ESTIMATES FOR A REMAINDER TERM ASSOCIATED WITH THE SUM OF DIGITS FUNCTION

by D. M. E. FOSTER

(Received 20 November, 1985)

1. Introduction. If $q(\geqslant 2)$ is a fixed integer it is well known that every positive integer k may be expressed uniquely in the form

$$
\begin{equation*}
k=\sum_{r=0}^{\infty} a_{r}(q, k) q^{r} \quad \text { where } \quad a_{r}(q, k) \in\{0,1, \ldots, q-1\} \tag{1.1}
\end{equation*}
$$

We introduce the 'sum of digits' function

$$
\begin{equation*}
\alpha(q, k)=\sum_{r=0}^{\infty} a_{r}(q, k) . \tag{1.2}
\end{equation*}
$$

Both the above sums are of course finite. Although the behaviour of $\alpha(q, k)$ is somewhat erratic, its average behaviour is more regular and has been widely studied.

For an integer $n>1$, let $A(q, n)=\sum_{k=1}^{n-1} \alpha(q, k)$, and define $A(q, 1)=0$. In the particular case when $n=q^{s}(s \geqslant 0)$ it is not difficult to prove that

$$
A\left(q, q^{s}\right)=\frac{1}{2}(q-1) s q^{s}
$$

which suggests the asymptotic result

$$
A(q, n) \sim \frac{\frac{1}{2}(q-1)}{\log q} n \log n \quad \text { as } \quad n \rightarrow \infty
$$

This was proved in 1940 by Bush [2], and in 1949 Mirsky [7] showed in addition that the error term is $O(n)$ but not $O(n)$, thereby improving a contemporary estimate of Bellman and Shapiro [1]. In 1952, Drazin and Griffiths [4] considered the more general problem of the average of

$$
\alpha_{t}(q, k)=\sum_{r=0}^{\infty}\left\{a_{r}(q, k)\right\}^{t}, \quad \text { where } \quad t \in \mathbb{N}
$$

They obtained the main term and also gave bounds for the remainder term which are all precise in one direction, and in both directions when $t=1$ and $q=2$ or 3 . In particular, for the case $q=2$ they proved that

$$
-\frac{\log (4 / 3)}{\log 2}<\left\{A(2, n)-\frac{n \log n}{2 \log 2}\right\} /(n / 2) \leqslant 0
$$

Equality holds on the right when $n=2^{s}$. Also if $n=n(s)$ is of either of the forms

$$
1+2^{2}+2^{4}+\ldots+2^{2 s} \text { or } 2\left(1+2^{2}+2^{4}+\ldots+2^{2 s}\right)
$$

Glasgow Math. J. 29 (1987) 109-129.
then the

$$
\lim _{s \rightarrow \infty}\left\{A(2, n)-\frac{n \log n}{2 \log 2}\right\} /(n / 2)=-\frac{\log (4 / 3)}{\log 2}
$$

ensuring that the above left hand inequality is best possible. These estimates have also been obtained by McIlroy [6] and Shiokawa [8].

In more recent times, there has been a great deal of work on generalisations of this and related problems, some probabilistic in nature. A paper of Stolarsky [9] in 1977, concerned with digital sums (the case $q=2$), contains a brief survey of the history of the problem and, very helpfully, cites sixty two references including the ones already mentioned.

In 1975, Delange [3] obtained a very elegant analytical form for the remainder term, involving a function which is continuous, nowhere differentiable and periodic with period 1 , thereby generalizing an earlier result concerned with the case $q=2$ of Trollope [10]. The case of Cantor representations of integers was also considered by Trollope [11] and more recently by Kirschenhofer and Tichy [5]. Their investigation reduces to a study of

$$
\begin{equation*}
S(q, n)=\left\{A(q, n)-\frac{1}{2}(q-1)\left[\frac{\log n}{\log q}\right] n\right\} / \frac{1}{2} \tag{1.3}
\end{equation*}
$$

in the special case when the Cantor representation of an integer k becomes a representation of the form (1.1) for some q. With the usual notation, $\left[\frac{\log n}{\log q}\right]$ denotes the greatest integer $\leqslant \frac{\log n}{\log q}$. This suggests that, in the original digits problem, one might consider directly an estimate for $\frac{S(q, n)}{n}$ and that is the object of this paper. In particular, we obtain best possible upper and lower bounds when $q=2$ and 3 . It is planned to consider later the cases $q=4$ and 5 .

Theorem 1. If $n \in \mathbb{N}$,

$$
\begin{equation*}
-\frac{2}{13}<\frac{S(2, n)}{n}<1 \tag{1.4}
\end{equation*}
$$

Theorem 2. If $n \in \mathbb{N}$,

$$
\begin{equation*}
-\frac{2}{7}<\frac{S(3, n)}{n}<2 \tag{1.5}
\end{equation*}
$$

The method used to prove Theorems 1 and 2 involves expressing n in the special form $n_{m}(m \in \mathbb{N})$, to be described shortly. Then bounds are obtained for $S\left(q, n_{m}\right) / n_{m}$ in terms of q and m, from which Theorems 1 and 2 can be deduced.

Firstly we need to obtain an algebraic expression for $A(q, n)$. If $s \geqslant 2$,

$$
A\left(q, q^{s}\right)=\sum_{1 \leqslant r<q^{s-1}} \alpha(q, r)+\sum_{t=1}^{q-1} \sum_{\left(q^{s-1}\right.} \sum_{(t+1) q^{s-1}} \alpha(q, r)
$$

Putting $r=t q^{s-1}+u$ in the second (inner) sum and using the fact that $\alpha(q, r)=$ $t+\alpha(q, u)$ where $0 \leqslant u<q^{s-1}$, it follows easily that

$$
A\left(q, q^{s}\right)=q A\left(q, q^{s-1}\right)+\frac{1}{2}(q-1) q^{s}
$$

If $s \geqslant 1$, an inductive proof now yields

$$
\begin{equation*}
A\left(q, q^{s}\right)=\frac{1}{2}(q-1) s q^{s} \tag{1.6}
\end{equation*}
$$

and more generally, if $1 \leqslant a<q$,

$$
\begin{equation*}
A\left(q, a q^{s}\right)=a A\left(q, q^{s}\right)+\frac{1}{2} a(a-1) q^{s} \tag{1.7}
\end{equation*}
$$

With a slight change of notation, every positive integer $n \not \equiv 0(\bmod q)$ is of the form $n=n_{m}$ where

$$
\begin{equation*}
n_{m}=a_{0} q^{t_{0}}+a_{1} q^{t_{0}+t_{1}}+a_{2} q^{t_{0}+t_{1}+t_{2}}+\ldots+a_{m} q^{t_{0}+t_{1}+t_{2}+\ldots+t_{m}} \tag{1.8}
\end{equation*}
$$

for some $m \in \mathbb{N} \cup\{0\}, t_{0}=0$, positive integers $t_{1}, t_{2}, \ldots, t_{m}$ and non-zero coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{m} \in\{1,2, \ldots, q-1\}$. Given such an integer n, for convenience of notation introduce

$$
\begin{equation*}
n_{0}=a_{0} \quad \text { and } \quad n_{i}=a_{0}+a_{1} q^{t_{1}}+\ldots+a_{i} q^{t_{1}+\ldots+t_{i}} \tag{1.9}
\end{equation*}
$$

for $1 \leqslant i \leqslant m$. Then

$$
\begin{aligned}
A\left(q, n_{m}\right) & =A\left(q, a_{m} q^{t_{1}+\ldots+t_{m}}\right)+\sum_{a_{m} q^{t_{1}+\ldots+t_{m}}<r<n_{m}} \alpha(q, r), \\
& =a_{m} A\left(q, q^{t_{1}+\ldots+t_{m}}\right)+\frac{1}{2} a_{m}\left(a_{m}-1\right) q^{t_{1}+\ldots+t_{m}}+a_{m} n_{m-1}+A\left(q, n_{m-1}\right),
\end{aligned}
$$

using (1.7), so that

$$
A\left(q, n_{m}\right)-A\left(q, n_{m-1}\right)=a_{m} A\left(q, q^{t_{1}+\ldots+t_{m}}\right)+a_{m} n_{m-1}+\frac{1}{2} a_{m}\left(a_{m}-1\right) q^{t_{1}+\ldots+t_{m}}
$$

Iterating this formula and using the fact that $A\left(q, n_{0}\right)=\frac{1}{2} a_{0}\left(a_{0}-1\right)$ we obtain, on addition,

$$
A\left(q, n_{m}\right)-\frac{1}{2} a_{0}\left(a_{0}-1\right)=\sum_{r=1}^{m}\left\{a_{r} A\left(q, q^{t_{1}+\ldots+t_{r}}\right)+a_{r} n_{r-1}\right\}+\frac{1}{2} \sum_{r=1}^{m} a_{r}\left(a_{r}-1\right) q^{t_{1}+\ldots+t_{r}}
$$

