluxes q‖, q⊥ that are non-local, and influenced by temperatures along the entire
magnetic field line. Notably, this is in contrast to ‘classical’ non-gyrotropic heat
flux vectors S‖⊥, S⊥

⊥
discussed in Part 1, which were local and proportional to

the gradient of temperatures.

https://doi.org/10.1017/S0022377819000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000850


Collisionless fluid models. Part 2 117

• In the 3-D electromagnetic geometry in the gyrotropic limit, the closure for the
perturbation r̃⊥⊥ is simply r̃⊥⊥ = 0. One needs to consider only closures for q⊥
and r̃‖⊥, which are given in § 4.4 and summarized in (4.145)–(4.146).

• Only one static closure for q⊥ is available, the closure (4.108) of Snyder et al.
(1997). However, the closure is obtained with the R1(ζ ) approximant. Since q⊥∼
ζR(ζ ), see (4.92) or (4.105), using R1(ζ ) implies that for large ζ values the
heat flux does not disappear and instead converges to a constant value, which
is erroneous. Additionally, for ζ > 1 the real part of R1(ζ ) even has the wrong
sign, see figure 2. The R1(ζ ) is still a valuable approximant for small |ζ | � 1
values, and a Landau fluid model with static heat flux closures (4.94), (4.108)
recovers the correct mirror threshold.

• If one comes to the conclusion that the R1(ζ ) approximant is unsatisfactory, then
no static closure for q⊥ is available. Consequently, 3-D Landau fluid simulations
are possible only if the heat fluxes q‖, q⊥ are described by time-dependent
equations. Of course, one could possibly consider a model with a static q‖
closure and time-dependent q⊥ closure.

• Perhaps, the most natural way to perform 3-D Landau fluid simulations is to
keep the ‘classical’ nonlinear evolution equations for q‖ and q⊥ obtained in Part
1, and use static Landau fluid closures for the perturbations of the fourth-order
moment. Of course, it is easy to imagine that, in some numerical simulations,
the heat flux equations might be ‘too nonlinear’, i.e. responsible for instabilities.
In such a case, the dynamic (linear) heat flux closures might be useful to verify
the instability.

• For the r̃‖‖ moment, there are 3 static closures available: the R4,2 closure
(3.227), the R4,3 closure (3.234) of Hammett & Perkins (1990) and the R4,4
closure (3.240). In real space, the R4,2 closure is given by (3.267), the R4,3
closure by (3.266) and the R4,4 closure by (3.268). The R4,2 closure has the
highest power-series precision o(ζ 3), and the R4,4 closure has the highest
asymptotic-series precision o(ζ−6). It is of course difficult to recommend which
closure is clearly better without considering a specific situation.

• We considered the example of the ion-acoustic mode, see figures 5 and 6
and associated discussion. The R4,4 closure can be useful for simulations
with sufficiently high electron temperatures, namely τ = Te/Tp > 15, which
corresponds to ζp > 3. However, such simulations will be perhaps not performed
very frequently. In the most interesting regime with comparable proton and
electron temperatures (or τ ∈ [1, 5]) the most precise static closure is by far
the R4,2 closure. Nevertheless, the R4,3 closure is still a globally precise closure.
We can only recommend to use both the R4,2 closure (3.267) of Hunana et al.
(2018) and the R4,3 closure (3.266) of Hammett & Perkins (1990), and clarify
possible differences in numerical simulations. The differences might be more
pronounced during nonlinear dynamics.

• As an example, Landau fluid simulations of turbulence typically show a curious
behaviour (see e.g. Perrone et al. (2018) and references therein), that at
sub-proton scales, the spectrum of the parallel velocity field u‖ is much steeper
in kinetic simulations than in Landau fluid simulations. In contrast to the R4,3
closure, our R4,2 closure contains the parallel velocity u‖. It would be interesting
to explore if the R4,2 closure influences the u‖ spectrum.
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• For the r̃‖⊥ moment, there is only one static closure, the R2,0 closure (4.116) of
Snyder et al. (1997).

• If higher precision is desired, one can use dynamic closures for the r̃‖‖ and
r̃‖⊥ moments, which however introduces two additional evolution equations.
Of course, it is possible to use dynamic closure only for the r̃‖⊥ moment. As
discussed above, it appears that closures with the highest power-series precision
(p.s.p.) are the most desirable (at least for Te∼ Tp). Concerning the r̃‖‖ moment,
the static R4,2 closure has p.s.p. o(ζ 3). Thus, it is possible to have a view that
a worthy dynamic closure for r̃‖‖ should have a p.s.p. o(ζ 4). There is only one
such closure, the R5,3 closure (3.339) of Hunana et al. (2018).

• Concerning dynamic closures for the r̃‖⊥ moment, the static R2,0 closure (4.116)
has a p.s.p. o(ζ ). Therefore, a worthy dynamic closure for the r̃‖⊥ moment
should have a p.s.p. o(ζ 2), or higher. There are only two such closures. One
with a p.s.p. o(ζ 2), the R3,1 closure (4.131) of Passot & Sulem (2007); and one
with a p.s.p. o(ζ 3), the R3,0 closure (4.143) of Hunana et al. (2018).

• To summarize, if one desires the highest power-series precision that is available
at the fourth-order moment level, one should use the dynamic R5,3 closure
(3.339) for the r̃‖‖ moment, and the dynamic R3,0 closure (4.143) for the
r̃‖⊥ moment. Nevertheless, the dynamic closures might not be worth the
computational cost, and it is possible to have a view that the static closures
are sufficiently precise. In that case, for the r̃‖‖ moment one should use either
the R4,2 closure (3.267), or the R4,3 closure (3.266) (see the discussion above)
and for the r̃‖⊥ moment the R2,0 closure (4.116). Alternatively, one can use
a dynamic closure only for the r̃‖⊥ moment. In that case, it is possible to
match the power-series precision of r̃‖‖ and r̃‖⊥ moments. The precision o(ζ 2)
is achieved by using the R4,3 closure (3.266) for the r̃‖‖ moment and the R3,1
closure (4.131) for the r̃‖⊥ moment. The precision o(ζ 3) is achieved by using
the R4,2 closure (3.267) for the r̃‖‖ moment and the R3,0 closure (4.143) for the
r̃‖⊥ moment.

• The most surprising result discussed in Part 2 is the observation that some
closures reproduce a considered kinetic dispersion relation exactly, after R(ζ )
is replaced by the approximant Rn,n′(ζ ) used to obtain that fluid closure. We
consider this observation as highly non-trivial and not obvious. For example,
a 1-D fluid model described by (3.371)–(3.378) that uses the R4,3 closure
for the r̃‖‖ moment, has a dispersion relation that is equivalent to the kinetic
dispersion relation (3.366), after the R(ζ ) is replaced by R4,3(ζ ). The results are
equivalent only after the R4,3(ζp) and R4,3(ζe) terms in (3.366) are transferred to
the common denominator and the resulting numerator is made to be equal to
zero. That example concerns the ion-acoustic mode, but the same observation
is true for the Langmuir mode as well, see § 3.15, dispersion relation (3.396).
We called such closures ‘reliable’, or physically meaningful.

• We only verified which closures are ‘reliable’ on dispersion relations of the
ion-acoustic mode and the Langmuir mode in the 1-D electrostatic geometry, see
closures marked with ‘X’ in (3.241)–(3.242). Nevertheless, it is expected that the
same closures will remain ‘reliable’ when the full 1-D electrostatic dispersion
relation of a proton–electron plasma (3.30) is considered, and which can be
further generalized to multi-species, see (3.29).
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• In the 1-D electrostatic geometry, for a given nth-order moment Xn, a closure
with the highest possible power-series precision appears to be the dynamic
closure constructed with the approximant Rn+1,n−1(ζ ). For example, for the
third-order (heat flux) moment it is the R4,2 closure (3.293), for the fourth-order
moment the R5,3 closure (3.339), for the fifth-order moment the R6,4 closure
(3.413) and for the sixth-order moment the R7,5 closure (3.421). It was verified
that all of these closures are ‘reliable’.

• Similarly, for a given nth-order moment Xn, a static closure with the highest
power-series precision is constructed with Rn,n−2(ζ ).

• Importantly, by observing the summary of closures (3.241)–(3.242), it appears
that closures that are ‘unreliable’ can be constructed only if there are
several possibilities in constructing the closure. The dynamic closure with
the Rn+1,n−1(ζ ) approximant expresses ζXn + αXn through all the available
lower-order moments Xm where m= 1 · · · n− 1 (for even m, deviations X̃m are
used). Thus, the Rn+1,n−1 closure for ζXn + αXn is unique, and it is expected to
be ‘reliable’.

• Curiously, it appears that the summary (3.241)–(3.242) suggest that all the
dynamic closures ζXn + αXn with α = 0 are ‘unreliable’. Construction of such
closures is therefore discouraged. In other words, the ζXn must be expressed
through lower-order moments, including the moment Xn itself, in order to
construct a dynamic closure.

• To summarize, it appears that for a given nth-order moment Xn, the dynamic
closure with the approximant Rn+1,n−1(ζ ) is indeed ‘reliable’. Therefore, one
can go higher and higher in the hierarchy of moments and construct ‘reliable’
closures with approximants Rn+1,n−1(ζ ) that converge to R(ζ ) with increasing
precision. In other words, one can reproduce linear Landau damping in the fluid
framework to any desired precision. This establishes the convergence of fluid
and collisionless kinetic descriptions.

• It is difficult to imagine that such a convergence of fluid and collisionless kinetic
descriptions can be ever established in a general 3-D electromagnetic geometry,
since both kinetic and fluid systems must be obviously derived by using the
same perturbations f (1). The exception is the 3-D electromagnetic geometry in
the gyrotropic limit, where such a convergence should exist. However, for a
given moment Xn, the number of its gyrotropic moments is equal to 1+ int[n/2],
and increases with n. It will be therefore much more difficult to show such a
convergence. Nevertheless, one should at least use the kinetic dispersion relation
in the gyrotropic limit (see for example Ferrière & André (2002), Tajiri (1967)),
and establish if closures for the r̃‖⊥ moment summarized in (4.145)–(4.146) are
‘reliable’, which we did not do. It is expected that all of them are ‘reliable’.

