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Abstract

This paper investigates interrelated price online inventory problems, in which decisions
as to when and how much of a product to replenish must be made in an online fashion to
meet some demand even without a concrete knowledge of future prices. The objective
of the decision maker is to minimize the total cost while meeting the demands. Two
different types of demand are considered carefully, that is, demands which are linearly
and exponentially related to price. In this paper, the prices are online, with only the
price range variation known in advance, and are interrelated with the preceding price.
Two models of price correlation are investigated, namely, an exponential model and a
logarithmic model. The corresponding algorithms of the problems are developed, and
the competitive ratios of the algorithms are derived as the solutions by use of linear
programming.

2010 Mathematics subject classification: 11Y16.

Keywords and phrases: interrelated prices, online inventory problem, competitive
analysis, demand.

1. Introduction

In recent years, online problem and competitive algorithm theory have received an
increasing amount of attention. After the economic order quantity (EOQ) model
was proposed by Wilson [18] in 1934, inventory theory has gradually developed.
In classical inventory problems, prices are generally assumed to be constant, or
they follow a probability distribution. Serel [13] studied the optimal ordering and
pricing problem based on interrelated demand and price in the rapid response system.
Banerjee and Sharma [3] investigated the inventory model with seasonal demand in
two potentially replaceable markets. Sana [11] generalized the EOQ model in the
case of perishable products with sensitive demand to price. Lin and Ho [9] studied
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the optimal ordering and pricing problem of the joint inventory model with sensitive
demand to price based on the quantity discount. Kalymon [7] studied the problem
with price dependency on previous prices, where demand was also uncertain. Webster
and Weng [17] studied the ordering and pricing problem of the fashion product’s
supply chain which consisted of producer and seller, and where random demand is
sensitive to price in the supply chain. Ali and Masinga [1] presented a nonlinear
programming model that could handle random demands and incorporate price changes
for optimal order quantities. Shu et al. [14] considered an inventory control problem
with stochastic demand in which the demand mean and variance were assumed to
be known for each market. Liu et al. [10] investigated a single-period inventory
problem with discrete stochastic demand. Yang et al. [20] studied the product pricing
and material replenishment strategy with price-sensitive demand. Sicilia et al. [15]
studied an inventory model for deteriorating items with shortages and time-varying
demand. Drezner and Scott [5] derived approximate formulas for the optimal solution
in the particular case of an exponential demand distribution for the stochastic inventory
model.

The price online inventory problem [8] is challenging because the decision maker,
or a retailer, must decide when and how much to purchase without knowing future
prices. The price online inventory problem can be seen as an extension of the time-
series search problem and the financial one-way trading problem [4, 6, 12, 19, 21], in
which a decision maker wants to purchase L units of product through a sequence of
n sellers v1, v2, . . . , vn arriving online, and he needs to decide the fraction to purchase
from each vi at the then-prevailing market price pi. His objective is to minimize the
cost. It is easy to solve the off-line version of the problem; if the decision maker knows
all the future prices, he can simply wait for the lowest price and then purchase all his
products at that price.

Specifically, in our price online inventory problem, there is a buyer who has L units
of product to be purchased, and there is a sequence of sellers v1, v2, . . . , vn arriving.
When a seller vi arrives, the unit price pi is revealed and the buyer needs to decide
the amount xi of product to be purchased from vi at price pi, and the objective is
to minimize

∑
i pixi subject to

∑
i xi ≤ L. This optimization problem is challenging

because: (1) the buyer has no control on the prices, which fluctuate with time; (2) the
future prices are uninformative, that is, when vi arrives, any price p j, where j > i is
unknown; and (3) he needs to decide the amount of product to be purchased from a
seller vi as soon as vi arrives. Larsen and Wohlk [8] considered a real-time version of
the inventory problem with continuous deterministic demand involving the fixed order
cost and the inventory cost, and they obtained algorithmic upper and lower bounds
of the competitive ratio, where the gap grows with the complexity of the modes.
The inventory problem considered is a demand online inventory problem where the
decision maker only knows the upper bound and lower bound of the daily demand and
decides how many products should be prepared every day.

