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1. Introduction. If q(^2) is a fixed integer it is well known that every positive
integer k may be expressed uniquely in the form

oo

k = ^ar(q,k)qr where ar(q, k) e {0, 1, . . . , q - 1}. (1.1)

We introduce the 'sum of digits' function

a(q,k) = 2ar(q,k). (1.2)

Both the above sums are of course finite. Although the behaviour of a(q, k) is somewhat
erratic, its average behaviour is more regular and has been widely studied.

n - l

For an integer n>\, let A(q, n) = £ a(q, k), and define A(q, l) = 0. In the

particular case when n = qs (s ss 0) it is not difficult to prove that

which suggests the asymptotic result

A(q, n)~—, nlogn as n—»<».
log q

This was proved in 1940 by Bush [2], and in 1949 Mirsky [7] showed in addition that the
error term is O(n) but not o(n), thereby improving a contemporary estimate of Bellman
and Shapiro [1]. In 1952, Drazin and Griffiths [4] considered the more general problem of
the average of

«,{q.k) = 2{a,(q,k)Y, where t eN.
r=0

They obtained the main term and also gave bounds for the remainder term which are all
precise in one direction, and in both directions when t = 1 and q = 2 or 3. In particular,
for the case q = 2 they proved that

log 2 r v ' ' 2 log 2.

Equality holds on the right when n = 2s. Also if n = n(s) is of either of the forms

1 + 22 + 24 + . . . + 2* or 2(1 + 22 + 24 + . . . + 221)
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110 D. M. E. FOSTER

then the

™ _ lo8(4/3)
lim

Iog2

ensuring that the above left hand inequality is best possible. These estimates have also
been obtained by Mcllroy [6] and Shiokawa [8].

In more recent times, there has been a great deal of work on generalisations of this
and related problems, some probabilistic in nature. A paper of Stolarsky [9] in 1977,
concerned with digital sums (the case q = 2), contains a brief survey of the history of the
problem and, very helpfully, cites sixty two references including the ones already
mentioned.

In 1975, Delange [3] obtained a very elegant analytical form for the remainder term,
involving a function which is continuous, nowhere differentiable and periodic with period
1, thereby generalizing an earlier result concerned with the case q = 2 of Trollope [10].
The case of Cantor representations of integers was also considered by Trollope [11] and
more recently by Kirschenhofer and Tichy [5]. Their investigation reduces to a Study of

(1.3)

in the special case when the Cantor representation of an integer k becomes a

representation of the form (1.1) for some q. With the usual notation, —— denotes the
Ll°g?Jlog rt

greatest integer^- . This suggests that, in the original digits problem, one might
log Q Q( \

consider directly an estimate for — and that is the object of this paper. In particular,
n

we obtain best possible upper and lower bounds when q = 2 and 3. It is planned to
consider later the cases q = 4 and 5.

THEOREM 1. IfneN,
2S{2,n)^

THEOREM 2. IfneN,

2 5(3,/,)
(1.5)

The method used to prove Theorems 1 and 2 involves expressing n in the special
form nm (m e N), to be described shortly. Then bounds are obtained for S(q, nm)/nm in
terms of q and m, from which Theorems 1 and 2 can be deduced.

Firstly we need to obtain an algebraic expression for A(q, n). If s 5= 2,

q-\
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THE SUM OF DIGITS FUNCTION 111

Putting r = tqs~x + u in the second (inner) sum and using the fact that a(q, r) =
t + a(q, u) where 0 « u < qs~x, it follows easily that

If s z* 1, an inductive proof now yields

A(q, qs) = h{q-l)sqs, (1.6)

and more generally, if 1 =£ a < q,

A(q, aqs) = aA(q, q°) + \a{a - l)qs. (1.7)

With a slight change of notation, every positive integer n ^ 0 (mod q) is of the form
n = nm where

n m = aoq'° + a , q ' a + h + a2q'°+"+l> +...+ amq">+"+h+- • - + S (1.8)

for some m e N U {0}, t0 = 0, positive integers tx, t2, . . ., tm and non-zero coefficients
flo» Oi> o2, . . . , am e {1, 2, . . . , q — 1}. Given such an integer n, for convenience of
notation introduce

n 0 = a0 a n d «, = a0 + a x q h + . . . + a i q ' 1 + - + " (1.9)

for 1 =£ i« m. Then

A{q, nm) = A(q, amq"+ +'-) + 2 a(q, r),

= amA(q, q"++^) + \am{am - l)q'^-+t- + amnm_, +A(q, nm_x),

using (1.7), so that

A{q, nm)-A(q, nm_x) = amA{q, q'^-*'-) + amnm^ + \am{am - l ) g " + - + ' - .