• We considered closures for the r̃‖⊥ and r̃⊥⊥ moments only in the gyrotropic
limit (closures for r̃‖‖ have general validity). However, it is possible to keep the
low-frequency restriction, but make the size of the gyroradius in f (1) unrestricted.
Such closures for the r̃‖⊥ and r̃⊥⊥ moments were obtained by Passot & Sulem
(2007). In this geometry, it is also possible to obtain the non-gyrotropic (FLR)
pressure tensor Π (and other FLR contributions such as the non-gyrotropic
heat flux vectors S‖⊥, S⊥

⊥
and rng), by integrating over the f (1) and by finding
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appropriate closures. The final model is rather complicated, but for sufficiently
slow dynamics, such as the highly oblique kinetic Alfvén waves or the mirror
instability, the model reproduces linear kinetic theory very accurately on all
spatial scales, see Passot & Sulem (2007), Passot et al. (2012), Hunana et al.
(2013), Sulem & Passot (2015) and references therein. Our new R3,0 closure
(4.143) for the r̃‖⊥ moment has a higher o(ζ 3) precision than the R3,1 closure
(4.131) of Passot & Sulem (2007), and it should be relatively easy to generalize
the R3,0 closure with FLR effects. By also employing our new more precise
closures for the r̃‖‖ moment (which cannot be generalized with FLR effects),
the kinetic theory should be reproduced to a new level of precision.

• Another good example worth exploring might be the electromagnetic propagation
along the magnetic field (the slab geometry), where k⊥ = 0, but where no
restriction on the frequency is imposed. In this case, the full kinetic f (1)

enormously simplifies to the following form

f (1)r = −
qr

mr

{
1
2

[
(iEx + Ey)eiφ

ω− k‖v‖ +Ωr
+
(iEx − Ey)e−iφ

ω− k‖v‖ −Ωr

]
×

[(
1−

k‖v‖
ω

)
∂f0r

∂v⊥
+

k‖v⊥
ω

∂f0r

∂v‖

]
+

iEz

ω− k‖v‖

∂f0r

∂v‖

}
. (5.2)

By prescribing a bi-Maxwellian f0, integration over velocity space yields a
hierarchy of moments. In this geometry, the electrostatic dynamics (∼Ez)

can be completely separated from the electromagnetic dynamics (∼Ex, Ey).
The electromagnetic dynamics with cyclotron resonances n = ±1 yields a
hierarchy of non-gyrotropic moments containing Z(ζ±) and R(ζ±), where
ζ± = (ω ± Ω)/(|k‖|vth‖). The Z(ζ±) and R(ζ±) functions can be approximated
with the same Padé approximants as discussed here, and by going sufficiently
high in the hierarchy, simple closures might become available. Such closures
should capture the collisionless cyclotron damping in the fluid framework, even
though only in the slab geometry. It should also be possible to verify, if such
closures are ‘reliable’, i.e. if the kinetic dispersions of the ion-cyclotron and
whistler modes are reproduced exactly, after the Z(ζ±) and R(ζ±) are replaced
by the corresponding Padé approximant.
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Appendix A. Higher-order Padé approximants of R(ζ )

A.1. Five-pole approximants of R(ζ )
A general five-pole approximant of the plasma response function that is worth
considering is written as

R5(ζ )=
1+ a1ζ + a2ζ

2
+ a3ζ

3

1+ b1ζ + b2ζ 2 + b3ζ 3 + b4ζ 4 + b5ζ 5
. (A 1)

Additionally, the minimum choice that we consider interesting, and that is defined as
R5,0(ζ ), is to match the asymptotic expansion for |ζ |� 1 up the first −1/(2ζ 2) term,
that requires b5 = −2a3. The matching with the asymptotic expansion then proceeds
step by step, according to

R5,0(ζ ) : b5 =−2a3; o(ζ−2);

R5,1(ζ ) : b4 =−2a2; o(ζ−3);

R5,2(ζ ) : b3 = 3a3 − 2a1; o(ζ−4);

R5,3(ζ ) : b2 = 3a2 − 2; o(ζ−5);

R5,4(ζ ) : b1 = 3(a1 + a3); o(ζ−6);

R5,5(ζ ) : a2 =−
2
3 ; o(ζ−7);

R5,6(ζ ) : a3 =−
2
7 a1; o(ζ−8),

(A 2)

the R5,7(ζ ) does not make sense and is not defined. The matching with the power
series is performed according to

R5,0(ζ ) = 1+ i
√

πζ − 2ζ 2
− i
√

πζ 3
+

4
3
ζ 4
+ i
√

π

2
ζ 5
−

8
15
ζ 6
− i
√

π

6
ζ 7
;

R5,1(ζ ) = 1+ i
√

πζ − 2ζ 2
− i
√

πζ 3
+

4
3
ζ 4
+ i
√

π

2
ζ 5
−

8
15
ζ 6
;

R5,2(ζ ) = 1+ i
√

πζ − 2ζ 2
− i
√

πζ 3
+

4
3
ζ 4
+ i
√

π

2
ζ 5
;

R5,3(ζ ) = 1+ i
√

πζ − 2ζ 2
− i
√

πζ 3
+

4
3
ζ 4
;

R5,4(ζ ) = 1+ i
√

πζ − 2ζ 2
− i
√

πζ 3
;

R5,5(ζ ) = 1+ i
√

πζ − 2ζ 2
;

R5,6(ζ ) = 1+ i
√

πζ ; (A 3)

and the results are

R5,0(ζ ) : a1 = i
√

π
(621π2

− 3927π+ 6208)
(801π2 − 5124π+ 8192)

;

a2 =
(900π3

− 10665π2
+ 40268π− 49152)

5(801π2 − 5124π+ 8192)
;

a3 = i
√

π
(450π2

− 2799π+ 4352)
10(801π2 − 5124π+ 8192)

;

b1 = −i
√

π
(180π2

− 1197π+ 1984)
(801π2 − 5124π+ 8192)

;
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b2 =
2(1665π2

− 10446π+ 16384)
5(801π2 − 5124π+ 8192)

;

b3 = −i
√

π
(1800π2

− 11685π+ 18944)
10(801π2 − 5124π+ 8192)

;

b4 =
(7065π2

− 43056π+ 65536)
30(801π2 − 5124π+ 8192)

, (A 4)

R5,1(ζ ) : a1 =
i
√

π

(360π3
− 2445π2

+ 4780π− 2048)
5(72π2 − 435π+ 656)

;

a2 = −
(180π2

− 1197π+ 1984)
10(72π2 − 435π+ 656)

;

a3 =
i
√

π

(801π2
− 5124π+ 8192)

30(72π2 − 435π+ 656)
;

b1 = −
i
√

π

2(135π2
− 750π+ 1024)

5(72π2 − 435π+ 656)
;

b2 =
(720π2

− 4503π+ 7040)
10(72π2 − 435π+ 656)

;

b3 = −
i
√

π

2(495π2
− 2859π+ 4096)

15(72π2 − 435π+ 656)
, (A 5)

R5,2(ζ ) : a1 = i
√

π
3(12π2

− 81π+ 136)
4(9π2 − 69π+ 128)

; a2 =−
(135π2

− 750π+ 1024)
12(9π2 − 69π+ 128)

;

a3 = i
√

π
(72π2

− 435π+ 656)
12(9π2 − 69π+ 128)

; b1 = i
√

π
(33π− 104)

4(9π2 − 69π+ 128)
;

b2 =
(90π2

− 609π+ 1024)
6(9π2 − 69π+ 128)

, (A 6)

R5,3(ζ ) : a1 =
i
√

π

(27π2
− 126π+ 128)

3(9π− 28)
; a2 =

(33π− 104)
3(9π− 28)

;

a3 =
i
√

π

2(9π2
− 69π+ 128)

3(9π− 28)
; b1 =−

i
√

π

2(21π− 64)
3(9π− 28)

, (A 7)

R5,4(ζ ) : a1 = i
√

π
(9π− 26)
(9π− 32)

; a2 =
(21π− 64)
(9π− 32)

; a3 =−i
√

π
(9π− 28)
(9π− 32)

;

(A 8)

R5,5(ζ ) : a1 = −i
(16− 3π)

3
√

π
; a3 = i

(32− 9π)

9
√

π
; (A 9)

R5,6(ζ ) : a1 = −i
√

π 7
8 , (A 10)

so that for example

R5,3(ζ )=

1+
i
√

π

(27π2
− 126π+ 128)

3(9π− 28)
ζ +

(33π− 104)
3(9π− 28)

ζ2
+

i
√

π

2(9π2
− 69π+ 128)

3(9π− 28)
ζ3

1−
i
√

π

2(21π− 64)
3(9π− 28)

ζ +
3(5π− 16)
(9π− 28)

ζ2 −
i
√

π

2(81π− 256)
3(9π− 28)

ζ3 −
2(33π− 104)

3(9π− 28)
ζ4 −

i
√

π

4(9π2
− 69π+ 128)

3(9π− 28)
ζ5
;

(A 11)
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R5,4(ζ )=

1+ i
√

π
(9π− 26)
(9π− 32)

ζ +
(21π− 64)
(9π− 32)

ζ 2
− i
√

π
(9π− 28)
(9π− 32)

ζ 3

1+ i
√

π
6

(9π− 32)
ζ +

(45π− 128)
(9π− 32)

ζ 2 − i
√

π
(45π− 136)
(9π− 32)

ζ 3 −
2(21π−64)
(9π−32)

ζ 4 + i
√

π
2(9π− 28)
(9π− 32)

ζ 5
;

(A 12)

R5,5(ζ ) =

1− i
(16− 3π)

3
√

π
ζ −

2
3
ζ 2
+ i
(32− 9π)

9
√

π
ζ 3

1− i
16

3
√

π
ζ − 4ζ 2 + i

(64− 15π)