However, using (1.6),

$$
\begin{aligned}
& \sum_{r=1}^{m} a_{r} A\left(q, q^{t_{1}+\ldots+t_{r}}\right)=\frac{1}{2}(q-1) \sum_{r=1}^{m} a_{r}\left(t_{1}+\ldots+t_{r}\right) q^{t_{1}+\ldots+t_{r}} \\
& \text { Thus } \\
& \quad=\frac{1}{2}(q-1) \sum_{r=1}^{m}\left(t_{1}+\ldots+t_{r}\right)\left(n_{r}-n_{r-1}\right)=\frac{1}{2}(q-1) \sum_{r=1}^{m} t_{r}\left(n_{m}-n_{r-1}\right)
\end{aligned}
$$

$A\left(q, n_{m}\right)=\frac{1}{2}(q-1)\left(t_{1}+\ldots+t_{m}\right) n_{m}+\sum_{r=1}^{m}\left(a_{r}-\frac{1}{2}(q-1) t_{r}\right\} n_{r-1}$

$$
+\frac{1}{2} a_{0}\left(a_{0}-1\right)+\frac{1}{2} \sum_{r=1}^{m} a_{r}\left(a_{r}-1\right) q^{t_{1}+\ldots+t_{r}} .
$$

If $m \in \mathbb{N}$,

$$
q^{t_{1}+\ldots+t_{m}} \leqslant n_{m}<q^{t_{1}+\ldots+t_{m}+1}
$$

so that

$$
t_{1}+\ldots+t_{m}=\left[\frac{\log n_{m}}{\log q}\right]
$$

while if $m=0$,

$$
0=\left[\frac{\log n_{m}}{\log q}\right]
$$

Thus, from (1.3),

$$
\begin{equation*}
S\left(q, n_{m}\right)=\sum_{r=0}^{m} a_{r}\left(a_{r}-1\right) q^{t_{0}+t_{1}+\ldots+t_{r}}+\sum_{r=1}^{m}\left\{2 a_{r}-(q-1) t_{r}\right\} n_{r-1} \tag{1.10}
\end{equation*}
$$

It is easily verified that, if $\beta \in \mathbb{N}$,

$$
\frac{S\left(q, q^{\beta} n_{m}\right)}{q^{\beta} n_{m}}=\frac{S\left(q, n_{m}\right)}{n_{m}}
$$

so that there is no loss of generality in assuming that $n=n_{m}$ is of the form (1.8).
As already mentioned, it is our aim to prove Theorems 1 and 2 in a stronger form, and we now introduce

$$
h_{2}(m)=\frac{2\left(2^{2 m}-1\right)}{13.2^{2 m}-1} \quad \text { and } \quad h_{3}(m)=\frac{6\left(3^{m}-1\right)}{7.3^{m+1}-5} \quad \text { for } \quad m \in \mathbb{N} \cup\{0\}
$$

Each of these functions is monotonic increasing. In fact $h_{2}(1)=0.1176 \ldots, h_{2}(2)=$ $0.1449 \ldots, \quad h_{2}(3)=0.1516 \ldots, \quad h_{2}(4)=0.1532 \ldots \quad$ and, as $m \rightarrow \infty, \quad h_{2}(m) \rightarrow \frac{2}{13}=$ $0 \cdot 1538 \ldots$ Also $h_{3}(1)=0.2068 \ldots, h_{3}(2)=0.2608 \ldots, h_{3}(3)=0.2775 \ldots$ and, as $m \rightarrow$ $\infty, h_{3}(m) \rightarrow \frac{2}{7}=0.2857$

Theorem 1*. If $m \geqslant 0$,

$$
\begin{equation*}
-h_{2}(m) \leqslant \frac{S\left(2, n_{m}\right)}{n_{m}} \leqslant 1-\frac{m+1}{2^{m+1}-1} \tag{1.11}
\end{equation*}
$$

Equality holds on the right when $n_{m}=1+2+2^{2}+\ldots+2^{m}$, and on the left when $n_{m}=1+2^{2}+2^{4}+\ldots+2^{2(m-1)}+2^{2(m+1)}(m \geqslant 1)$.

Theorem 2*. If $m \geqslant 0$,

$$
\begin{equation*}
-h_{3}(m) \leqslant \frac{S\left(3, n_{m}\right)}{n_{m}} \leqslant 2\left\{1-\frac{m+1}{3^{m+1}-1}\right\} \tag{1.12}
\end{equation*}
$$

Equality holds on the right, when $n_{m}=2\left(1+3+3^{2}+\ldots+3^{m}\right)$, and on the left, for $m \geqslant 3$, when $n_{m}=2+3^{2}+3^{3}+3^{4}+\ldots+3^{m-1}+3^{m}+3^{m+2}$.

For each of these theorems it is the right hand inequality which is the easiest to establish. In fact we can prove a general theorem in this respect.

Theorem 3^{*}. If $q \geqslant 2$ and $m \geqslant 0$,

$$
\begin{equation*}
\frac{S\left(q, n_{m}\right)}{n_{m}} \leqslant(q-1)\left\{1-\frac{m+1}{q^{m+1}-1}\right\} \tag{1.13}
\end{equation*}
$$

with equality when $n_{m}=(q-1)\left(1+q+q^{2}+\ldots+q^{m}\right)=q^{m+1}-1$. Since every positive integer is of the form n_{m} or $q^{\beta} n_{m}$ for some $\beta \in \mathbb{N}$, it is clear that the starred theorems give rise to Theorems 1 and 2.

I should like to express my thanks to my colleague Dr G. M. Phillips for computational work which enabled the value of $h_{3}(m)$, upon which the proof of Theorem 2^{*} depends, to be determined for small values of m. I should also like to thank the referee for some very helpful comments.
2. The proofs of each of Theorems $1^{*}-3^{*}$ are inductive starting with the small values of m. The following identities, derived from (1.10), will be of later use.

$$
\begin{align*}
& S\left(q, n_{m}\right)=S\left(q, n_{m-1}\right)+a_{m}\left(a_{m}-1\right) q^{t_{1}+\ldots+t_{m}}+\left\{2 a_{m}-(q-1) t_{m}\right\} n_{m-1} \quad(m \geqslant 1) \tag{2.1}\\
& S\left(q, n_{m}\right)=a_{0}\left(a_{0}-1\right)+a_{0} \sum_{r=1}^{m}\left\{2 a_{r}-(q-1) t_{r}\right\} \\
& \quad+q^{t_{1}} S\left(q, a_{1}+a_{2} q^{t_{2}}+a_{3} q^{t_{2}+t_{3}}+\ldots+a_{m} q^{t_{2}+t_{3}+\ldots+t_{m}}\right) \quad(m \geqslant 1) \tag{2.2}
\end{align*}
$$

and, for any integer l, with $2 \leqslant l \leqslant m-1$,

$$
\begin{align*}
S\left(2, n_{m}\right)= & \sum_{j=1}^{l}\left\{2^{t_{0}+t_{1}+\ldots+t_{j-1}} \sum_{r=j}^{m}\left(2-t_{r}\right)\right\} \\
& +2^{t_{1}+\ldots+t_{l-1}+t_{i}} S\left(2,1+2^{t_{+1}}+2^{t_{i+1}+t_{l+2}}+\ldots+2^{t_{l+1}+t_{l+2}+\ldots+t_{m}}\right) \tag{2.3}
\end{align*}
$$

where $t_{0}=0$, as before.
Lemma. For $m \geqslant 1$ and n_{m} as in (1.8) and (1.9),

$$
\begin{equation*}
\frac{n_{m-1}}{n_{m}}<\frac{1}{1+a_{m} q^{t_{m}-1}} . \tag{2.4}
\end{equation*}
$$

Proof. For $0 \leqslant i \leqslant m-1$ we have $0<a_{i} \leqslant q-1$, giving

$$
n_{m-1} \leqslant(q-1)\left(1+q^{t_{1}}+q^{t_{1}+t_{2}}+\ldots+q^{t_{1}+t_{2}+\ldots+t_{m-1}}\right)
$$

Hence

$$
\leqslant(q-1)\left[\frac{q^{t_{1}+\ldots+t_{m-1}+1}-1}{q-1}\right]<q^{t_{1}+\ldots+t_{m-1}+1}
$$

$$
\begin{aligned}
\frac{n_{m-1}}{n_{m}}= & \frac{n_{m-1}}{n_{m-1}+a_{m} q^{t_{1}+\ldots+t_{m}}} \\
& <\frac{q^{t_{1}+\ldots+t_{m-1}+1}}{q^{t_{1}+\ldots+t_{m-1}+1}+a_{m} q^{t_{1}+\ldots+t_{m}}} \\
= & \frac{1}{1+a_{m} q^{t_{m}-1}}
\end{aligned}
$$