We apply the competitive ratio to evaluate the performance of the algorithm. An
arbitrary online algorithm ALG is referred to as r-competitive, if an arbitrary input
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price instance I satisfies ALG(I) ≤ r · OPT(I), where ALG(I) denotes the cost of the
online algorithm ALG and OPT(I) is the cost of the optimal off-line algorithm OPT.
The competitive ratio of ALG algorithm is defined as the minimum r that satisfies the
above inequality.

To improve the work of Larsen and Wohlk [8] on a real-time inventory problem,
we focus on two main facts of one inventory system: the price and the demand. The
impacts of price, the price-related patterns and the relevant algorithms are discussed.
In the Chinese stock market, the stock prices of today are known to be bounded
in the interval from 90% to 110% of yesterday’s closing price. So we modify the
assumptions and assume that the variation range of each price is interrelated with its
preceding price. In the inventory system, there are certain demands for the items,
since there are some retailers and customers. The demand is negatively correlated
to the price, because customers are more willing to purchase cheaper products. The
problems considered in this paper become more practical than the problems of Larsen
and Wohlk [8]. Two types of relationship and price of demand are considered, linear
relationships and exponential relationships [16], and, for each of the two types, the
exponential and logarithmic price interrelations, respectively, are considered [21].

2. Problem statement

We consider an inventory problem in which the decision maker, a retailer, decides
when and how much to purchase every day without knowing future prices during the
purchasing process. Let U be the storage capacity, which must be reached when the
purchasing process is over. Additionally, the initial inventory is zero. The objective
of the decision maker is to minimize the total cost with the demands met. In order to
generalize the model, we consider different price variation ranges. That is, the price
has its own variation range, and the range is variable.

Let n denote the number of purchasing days. Denote by Di and pi the demand and
the price on the ith day, respectively. Let θ1 and θ2 denote the parameters of price
variation ranges. We make some basic observation on the values of θ1 and θ2. If 1 ≤ θ1

or θ2 ≤ 1, implying that the price sequence is monotonously increasing or decreasing,
respectively, the optimal solution can be obtained by selecting the first or last price for
the problems, respectively. So we just focus on the case where 0 < θ1 ≤ 1 ≤ θ2. Let
p denote the initial price, where p1 ∈ [θ1 p, θ2 p]. As in the Chinese stock market, the
stock prices follow the exponential model with θ1 = 0.9 and θ2 = 1.1. The following
two price interrelation models are considered:

(i) the exponential model with pi ∈ [θ1 pi−1, θ2 pi−1], 2 ≤ i ≤ n; and
(ii) the logarithmic model with pi ∈ [θ1 p1 ln i, θ2 p1 ln i], 2 ≤ i ≤ n.

3. The competitive analysis for linearly related demand

For the inventory problem, the demand is assumed to have a negative linear
relationship with price [16]. Without loss of generality, we assume that Di = ai − bi pi.
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3.1. Competitive analysis of the exponential model A linear programming
problem with variables {r, s1, s2, . . . , sn} is investigated as follows. The second and
third constraint conditions are transformed by the range of the total purchase quantity
at the end of the jth day ( j = 1,2, . . . ,n) and the relationship between the demand, price
and the price correlation in the exponential model. The assumption of the exponential
model is that pi ∈ [θ1 pi−1, θ2 pi−1] for every 2 ≤ i ≤ n, and there exists one positive
p ∈ [θ1 p, θ2 p] with θ1 ≤ 1 ≤ θ2. The linear programming problem is given below.

minimize r (LP1)
such that Hi(s1, s2, . . . , sn) ≤ r

U +

n∑
i=1

(ai − biθ
i
2 p) ≤

n∑
i=1

si ≤ U +

n∑
i=1

(ai − biθ
i
1 p)

j∑
i=1

(ai − biθ
i
2 p) ≤

j∑
i=1

si ≤ U +

j∑
i=1

(ai − biθ
i
1 p), j = 1, 2, . . . , n − 1

si ≥ 0 for i = 1, 2, . . . , n,

where

Hi(s1, s2, . . . , sn) =
s1/θ

i−1
1 + s2/θ

i−2
1 + · · · + si−1/θ1 + si + si+1θ2 + · · · + snθ

n−i
2

U +
∑n

j=1(a j − b jθ
j
2 p)

.