3
√

π
ζ 3 +

4
3
ζ 4 − i

2(32− 9π)

9
√

π
ζ 5

; (A 13)

R5,6(ζ ) =
1− i
√

π
7
8
ζ −

2
3
ζ 2
+ i
√

π

4
ζ 3

1− i
√

π
15
8
ζ − 4ζ 2 + i

√
π

5
2
ζ 3 +

4
3
ζ 4 − i

√
π

2
ζ 5

. (A 14)

A.2. Six-pole approximants of R(ζ )
A general six-pole Padé approximant to R(ζ ) that we consider is

R6(ζ )=
1+ a1ζ + a2ζ

2
+ a3ζ

3
+ a4ζ

4

1+ b1ζ + b2ζ 2 + b3ζ 3 + b4ζ 4 + b5ζ 5 + b6ζ 6
, (A 15)

where as a minimum choice, we match the first asymptotic term by b6=−2a4, which
defines R6,0(ζ ). The procedure of matching with the asymptotic expansion yields step
by step

R6,0(ζ ) : b6 =−2a4; o(ζ−2);

R6,1(ζ ) : b5 =−2a3; o(ζ−3);

R6,2(ζ ) : b4 = 3a4 − 2a2; o(ζ−4);

R6,3(ζ ) : b3 = 3a3 − 2a1; o(ζ−5);

R6,4(ζ ) : b2 = 3(a2 + a4)− 2; o(ζ−6);

R6,5(ζ ) : b1 = 3(a1 + a3); o(ζ−7);

R6,6(ζ ) : a4 =−
4

21 −
2
7 a2; o(ζ−8);

R6,7(ζ ) : a3 =−
2
7 a1; o(ζ−9);

R6,8(ζ ) : a2 =−
8
5 ; o(ζ−10);

R6,9(ζ ) : a1 = 0; o(ζ−11),

(A 16)

where the approximant R6,9(ζ ) is not a good approximant (no imaginary part for
real ζ ), and is eliminated. Matching with the power series is performed according to

R6,0(ζ ) = 1+ i
√

πζ − 2ζ 2
− i
√

πζ 3
+

4
3
ζ 4
+ i
√

π

2
ζ 5
−

8
15
ζ 6
− i
√

π

6
ζ 7

+
16

105
ζ 8
+ i
√

π

24
ζ 9
;

...

R6,8(ζ ) = 1+ i
√

πζ . (A 17)
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Even though analytic results can be obtained with Maple, they are too long to write
down, additionally, as we accidentally found out, they are also tricky to evaluate.
For example, if the default precision (of 10 digits) is used in Maple, the analytic
a1 in R6,0(ζ ) is evaluated with command evalf as −0.57i, whereas the correct value
is −0.69i. Alternatively, the system can be solved numerically from the onset. We
almost erroneously concluded that R6,0(ζ ) is not a very precise approximant, even
though its relative precision (for real valued ζ ) is better than 0.7 % for both real and
imaginary parts of R(ζ ). We provide results with 10 correct significant digits, which
is a sufficient precision introducing relative numerical errors of less than 3× 10−7 %,
i.e. negligible in comparison with the R6,0(ζ ) relative precision to R(ζ ). The results
are

R6,0(ζ ) : a1 = −i0.6916731200; a2 =−0.2854457889;
a3 = i0.05976861370; a4 = 0.005619524175;
b1 = −i2.464126971; b2 =−2.652997128;
b3 = i1.606283498; b4 = 0.5809066463;
b5 = −i0.1201024988, (A 18)

R6,1(ζ ) : a1 = −i0.7895801201; a2 =−0.3391528628;
a3 = i0.07728246365; a4 = 0.007840755018;
b1 = −i2.562033971; b2 =−2.880239841;
b3 = i1.830760570; b4 = 0.7000533404, (A 19)

R6,2(ζ ) : a1 = −i0.8965446682; a2 =−0.4102783438;
a3 = i0.1015110114; a4 = 0.01132035970;
b1 = −i2.668998519; b2 =−3.140955047;
b3 = i2.103165693, (A 20)

R6,3(ζ ) : a1 = −i1.012753086; a2 =−0.5024864543;
a3 = i0.1361229028; a4 = 0.01700049686;
b1 = −i2.785206937; b2 =−3.439137216, (A 21)

R6,4(ζ ) : a1 = i
√

π
270π2

− 1653π+ 2528
2(135π2 − 750π+ 1024)

; a2 =
9π(7π− 22)

2(135π2 − 750π+ 1024)
;

a3 = i
√

π
180π2

− 1197π+ 1984
2(135π2 − 750π+ 1024)

; a4 =
801π2

− 5124π+ 8192
6(135π2 − 750π+ 1024)

;

b1 = −i
√

π
3(51π− 160)

2(135π2 − 750π+ 1024)
, (A 22)

R6,5(ζ ) : a1 = i
√

π
4(9π− 28)
(81π− 256)

; a2 =
3π(15π− 47)
(81π− 256)

;

a3 = −i
√

π
(51π− 160)
(81π− 256)

; a4 =−
135π2

− 750π+ 1024
3(81π− 256)

, (A 23)

R6,6(ζ ) : a1 = i
√

π
(45π− 152)
(45π− 128)

; a2 =
(159π− 512)
(45π− 128)

;

a3 =−9i
√

π
(5π− 16)
(45π− 128)

; (A 24)

R6,7(ζ ) : a1 =−i
√

π 7
8 ; a2 = 4− 105

64 π; (A 25)

R6,8(ζ ) : a1 =−i
√

π 7
8 . (A 26)
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A.3. Seven-pole approximants of R(ζ )

R7(ζ )=
1+ a1ζ + a2ζ

2
+ a3ζ

3
+ a4ζ

4
+ a5ζ

5

1+ b1ζ + b2ζ 2 + b3ζ 3 + b4ζ 4 + b5ζ 5 + b6ζ 6 + b7ζ 7
, (A 27)

and the procedure of matching with asymptotic expansion yields

R7,0(ζ ) : b7 =−2a5; o(ζ−2);

R7,1(ζ ) : b6 =−2a4; o(ζ−3);

R7,2(ζ ) : b5 = 3a5 − 2a3; o(ζ−4);

R7,3(ζ ) : b4 = 3a4 − 2a2; o(ζ−5);

R7,4(ζ ) : b3 = 3a5 + 3a3 − 2a1; o(ζ−6);

R7,5(ζ ) : b2 = 3a4 + 3a2 − 2; o(ζ−7);

R7,6(ζ ) : b1 =
21
2 a5 + 3a3 + 3a1; o(ζ−8);

R7,7(ζ ) : a4 =−
4
21 −

2
7 a2; o(ζ−9);

R7,8(ζ ) : a5 =−
14
69 a3 −

4
69 a1; o(ζ−10);

R7,9(ζ ) : a2 =−
8
5 ; o(ζ−11);

R7,10(ζ ) : a3 =−
12
19 a1; o(ζ−12).

(A 28)

The R7,11(ζ ) is not defined because it would require a1→∞. Matching with the power
series is performed according to

R7,0(ζ ) = 1+ i
√

πζ − 2ζ 2
− i
√

πζ 3
+

4
3
ζ 4

+ i
√

π

2
ζ 5
−

8
15
ζ 6
− i
√

π

6
ζ 7
+

16
105

ζ 8
+ i
√

π

24
ζ 9
−

32
945

ζ 10
− i
√

π

120
ζ 11
;

...

R7,10(ζ ) = 1+ i
√

πζ . (A 29)

The results are

R7,0(ζ ) : a1 = −i0.8324695834; a2 =−0.4049799755;
a3 = i0.1121082796; a4 = 0.01799681258;
a5 = −i0.001293708127; b1 =−i2.604923434;
b2 = −3.022086548; b3 = i2.031224201;
b4 = 0.8578481138; b5 =−i0.2288461173;
b6 = −0.035945334608, (A 30)

R7,1(ζ ) : a1 = −i0.9178985928; a2 =−0.4640689249;
a3 = i0.1364936305; a4 = 0.02310278605;
a5 = −i0.001773778511; b1 =−i2.690352444;
b2 = −3.232594474; b3 = i2.257867118;
b4 = 0.9950713218; b5 =−i0.2784723967, (A 31)
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R7,2(ζ ) : a1 = −i1.010198516; a2 =−0.5369471092;
a3 = i0.1677974137; a4 = 0.03023595150;
a5 = −i0.002497479595; b1 =−i2.782652367;
b2 = −3.469070012; b3 = i2.523713033;
b4 = 1.164050381, (A 32)

R7,3(ζ ) : a1 = −i1.109722119; a2 =−0.6261744648;
a3 = i0.2086297926; a4 = 0.04033869308;
a5 = −i0.003624122579; b1 =−i2.882175970;
b2 = −3.734698361; b3 = i2.836312196, (A 33)

R7,4(ζ ) : a1 = −i1.216585782; a2 =−0.7344009695;
a3 = i0.2623273358; a4 = 0.05488528512;
a5 = −i0.005440857949; b1 =−i2.989039633;
b2 = −4.032335777, (A 34)

R7,5(ζ ) : a1 = −i1.330549030; a2 =−0.8640648164;
a3 = i0.3328884746; a4 = 0.07606674237;
a5 = −i0.008482851988; b1 =−i3.103002881, (A 35)

R7,6(ζ ) : a1 = −i1.450931895; a2 =−1.016999244;
a3 = i0.4247000792; a4 = 0.1068986701;
a5 = −i0.01378002846, (A 36)

R7,7(ζ ) : a1 = −i1.576631991; a2 =−1.194087585;
a3 = i0.5420816788; a5 =−i0.02337475294. (A 37)

We later found that the most precise (power-series) closure on the sixth-order moment
is a dynamic closure constructed with approximant R7,5(ζ ), and therefore, starting with
this approximant, we also provide analytic coefficients. The results are

R7,5(ζ ) : a1 = i
2(3375π3

− 24525π2
+ 54168π− 32768)