3. Proof of Theorem 3^{*}. If $m=0$, we have $n_{m}=n_{0}=a_{0}$ so that

$$
\frac{S\left(q, n_{0}\right)}{n_{0}}=\frac{a_{0}\left(a_{0}-1\right)}{a_{0}}=a_{0}-1 \leqslant q-2=(q-1)\left\{1-\frac{1}{q-1}\right\}
$$

which is the result stated.
Now choose $m \geqslant 1$ and assume that

$$
\begin{equation*}
\frac{S\left(q, n_{m-1}\right)}{n_{m-1}} \leqslant(q-1)\left\{1-\frac{m}{q^{m}-1}\right\} . \tag{3.1}
\end{equation*}
$$

By (2.1),

$$
\begin{align*}
S\left(q, n_{m}\right) & =S\left(q, n_{m-1}\right)+a_{m}\left(a_{m}-1\right) q^{t_{1}+\ldots+t_{m}}+\left\{2 a_{m}-(q-1) t_{m}\right\} n_{m-1} \\
& \leqslant(q-1)\left\{1-\frac{m}{q^{m}-1}\right\} n_{m-1}+\left(a_{m}-1\right)\left(n_{m}-n_{m-1}\right)+\left\{2 a_{m}-(q-1) t_{m}\right\} n_{m-1} \\
& =\left(a_{m}-1\right) n_{m}+\left\{a_{m}+q-(q-1) t_{m}-\frac{m(q-1)}{q^{m}-1}\right\} n_{m-1} \tag{3.2}\\
& \leqslant\left(a_{m}-1\right) n_{m}+\left\{a_{m}+1-\frac{m(q-1)}{q^{m}-1}\right\} n_{m-1}, \quad \text { since } t_{m} \geqslant 1
\end{align*}
$$

Using (2.4) we see that

$$
\begin{aligned}
\frac{S\left(q, n_{m}\right)}{n_{m}} & \leqslant a_{m}-1+\left\{a_{m}+1-\frac{m(q-1)}{q^{m}-1}\right\} \frac{1}{1+a_{m}} \\
& =a_{m}-\frac{m(q-1)}{\left(q^{m}-1\right)\left(1+a_{m}\right)}
\end{aligned}
$$

If $1 \leqslant a_{m} \leqslant q-2$ we have

$$
\begin{aligned}
\frac{S\left(q, n_{m}\right)}{n_{m}} & \leqslant q-2-\frac{m}{q^{m}-1} \\
& =(q-1)\left\{1-\frac{m+1}{q^{m+1}-1}\right\}-\left\{1+\frac{m}{q^{m}-1}-\frac{(q-1)(m+1)}{q^{m+1}-1}\right\}
\end{aligned}
$$

As $\frac{(q-1)(m+1)}{q^{m+1}-1}<1$, (1.13) follows in this case.
Now suppose that $a_{m}=q-1$ and $t_{m} \geqslant 2$. From (3.2),

$$
\frac{S\left(q, n_{m}\right)}{n_{m}} \leqslant q-2+\left\{1-\frac{m(q-1)}{q^{m}-1}\right\} \frac{n_{m-1}}{n_{m}}
$$

By (2.4),

$$
\frac{n_{m-1}}{n_{m}} \leqslant \frac{1}{1+(q-1) q}<\frac{1}{(q-1) q}
$$

Thus

$$
\frac{S\left(q, n_{m}\right)}{n_{m}} \leqslant q-2+\frac{1}{(q-1) q}-\frac{m}{q\left(q^{m}-1\right)}
$$

It follows that (1.13) will hold if we can prove that

$$
q-2+\frac{1}{(q-1) q}-\frac{m}{q\left(q^{m}-1\right)} \leqslant q-1-\frac{(q-1)(m+1)}{q^{m+1}-1}
$$

or equivalently

$$
\begin{equation*}
\frac{(q-1)(m+1)}{q^{m+1}-1}-\frac{m}{q\left(q^{m}-1\right)} \leqslant \frac{q(q-1)-1}{q(q-1)} \tag{3.3}
\end{equation*}
$$

Since $q^{m+1}-1>q\left(q^{m}-1\right)$ we have

$$
\begin{aligned}
\frac{(q-1)(m+1)}{q^{m+1}-1}-\frac{m}{q\left(q^{m}-1\right)} & <\frac{(q-1)(m+1)-m}{q\left(q^{m}-1\right)}<\frac{(q-1)(m+1)-m}{m(q-1) q} \\
& \leqslant \frac{q(q-1)-1}{q(q-1)} \text { since } \frac{m+1}{m} \leqslant q
\end{aligned}
$$

Hence (3.3) holds.
Thus we are left with the case $a_{m}=q-1$ and $t_{m}=1$. If $m=1$, it follows from (3.2) that

$$
\frac{S\left(q, n_{1}\right)}{n_{1}} \leqslant q-2+(q-1) \frac{n_{0}}{n_{1}}
$$

where

$$
\frac{n_{0}}{n_{1}}=\frac{a_{0}}{a_{0}+(q-1) q} \leqslant \frac{q-1}{q-1+(q-1) q}=\frac{1}{1+q}
$$

Hence

$$
\frac{S\left(q, n_{1}\right)}{n_{1}} \leqslant q-2+\frac{q-1}{q+1}=(q-1)\left\{1-\frac{2}{q^{2}-1}\right\}
$$

as required.
Suppose now that for some integer l with $2 \leqslant l \leqslant m$,

$$
\begin{equation*}
t_{m}=t_{m-1}=\ldots=t_{l}=1, \quad t_{l-1} \geqslant 2 \quad \text { and } \quad a_{m}=q-1 \tag{3.4}
\end{equation*}
$$

We shall now prove that (1.13) holds. To do this requires an improved upper bound for n_{m-1} / n_{m}. For, putting $a_{m}=q-1$ and $t_{m}=1$ in (3.2) we see that

$$
\begin{equation*}
\frac{S\left(q, n_{m}\right)}{n_{m}} \leqslant q-2+\left\{q-\frac{m(q-1)}{q^{m}-1}\right\} \frac{n_{m-1}}{n_{m}} \tag{3.5}
\end{equation*}
$$

and (1.13) will follow if we can prove that

$$
q-2+\left\{q-\frac{m(q-1)}{q^{m}-1}\right\} \frac{n_{m-1}}{n_{m}} \leqslant(q-1)\left\{1-\frac{m+1}{q^{m+1}-1}\right\} .
$$

On rearranging, this inequality reduces to

$$
\begin{equation*}
\frac{n_{m-1}}{n_{m}} \leqslant \frac{q^{m}-1}{q^{m+1}-1} . \tag{3.6}
\end{equation*}
$$

To establish (3.6) we make use of (3.4). We have

$$
\begin{aligned}
n_{m-1} \leqslant & (q-1)\left\{1+q^{t_{1}}+q^{t_{1}+t_{2}}+\ldots+q^{t_{1}+t_{2}+\ldots+t_{-1}}\right\} \\
& +(q-1) q^{t_{1}+\ldots+t_{-1}+1}\left(1+q+q^{2}+\ldots+q^{m-t-1}\right) \\
\leqslant & (q-1)\left\{\frac{q^{t_{1}+\ldots+t_{-1}+1}-1}{q-1}-q^{t_{1}+\ldots+t_{l-1}-1}\right\} \\
& +(q-1) q^{t_{1}+\ldots+t_{t-1}+1} \frac{\left(q^{m-t}-1\right)}{q-1} \\
= & q^{t_{1}+\ldots+t_{1-1}-1}\left(q^{m-l+2}-q+1\right)-1 \\
& <q^{t_{1}+\ldots+t_{l-1}-1}\left(q^{m-l+2}-q+1\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{n_{m-1}}{n_{m}}= & \frac{n_{m-1}}{n_{m-1}+a_{m} q^{t_{1}+\ldots+t_{m}}}, \\
& <\frac{q^{t_{1}+\ldots+t_{l-1}-1}\left(q^{m-l+2}-q+1\right)}{q^{t_{1}+\ldots+t_{l-1}-1}\left(q^{m-l+2}-q+1\right)+(q-1) q^{t_{1}+\ldots+t_{l-1}+m-l+1}} \\
= & \frac{q^{m-l+2}-q+1}{q^{m-l+3}-q+1} .
\end{aligned}
$$

Thus (3.5) will follow provided that

$$
\frac{q^{m-l+2}-q+1}{q^{m-l+3}-q+1} \leqslant \frac{q^{m}-1}{q^{m+1}-1}
$$

or equivalently, on rearranging,

$$
q^{m-l+2}\left\{q^{l-2}(q-1)-1\right\} \geqslant 0
$$

and this is clearly true for $q \geqslant 2$ and $2 \leqslant l \leqslant m$.
Thus (1.13) is now established except possibly when

$$
m \geqslant 2, \quad a_{m}=q-1 \quad \text { and } \quad t_{1}=t_{2}=\ldots=t_{m}=1
$$

However in this case (3.5) holds and (3.6) is easily verified, using the fact that $n_{m-1} \leqslant q^{m}-1$.
4. Proof of Theorem 1^{*}. For the case $q=2$, it suffices to prove that, if $n_{m}=2^{t_{0}}+2^{t_{0}+t_{1}}+\ldots+2^{t_{0}+t_{1}+\ldots+t_{m}}$, where $t_{0}=0, t_{1}, \ldots, t_{m} \in \mathbb{N}$ and $m \geqslant 0$ then

$$
\begin{equation*}
\frac{S\left(2, n_{m}\right)}{n_{m}} \geqslant-h_{2}(m) \quad \text { where } \quad h_{2}(m)=\frac{2\left(2^{2 m}-1\right)}{13 \cdot 2^{2 m}-1} \tag{4.1}
\end{equation*}
$$