Iterating this formula and using the fact that A(q, no) = %ao(ao-1) we obtain, on
addition,

m m

A(q, nm) - \ao(ao - 1) = £ {aA{q, q'l+-+l') + arnr-i} + i 2 ar(ar - l)q'<+-+'>.
r = l r=l

However, using (1.6),

r = l

Thus

h nm) = 2(9 -
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If m e M,

so that

L log q J

while if m = 0,

L log q J

Thus, from (1.3),

S(q, nm) = 2 ar(ar - l)q'°+"+ -+''+ 2 {2ar -(q- \)tr}nr.x. (1.10)
r=O r=\

It is easily verified that, if /? e N,

% A ! I ) : : % A ! )

so that there is no loss of generality in assuming that n = nm is of the form (1.8).
As already mentioned, it is our aim to prove Theorems 1 and 2 in a stronger form,

and we now introduce

h2(m) = 2m—- and h3(m) = t—- for meNU {0}.

Each of these functions is monotonic increasing. In fact / i2(l) = 0-1176. . . , «2(2) =
0 - 1 4 4 9 . . . , «2(3) = 0 - 1 5 1 6 . . . , A2(4) = 0 - 1 5 3 2 . . . and, as m^><*>, h2(m)^^ =
0-1538 . . . . Also «3(1) = 0 - 2 0 6 8 . . . , /i3(2) = 0 - 2 6 0 8 . . . , /i3(3) = 0 - 2 7 7 5 . . . and, as m^
oo, / j 3 (m)-*f = 0 - 2 8 5 7 . . . .

THEOREM 1*. Ifm^O,

nm 2 - 1

Equality holds on the right when nm = 1 + 2 + 22 + . . . + 2m, and on the left when
nm = 1 + 22 + 24 +.. . + 22(m~1) + 22(m+1) (m > 1).

THEOREM 2*. Ifm^O,
S(T> n \ f m + 1 "I

(1.12)

Equality holds on the right, when nm = 2(1 + 3 + 32 + ... + 3m), and on tfie left, for m ^ 3,
tv/ten nm = 2 + 32 + 33 + 34 +.. . + 3"1"1 + 3m + 3m+2.

For each of these theorems it is the right hand inequality which is the easiest to
establish. In fact we can prove a general theorem in this respect.
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THE SUM OF DIGITS FUNCTION 113

THEOREM 3*. / / q ^ 2 and m 5* 0,

with equality when nm = (q - 1)(1 + q + q2 + . . . + qm) = qm+1 - 1. Since every positive
integer is of the form nm or qpnm for some /J e N, it is clear that the starred theorems give
rise to Theorems 1 and 2.

I should like to express my thanks to my colleague Dr G. M. Phillips for
computational work which enabled the value of h3(m), upon which the proof of Theorem
2* depends, to be determined for small values of m. I should also like to thank the referee
for some very helpful comments.

2. The proofs of each of Theorems l*-3* are inductive starting with the small
values of m. The following identities, derived from (1.10), will be of later use.

S(q, nm) = S(q, nm^) + ajam - \)q^-+<°> + {2am -(q- l )U«m-i i™ ^ 1); (2.1)
m

S(q, nm) = ao(ao - 1) + a0 E i^r ~{q- l)tr)

l> + ...+amq'i+'>+-+'™) ( m ^ l ) ; (2.2)

and, for any integer /, with 2 =£ / =£ m — 1,

_l_ 2'i+—+fi-i+'/iy/2 1 + 2''+1 + 2'l+1+'l+2+ -)-2''+1+t '+2+ •+'"1) (2 3)

where t0 = 0, as before.

LEMMA. For m s= 1 and nm as in (1.8) and (1.9),

nm 1 + amq'm 1

Proof. For 0 =£ i« m - 1 we have 0 < at ̂  q - 1, giving

Hence
[ r,+...+rm_!+l _ 1 -i

(2-4)
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3. Proof of Theorem 3*. If m = 0, we have nm = n0 = a0 so that

— = a0 -
«o "o

which is the result stated.
Now choose m s= 1 and assume that

q-li'

By (2.1),

S(g, nm) = S(q, nm^) + am(am -

- (q - \)tm - / " ^ 1
) j w m _ 1 , (3.2)

(am - l)nm + {flm + 1 - m ( f ~ 1
1 ) } t t m - 1 , since fm ^ 1.