15(450π2 − 2799π+ 4352)
√

π
;

a2 =
(6030π2

− 37197π+ 57344)
30(450π2 − 2799π+ 4352)

;

a3 = i
3(600π2

− 3805π+ 6032)
√

π

10(450π2 − 2799π+ 4352)
; a4 =

(1545π2
− 9743π+ 15360)

5(450π2 − 2799π+ 4352)
;

a5 = i
(10800π3

− 120915π2
+ 440160π− 524288)

90(450π2 − 2799π+ 4352)
√

π
;

b1 := −i
(7065π2

− 43056π+ 65536)
15(450π2 − 2799π+ 4352)

√
π
, (A 38)
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R7,6(ζ ) : a1 = i
√

π
(1350π2

− 8601π+ 13696)
2(675π2 − 4728π+ 8192)

;

a2 = −
3(135π− 424)π

2(675π2 − 4728π+ 8192)
;

a3 = i
√

π
(1800π2

− 10707π+ 15872)
2(675π2 − 4728π+ 8192)

;

a4 =
(7065π2

− 43056π+ 65536)
6(675π2 − 4728π+ 8192)

;

a5 = −i
√

π
(450π2

− 2799π+ 4352)
(675π2 − 4728π+ 8192)

, (A 39)

R7,7(ζ ) : a1 = i
(675π2

− 3432π+ 4096)
3(−704+ 225π)

√
π
;

a2 =
(1545π− 4864)
3(−704+ 225π)

;

a3 = i
4(225π2

− 2010π+ 4096)
3(−704+ 225π)

√
π
;

a5 = −i
2(675π2

− 4728π+ 8192)
9(−704+ 225π)

√
π

, (A 40)

R7,8(ζ ) : a1 = −i
√

π
3(25π− 72)
256− 75π

; a2 =−
335π− 1024
256− 75π

;

a3 = i
√

π
5(165π− 512)
4(256− 75π)

, (A 41)

R7,9(ζ ) : a1 = −i
32− 5π

5
√

π
; a3 = i

1024− 275π

100
√

π
, (A 42)

R7,10(ζ ) : a1 = −i
√

π
19
16
. (A 43)

A.4. Eight-pole approximants of R(ζ )

R8(ζ )=
1+ a1ζ + a2ζ

2
+ a3ζ

3
+ a4ζ

4
+ a5ζ

5
+ a6ζ

6

1+ b1ζ + b2ζ 2 + b3ζ 3 + b4ζ 4 + b5ζ 5 + b6ζ 6 + b7ζ 7 + b8ζ 8
, (A 44)

and the procedure of matching with the asymptotic expansion step by step

R(ζ )=−
1

2ζ 2
−

3
4ζ 4
−

15
8ζ 6
−

105
16ζ 8

−
945

32ζ 10
−

10395
64ζ 12

−
135135
128ζ 14

· · · ; |ζ |� 1 (A 45)

yields the following table
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R8,0(ζ ) : b8 =−2a6; o(ζ−2);

R8,1(ζ ) : b7 =−2a5; o(ζ−3);

R8,2(ζ ) : b6 = 3a6 − 2a4; o(ζ−4);

R8,3(ζ ) : b5 = 3a5 − 2a3; o(ζ−5);

R8,4(ζ ) : b4 = 3a6 + 3a4 − 2a2; o(ζ−6);

R8,5(ζ ) : b3 = 3a5 + 3a3 − 2a1; o(ζ−7);

R8,6(ζ ) : b2 =
21
2 a6 + 3a4 + 3a2 − 2; o(ζ−8);

R8,7(ζ ) : b1 =
21
2 a5 + 3a3 + 3a1; o(ζ−9);

R8,8(ζ ) : a6 =−
14
69 a4 −

4
69 a2 −

8
207 ; o(ζ−10);

R8,9(ζ ) : a5 =−
14
69 a3 −

4
69 a1; o(ζ−11);

R8,10(ζ ) : a4 =−
12
19 a2 −

212
285 ; o(ζ−12);

R8,11(ζ ) : a3 =−
12
19 a1; o(ζ−13);

R8,12(ζ ) : a2 =−
94
35 ; o(ζ−14);

R8,13(ζ ) : a1 = 0; o(ζ−15),

(A 46)

where the approximant R8,13(ζ ) is not well behaved and is eliminated. Matching with
the power series is performed according to

R8,0(ζ ) = 1+ i
√

πζ − 2ζ 2
− i
√

πζ 3
+

4
3
ζ 4

+ i
√

π

2
ζ 5
−

8
15
ζ 6
− i
√

π

6
ζ 7
+

16
105

ζ 8
+ i
√

π

24
ζ 9
−

32
945

ζ 10

− i
√

π

120
ζ 11
+

64
10395

ζ 12
+ i
√

π

720
ζ 13
; |ζ | � 1;

...

R8,12(ζ ) = 1+ i
√

πζ . (A 47)

Such high-order Padé approximants are very precise, and to retain the accuracy, we
provide solutions with 16 correct significant digits (even though this is actually not
necessary and 10 digits is still fully sufficient). The approximant R8,3(ζ ) is a bit
special, since its corresponding Z8,3(ζ ) should be the approximant that is used in
the WHAMP code. This is inferred from a sentence on page 12 of the WHAMP
manual (Rönnmark 1982), where it is stated that an eight-pole approximant was
derived, using 10 equations from the power-series expansion and 6 equations from
the asymptotic-series expansion. However, the Padé coefficients in the WHAMP
manual are given in a different form than we use here, and an alternative Padé
approximation is used where for example an eight-pole approximant is given by
Z8(ζ )=

∑8
j=0 bj/(ζ − cj), and the coefficients bj, cj are obtained. We did not bother to

re-derive the coefficients in that form, instead, we compare the precision of various
approximants in § 3.5.

R8,0(ζ ) : a1 = −i0.9690248260959390; a2 =−0.5368540729623971;

a3 = i0.1799961104391385;

a4 = 0.03849976076674387; a5 =−i0.004838817622209550;
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a6 = −0.0002789155539114067;

b1 = −i2.741478677001455; b2 =−3.395998511188985;

b3 = i2.488743246168061;

b4 = 1.183496393867702; b5 =−i0.3752177277401555;

b6 = −0.07776565572655091;

b7 = i0.009681326596560459, (A 48)

R8,1(ζ ) : a1 = −i1.045465281824923; a2 =−0.6004884272987368;
a3 = i0.2109529643239577;
a4 = 0.04706936874656537; a5 =−i0.006214502177680713;
a6 = −0.0003778071927517807;
b1 = −i2.817919132730439; b2 =−3.595120045647135;
b3 = i2.719752919143475;
b4 = 1.338764097514731; b5 =−i0.4407920285051489;
b6 = −0.0952587572277513, (A 49)

R8,2(ζ ) : a1 = −i1.127283578226963; a2 =−0.6755893264302076;

a3 = i0.2489222931730291;

a4 = 0.05823704506630824; a5 =−i0.008104732774508430;

a6 = −0.0005229347287036976;

b1 = −i2.899737429132479; b2 =−3.815240099310931;

b3 = i2.984238291966390;

b4 = 1.523498938607364; b5 =−i0.5222070688557393, (A 50)

R8,3(ζ ) : a1 = −i1.214803859035098; a2 =−0.7640021842041184;

a3 = i0.2959160549490394;

a4 = 0.07292272182826132; a5 =−i0.01075099173987222;

a6 = −0.0007415148441966772;

b1 = −i2.987257709940614; b2 =−4.058778615835553;

b3 = i3.287852273584013;

b4 = 1.744375011977697, (A 51)

R8,4(ζ ) : a1 = −i1.308257217643640; a2 =−0.8677094433207613;

a3 = i0.3544341617560842;

a4 = 0.09241987665571996; a5 =−i0.01452077809048251;

a6 = −0.001080201271194285;

b1 = −i3.080711068549157; b2 =−4.328127640297961;

b3 = i3.636872378820012, (A 52)
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R8,5(ζ ) : a1 = −i1.407720282460896; a2 =−0.9887147938014795;
a3 = i0.4274799329839440;
a4 = 0.1185117574638203; a5 =−i0.01997983676237579;
a6 = −0.001621365678069347;
b1 = −i3.180174133366412; b2 =−4.625426683036889, (A 53)

R8,6(ζ ) : a1 = −i1.513048776977928; a2 =−1.128859520019374;

a3 = i0.5184905792641649;

a4 = 0.1535743993372947; a5 =−i0.02799183221943639;

a6 = −0.002514851707175031;

b1 = −i3.285502627883444, (A 54)

R8,7(ζ ) : a1 = −i1.623826833670546; a2 =−1.289590935716420;

a3 = i0.6311517791766421;

a4 = 0.2006218487856471; a5 =−i0.03983385915184296;

a6 = −0.004041376481615575, (A 55)

R8,8(ζ ) : a1 = −i1.739359630417800; a2 =−1.471743639038102;

a3 = i0.7691080574071934;

a4 = 0.2632500611991985; a5 =−i0.05724369164680910, (A 56)

R8,9(ζ ) : a1 = −i1.858726543442496; a2 =−1.675414915338742;

a3 = i0.9356405409666494;

a4 = 0.3458159069196990, (A 57)

and we provide analytic results for the last 3 approximants,

R8,10(ζ ) : a1 = i
√

π
175π− 592
175π− 512

; a2 =
955π− 3072
175π− 512

;

a3 = i
√

π
6144− 1925π

4(175π− 512)
; (A 58)

R8,11(ζ ) : a1 = −i
√

π 19
16 ; a2 = 6− 665

256π; (A 59)

R8,12(ζ ) : a1 = −i
√

π 19
16 . (A 60)

We also provide analytic coefficients for R8,6(ζ ), since this approximant can be used
to construct the most precise dynamic closure for the seventh-order moment, which
we will not do, however, an enthusiastic reader is encouraged to do the calculation as
an exercise! The R8,6(ζ ) coefficients read

R8,6(ζ ) : a1 = i
√

π
(189000π3

− 1707165π2
+ 5130216π− 5128192)

(189000π3 − 1612215π2 + 4534656π− 4194304)
;

a2 = −
2(46125π3

− 715200π2
+ 3126720π− 4194304)

5(189000π3 − 1612215π2 + 4534656π− 4194304)
;
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a3 = i
√

π
(378000π3

− 3424725π2
+ 10324380π− 10354688)

5(189000π3 − 1612215π2 + 4534656π− 4194304)
;

a4 = −
(221400π3

− 4788045π2
+ 23537664π− 33554432)

30(189000π3 − 1612215π2 + 4534656π− 4194304)
;

a5 = i
√

π
(252000π3

− 2506275π2
+ 8286200π− 9109504)

5(189000π3 − 1612215π2 + 4534656π− 4194304)
;

a6 =
(1028700π3

− 9863235π2
+ 31514112π− 33554432)

15(189000π3 − 1612215π2 + 4534656π− 4194304)
;

b1 = −i
√

π
6(15825π2

− 99260π+ 155648)
(189000π3 − 1612215π2 + 4534656π− 4194304)

.