When $m=0$, it is clear from (1.10) that $S\left(2, n_{m}\right)=S\left(2, n_{0}\right)=0=-h_{2}(0)$. Thus we can assume that $m \geqslant 1$. As before, introduce

$$
n_{0}=1 \quad \text { and } \quad n_{i}=1+2^{t_{1}}+2^{t_{1}+t_{2}}+\ldots+2^{t_{1}+t_{2}+\ldots+t_{i}} \quad(1 \leqslant i \leqslant m)
$$

Then (1.10) takes the simple form

$$
S\left(2, n_{m}\right)=\sum_{r=1}^{m}\left(2-t_{r}\right) n_{r-1}
$$

If $m=1$,

$$
\frac{S\left(2, n_{1}\right)}{n_{1}}=\frac{2-t_{1}}{1+2^{t_{1}}}
$$

and it is easily verified that for $t \in \mathbb{N}$ this function takes a minimum value namely $-\frac{2}{17}=-h_{2}(1)$, when $t_{1}=4$.

Now choose $m \geqslant 2$ and assume that for all integers m^{\prime} satisfying $1 \leqslant m^{\prime} \leqslant m-1$,

$$
\begin{equation*}
\frac{S\left(2, n_{m^{\prime}}\right)}{n_{m^{\prime}}} \geqslant-h_{2}\left(m^{\prime}\right)>-\frac{2}{13} \tag{4.2}
\end{equation*}
$$

Using (2.1) with $q=2$ and $a_{m}=1$, we have

$$
S\left(2, n_{m}\right)=S\left(2, n_{m-1}\right)+\left(2-t_{m}\right) n_{m-1}
$$

giving

$$
\frac{S\left(2, n_{m}\right)}{n_{m}}=\left\{\frac{S\left(2, n_{m-1}\right)}{n_{m-1}}+2-t_{m}\right\} \frac{n_{m-1}}{n_{m}}
$$

By the inductive hypothesis and Theorem 3*,

$$
-\frac{2}{13}<\frac{S\left(2, n_{m-1}\right)}{n_{m-1}}<1
$$

and, by (2.4),

$$
\frac{n_{m-1}}{n_{m}}<\frac{1}{1+2^{t_{m}-1}} \leqslant \frac{1}{2}
$$

Thus if $t_{m}=1$ we have

$$
\frac{S\left(2, n_{m}\right)}{n_{m}}>0>-h_{2}(m)
$$

and if $t_{m}=2$ we have

$$
\frac{S\left(2, n_{m}\right)}{n_{m}}>-\frac{1}{2} h_{2}(m-1)>-h_{2}(m)
$$

If $t_{m} \geqslant 3$,

$$
\begin{aligned}
\frac{S\left(2, n_{m}\right)}{n_{m}} & >-\left(\frac{2}{13}+t_{m}-2\right) \cdot \frac{1}{1+2^{t_{m}-1}} \\
& =-\left\{\frac{13 t_{m}-24}{13\left(1+2^{t_{m}-1}\right)}\right\}
\end{aligned}
$$

The function $\frac{13 t_{m}-24}{13\left(1+2^{t_{m}-1}\right)}$ is monotonic decreasing for $t_{m} \geqslant 6$ with the value $0 \cdot 1258 \ldots$ $\left(<h_{2}(m)\right.$ for $m \geqslant 2$) when $t_{m}=6$. Hence (4.1) follows if $t_{m}=1,2$ or if $t_{m} \geqslant 6$. Assume henceforth that

$$
\begin{equation*}
t_{m}=3,4 \text { or } 5 \tag{4.3}
\end{equation*}
$$

By (2.2), with $q=2, a_{0}=a_{1}=\ldots=a_{m}=1$, we have

$$
S\left(2, n_{m}\right)=\sum_{r=1}^{m}\left(2-t_{r}\right)+2^{t_{1}} S\left(2,1+2^{t_{2}}+2^{t_{2}+t_{3}}+\ldots+2^{t_{2}+t_{3}+\ldots+t_{m}}\right)
$$

Applying the induction hypothesis again gives

$$
\begin{aligned}
S\left(2, n_{m}\right) & \geqslant \sum_{r=1}^{m}\left(2-t_{r}\right)-2^{t_{1}} h_{2}(m-1)\left\{1+2^{t_{2}}+2^{t_{2}+t_{3}}+\ldots+2^{t_{2}+\ldots+t_{m}}\right\} \\
& =\sum_{r=1}^{m}\left(2-t_{r}\right)-h_{2}(m-1)\left\{n_{m}-1\right\}
\end{aligned}
$$

Thus (4.1) will follow provided that

$$
\begin{equation*}
\sum_{r=1}^{m}\left(2-t_{r}\right)+\left\{h_{2}(m)-h_{2}(m-1)\right\} n_{m}+h_{2}(m-1) \geqslant 0 \tag{4.4}
\end{equation*}
$$

If $s \in \mathbb{N}$,

$$
\begin{equation*}
h_{2}(m)-h_{2}(m-s)=\frac{3\left(2^{2 s}-1\right) 2^{2(m-s)+3}}{\left(13 \cdot 2^{2 m}-1\right)\left(13 \cdot 2^{2(m-s)}-1\right)} \tag{4.5}
\end{equation*}
$$

Hence (4.4) is equivalent to

$$
\begin{equation*}
\sum_{r=1}^{m}\left(2-t_{r}\right)+\frac{9.2^{2 m+1}}{\left(13.2^{2 m}-1\right)\left(13.2^{2(m-1)}-1\right)} n_{m}+h_{2}(m-1) \geqslant 0 \tag{4.6}
\end{equation*}
$$

Clearly (4.6) holds $\forall t_{1}, \ldots, t_{m}>0$ with $\sum_{r=1}^{m}\left(2-t_{r}\right) \geqslant 0$. Thus assume now that

$$
\begin{equation*}
\sum_{r=1}^{m} t_{r}=2 m+1+k \quad \text { where } \quad k \geqslant 0 \tag{4.7}
\end{equation*}
$$

Condition (4.6) then takes the form

$$
\begin{equation*}
\frac{9.2^{2 m+1}}{\left(13.2^{2 m}-1\right)\left(13.2^{2(m-1)}-1\right)} n_{m}+h_{2}(m-1) \geqslant k+1 \tag{4.8}
\end{equation*}
$$

If $m=2$, we have $n_{m}=1+2^{k+5-t_{2}}+2^{k+5}>1+2^{k+5}$, so that (4.8) will follow provided that

$$
\frac{9 \cdot 2^{5}\left(1+2^{k+5}\right)}{10,557}+h_{2}(1)>k+1
$$

The only integral value of $k \geqslant 0$ for which this inequality does not hold is $k=1$. In this case, from (4.7), $t_{1}+t_{2}=6$. By (4.3), therefore,

$$
\left(t_{1}, t_{2}\right)=(3,3),(2,4) \text { or }(1,5)
$$

Then $\frac{S\left(2, n_{2}\right)}{n_{2}}=-0.1369 \ldots,-0.1449 \ldots\left(=-h_{2}(2)\right)$ or $-0.1194 \ldots$ in each of these cases respectively, and the case $m=2$ is proved.

Assume henceforth that $m \geqslant 3$. By (4.7),

$$
n_{m}>2^{2 m+k+1-t_{m}}\left(1+2^{t_{m}}\right)
$$

Since $\left(13.2^{2 m}-1\right)\left(13.2^{2(m-1)}-1\right)<169.2^{4 m-2}$, (4.8) will follow if we can prove that

$$
\frac{9 \cdot 2^{2 m+1}}{169 \cdot 2^{4 m-2}} \cdot 2^{2 m+k+1-t_{m}}\left(1+2^{t_{m}}\right)+h_{2}(m-1) \geqslant k+1
$$

that is

$$
\frac{9}{169} \cdot 2^{k+4-t_{m}}\left(1+2^{t_{m}}\right)+h_{2}(m-1) \geqslant k+1 .
$$

It is easily verified that this inequality holds when $t_{m}=3$ for all integers $k \geqslant 0$ and, when $t_{m}=4$ or 5 , it holds for all integers $k \geqslant 0$ except $k=1$. Hence we are left with the cases

$$
\begin{equation*}
m \geqslant 3, \quad t_{m}=4 \text { or } 5 \quad \text { and } \quad \sum_{r=1}^{m} t_{r}=2 m+2 \tag{4.9}
\end{equation*}
$$