Theorem 3.1. The solution to the above linear programming problem (LP1) exists.

Proof. We only need to prove that there exists {r′, s′1, s
′
2, . . . , s

′
n} such that

Hi(s′1, s
′
2, . . . , s

′
n) ≤ r′, i = 1, 2, . . . , n, (3.1)

U +

n∑
i=1

(ai − biθ
i
2 p) ≤

n∑
i=1

s′i ≤ U +

n∑
i=1

(ai − biθ
i
1 p), (3.2)

j∑
i=1

(ai − biθ
i
2 p) ≤

j∑
i=1

s′i ≤ U +

j∑
i=1

(ai − biθ
i
1 p) j = 1, 2, . . . , n − 1, (3.3)

s′i ≥ 0, i = 1, 2, . . . , n. (3.4)

We construct the set as follows. Let s′1 = U + a1 − b1θ1 p and s′i = ai − biθ
i
1 p for every i,

2 ≤ i ≤ n. It is obvious that s′i ≥ 0 for 1 ≤ i ≤ n and
∑n

i=1 s′i = U +
∑n

i=1(ai − biθ
i
1 p), and∑ j

i=1 s′i = U +
∑ j

i=1(ai − biθ
i
1 p) holds for 1 ≤ j ≤ n − 1. With the assumption θ1 ≤ θ2,

{s′1, s
′
2, . . . , s

′
n} = {U + a1 − b1θ1 p, a2 − b2θ

2
1 p, . . . , an − bnθ

n
1 p} satisfies the inequalities

(3.2)–(3.4). In addition, for any i = 1, 2, . . . , n,

Hi(s′1, s
′
2, . . . , s

′
n) =

1

U +
∑n

j=1(a j − b jθ
j
2 p)

×

{U + a1 − b1θ1 p
θi−1

1

+ · · · +
ai−1 − bi−1θ

i−1
1 p

θ1

+ ai − biθ
i
1 p + (ai+1 − bi+1θ

i+1
1 p)θ2 + · · · + (an − bnθ

n
1 p)θn−i

2

}
.
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Since θ1, θ2,U, n, p, ai(1 ≤ i ≤ n) and bi(1 ≤ i ≤ n) are all known parameters, the values
of Hi(s′1, s

′
2, . . . , s

′
n) = Hi(U + a1 − b1θ1 p,a2 − b2θ

2
1 p, . . . ,an − bnθ

n
1 p) can be calculated

for all 1 ≤ i ≤ n. Let r′ = max1≤i≤n Hi(U + a1 − b1θ1 p, a2 − b2θ
2
1 p, . . . , an − bnθ

n
1 p).

Note that Hi(U + a1 − b1θ1 p, a2 − b2θ
2
1 p, . . . , an − bnθ

n
1 p) ≤ r′ for all 1 ≤ i ≤ n. From

the above analysis, there exists

{r′, s′1, s
′
2, . . . , s

′
n}= max

1≤i≤n
{Hi(U + a1 − b1θ1 p, a2 − b2θ

2
1 p, . . . , an − bnθ

n
1 p),

U + a1 − b1θ1 p, a2 − b2θ
2
1 p, . . . , an − bnθ

n
1 p}

satisfying the inequalities (3.1)–(3.4). Thus, the solution of the linear programming
problem (LP1) exists. �

The online algorithm for this model is designed according to the solution of the
linear programming problem (LP1), and is denoted by SLP1.

Algorithm 1: SLP1

1: Solve the linear programming problem (LP1), and let {r>, s>1 , s>2 , . . . , s>n } be the
solution.

2: Define s>i to be the quantity of units for purchasing at period i for every 1 ≤ i ≤ n.

Theorem 3.2. The competitive ratio of SLP1 algorithm is r>.