(A 61)

We advise being very careful when evaluating the above analytic expressions, since
for example when the default 10-digit precision is used in Maple, yields a1=−i0.63,
whereas the correct value provided in (A 54) is a1 =−i1.51.

Appendix B. Operator (E+ 1
c v×B) · ∇vf0 for gyrotropic f0

The magnetic field is transformed to the electric field with induction equation
∂B(1)/∂t = −c∇ × E(1) that in Fourier space reads ωB(1)

= ck × E(1). From now on,
for the electric and magnetic field we drop the superscript (1), so in general

E+
1
c
v×B = E+

1
ω

v× (k×E)

= E+
1
ω
(k(v ·E)−E(v · k))

= E
(

1−
v · k
ω

)
+

k
ω
(v ·E). (B 1)

For any general vector A= (Ax, Ay, Az), the expression

A · ∇vf0 = Ax
∂f0

∂vx
+ Ay

∂f0

∂vy
+ Az

∂f0

∂vz
, (B 2)

so a general expression(
E+

1
c
v×B

)
· ∇vf0 =

[
Ex

(
1−

v · k
ω

)
+

kx

ω
(v ·E)

]
∂f0

∂vx

+

[
Ey

(
1−

v · k
ω

)
+

ky

ω
(v ·E)

]
∂f0

∂vy

+

[
Ez

(
1−

v · k
ω

)
+

kz

ω
(v ·E)

]
∂f0

∂vz
, (B 3)

and by straightforward grouping of electric field components together
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E+

1
c
v×B

)
· ∇vf0 = Ex

[(
1−

vyky + vzkz

ω

)
∂f0

∂vx
+
vx

ω

(
ky
∂f0

∂vy
+ kz

∂f0

∂vz

)]
+Ey

[(
1−

vxkx + vzkz

ω

)
∂f0

∂vy
+
vy

ω

(
kx
∂f0

∂vx
+ kz

∂f0

∂vz

)]
+Ez

[(
1−

vxkx + vyky

ω

)
∂f0

∂vz
+
vz

ω

(
kx
∂f0

∂vx
+ ky

∂f0

∂vy

)]
.

(B 4)

Since nothing was essentially calculated, the above expression is of general validity
and correct for any distribution function f0. The expression simplifies by considering
a gyrotropic f0(v⊥, v‖), that depends only on v⊥= |v⊥| =

√
v2

x + v
2
y , and which allows

us to calculate

∂v⊥

∂vx
=

√
v2

x + v
2
y

∂vx
=

vx√
v2

x + v
2
y

=
vx

v⊥
;

∂f0

∂vx
=
∂v⊥

∂vx

∂f0

∂v⊥
=
vx

v⊥

∂f0

∂v⊥
;

∂f0

∂vy
=
∂v⊥

∂vy

∂f0

∂v⊥
=
vy

v⊥

∂f0

∂v⊥
. (B 5)

Or in another words, in the cylindrical coordinate system the f0 is φ independent and
∂f0/∂φ = 0, so that the velocity gradient

∇v f0 =


vx
v⊥

∂

∂v⊥
vy

v⊥

∂

∂v⊥
∂

∂v‖

 f0 =

cos φ ∂

∂v⊥

sin φ ∂

∂v⊥
∂

∂v‖

 f0. (B 6)

This simplification for f0 being gyrotropic therefore yields(
E+

1
c
v×B

)
· ∇vf0 = Ex

[(
1−

v‖k‖
ω

)
vx

v⊥

∂f0

∂v⊥
+
vx

ω
k‖
∂f0

∂v‖

]
+Ey

[(
1−

v‖k‖
ω

)
vy

v⊥

∂f0

∂v⊥
+
vy

ω
k‖
∂f0

∂v‖

]
+Ez

[(
1−

vxkx + vyky

ω

)
∂f0

∂v‖

+
v‖

ω

(
kx
vx

v⊥

∂f0

∂v⊥
+ ky

vy

v⊥

∂f0

∂v⊥

)]
, (B 7)

that is conveniently rearranged as(
E+

1
c
v×B

)
· ∇vf0 = (Exvx + Eyvy)

[(
1−

v‖k‖
ω

)
1
v⊥

∂f0

∂v⊥
+

k‖
ω

∂f0

∂v‖

]
+Ez

[(
1−

vxkx + vyky

ω

)
∂f0

∂v‖
+

v‖

ωv⊥

(
kxvx + kyvy

) ∂f0

∂v⊥

]
,

(B 8)

or alternatively as
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E+

1
c
v×B

)
· ∇vf0 = (Exvx + Eyvy)

[(
1−

v‖k‖
ω

)
1
v⊥

∂f0

∂v⊥
+

k‖
ω

∂f0

∂v‖

]
+Ez

[
∂f0

∂v‖
−
vxkx + vyky

ω

(
∂f0

∂v‖
−
v‖

v⊥

∂f0

∂v⊥

)]
. (B 9)

In the cylindrical coordinate system d3v = v⊥ dv⊥ dv‖ dφ.

Appendix C. General kinetic f (1) distribution (effects of non-gyrotropy)
The calculation is actually not that difficult once the coordinate change is figured

out, as elaborated in the plasma physics books by Stix, Swanson, Akheizer etc. In the
general equation (2.15) the (1) quantities must be Fourier transformed according to

f (1)(x, v, t)= f (1)eik·x−iωt
;

E(1)(x′, t′)=E(1)eik·x′−iωt′
;

B(1)(x′, t′)=B(1)eik·x′−iωt′, (C 1)

and the equation (2.15) rewrites

f (1)eik·x−iωt
=−

qr

mr

∫ t

−∞

eik·x′−iωt′
[

E(1)
+

1
c
v′ ×B(1)

]
· ∇v′ f0(v

′) dt′. (C 2)

In the cylindrical coordinate system with velocity (2.2) and the wave vector

k=

k⊥ cosψ
k⊥ sinψ

k‖

 . (C 3)

The integration is changed to be done with respect to variable

τ = t− t′. (C 4)

The time t is a constant here and since dτ = −dt′, the integration reads
∫ t
−∞

dt′ =∫ 0
∞
(−dτ)=

∫
∞

0 dτ . The variable transformation is performed according to

v′ =

v′xv′y
v′z

=
v⊥ cos(φ +Ωτ)
v⊥ sin(φ +Ωτ)

v‖

 (C 5)

x′ =

x′
y′
z′

=
x

y
z

+
 − v⊥

Ω
[sin(φ +Ωτ)− sinφ]

+
v⊥
Ω
[cos(φ +Ωτ)− cos φ]

−v‖τ

 , (C 6)

which at time τ = 0 satisfies the initial condition. Now, by straightforward calculation
(and by using sin(a) cos(b) − cos(a) sin(b) = sin(a − b)), the exponential factor is
transformed as

k · x′ −ωt′ = k · x−ωt−
k⊥v⊥
Ω
[sin(φ −ψ +Ωτ)− sin(φ −ψ)] + (ω− k‖v‖)τ , (C 7)

so that

eik·x′−iωt′
= eik·x−iωte−i(k⊥v⊥/Ω) sin(φ−ψ+Ωτ)e+i(k⊥v⊥/Ω) sin(φ−ψ)ei(ω−k‖v‖)τ . (C 8)
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The complicated expressions encountered in the kinetic dispersion relations originate
in using identity

eiz sin φ
=

∞∑
n=−∞

einφJn(z). (C 9)

There are two such exponents, and therefore the linear kinetic theory contains two
independent summations, usually one through ‘n’ and one through ‘m’ (which should
not be confused with mass), i.e.

e−i(k⊥v⊥/Ω) sin(φ−ψ+Ωτ)
=

∞∑
n=−∞

e−in(φ−ψ+Ωτ)Jn

(
k⊥v⊥
Ω

)
; (C 10)

e+i(k⊥v⊥/Ω) sin(φ−ψ)
=

∞∑
m=−∞

e+im(φ−ψ)Jm

(
k⊥v⊥
Ω

)
, (C 11)

and together

e−i(k⊥v⊥/Ω) sin(φ−ψ+Ωτ)e+i(k⊥v⊥/Ω) sin(φ−ψ)

=

∞∑
n=−∞

∞∑
m=−∞

e+i(m−n)(φ−ψ)e−inΩτ Jn

(
k⊥v⊥
Ω

)
Jm

(
k⊥v⊥
Ω

)
. (C 12)

It is obvious that the quantity k⊥v⊥/Ω will be always present and it is useful to use
some abbreviations. Each book chooses a different notation, Swanson uses ‘b’, Stix
uses ‘z’, etc. Since we are interested in Landau fluid models, we choose to follow
the notation of Passot and Sulem 2006 and call this quantity for r-species λr, so12

λr ≡
k⊥v⊥
Ωr

, (C 13)

where for clarity of calculations, we again drop the species index r. The transformation
of the full exponential factor (C 8) therefore yields

eik·x′−iωt′
= eik·x−iωt

∞∑
n=−∞

∞∑
m=−∞

e+i(m−n)(φ−ψ)e+i(ω−k‖v‖−nΩ)τ Jn(λ)Jm(λ). (C 14)