Now use identity (2.3), with $l=2$, together with the induction hypothesis on $S\left(2,1+2^{t_{3}}+2^{t_{3}+t_{4}}+\ldots+2^{t_{3}+\ldots+t_{m}}\right)$ to obtain

$$
S\left(2, n_{m}\right) \geqslant \sum_{r=1}^{m}\left(2-t_{r}\right)+2^{t_{1}} \sum_{r=2}^{m}\left(2-t_{r}\right)-h_{2}(m-2)\left\{n_{m}-1-2^{t_{1}}\right\} .
$$

Then (4.1) will follow if we can show that

$$
\sum_{r=1}^{m}\left(2-t_{r}\right)+2^{r_{1}} \sum_{r=2}^{m}\left(2-t_{r}\right)+\left\{h_{2}(m)-h_{2}(m-2)\right\} n_{m}+\left(1+2^{t_{1}}\right) h_{2}(m-2) \geqslant 0
$$

Using (4.5) with $s=2$ and (4.9) this inequality is equivalent to

$$
\begin{equation*}
\frac{45 \cdot 2^{2 m-1}}{\left(13 \cdot 2^{2 m}-1\right)\left(13 \cdot 2^{2(m-2)}-1\right)} n_{m}+\left(1+2^{t_{1}}\right) h_{2}(m-2) \geqslant 2+2^{t_{1}}\left(4-t_{1}\right) \tag{4.10}
\end{equation*}
$$

If $t_{1} \geqslant 5,2+2^{t_{1}}\left(4-t_{1}\right)<0$ and (4.10) follows easily. Hence, in addition to (4.9), assume that

$$
\begin{equation*}
t_{1}=1,2,3 \text { or } 4 \tag{4.11}
\end{equation*}
$$

If $m=3$, (4.9) and (4.11) are only satisfied when

$$
\left(t_{1}, t_{2}, t_{3}\right)=(1,3,4),(1,2,5),(2,2,4),(2,1,5) \quad \text { and } \quad(3,1,4)
$$

The corresponding values of $\frac{S\left(2, n_{3}\right)}{n_{3}}$ are
$-0.1454, \ldots,-0.1198 \ldots,-0.1516 \ldots\left(=-h_{2}(3)\right),-0.1263 \ldots$ and $-0.1494 \ldots$ respectively, thus settling the case $m=3$ of the theorem.

Assume henceforth that $m \geqslant 4$. Clearly

$$
n_{m}>2^{2 m+2-t_{m}}\left(1+2^{t_{m}}\right)
$$

Accordingly (4.10) will follow if we can show that

$$
\frac{45.2^{2 m-1}}{169 \cdot 2^{4 m-4}} \cdot 2^{2 m+2-t_{m}}\left(1+2^{t_{m}}\right)+\left(1+2^{t_{1}}\right) h_{2}(m-2) \geqslant 2+2^{t_{1}}\left(4-t_{1}\right)
$$

that is

$$
\frac{45}{169} \cdot 2^{5-t_{m}}\left(1+2^{t_{m}}\right)+\left(1+2^{t_{1}}\right) h_{2}(m-2) \geqslant 2+2^{t_{1}}\left(4-t_{1}\right) .
$$

Equivalently, this is the condition

$$
2+2^{t_{1}}\left(4-t_{1}\right)-\left(1+2^{t_{1}}\right) h_{2}(m-2) \leqslant\left\{\begin{array}{llc}
9.0532 \ldots & \text { if } & t_{m}=4 \\
8.7869 \ldots & \text { if } & t_{m}=5
\end{array},\right.
$$

which holds for $t_{1}=1,3$ or 4 . Thus it now remains to consider the cases

$$
\begin{equation*}
m \geqslant 4, \quad t_{1}=2, \quad t_{m}=4 \text { or } 5 \quad \text { and } \quad \sum_{r=1}^{m} t_{r}=2 m+2 \tag{4.12}
\end{equation*}
$$

In the following we choose the maximal integer l satisfying

$$
\begin{equation*}
3 \leqslant l \leqslant m-1 \quad \text { and } \quad t_{1}=t_{2}=\ldots=t_{l-2}=2 \tag{4.13}
\end{equation*}
$$

Using identity (2.3) and the inductive hypothesis for

$$
S\left(2,1+2^{t_{+1}}+\ldots+2^{t_{+1}+\ldots+t_{m}}\right)
$$

we have

$$
\begin{aligned}
S\left(2, n_{m}\right) \geqslant \sum_{r=1}^{m}\left(2-t_{r}\right)+2^{t_{1}} \sum_{r=2}^{m}\left(2-t_{r}\right) & +\ldots+2^{t_{1}+t_{2}+\ldots+t_{l}-1} \sum_{r=l}^{m}\left(2-t_{r}\right) \\
& -h_{2}(m-l)\left\{n_{m}-1-2^{t_{1}}-2^{t_{1}+t_{2}}-\ldots-2^{t_{1}+t_{2} \ldots+t_{l}-1}\right\}
\end{aligned}
$$

Hence

$$
S\left(2, n_{m}\right) \geqslant-h_{2}(m) n_{m}
$$

provided that

$$
\begin{aligned}
\sum_{r=1}^{m}\left(2-t_{r}\right)+ & 2^{t_{1}} \sum_{r=2}^{m}\left(2-t_{r}\right)+\ldots+2^{t_{1}+t_{2}+\ldots+t_{1-1}} \sum_{r=l}^{m}\left(2-t_{r}\right) \\
& +\left\{h_{2}(m)-h_{2}(m-l)\right\} n_{m}+\left\{1+2^{t_{1}}+2^{t_{1}+t_{2}}+\ldots+2^{t_{1}+t_{2}+\ldots+t_{l-1}}\right\} h_{2}(m-l) \geqslant 0
\end{aligned}
$$

With (4.5), (4.12) and (4.13), this condition takes the form

$$
\begin{align*}
&\left.-\frac{2}{3}\left(2^{2 l-2}-1\right)+\left(t_{l-1}-4\right) 2^{2 l-4+t_{l-1}}+\frac{3\left(2^{2 l}-1\right) 2^{2(m-l)+3}}{(13 \cdot} 2^{2 m}-1\right)\left(13 \cdot 2^{2(m-l)}-1\right) \\
& n_{m} \tag{4.14}\\
& \quad\left\{\frac{1}{3}\left(2^{2 l-2}-1\right)+2^{2 l-4+t_{l-1}}\right\} h_{2}(m-l) \geqslant 0
\end{align*}
$$

If

$$
t_{l-1} \geqslant 5, \quad\left(t_{l-1}-4\right) 2^{2 l-4+t_{l-1}} \geqslant 2^{2 l+1}>\frac{2}{3}\left(2^{2 l-2}-1\right)
$$

and (4.14) follows easily. Thus, in addition to the conditions of (4.13), we can assume that

$$
\begin{equation*}
t_{t-1}=1,2,3 \text { or } 4 \tag{4.15}
\end{equation*}
$$

Obviously,

$$
n_{m}>2^{2 m+2-t_{m}}\left(1+2^{t_{m}}\right) \geqslant 33.2^{2 m-3} \text { for } t_{m}=4 \text { or } 5
$$

Thus

$$
\frac{3\left(2^{2 l}-1\right) 2^{2(m-l)+3}}{\left(13 \cdot 2^{2 m}-1\right)\left(13 \cdot 2^{2(m-l)}-1\right)} n_{m}>\frac{99}{169}\left(2^{2 l}-1\right)
$$

and (4.14) is a consequence of

$$
\begin{equation*}
T_{1}\left(l, t_{l-1}\right)+T_{2}(l)+T_{3}\left(l, t_{l-1}\right) h_{2}(m-l)>0 \tag{4.16}
\end{equation*}
$$

subject to $3 \leqslant l \leqslant m-1$ and $t_{l-1} \in\{1,2,3,4\}$, where

$$
T_{1}\left(l, t_{l-1}\right)=-\frac{2}{3}\left(2^{2 l-2}-1\right)+\left(t_{l-1}-4\right) 2^{2 l-4+t_{l-1}}, \quad T_{2}(l)=\frac{99}{169}\left(2^{2 l}-1\right)
$$

and $T_{3}\left(l, t_{l-1}\right)=\frac{1}{3}\left(2^{2 l-2}-1\right)+2^{2 l-4+t_{l-1}}$.
It is easily verified that

$$
T_{1}(l, 1)+T_{2}(l)=\left(\frac{99}{169}-\frac{13}{24}\right) 2^{2 l}+\frac{41}{507}>0
$$

and (4.16) follows. Also

$$
\begin{aligned}
T_{1}(l, 3)+T_{2}(l)+T_{3}(l, 3) h_{2}(m-l) & =-\frac{41}{507}\left(2^{2 l}-1\right)+\frac{1}{3}\left(7.2^{2 l-2}-1\right) h_{2}(m-l) \\
& =\frac{7}{3} \cdot 2^{2 l-2}\left\{h_{2}(m-l)-\frac{164}{1183}\right\}+\frac{1}{3}\left\{\frac{41}{169}-h_{2}(m-l)\right\}
\end{aligned}
$$