Proof. Let σ = p1, p2, . . . , pn be an arbitrary price sequence. Without loss of
generality, we assume that the lowest price in σ is pi; then the optimal solution
OPT(σ) ≥ (U +

∑n
j=1 D j)pi and SLP1(σ) =

∑n
j=1 s>j p j.

If p j ∈ [θ1 p j−1, θ2 p j−1] for 2 ≤ j ≤ n, then p j ≤ pi/θ
i− j
1 for j = 1, 2, . . . , i and p j ≤

θ
j−i
2 pi for j = i + 1, i + 2, . . . , n. From

SLP1(σ)
OPT(σ)

≤

n∑
j=1

s>j p j

(U +
∑n

j=1 D j)pi
,

we obtain

SLP1(σ)
OPT(σ)

≤
s>1 pi/θ

i−1
1 + s>2 pi/θ

i−2
1 + · · · + s>i−1 pi/θ1 + s>i pi + s>i+1θ2 pi + · · · + s>n θ

n−i
2 pi

(U +
∑n

j=1 D j)pi

≤
s>1 /θ

i−1
1 + s>2 /θ

i−2
1 + · · · + s>i−1/θ1 + s>i + s>i+1θ2 + · · · + s>n θ

n−i
2

U +
∑n

j=1(a j − b jθ
j
2 p)

= Hi(s>1 , s
>
2 , . . . , s

>
n ).

Combined with the optimal solution to the linear programming problem (LP1), the
above inequality can be rewritten as SLP1(σ)/OPT(σ) ≤ Hi(s>1 , s>2 , . . . , s>n ) ≤ r> for
i = 1, 2, . . . , n, where r> is the minimum one satisfying the above inequality. Hence,
r> is the competitive ratio of the algorithm SLP1. �
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3.2. Competitive analysis of the logarithmic model The assumption of
logarithmic model is that pi ∈ [θ1 p1 ln i, θ2 p1 ln i] for 2 ≤ i ≤ n, and there exists one
positive p satisfying p1 ∈ [θ1 p, θ2 p] with θ1 ≤ θ2. Let

K1(s1, s2, . . . , sn) =
s1 + s2θ2 ln 2 + · · · + snθ2 ln n

U + a1 − b1θ2 p +
∑n

j=2(a j − b jθ
2
2 p ln j)

,

Ki(s1, s2, . . . , sn) =
s1 + s2θ2 ln 2 + · · · + snθ2 ln n

{U + a1 − b1θ2 p +
∑n

j=2(a j − b jθ
2
2 p ln j)}θ1 ln i

, i = 2, 3, . . . , n.

Before giving the competitive ratio, the following linear programming problem with
variables {r, s1, s2, . . . , sn} is considered, in which the constraint conditions (3.2)–(3.4)
are transformed by the range of the total purchase quantity at the end of the jth day
( j = 1, 2, . . . , n) in the logarithmic model.

minimize r (LP2)
such that Ki(s1, s2, . . . , sn) ≤ r,

a1 − b1θ2 p ≤ s1 ≤ U + a1 − b1θ1 p,

a1 − b1θ2 p +

j∑
i=2

(ai − biθ
2
2 p ln i) ≤

j∑
i=1

si, j = 2, . . . , n − 1,

j∑
i=1

si ≤ U + a1 − b1θ1 p +

j∑
i=2

(ai − biθ
2
1 p ln i), j = 2, . . . , n − 1,

U + a1 − b1θ2 p +

n∑
i=2

(ai − biθ
2
2 p ln i) ≤

n∑
i=1

si,

n∑
i=1

si ≤ U + a1 − b1θ1 p +

n∑
i=2

(ai − biθ
2
1 p ln i),

si ≥ 0, i = 1, 2, . . . , n.

Theorem 3.3. The solution to the linear programming problem (LP2) exists.

The online algorithm of this model is designed according to the solution of the
linear programming problem (LP2), and is denoted by SLP2.

Algorithm 2: SLP2

1: Solve the linear programming problem (LP2) and let {r̂, ŝ1, ŝ2, . . . , ŝn} be the
solution.