Using this result in (C 2) allows the usual cancellation of the exponential factor
eik·x−iωt on both sides of the Fourier transformed equation, a step that we omitted to
explicitly write down many times before. The partially transformed equation (C 2)
therefore reads

f (1) = −
qr

mr

∫
∞

0

[
∞∑

n=−∞

∞∑
m=−∞

e+i(m−n)(φ−ψ)e+i(ω−k‖v‖−nΩ)τ

× Jn(λ)Jm(λ)

(
E(1)
+

1
c
v′ ×B(1)

)
· ∇v′ f0(v

′)

]
dτ , (C 15)

12Note that this notation should not be confused with notation in Peter Gary’s book where λ is reserved
for quantities encountered in the final dispersion relation and is ∼ k2

⊥
.
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where we still did not perform the coordinate change in the operator at the end of the
equation. From now on, for the electric and magnetic fields we drop the superscript
(1). Let us first calculate the gradient ∇v′ f0(v

′).
It is useful to emphasize a very important property

|v′
⊥
|
2
= v′2x + v

′2
y = v

2
⊥

cos2(φ +Ωτ)+ v2
⊥

sin2(φ +Ωτ)= |v⊥|
2, (C 16)

or in another words |v′
⊥
|= |v⊥| that is often abbreviated with non-bolded v′

⊥
= v⊥ (and

since v′
‖
=v‖ also |v′|= |v|). At first, it can be perhaps a bit confusing when one writes

that the non-bolded v′
⊥
= v⊥, since v′x 6= vx, v′y 6= vy and also the bolded v′ 6= v. The

above identity implies that for the gyrotropic f0 (which is a strict requirement for f0)

f0(|v
′

⊥
|
2, v′
‖
)= f0(|v⊥|

2, v‖), (C 17)

further implying that
∂f0

∂v′⊥
≡

∂f0

∂|v′⊥|
=

∂f0

∂|v⊥|
≡
∂f0

∂v⊥
. (C 18)

The ∇v′ f0 can now be calculated easily, since

∂f0

∂v′x
=

∂f0

∂|v′⊥|

∂|v′
⊥
|

∂v′x
=
∂f0

∂v⊥

v′x

v⊥
;

∂f0

∂v′y
=
∂f0

∂v⊥

v′y

v⊥
, (C 19)

and the gradient is written as (for gyrotropic ∂f0/∂φ = 0)

∇v′ f0 =


v′x
v⊥

∂

∂v⊥

v′y

v⊥

∂

∂v⊥
∂

∂v‖

 f0 =

cos(φ +Ωτ) ∂

∂v⊥

sin(φ +Ωτ) ∂

∂v⊥
∂

∂v‖

 f0. (C 20)

It is actually simpler to postpone the introduction of angles φ, ψ and for a moment
keep a general notation v′ = (v′x, v

′

y, v
′

z) and k = (kx, ky, kz). To transform the (E +
(1/c)v′ × B) · ∇v′ f0, one can do the completely same operations as were done in the
previous subsection where the operator (E+ (1/c)v × B) · ∇vf0 was considered. One
can just use the result (B 9), add primes to all velocities and delete those on v′

⊥
= v⊥,

v′
‖
= v‖, finally yielding(

E+
1
c
v′ ×B

)
· ∇v′ f0 = (Exv

′

x + Eyv
′

y)

[(
1−

v‖k‖
ω

)
1
v⊥

∂f0

∂v⊥
+

k‖
ω

∂f0

∂v‖

]
+Ez

[
∂f0

∂v‖
−
v′xkx + v

′

yky

ω

(
∂f0

∂v‖
−
v‖

v⊥

∂f0

∂v⊥

)]
, (C 21)

which is equivalent to equation (4.83) in Swanson. Only now we introduce the angles
and finish the transformation. Since

v′xkx + v
′

yky = v⊥ cos(φ +Ωτ)k⊥ cosψ + v⊥ sin(φ +Ωτ)k⊥ sinψ
= v⊥k⊥ cos(φ +Ωτ −ψ), (C 22)

the transformation yields
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E+

1
c
v′ ×B

)
· ∇v′ f0

=
(
Ex cos(φ +Ωτ)+ Ey sin(φ +Ωτ)

) [(
1−

v‖k‖
ω

)
∂f0

∂v⊥
+

k‖v⊥
ω

∂f0

∂v‖

]
+Ez

[
∂f0

∂v‖
+

k⊥
ω

cos(φ +Ωτ −ψ)
(
v‖
∂f0

∂v⊥
− v⊥

∂f0

∂v‖

)]
. (C 23)

To be clear, let us write down the complete result (C 15) that we have for now

f (1) = −
qr

mr

∫
∞

0

∞∑
n=−∞

∞∑
m=−∞

e+i(m−n)(φ−ψ)e+i(ω−k‖v‖−nΩ)τ Jn(λ)Jm(λ)

×

{(
Ex cos(φ +Ωτ)+ Ey sin(φ +Ωτ)

) [(
1−

v‖k‖
ω

)
∂f0

∂v⊥
+

k‖v⊥
ω

∂f0

∂v‖

]
+Ez

[
∂f0

∂v‖
+

k⊥
ω

(
v‖
∂f0

∂v⊥
− v⊥

∂f0

∂v‖

)
cos(φ +Ωτ −ψ)

]}
dτ , (C 24)

where the × at the beginning of the second line is just a multiplication and not a
cross-product (the equation is not written in the vector form anyway). The result
agrees with Stix’s expressions (10.38) and (10.39), even though Stix at this stage did
not use the Bessel expansion yet. Stix now does not proceed with the evaluation of
the integral along τ , and instead goes ahead and already starts to partially calculate
the first-order velocity moment with integrals

∫
vf (1) d3v (first integrating over

∫ 2π

0 dφ)
to eventually obtain the kinetic current j =

∑
r qrnrur =

∑
r qr

∫
vrf (1)r d3vr and the

conductivity matrix (σ )ij (through j = σ · E) that leads to the kinetic dispersion
relation. Stix actually first derives (C 23) plugged into (C 2). After introducing the
Bessel expansion, Stix immediately performs the integration over dφ. The integration
over τ is done later during other calculations, and this somewhat simplifies the amount
of algebra that needs to be written down. The simplified algebra is beneficial and
surely appreciated by experienced kinetic researchers, however, especially for new
researchers, it somewhat blurs the main point, how the kinetic dispersion relation
is derived. The kinetic dispersion relation is derived by obtaining the f (1), and by
calculating the current j. Moreover, we later want to obtain higher-order moments of
f (1) than just the first-order velocity moment. We therefore follow Swanson, Akheizer,
Passot and Sulem, and finish the calculation of f (1) by evaluating the

∫
∞

0 dτ integral
in (C 24).

By examining equation (C 24), there is only one factor that is τ dependent in the
first line that needs to be integrated, ei(ω−k‖v‖−nΩ)τ , and the factor is multiplied by four
different possibilities, cos(φ +Ωτ), sin(φ +Ωτ), 1 and cos(φ +Ωτ − ψ). We first
need to examine the following integral∫

∞

0
eiax dx=

i
a
; if Im(a) > 0. (C 25)

This perhaps surprising integral can be easily verified since an indefinite integral
eiax/(ia) exists and the curious limit

lim
x→∞

eiax
= lim

x→∞
ei[Re(a)+iIm(a)]x

= lim
x→∞

eiRe(a)xe−Im(a)x
= 0; if Im(a) > 0. (C 26)
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Obviously, the Im(a) > 0 is a strict requirement. If Im(a)= 0, the limit is undefined
since cos(x) and sin(x) always oscillate, and if Im(a) < 0 the limit diverges to ±∞.
Therefore, one of the four needed integrals is∫

∞

0
ei(ω−k‖v‖−nΩ)τ dτ =

i
ω− k‖v‖ − nΩ

; if Im(ω) > 0, (C 27)

where the Im(ω) > 0 requirement is obtained, because k‖, v‖, Ω are real numbers, n
is an integer and none of these can have an imaginary part. For the other 3 integrals
we need ∫

∞

0
eiaτ cos(φ +Ωτ) dτ =

1
2

∫
∞

0
eiaτ
(
ei(φ+Ωτ)

+ e−i(φ+Ωτ)
)

dτ

=
eiφ

2

∫
∞

0
ei(a+Ω)τ dτ +

e−iφ

2

∫
∞

0
ei(a−Ω)τ dτ

=
eiφ

2
i

a+Ω
+

e−iφ

2
i

a−Ω

=
i
2

(
eiφ

a+Ω
+

e−iφ

a−Ω

)
; if Im(a) > 0, (C 28)

and similarly∫
∞

0
eiaτ sin(φ +Ωτ) dτ =

1
2i

∫
∞

0
eiaτ
(
ei(φ+Ωτ)

− e−i(φ+Ωτ)
)

dτ

=
eiφ

2i

∫
∞

0
ei(a+Ω)τ dτ −

e−iφ

2i

∫
∞

0
ei(a−Ω)τ dτ

=
eiφ

2i
i

a+Ω
−

e−iφ

2i
i

a−Ω

=
1
2

(
eiφ

a+Ω
−

e−iφ

a−Ω

)
; if Im(a) > 0. (C 29)

The 3 required integrals therefore calculate as∫
∞

0
ei(ω−k‖v‖−nΩ)τ cos(φ +Ωτ) dτ

=
i
2

(
eiφ

ω− k‖v‖ − (n− 1)Ω
+

e−iφ

ω− k‖v‖ − (n+ 1)Ω

)
; (C 30)∫

∞

0
ei(ω−k‖v‖−nΩ)τ cos(φ −ψ +Ωτ) dτ

=
i
2

(
ei(φ−ψ)

ω− k‖v‖ − (n− 1)Ω
+

e−i(φ−ψ)