If $m-l \geqslant 2, h_{2}(m-l) \geqslant h_{2}(2)>\frac{164}{1183}$ and $\frac{41}{169}>\frac{2}{13}>h_{2}(m-l)$, so that (4.16) follows in this case. If $m-l=1$ and $t_{l-1}=t_{m-2}=3$, the conditions of (4.12) and (4.13) can only be satisfied if $t_{m-1}+t_{m}=5$, whence $\left(t_{m-1}, t_{m}\right)=(1,4)$. Thus

$$
t_{1}=\ldots=t_{m-3}=2, \quad t_{m-2}=3, \quad t_{m-1}=1 \quad \text { and } \quad t_{m}=4
$$

and it may be verified that, in this case,

$$
-\frac{S\left(2, n_{m}\right)}{n_{m}}=\frac{2\left(2^{2 m}-1\right)}{211.2^{2 m-4}-1}<h_{2}(m) .
$$

We have, too

$$
T_{1}(l, 4)+T_{2}(l)=\frac{1}{507}\left(425 \cdot 2^{2 l-1}+41\right)>0
$$

and (4.16) follows again.
Now it remains to consider the case $t_{l-1}=2$. In this case we have $l=m-1$, since $l \leqslant m-2$ (l chosen maximal) implies $t_{l-1} \neq 2$. For $l=m-1$ only the following two cases are possible, because of (4.12) and (4.13):

$$
(\alpha) t_{1}=t_{2}=\ldots=t_{m-2}=2, \quad t_{m}=5 \quad \text { and } \quad t_{m-1}=1
$$

and

$$
\text { (} \beta \text {) } t_{1}=t_{2}=\ldots=t_{m-2}=2, \quad t_{m}=4 \quad \text { and } \quad t_{m-1}=2
$$

For case (α) it may be verified that

$$
-\frac{S\left(2, n_{m}\right)}{n_{m}}=\frac{13 \cdot 2^{2 m-3}-2}{101 \cdot 2^{2 m-3}-1}<h_{2}(m)
$$

and, for case (β), we have

$$
-\frac{S\left(2, n_{m}\right)}{n_{m}}=h_{2}(m),
$$

giving the critical form for n_{m}.
5. Proof of Theorem 2*. For the case $q=3$ we have to prove that, if $n_{m}=$ $a_{0} 3^{t_{0}}+a_{1} 3^{t_{0}+t_{2}}+\ldots+a_{m} 3^{t_{0}+t_{1}+\ldots+t_{m}}$ where $t_{0}=0, t_{1}, \ldots, t_{m} \in \mathbb{N}$ and $a_{0}, a_{1}, \ldots, a_{m} \in$ $\{1,2\}$ then, for $m \geqslant 0$,

$$
\begin{equation*}
\frac{S(3, n)}{n_{m}} \geqslant-h_{3}(m) \quad \text { where } \quad h_{3}(m)=\frac{6\left(3^{m}-1\right)}{7.3^{m+1}-5} \tag{5.1}
\end{equation*}
$$

With the usual notation,

$$
n_{0}=a_{0} \quad \text { and } \quad n_{1}=a_{0}+a_{1} 3^{t_{1}}+a_{2} 3^{t_{1}+t_{2}}+\ldots+a_{i} 3^{t_{1}+t_{2}+\ldots+t_{i}} \quad(1 \leqslant i \leqslant m)
$$

and (1.10) takes the form

$$
S\left(3, n_{m}\right)=\sum_{r=0}^{m} a_{r}\left(a_{r}-1\right) 3^{t_{0}+t_{1}+\ldots+t_{r}}+2 \sum_{r=1}^{m}\left(a_{r}-t_{r}\right) n_{r-1}
$$

If $m=0, S\left(3, n_{0}\right)=a_{0}\left(a_{0}-1\right) \geqslant 0=-h_{3}(0)$ and (5.1) holds with equality when $n_{0}=a_{0}=$ 1.

We prove the case $m=1$ separately, before using an inductive proof for the general case. However it is useful first to obtain two preliminary results.

Lemma 5.1. If $m \geqslant 0$,

$$
\frac{S\left(3, n_{m}\right)}{n_{m}}>-1
$$

Proof. If $m=0, \frac{S\left(3, n_{0}\right)}{n_{0}}=a_{0}-1 \geqslant 0$. Thus choose $m \geqslant 1$ and assume that

$$
\frac{S\left(3, n_{m^{\prime}}\right)}{n_{m^{\prime}}}>-1 \text { for all integers } m^{\prime} \quad \text { with } \quad 0 \leqslant m^{\prime} \leqslant m-1
$$

By (2.1)

$$
\begin{aligned}
S\left(3, n_{m}\right)= & S\left(3, n_{m-1}\right)+a_{m}\left(a_{m}-1\right) 3^{t_{1}+\ldots+t_{m}}+2\left(a_{m}-t_{m}\right) n_{m-1} \\
& >-n_{m-1}+2\left(1-t_{m}\right) n_{m-1}
\end{aligned}
$$

using the inductive hypothesis and $a_{m} \geqslant 1$. It follows that

$$
\frac{S\left(3, n_{m}\right)}{n_{m}}>-1
$$

provided that

$$
\frac{n_{m-1}}{n_{m}}<\frac{1}{2 t_{m}-1}
$$

By (2.4),

$$
\frac{n_{m-1}}{n_{m}} \leqslant \frac{1}{1+3^{t_{m}-1}},
$$

and it is easily verified that

$$
\frac{1}{1+3^{t_{m}-1}}<\frac{1}{2 t_{m}-1} \text { for all integers } t_{m} \geqslant 1
$$

Lemma 5.2. If $m \geqslant 0$ and $a_{m}=2$, then $S\left(3, n_{m}\right)>0$.

Proof. If $m=0, S\left(3, n_{0}\right)=a_{0}\left(a_{0}-1\right)=2$. Thus assume that $m \geqslant 1$. By (2.1), if $a_{m}=2$ we have

$$
\begin{aligned}
S\left(3, n_{m}\right) & =S\left(3, n_{m-1}\right)+2 \cdot 3^{t_{1}+\ldots+t_{m}}+2\left(2-t_{m}\right) n_{m-1} \\
& >\left(3-2 t_{m}\right) n_{m-1}+2 \cdot 3^{t_{1}+\ldots+t_{m}}
\end{aligned}
$$

using Lemma 5.1.
Thus if $t_{m}=1, S\left(3, n_{m}\right)>0$. If $t_{m} \geqslant 2$,

$$
S\left(3, n_{m}\right)=2.3^{t_{1}+\ldots+t_{m}}-\left(2 t_{m}-3\right) n_{m-1}
$$

But $n_{m-1}<3^{t_{1}+\ldots+t_{m-1}+1}$, and it is easily verified that

$$
\left(2 t_{m}-3\right) 3^{t_{1}+\ldots+t_{m-1}+1}<2.3^{t_{1}+\ldots+t_{m}} \text { for } t_{m} \geqslant 2
$$

giving $S\left(3, n_{m}\right)>0$.
Proof of $\frac{S\left(3, n_{1}\right)}{n_{1}} \geqslant-\frac{6}{29}$. We have $n_{1}=a_{0}+a_{1} 3^{t_{1}}$ and $S\left(3, n_{1}\right)=a_{0}\left(a_{0}-1\right)+a_{1}\left(a_{1}-\right.$ 1) $3^{t_{1}}+2\left(a_{1}-t_{1}\right) a_{0}$. By Lemma 5.2 , we can assume that $a_{1}=1$.

If $a_{0}=1$, we have

$$
\frac{S\left(3, n_{1}\right)}{n_{1}}=\frac{2\left(1-t_{1}\right)}{1+3^{t_{1}}}
$$

For $t_{1}=1,2$ and $3, \frac{S\left(3, n_{1}\right)}{n_{1}}$ takes the values $0,-\frac{1}{5}$ and $-\frac{1}{7}$ respectively, and thereafter continues to increase towards 0 as $t_{1} \rightarrow \infty$.