2: Define ŝi to be the quantity of units for purchasing at period i for every 1 ≤ i ≤ n.

Theorem 3.4. The competitive ratio of SLP2 algorithm is r̂.
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Proof. Let σ = p1, p2, . . . , pn denote an arbitrary price sequence. Without loss of
generality, we assume that the lowest price in σ is pi. For i = 1, OPT(σ) ≥ {U +

a1 − b1θ2 p +
∑n

j=2(a j − b jθ
2
2 p ln j)}p1 and SLP2(σ) =

∑n
j=1 ŝ j p j with the assumptions

that p j ∈ [θ1 p1 ln j, θ2 p1 ln j] for 2 ≤ j ≤ n and p j ≤ θ2 p1 ln j for every j = 2, 3, . . . , n.
Then

SLP2(σ)
OPT(σ)

≤

∑n
j=1 ŝ j p j

(U + a1 − b1θ2 p +
∑n

j=2(a j − b jθ
2
2 p ln j))p1

≤
ŝ1 p1 + ŝ2θ2 ln 2p1 + · · · + ŝnθ2 ln np1

(U + a1 − b1θ2 p +
∑n

j=2(a j − b jθ
2
2 p ln j))p1

=
ŝ1 + ŝ2θ2 ln 2 + · · · + ŝnθ2 ln n

U + a1 − b1θ2 p +
∑n

j=2(a j − b jθ
2
2 p ln j)

= K1(ŝ1, ŝ2, . . . , ŝn).

For 2 ≤ i ≤ n, OPT(σ) ≥ {U + a1 − b1θ2 p +
∑n

j=2(a j − b jθ
2
2 p ln j)}pi and SLP2(σ) =∑n

j=1 ŝ j p j. By the assumptions of this model, pi ≥ θ1 p1 ln i holds for i = 2, 3, . . . , n and
p j ≤ θ2 p1 ln j holds for j = 2, 3, . . . , n. Then

SLP2(σ)
OPT(σ)

≤

∑n
j=1 ŝ j p j

(U + a1 − b1θ2 p +
∑n

j=2(a j − b jθ
2
2 p ln j))pi

≤
ŝ1 p1 + ŝ2θ2 ln 2p1 + · · · + ŝnθ2 ln np1

(U + a1 − b1θ2 p +
∑n

j=2(a j − b jθ
2
2 p ln j))θ1 p1 ln i

=
ŝ1 + ŝ2θ2 ln 2 + · · · + ŝnθ2 ln n

(U + a1 − b1θ2 p +
∑n

j=2(a j − b jθ
2
2 p ln j))θ1 ln i

= Ki(ŝ1, ŝ2, . . . , ŝn).

Combining the above two cases with i = 1 and 2 ≤ i ≤ n,

SLP2(σ)
OPT(σ)

≤ Ki(ŝ1, ŝ2, . . . , ŝn) ≤ r̂, i = 1, 2, . . . , n,

where r̂ is the minimum one satisfying the above inequality. Hence, r̂ is the
competitive ratio of the algorithm SLP2. �

4. The competitive analysis for exponentially related demand

In this inventory problem, the demand is assumed to have a negative exponential
relationship with price [2, 16]. Without loss of generality, we assume that Di =

ai exp(−bi pi).

4.1. Competitive analysis of the exponential model First, a linear programming
problem with variables {r, s1, s2, . . . , sn}, as follows, is investigated, in which the
second and third constraint conditions are transformed by the range of the total
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purchase quantity at the end of the jth day ( j = 1, 2, . . . , n).

minimize r (LP3)
such that Mi(s1, s2, . . . , sn) ≤ r

U +

n∑
i=1

ai exp(−biθ
i
2 p) ≤

n∑
i=1

si ≤ U +

n∑
i=1

ai exp(−biθ
i
1 p)

j∑
i=1

ai exp(−biθ
i
2 p) ≤

j∑
i=1

si ≤ U +

j∑
i=1

ai exp(−biθ
i
1 p), j = 1, 2, . . . , n − 1

si ≥ 0, i = 1, 2, . . . , n,

where

Mi(s1, s2, . . . , sn) =
s1/θ

i−1
1 + s2/θ

i−2
1 + · · · + si−1/θ1 + si + si+1θ2 + · · · + snθ

n−i
2

U +
∑n

j=1 a j exp(−b jθ
j
2 p)

.