ω− k‖v‖ − (n+ 1)Ω

)
; (C 31)∫

∞

0
ei(ω−k‖v‖−nΩ)τ sin(φ +Ωτ) dτ

=
1
2

(
eiφ

ω− k‖v‖ − (n− 1)Ω
−

e−iφ

ω− k‖v‖ − (n+ 1)Ω

)
, (C 32)
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and all 3 results require Im(ω)> 0. This strictly appearing restriction is removed later
by the analytic continuation, once the fluid integrals over the f (1) are calculated. We
therefore managed to finish the integration of (C 24) along the unperturbed orbit and
our latest full result for f (1) reads

f (1) =−
qr

mr

∞∑
n=−∞

∞∑
m=−∞

e+i(m−n)(φ−ψ)Jn(λ)Jm(λ)

×

{[
iEx

2

(
eiφ

ω− k‖v‖ − (n− 1)Ω
+

e−iφ

ω− k‖v‖ − (n+ 1)Ω

)
+

Ey

2

(
eiφ

ω− k‖v‖ − (n− 1)Ω
−

e−iφ

ω− k‖v‖ − (n+ 1)Ω

)]
×

[(
1−

v‖k‖
ω

)
∂f0

∂v⊥
+

k‖v⊥
ω

∂f0

∂v‖

]
+Ez

[
i

ω− k‖v‖ − nΩ
∂f0

∂v‖
+

k⊥
ω

(
v‖
∂f0

∂v⊥
− v⊥

∂f0

∂v‖

)
×

i
2

(
ei(φ−ψ)

ω− k‖v‖ − (n− 1)Ω
+

e−i(φ−ψ)

ω− k‖v‖ − (n+ 1)Ω

)]}
. (C 33)

Obviously, the result is not very pretty, and we would like somehow to pull out the
denominator ω − k‖v‖ − nΩ from all the expressions, so that the ‘resonances’ are
grouped together. The trouble is the shifted (n − 1)Ω and (n + 1)Ω . However, all
expressions are preceded by

∑
∞

n=−∞. It is therefore easy to shift the summation by
one index, where terms that contain (n− 1)Ω require shift n= l+ 1, and terms that
contain (n+ 1)Ω require shift n= l− 1. The transformation is easy to calculate, for
example the terms proportional to Ex transform as

∞∑
n=−∞

e+i(m−n)(φ−ψ)Jn(λ)
eiφ

ω− k‖v‖ − (n− 1)Ω

=

∞∑
l=−∞

e+i(m−l−1)(φ−ψ)Jl+1(λ)
eiφ

ω− k‖v‖ − lΩ

=

∞∑
l=−∞

e+i(m−l)(φ−ψ)Jl+1(λ)
e−i(φ−ψ)eiφ

ω− k‖v‖ − lΩ

=

∞∑
l=−∞

e+i(m−l)(φ−ψ)Jl+1(λ)
e+iψ

ω− k‖v‖ − lΩ
; (C 34)

∞∑
n=−∞

e+i(m−n)(φ−ψ)Jn(λ)
e−iφ

ω− k‖v‖ − (n+ 1)Ω

=

∞∑
l=−∞

e+i(m−l+1)(φ−ψ)Jl−1(λ)
e−iφ

ω− k‖v‖ − lΩ

=

∞∑
l=−∞

e+i(m−l)(φ−ψ)Jl−1(λ)
e−iψ

ω− k‖v‖ − lΩ
. (C 35)

https://doi.org/10.1017/S0022377819000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000850


Collisionless fluid models. Part 2 139

Adding the two equations together, both Ex terms therefore transform as

(C 34)+ (C 35)=
∞∑

l=−∞

e+i(m−l)(φ−ψ)

ω− k‖v‖ − lΩ

(
Jl+1(λ)e+iψ

+ Jl−1(λ)e−iψ
)
. (C 36)

The transformation of terms proportional to Ey is almost identical since the 2 terms
are just subtracted, and it is equivalent to

(C 34)− (C 35)=
∞∑

l=−∞

e+i(m−l)(φ−ψ)

ω− k‖v‖ − lΩ

(
Jl+1(λ)e+iψ

− Jl−1(λ)e−iψ
)
. (C 37)

The terms proportional to Ez are now very easy to transform and

∞∑
n=−∞

e+i(m−n)(φ−ψ)Jn(λ)
ei(φ−ψ)

ω− k‖v‖ − (n− 1)Ω

=

∞∑
l=−∞

e+i(m−l)(φ−ψ)Jl+1(λ)
1

ω− k‖v‖ − lΩ
; (C 38)

∞∑
n=−∞

e+i(m−n)(φ−ψ)Jn(λ)
e−i(φ−ψ)

ω− k‖v‖ − (n+ 1)Ω

=

∞∑
l=−∞

e+i(m−l)(φ−ψ)Jl−1(λ)
1

ω− k‖v‖ − lΩ
, (C 39)

and together

(C 38)+ (C 39)=
∞∑

l=−∞

e+i(m−l)(φ−ψ)

ω− k‖v‖ − lΩ
(Jl+1(λ)+ Jl−1(λ)) . (C 40)

We therefore managed to rearrange the summation and equation (C 33) for f (1)
transforms to

f (1) = −
qr

mr

∞∑
l=−∞

∞∑
m=−∞

e+i(m−l)(φ−ψ)

ω− k‖v‖ − lΩ
Jm(λ)

{[
iEx

2

(
Jl+1(λ)e+iψ

+ Jl−1(λ)e−iψ
)

+
Ey

2

(
Jl+1(λ)e+iψ

− Jl−1(λ)e−iψ
)] [(

1−
v‖k‖
ω

)
∂f0

∂v⊥
+

k‖v⊥
ω

∂f0

∂v‖

]
+Ez

[
iJl(λ)

∂f0

∂v‖
+

k⊥
ω

(
v‖
∂f0

∂v⊥
− v⊥

∂f0

∂v‖

)
i
2
(Jl+1(λ)+ Jl−1(λ))

]}
. (C 41)

This is much prettier result than (C 33) since all the cyclotron resonances of the same
order are nicely grouped together. We are essentially done, however, there is one more
step that allows further simplification and that is the use of Bessel identities

Jl−1(z)+ Jl+1(z)=
2l
z

Jl(z); (C 42)

Jl−1(z)− Jl+1(z)= 2J′l(z), (C 43)

https://doi.org/10.1017/S0022377819000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000850


140 P. Hunana and others

where the prime represents a derivative, so J′l(z) = ∂Jl(z)/∂z. The contributions
proportional to Ex, Ey are rewritten as

Jl+1(λ)e+iψ
+ Jl−1(λ)e−iψ

= Jl+1(λ)(cosψ + i sinψ)+ Jl−1(λ)(cosψ − i sinψ)
= (Jl+1(λ)+ Jl−1(λ)) cosψ + i (Jl+1(λ)− Jl−1(λ)) sinψ

=
2l
λ

Jl(λ) cosψ − 2iJ′l(λ) sinψ; (C 44)

Jl+1(λ)e+iψ
− Jl−1(λ)e−iψ

= Jl+1(λ)(cosψ + i sinψ)− Jl−1(λ)(cosψ − i sinψ)
= (Jl+1(λ)− Jl−1(λ)) cosψ + i (Jl+1(λ)+ Jl−1(λ)) sinψ

= −2J′l(λ) cosψ + i
2l
λ

Jl(λ) sinψ, (C 45)

and the contributions proportional to Ez are trivial. The expression for f (1) reads

f (1) = −
qr

mr

∞∑
l=−∞

∞∑
m=−∞

e+i(m−l)(φ−ψ)

ω− k‖v‖ − lΩ
Jm(λ)

{[
iEx

(
l
λ

Jl(λ) cosψ − iJ′l(λ) sinψ
)

+ iEy

(
iJ′l(λ) cosψ +

l
λ

Jl(λ) sinψ
)] [(

1−
v‖k‖
ω

)
∂f0

∂v⊥
+

k‖v⊥
ω

∂f0

∂v‖

]
+ iEzJl(λ)

[
∂f0

∂v‖
+

k⊥
ω

l
λ

(
v‖
∂f0

∂v⊥
− v⊥

∂f0

∂v‖

)]}
. (C 46)

Pulling the i out to the front, re-grouping the Ex,Ey terms together and renaming l→n
(since it is somewhat nicer and cannot be confused with imaginary i, even though it
can be confused with density nr), together with reintroducing the species index r for
f (1)r , f0r, λr and Ωr, yields the ‘grand-finale’ result of this section, in the form

f (1)r = −
iqr

mr

∞∑
n=−∞

∞∑
m=−∞

e+i(m−n)(φ−ψ)

ω− k‖v‖ − nΩr
Jm(λr)

{[
nJn(λr)

λr

(
Ex cosψ + Ey sinψ

)
+ iJ′n(λr)

(
−Ex sinψ + Ey cosψ

)] [(
1−

k‖v‖
ω

)
∂f0r

∂v⊥
+

k‖v⊥
ω

∂f0r

∂v‖

]
+EzJn(λr)

[
∂f0r

∂v‖
−

nΩr

ω

(
∂f0r

∂v‖
−
v‖

v⊥

∂f0r

∂v⊥

)]}
. (C 47)

The quantity λr ≡ k⊥v⊥/Ωr, and Ωr = qrB0/(mrc). The expression is equivalent to
equation (4.88) in Swanson.13

C.1. Case ψ = 0, propagation in the x–z plane
If we are interested only in linear dispersion relations (and not in the development of
higher-order fluid hierarchy suitable for numerical simulations), we can restrict
ourselves to the propagation in the x–z plane, as we have done many times
before when solving dispersion relations. In the x–z plane, the wavenumber
k = (kx, 0, kz) = (k⊥, 0, k‖), or equivalently the angle ψ = 0. In this case, the
expression (C 47) simplifies to

13Swanson and others use notation ∂f0/∂v⊥ ≡ f0⊥ and ∂f0/∂v‖ ≡ f0‖, also in Swanson’s notation λr = b.
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f (1)r = −
iqr

mr

∞∑
n=−∞

∞∑
m=−∞

ei(m−n)φ

ω− k‖v‖ − nΩr
Jm(λr)

×

{[
nJn(λr)

λr
Ex + iJ′n(λr)Ey

] [(
1−

k‖v‖
ω

)
∂f0r

∂v⊥
+

k‖v⊥
ω

∂f0r

∂v‖

]
+EzJn(λr)

[
∂f0r

∂v‖
−

nΩr

ωv⊥

(
v⊥
∂f0r

∂v‖
− v‖

∂f0r

∂v⊥

)]}
, (C 48)

which is equivalent to the equation (10.3.12) in Gurnett and Bhattacharjee. In this case,
the coupling of the electric field components with the sum over index m disappears,
and the sum can be left in its original form

∑
∞

m=−∞ e+imφJm(λ)= e+iλ sin φ , yielding

f (1)r = −
iqr

mr
eiλr sin φ

∞∑
n=−∞

e−inφ

ω− k‖v‖ − nΩr

×

{[
nJn(λr)

λr
Ex + iJ′n(λr)Ey

] [(
1−

k‖v‖
ω

)
∂f0r

∂v⊥
+

k‖v⊥
ω

∂f0r

∂v‖

]
+EzJn(λr)

[
∂f0r

∂v‖
−

nΩr

ωv⊥

(
v⊥
∂f0r

∂v‖
− v‖

∂f0r

∂v⊥

)]}
. (C 49)

If the last term proportional to Ez is compared with the expression (5.2.1.9) of
Akhiezer, it appears that Akhiezer has a typo, where instead of the correct v⊥ there
is a typo v‖.