If $a_{0}=2$, we have

$$
\frac{S\left(3, n_{1}\right)}{n_{1}}=\frac{2\left(3-2 t_{1}\right)}{2+3^{t_{1}}}
$$

For $t_{1}=1,2$ and $3, \frac{S\left(3, n_{1}\right)}{n_{1}}$ takes the values $\frac{2}{5},-\frac{2}{11}$ and $-\frac{6}{29}$ respectively, and then continues to increase towards 0 as $t_{1} \rightarrow \infty$. Hence

$$
\frac{S\left(3, n_{1}\right)}{n_{1}} \geqslant-\frac{6}{29} \text { with equality only when } n_{1}=2+3^{3}
$$

Proof of $\frac{S\left(3, n_{m}\right)}{n_{m}} \geqslant-h_{3}(m), \quad(m \geqslant 2)$. Assume that $\frac{S\left(3, n_{m^{\prime}}\right)}{n_{m^{\prime}}} \geqslant-h_{3}\left(m^{\prime}\right)$ for all integers m^{\prime} satisfying $1 \leqslant m^{\prime} \leqslant m-1$. By Lemma 5.2 , we can take $a_{m}=1$ and then, by (2.1), we have

$$
S\left(3, n_{m}\right)=S\left(3, n_{m-1}\right)+2\left(1-t_{m}\right) n_{m-1}
$$

If $t_{m}=1$,

$$
\frac{S\left(3, n_{m}\right)}{n_{m}}=\frac{S\left(3, n_{m-1}\right)}{n_{m-1}} \cdot \frac{n_{m-1}}{n_{m}}
$$

and the induction hypothesis, together with (2.4), yields

$$
\frac{S\left(3, n_{m}\right)}{n_{m}} \geqslant-\frac{1}{2} h_{3}(m-1)>-h_{3}(m)
$$

If $t_{m} \geqslant 2$, we have on applying the induction hypothesis

$$
\begin{aligned}
\frac{S\left(3, n_{m}\right)}{n_{m}} & \geqslant-\left\{h_{3}(m-1)+2\left(t_{m}-1\right)\right\} \frac{n_{m-1}}{n_{m}} \\
& \geqslant-\frac{\left\{h_{3}(m-1)+2\left(t_{m}-1\right)\right\}}{1+3^{t_{m}-1}}
\end{aligned}
$$

As $h_{3}(m-1)<\frac{2}{7}$, we have $\frac{S\left(3, n_{m}\right)}{n_{m}}>-f\left(t_{m}\right)$ where $f(t)=\frac{2(t-1)+\frac{2}{7}}{1+3^{t-1}}$. Now $f(2)=\frac{4}{7}$, $f(3)=\frac{3}{7}, f(4)=\frac{11}{49}<h_{3}(2)$ and $f(t)$ continues to decrease as t increases, so that (5.1) follows if $t_{m} \geqslant 4$. Thus we only need consider the cases when $t_{m}=2$ or 3 .

By (2.2), we have

$$
S\left(3, n_{m}\right)=a_{0}\left(a_{0}-1\right)+2 a_{0} \sum_{r=1}^{m}\left(a_{r}-t_{r}\right)+3^{t_{1}} S\left(3, a_{1}+a_{2} 3^{t_{2}}+a_{3} 3^{t_{2}+t_{3}}+\ldots+a_{m} 3^{t_{2}+t_{3}+\ldots+t_{m}}\right)
$$

and applying the induction hypothesis once again we see that

$$
S\left(3, n_{m}\right) \geqslant a_{0}\left(a_{0}-1\right)+2 a_{0} \sum_{r=1}^{m}\left(a_{r}-t_{r}\right)-\left(n_{m}-a_{0}\right) h_{3}(m-1) .
$$

Thus $S\left(3, n_{m}\right) \geqslant-h_{3}(m)$ provided that

$$
\begin{equation*}
a_{0}\left(a_{0}-1\right)+2 a_{0} \sum_{r=1}^{m}\left(a_{r}-t_{r}\right)+\left\{h_{3}(m)-h_{3}(m-1)\right\} n_{m}+a_{0} h_{3}(m-1) \geqslant 0 \tag{5.2}
\end{equation*}
$$

Since $0 \leqslant h_{3}(m-1)<h_{3}(m)$ for $m \geqslant 1$, this inequality is easily satisfied when $\sum_{r=1}^{m}\left(a_{r}-t_{r}\right) \geqslant 0$. Thus suppose henceforth that

$$
\begin{equation*}
a_{m}=1, \quad t_{m}=2 \text { or } 3 \quad \text { and } \quad \sum_{r=1}^{m}\left(a_{r}-t_{r}\right)=-1-k \quad \text { where } \quad k \geqslant 0 . \tag{5.3}
\end{equation*}
$$

Then (5.2) takes the form

$$
\begin{equation*}
\left\{h_{3}(m)-h_{3}(m-1)\right\} n_{m}+a_{0} h_{3}(m-1) \geqslant a_{0}\left(3-a_{0}+2 k\right) . \tag{5.4}
\end{equation*}
$$

The case $m=2$. We have $h_{3}(m)-h_{3}(m-1)=\frac{6}{23}-\frac{6}{29}=\frac{36}{667}$, and $n_{m}=n_{2} \geqslant 1+3^{t_{1}}+$ $3^{t_{1}+t_{2}}$ where, from (5.3),

$$
t_{1}=\left\{\begin{array}{lll}
a_{1}+k & \text { if } & t_{2}=2 \tag{5.5}\\
a_{1}+k-1 & \text { if } & t_{2}=3
\end{array}\right.
$$

If $t_{2}=2$, (5.4) will follow provided that

$$
\begin{equation*}
\frac{36}{667}\left(1+3^{a_{1}+k}+3^{a_{1}+k+2}\right)+\frac{6}{29} a_{0} \geqslant a_{0}\left(3-a_{0}+2 k\right) \tag{5.6}
\end{equation*}
$$

For $a_{0}=1$, (5.6) holds except when $k=0$ and $a_{1}=1$. In this case, $n_{2}=1+3+3^{3}$ and $-\frac{S\left(n_{2}\right)}{n_{2}}=\frac{8}{31}<\frac{6}{23}$. For $a_{0}=2$, (5.6) holds except when $k=1$ and $a_{1}=1$. Then $n_{2}=2+3^{2}+3^{4}$ and $-\frac{S\left(3, n_{2}\right)}{n_{2}}=\frac{6}{23}$, giving rise to the critical case.

If $t_{2}=3$, (5.4) will follow provided that

$$
\begin{equation*}
\frac{36}{667}\left(1+3^{a_{1}+k-1}+3^{a_{1}+k+2}\right)+\frac{6}{29} a_{0} \geqslant a_{0}\left(3-a_{0}+2 k\right) . \tag{5.7}
\end{equation*}
$$

For $a_{0}=1$, (5.7) holds except when $k=0$ and $a_{1}=1$. But, from (5.5), this implies that $t_{1}=0$ so that this possibility is excluded. For $a_{0}=2$, (5.7) holds except when $k=0$ or 1 and $a_{1}=1$. From (5.5), $k=0$ and $a_{1}=1$ imply once again that $t_{1}=0$. If $k=1$ and $a_{1}=1$ we have $n_{2}=2+3+3^{4}$ and $-\frac{S\left(n_{2}\right)}{n_{2}}=\frac{9}{43}<\frac{6}{23}$.

The case $m \geqslant 3$. We have
and

$$
h_{3}(m)-h_{3}(m-1)=\frac{64 \cdot 3^{m}}{\left(7 \cdot 3^{m+1}-5\right)\left(7 \cdot 3^{m}-5\right)} \geqslant \frac{64}{49 \cdot 3^{m+1}}
$$

$$
\begin{aligned}
& n_{m} \geqslant 1+3^{t_{1}}+3^{t_{1}+t_{2}}+\ldots+3^{t_{1}+t_{2}+\ldots+t_{m-2}}+\left(1+3^{t_{m}}\right) \cdot 3^{t_{1}+\ldots+t_{m-1}} \\
& \quad \geqslant \frac{1}{2}\left\{3^{m-1}-1+2\left(1+3^{t_{m}}\right) 3^{t_{1}+\ldots+t_{m-1}}\right\} .
\end{aligned}
$$

Thus

$$
\left\{h_{3}(m)-h_{3}(m-1)\right\} n_{m} \geqslant \frac{32}{441}\left\{2\left(1+3^{t_{m}}\right) 3^{t_{1}+\ldots+t_{m-1}-m+1}+1-\frac{1}{3^{m-1}}\right\}
$$

and (5.4) will hold if we can prove that

$$
\begin{equation*}
\frac{32}{441}\left\{2\left(1+3^{t_{m}}\right) 3^{t_{1}+\ldots+t_{m-1}-m+1}+1-\frac{1}{9}\right\} \geqslant a_{0}\left(3-a_{0}+2 k-\frac{6}{23}\right) . \tag{5.8}
\end{equation*}
$$

From (5.3) we have the condition

$$
t_{1}+\ldots+t_{m-1}=\left\{\begin{array}{lll}
a_{1}+\ldots+a_{m-1}+k & \text { if } & t_{m}=2 \tag{5.9}\\
a_{1}+\ldots+a_{m-1}+k-1 & \text { if } & t_{m}=3
\end{array}\right.
$$

Suppose first that

$$
\begin{equation*}
a_{1}+\ldots+a_{m-1}=m-1 \quad \text { or equivalently } a_{1}=\ldots=a_{m-1}=1 \tag{5.10}
\end{equation*}
$$