Theorem 4.1. The solution to the linear programming problem (LP3) exists.

The online algorithm of this model can be designed according to the solution of the
linear programming problem (LP3), and is denoted by SLP3.

Algorithm 3: SLP3

1: Solve the linear programming problem (LP3) and let {r∗, s∗1, s∗2, . . . , s∗n} be the
solution.

2: Define s∗i to be the quantity of units for purchasing at period i for every 1 ≤ i ≤ n.

Theorem 4.2. The competitive ratio of SLP3 algorithm is r∗.

Proof. Let σ = p1, p2, . . . , pn be an arbitrary price sequence. Without loss of
generality, we assume that the lowest price in σ is pi. Note that OPT(σ) ≥ (U +∑n

j=1 D j)pi and SLP3(σ) =
∑n

j=1 s∗j p j. For 2 ≤ j ≤ n, p j ∈ [θ1 p j−1, θ2 p j−1] holds, and

then p j ≤ pi/θ
i− j
1 for j = 1, 2, . . . , i and p j ≤ θ

j−i
2 pi for j = i + 1, i + 2, . . . , n. From

SLP3(σ)/OPT(σ) ≤
∑n

j=1 s∗j p j/(U +
∑n

j=1 D j)pi,

SLP3(σ)
OPT(σ)

≤
s∗1 pi/θ

i−1
1 + s∗2 pi/θ

i−2
1 + · · · + s∗i−1 pi/θ1 + s∗i pi + s∗i+1θ2 pi + · · · + s∗nθ

n−i
2 pi

(U +
∑n

j=1 D j)pi

≤
s∗1/θ

i−1
1 + s∗2/θ

i−2
1 + · · · + s∗i−1/θ1 + s∗i + s∗i+1θ2 + · · · + s∗nθ

n−i
2

U +
∑n

j=1 a j exp(−b jθ
j
2 p)

= Mi(s∗1, s
∗
2, . . . , s

∗
n).

Combined with the optimal solution to the linear programming problem (LP3), the
above inequality can be rewritten as

SLP3(σ)
OPT(σ)

≤ Mi(s∗1, s
∗
2, . . . , s

∗
n) ≤ r∗, i = 1, 2, . . . , n,
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where r∗ is the minimum one satisfying the above inequality. Hence, r∗ is the
competitive ratio of the algorithm SLP3. �

4.2. Competitive analysis of the logarithmic model Let

Q1(s1, s2, . . . , sn) =
s1 + s2θ2 ln 2 + · · · + snθ2 ln n

U + a1 exp(−b1θ2 p) +
∑n

j=2 a j exp(−b jθ
2
2 p ln j)

,

Qi(s1, s2, . . . , sn) =
s1 + s2θ2 ln 2 + · · · + snθ2 ln n

(U + a1 exp(−b1θ2 p) +
∑n

j=2 a j exp(−b jθ
2
2 p ln j))θ1 ln i

for i = 2, 3, . . . , n. Before giving the competitive ratio, the following linear
programming problem with variables {r, s1, s2, . . . , sn} is considered, in which the
constraint conditions are transformed by the range of the total purchase quantity at
the end of the jth day ( j = 1, 2, . . . , n).

minimize r (LP4)
such that Qi(s1, s2, . . . , sn) ≤ r,

a1 exp(−b1θ2 p) ≤ s1 ≤ U + a1 exp(−b1θ1 p),

a1 exp(−b1θ2 p) +

j∑
i=2

ai exp(−biθ
2
2 p ln i) ≤

j∑
i=1

si, j = 2, . . . , n − 1,

j∑
i=1

si ≤ U + a1 exp(−b1θ1 p) +

j∑
i=2

ai exp(−biθ
2
1 p ln i), j = 2, . . . , n − 1,

U + a1 exp(−b1θ2 p) +

n∑
i=2

ai exp(−biθ
2
2 p ln i) ≤

n∑
i=1

si,

n∑
i=1

si ≤ U + a1 exp(−b1θ1 p) +

n∑
i=2

ai exp(−biθ
2
1 p ln i),

si ≥ 0, i = 1, 2, . . . , n.