C.2. General f (1) for a bi-Maxwellian distribution
Prescribing f0 to be a bi-Maxwellian distribution function, the general expression
(C 47) for f (1) further simplifies. Since in the Vlasov expansion the gyrotropic f0 was
assumed to dependent only on v, i.e. f0(v

2
⊥
, v2
‖
) and be x, t independent, the fluid

velocity u is removed from the distribution function and the ‘pure’ bi-Maxwellian is

f0 = n0r

√
α‖

π

α⊥

π
e−α‖v

2
‖
−α⊥v

2
⊥, (C 50)

where α‖ ≡ m/(2T (0)‖ ), α⊥ = m/(2T (0)⊥ ), or in the language of thermal speeds, v2
th‖ =

2T (0)‖ /m = α
−1
‖ and v2

th⊥ = 2T (0)⊥ /m = α
−1
⊥ . We prefer the α notation instead of the

thermal speed vth, since in long analytic calculations, there is a lesser chance of an
error.

It is straightforward to calculate that for a bi-Maxwellian

∂f0

∂v‖
=−2α‖v‖ f0 =−

mr

T (0)‖
v‖ f0; (C 51)

∂f0

∂v⊥
=−2α⊥v⊥ f0 =−

mr

T (0)⊥
v⊥ f0. (C 52)

The bi-Maxwellian distribution f0 therefore can be pulled out (together with −mr) and
the general expression (C 47) rewrites
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f (1)r = iqrf0r

∞∑
n=−∞

∞∑
m=−∞

e+i(m−n)(φ−ψ)

ω− k‖v‖ − nΩr
Jm(λr)

{[
nJn(λr)

Ωr

k⊥

(
Ex cosψ + Ey sinψ

)
+ iJ′n(λr)v⊥

(
−Ex sinψ + Ey cosψ

)] [ 1

T (0)⊥r

+
k‖v‖
ω

(
1

T (0)‖r
−

1

T (0)⊥r

)]

+EzJn(λr)v‖

[
1

T (0)‖r
−

nΩr

ω

(
1

T (0)‖r
−

1

T (0)⊥r

)]}
. (C 53)

C.3. General f (1) for a bi-kappa distribution
A bi-kappa distribution function (as used previously in Part 1 of the manuscript) reads

f0 = n0r
Γ (κ + 1)
Γ (κ − 1

2)

√
α‖

π

α⊥

π

[
1+ α‖v2

‖
+ α⊥v

2
⊥

]−(κ+1)
, (C 54)

where the abbreviated α‖ = 1/(κθ 2
‖
), α⊥ = 1/(κθ 2

⊥
) and the thermal speeds are θ 2

‖
=

(1− 3/(2κ))(2T (0)‖r /mr), θ 2
⊥
= (1− 3/(2κ))(2T (0)⊥r /mr). We have again emphasized the

species index r only where necessary, even though in the final expression for f (1) we
will use the proper α‖r, α⊥r. Also, the κ-index should be written as κr, since the index
will be different for each particle species. The derivatives of f0 are

∂f0

∂v‖
=−

2(κ + 1)α‖v‖
1+ α‖v2

‖ + α⊥v
2
⊥

f0; (C 55)

∂f0

∂v⊥
=−

2(κ + 1)α⊥v⊥
1+ α‖v2

‖ + α⊥v
2
⊥

f0, (C 56)

which yields the f (1) for a bi-kappa distribution

f (1)r =
iqr

mr

2(κr + 1)f0r

(1+ α‖rv2
‖ + α⊥rv

2
⊥)

∞∑
n=−∞

∞∑
m=−∞

e+i(m−n)(φ−ψ)

ω− k‖v‖ − nΩr
Jm(λr)

×

{[
nJn(λr)

Ωr

k⊥

(
Ex cosψ + Ey sinψ

)
+ iJ′n(λr)v⊥

(
−Ex sinψ + Ey cosψ

)] [
α⊥r +

k‖v‖
ω
(α‖r − α⊥r)

]
+EzJn(λr)v‖

[
α‖r −

nΩr

ω

(
α‖r − α⊥r

)]}
. (C 57)

In the limit κ→∞, (C 57) should ‘obviously’ converge to the bi-Maxwellian (C 53).

C.4. Formulation with scalar potentials Φ, Ψ
In kinetic theory and especially in the formulation of Landau fluid models, instead
of electric fields, it is often useful to work with scalar potentials Φ, Ψ , that should
not be confused with azimuthal angles φ, ψ for the velocity and wavenumber in the
cylindrical coordinate system. The usual decomposition employs the scalar potential
Φ and the vector potential A, according to
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B=B0 +∇×A; (C 58)

E=−∇Φ −
1
c
∂A
∂t
, (C 59)

and it is useful to choose the Coulomb gauge ∇ · A= 0. By exploring the equation
for f (1), it is noteworthy that the perpendicular electric fields Ex, Ey are ‘coupled’
through the azimuthal angle ψ . In contrast, the parallel electric field component Ez

is on its own. Of course, this is partially a consequence of using the cylindrical
coordinate system, which has natural coordinates to describe gyrating particle. It
turns out that, in this case, the calculations can be simplified, if the (C 59) is kept
for the perpendicular components Ex, Ey, but the Ez field is rewritten with another
scalar potential Ψ according to

Ex =−∂xΦ −
1
c
∂Ax

∂t
; (C 60)

Ey =−∂yΦ −
1
c
∂Ay

∂t
; (C 61)

Ez =−∂zΨ . (C 62)

Here we follow the notation of Passot & Sulem (2006, 2007). Note that in §§ 3 and 4,
we used variable Φ for the potential of the parallel electric field Ez, which is here
referred to as Ψ . This transformation enables the elimination of vector potential A, as
we will see shortly. Since for the Ez component the (C 59) is still valid, implying

Ez =−∂zΦ −
1
c
∂Az

∂t
=−∂zΨ ; ⇒

∂Az

∂t
=−c∂z(Φ −Ψ ), (C 63)

or in Fourier space

Az =
ck‖
ω
(Φ −Ψ ). (C 64)

Using the Coulomb gauge in Fourier space k ·A= 0 implies14

kxAx + kyAy + kzAz = 0; (C 65)

Ax cosψ + Ay sinψ =−
k‖
k⊥

Az =−
ck2
‖

ωk⊥
(Φ −Ψ ). (C 66)

The electric field components in Fourier space read

Ex = i
[
−Φk⊥ cosψ +

ω

c
Ax

]
; (C 67)

Ey = i
[
−Φk⊥ sinψ +

ω

c
Ay

]
; (C 68)

Ez = i
[
−k‖Ψ

]
, (C 69)

and the expression with Ex, Ey components on the first line of (C 53) for f (1) is

14The Coulomb gauge is sometimes called the ‘perpendicular gauge’ since the vector potential A is obviously
perpendicular to the direction of propagation k.
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Ex cosψ + Ey sinψ = i
[
−Φk⊥ +

ω

c

(
Ax cosψ + Ay sinψ

)]
= i

[
−Φk⊥ −

ω

c

ck2
‖

k⊥ω
(Φ −Ψ )

]
= i

[
−Φk⊥ −

k2
‖

k⊥
(Φ −Ψ )

]

= ik⊥

[
−

(
1+

k2
‖

k2
⊥

)
Φ +

k2
‖

k2
⊥

Ψ

]
. (C 70)

Furthermore, since ∂Bz/∂t = −c(∂xEy − ∂yEx), which in Fourier space rewrites
(ω/c)Bz = kxEy − kyEx, implying

− Ex sinψ + Ey cosψ =
ω

ck⊥
Bz. (C 71)

The bi-Maxwellian equation (C 53) then reads

f (1)r = qrf0r

∞∑
n=−∞

∞∑
m=−∞

e+i(m−n)(φ−ψ)

ω− k‖v‖ − nΩr
Jm(λr)

×

{[
nJn(λr)Ωr

((
1+

k2
‖

k2
⊥

)
Φ −

k2
‖

k2
⊥

Ψ

)
− J′n(λr)

ωv⊥

ck⊥
Bz

]

×

[
1

T (0)⊥r

+
k‖v‖
ω

(
1

T (0)‖r
−

1

T (0)⊥r

)]

+Ψ Jn(λr)k‖v‖

[
1

T (0)‖r
−

nΩr

ω

(
1

T (0)‖r
−

1

T (0)⊥r

)]}
, (C 72)

which verifies (7) of Passot & Sulem (2006) (their preceding (6) contains a small
misprint, and on the right-hand side should have f (0)r instead of f (1)r ).
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