Then (5.8) is equivalent to

$$
T_{1}\left(a_{0}, k\right) \leqslant\left\{\begin{array}{lll}
T_{2}(k) & \text { if } & t_{m}=2 \tag{5.11}\\
T_{3}(k) & \text { if } & t_{m}=3
\end{array}\right.
$$

where

$$
T_{1}\left(a_{0}, k\right)=a_{0}\left(3-a_{0}+2 k-\frac{6}{23}\right), \quad T_{2}(k)=\frac{32}{441}\left(20.3^{k}+\frac{8}{9}\right)
$$

and

$$
T_{3}(k)=\frac{32}{441}\left(56 \cdot 3^{k-1}+\frac{8}{9}\right)
$$

The small values of k give rise to the following values of T_{1}, T_{2} and T_{3} :

$$
\begin{array}{ll}
T_{1}(1,0)=1.73 \ldots & T_{2}(0)=1 \cdot 51 \ldots \\
T_{1}(2,0)=1.47 \ldots & T_{3}(0)=1.41 \ldots \\
T_{1}(1,1)=3.73 \ldots & T_{2}(1)=4.41 \ldots \\
T_{1}(2,1)=5.47 \ldots & T_{3}(1)=4 \cdot 12 \ldots \\
T_{1}(1,2)=5.73 \ldots & T_{2}(2)=13 \cdot 12 \ldots \\
T_{1}(2,2)=9.47 \ldots & T_{3}(2)=12.25 \ldots \\
T_{1}(1,3)=7.73 \ldots & T_{2}(3)=39.24 \ldots \\
T_{1}(2,3)=13.47 \ldots & T_{3}(3)=36.63 \ldots
\end{array}
$$

As k increases, the values of $T_{2}(k)$ and $T_{3}(k)$ increase exponentially while those of $T_{1}\left(a_{0}, k\right)$ increase only linearly, and it is not difficult to prove that $T_{1}\left(a_{0}, k\right)<T_{i}(k)$ if $i=2$ or 3 for all $k \geqslant 4$, and (5.11) holds. From inspection of the above table, we see that (5.11) is true except in the following cases:
(i)

$$
k=0:\left(a_{0}, t_{m}\right)=(1,2),(1,3) \text { or }(2,3)
$$

and
(ii)

$$
k=1:\left(a_{0}, t_{m}\right)=(2,2) \text { or }(2,3)
$$

However, from (5.9) and (5.10), it is not possible to have $t_{m}=3$ when $k=0$ since this would imply that $t_{1}+\ldots+t_{m-1}=m-2$. Thus case (i) reduces to
(i) ${ }^{\prime}$

$$
k=0:\left(a_{0}, t_{m}\right)=(1,2)
$$

From (5.9) and (5.10), this implies that $\left(a_{0}, a_{1}, \ldots, a_{m}\right)=(1,1, \ldots, 1)$ and $\left(t_{1}, \ldots, t_{m-1}, t_{m}\right)=(1, \ldots, 1,2)$. Hence

$$
n_{m}=1+3+3^{2}+\ldots+3^{m-1}+3^{m+1}=\frac{1}{2}\left(3^{m}-1\right)+3^{m+1}=\frac{1}{2}\left(7.3^{m}-1\right)
$$

and $S\left(3, n_{m}\right)=2(1-2) \cdot \frac{1}{2}\left(3^{m}-1\right)=-\left(3^{m}-1\right)$, giving

$$
-\frac{S\left(3, n_{m}\right)}{n_{m}}=\frac{2\left(3^{m}-1\right)}{7.3^{m}-1}<\frac{6\left(3^{m}-1\right)}{7.3^{m+1}-5}
$$

Now consider case (ii). If $k=1$ and $t_{m}=3$, we see from (5.9) and (5.10) that $t_{1}+\ldots+t_{m-1}=m-1$, giving $t_{1}=\ldots=t_{m-1}=1$. Thus, if $\left(a_{0}, t_{m}\right)=(2,3)$, we have

$$
\left(a_{0}, a_{1}, \ldots, a_{m}\right)=(2,1, \ldots, 1) \quad \text { and } \quad\left(t_{1}, \ldots, t_{m-1}, t_{m}\right)=(1, \ldots, 1,3)
$$

This gives

$$
n_{m}=2+3+3^{2}+\ldots+3^{m-1}+3^{m+2}=\frac{1}{2}\left(3^{m}+1\right)+3^{m+2}=\frac{1}{2}\left(19 \cdot 3^{m}+1\right)
$$

and

$$
S\left(3, n_{m}\right)=2+2(1-3) \cdot \frac{1}{2}\left(3^{m}+1\right)=-2 \cdot 3^{m} .
$$

Hence

$$
-\frac{S\left(3, n_{m}\right)}{n_{m}}=\frac{4 \cdot 3^{m}}{19 \cdot 3^{m}+1}<\frac{6\left(3^{m}-1\right)}{7 \cdot 3^{m+1}-5} \Leftrightarrow\left(15 \cdot 3^{m}+1\right)\left(3^{m}-3\right)>0
$$

which is true for $m \geqslant 1$.
If $k=1$ and $\left(a_{0}, t_{m}\right)=(2,2)$ we have, from (5.9) and (5.10), $\left(a_{0}, a_{1}, \ldots, a_{m}\right)=$ $(2,1, \ldots, 1)$ and $t_{1}+\ldots+t_{m-1}=m$. If $t_{1}=2$ then $t_{2}=\ldots=t_{m-1}=1$, and we have

$$
n_{m}=2+3^{2}+3^{3}+\ldots+3^{m}+3^{m+2}=\frac{1}{2}\left(3^{m+1}-5\right)+3^{m+2}=\frac{1}{2}\left(7 \cdot 3^{m+1}-5\right)
$$

and

$$
S\left(3, n_{m}\right)=2+2(1-2) \cdot 2+2(1-2) \cdot \frac{1}{2}\left(3^{m+1}-5\right)=-3\left(3^{m}-1\right) .
$$

Thus

$$
\frac{S\left(3, n_{m}\right)}{n_{m}}=-\frac{6\left(3^{m}-1\right)}{7 \cdot 3^{m+1}-5},
$$

and this is the critical case. Alternatively if $t_{1}=1$, there is some r with $2 \leqslant r \leqslant m-1$ such that

$$
t_{1}=\ldots=t_{r-1}=1, t_{r}=2, \quad t_{r+1}=\ldots=t_{m-1}=1
$$

[If $r=m-1$, this condition should read $t_{1}=\ldots=t_{r-1}=1, t_{r}=2$.] In this case

$$
n_{m}=2+3+\ldots+3^{r-1}+3^{r+1}+\ldots+3^{m}+3^{m+2},
$$

so that

$$
n_{r-1}=\frac{1}{2}\left(3^{r}+1\right), \quad n_{m-1}=\frac{1}{2}\left(3^{m+1}-2 \cdot 3^{r}+1\right)
$$

and

$$
n_{m}=\frac{1}{2}\left(7 \cdot 3^{m+1}-2 \cdot 3^{r}+1\right) .
$$

Also it may be verified that $S\left(3, n_{m}\right)=-\left(3^{m+1}-3^{r}\right)$, giving

$$
\begin{gathered}
-\frac{S\left(3, n_{m}\right)}{n_{m}}=\frac{6\left(3^{m}-3^{r-1}\right)}{7 \cdot 3^{m+1}-2 \cdot 3^{r}+1} \leqslant \frac{6\left(3^{m}-1\right)}{7 \cdot 3^{m+1}-5} \\
\Leftrightarrow\left(5 \cdot 3^{m+1}+1\right)\left(3^{r-1}-1\right) \geqslant 0
\end{gathered}
$$

which is true.

It remains to observe that when

$$
a_{1}+\ldots+a_{m-1}=m-1+u \quad \text { where } \quad u \geqslant 1
$$

the values of $T_{2}(k)$ and $T_{3}(k)$ in (5.11) are replaced by $T_{2}(k+u)$ and $T_{3}(k+u)$ while those of $T_{1}\left(a_{0}, k\right)$ remain unaltered. Inspection of the tabulated values shows that the inequalities (5.11) are always satisfied. Hence the theorem is proved.

REFERENCES

1. R. Bellman, and H. N. Shapiro, On a problem in additive number theory, Ann. of Math. (2), 49 (1948), 333-40.
2. L. E. Bush, An asymptotic formula for the average sums of the digits of integers, Amer. Math. Monthly 47 (1940), 154-6.
3. H. Delange, Sur la fonction sommatoire de la fonction 'somme des chiffres', Enseignment Math. 21 (1975) 31-47.
4. M. P. Drazin, and J. S. Griffiths, On the decimal representation of integers, Proc. Cambridge Philos. Soc. 48 (1952), 555-565.
5. P. Kirschenhofer, and R. F. Tichy, On the distribution of digits in Cantor representations of integers, J. Number Theory 18 (1984), 121-134.
6. M. D. McIlroy, The number of 1 's in binary integers: bounds and extremal properties, SIAM J. Comput. 3 (1974), 255-261.
7. L. Mirsky, A theorem on representations of integers in the scale of r , Scripta Math. 15 (1949), 11-12.
8. I. Shiokawa, On a problem in additive number theory, Math. J. Okayama Univ. 16 (1974), 167-176.
9. K. B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math. 32 (1977), 717-730.
10. J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 (1968), 21-25.
11. J. R. Trollope, Generalized bases and digital sums, Amer Math. Monthly 74 (1967), 690-694.

Mathematical Institute
University of St Andrews
North Haugh
St Andrews, KY16 9SS