Theorem 4.3. The solution to the linear programming problem (LP4) exists.

The online algorithm of this model can be designed according to the solution of the
linear programming problem (LP4), and is denoted by SLP4.

Algorithm 4: SLP4

1: Solve the linear programming problem (LP4) and let {r̄, s̄1, s̄2, . . . , s̄n} be the
solution.

2: Define s̄i to be the quantity of units for purchasing at period i for every 1 ≤ i ≤ n.

Theorem 4.4. The competitive ratio of SLP4 algorithm is r̄.

Proof. Letσ denote an arbitrary price sequence. Without loss of generality, we assume
that the lowest price in σ is pi.
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For i = 1, OPT(σ) ≥ {U + a1 exp(−b1θ2 p) +
∑n

j=2 a j exp(−b jθ
2
2 p ln j)}p1, and

SLP4(σ) =
∑n

j=1 s̄ j p j. For 2 ≤ j ≤ n, p j ∈ [θ1 p1 ln j, θ2 p1 ln j], the inequality p j ≤

θ2 p1 ln j holds for every j = 2, 3, . . . , n.

SLP4(σ)
OPT(σ)

≤

∑n
j=1 s̄ j p j

{U + a1 exp(−b1θ2 p) +
∑n

j=2 a j exp(−b jθ
2
2 p ln j)}p1

≤
s̄1 p1 + s̄2θ2 ln 2p1 + · · · + s̄nθ2 ln np1

{U + a1 exp(−b1θ2 p) +
∑n

j=2 a j exp(−b jθ
2
2 p ln j)}p1

=
s̄1 + s̄2θ2 ln 2 + · · · + s̄nθ2 ln n

U + a1 exp(−b1θ2 p) +
∑n

j=2 a j exp(−b jθ
2
2 p ln j)

= Q1(s̄1, s̄2, . . . , s̄n).

For 2 ≤ i ≤ n, OPT(σ) ≥ {U + a1 exp(−b1θ2 p) +
∑n

j=2 a j exp(−b jθ
2
2 p ln j)}pi and

SLP4(σ) =
∑n

j=1 s̄ j p j hold. By the assumptions of this model, pi ≥ θ1 p1 ln i and
p j ≤ θ2 p1 ln j for i = 2, 3, . . . , n and j = 2, 3, . . . , n. Then

SLP4(σ)
OPT(σ)

≤

∑n
j=1 s̄ j p j

(U + a1 exp(−b1θ2 p) +
∑n

j=2 a j exp(−b jθ
2
2 p ln j))pi

≤
s̄1 p1 + s̄2θ2 ln 2p1 + · · · + s̄nθ2 ln np1

(U + a1 exp(−b1θ2 p) +
∑n

j=2 a j exp(−b jθ
2
2 p ln j))θ1 p1 ln i

=
s̄1 + s̄2θ2 ln 2 + · · · + s̄nθ2 ln n

(U + a1 exp(−b1θ2 p) +
∑n

j=2 a j exp(−b jθ
2
2 p ln j))θ1 ln i

= Qi(s̄1, s̄2, . . . , s̄n).

Combining the above two cases,

SLP4(σ)
OPT(σ)

≤ Qi(s̄1, s̄2, . . . , s̄n) ≤ r̄, i = 1, 2, . . . , n,

where r̄ is the minimum one satisfying the above inequality. Hence, r̄ is the
competitive ratio of the algorithm SLP4. �

5. Conclusions

We investigate two models for the interrelated price online inventory problem with
two types of demand. The corresponding algorithms are designed, and the competitive
ratios are derived for the exponential and the logarithmic model, respectively, with the
daily demand. In future, it would be interesting to consider a problem where both the
price and demand are online. It would also be challenging to investigate the online
inventory problem, where the price information is updated in real-time.
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