Using (2.4) we see that

m{g-\)
°m (qm

If 1 s£ am ^ q - 2 we have

m

As t w+i_1 < 1 , (1-13) follows in this case.

Now suppose that am = q -1 and fm 3= 2. From (3.2),

By (2.4),
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THE SUM OF DIGITS FUNCTION 115

Thus

S(q,nm) 2 _A rn

nm
 q (q-l)q q{qm-\Y

It follows that (1.13) will hold if we can prove that

1 m _ (q - \){m + 1)
q ( l ) ( m ^ q T + 1 1

(3.3)

or equivalently

(<?-l)(m + l) m

qm+l-\ q(qm-l)~~ q{q ~ 1) "

Since qm+1 - 1 > q(qm - 1) we have

(q - l)(/n + 1) m (q - l)(m + 1) - m (q - \){m + 1) - m
< <qm+l-\ ? (9 m - l ) < q{qm ~ 1) < m{q-\)q

q(q - 1) - 1 m + 1
^ ^ ^ ~ s i n c e a£9-

1)
Hence (3.3) holds.

Thus we are left with the case am = q - 1 and fm = 1. If m = 1, it follows from (3.2)
that

where

M, ao+(q-

Hence

as required.
Suppose now that for some integer / with 2^l^m,

tm=tm_l = . . . = t , = l, f , _ , 5 = 2 a n d am = q-l. (3.4)

We shall now prove that (113) holds. To do this requires an improved upper bound for
nm-\lnm- For, putting am = q - 1 and tm = 1 in (3.2) we see that
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116 D. M. E. FOSTER

and (1.13) will follow if we can prove that

On rearranging, this inequality reduces to

nm_. qm-\

nm qm+1 -

To establish (3.6) we make use of (3.4). We have

nm-i« (q - 1){1 + qh + qh+'2 + ..
q + q2

Hence

q'1+-+"-'-\qm-'+2 - q + 1)

Thus (3.5) will follow provided that

qm-'+2-q + 1 qm - 1

(3-6)

or equivalently, on rearranging,

qm-l+2{ql~2(q-l)-l}^0,

and this is clearly true for q & 2 and 2 ̂  / =£ m.
Thus (1.13) is now established except possibly when

m^2, am = q-l and ^ = ^ = . . . = ^ = 1.

However in this case (3.5) holds and (3.6) is easily verified, using the fact that
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THE SUM OF DIGITS FUNCTION 117

4. Proof of Theorem 1*. For the case q = 2, it suffices to prove that, if
nm = 2'° + 2'0+<1 + . . . + 2'°+''+-+'», where t0 = 0, tu . . . , tm e N and m s= 0 then

>-* 2 (m) where h2{m) - „ ^ " - i " <41>

When m = 0, it is clear from (1.10) that 5(2, nm) = 5(2, n0) = 0 = -/t2(0). Thus we can
assume that m 2* 1. As before, introduce

no = l and n,- = 1 + 2" + 2'1+'2+ . . . +2"+'2+-+«

Then (1.10) takes the simple form

I f OT = 1 ,

5(2,
Hi 1 + 2 " '

and it is easily verified that for t eN this function takes a minimum value namely
— n = — ̂ 2(1)) when fj = 4.

Now choose m s= 2 and assume that for all integers m' satisfying 1 « m ' « m - 1,

^ - / t 2 ( m ' ) > - A . (4.2)

Using (2.1) with q = 2 and am = 1, we have

5(2, nm) = 5(2, nm_,) + (2 - fm)nm_,,

giving

5 ( 2 , Q _ f 5 ( 2 , n m - 1 ) !/»„_,

By the inductive hypothesis and Theorem 3*,

2 ^ 5(2,/im-Q g 1

13 nm_,

and, by (2.4),

nm 1 + 2'"

Thus if tm = 1 we have
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and if tm = 2 we have

5 ( 2 " m ) > -\h2{m - 1) > -h2(m).

• - ( £ + r m - 2 ) .

13tM-24

The function m -,m_K ' s monotonic decreasing for tm s=6 with the value 0-1258. . .

(<h2(m) for /?! 2=2) when fm = 6. Hence (4.1) follows if tm = l, 2 or if tm 5=6. Assume
henceforth that

fm = 3 , 4 o r 5 . (4.3)

By (2.2), with q = 2, ao = al = . . .= am = l, we have
m

5(2, nm) = £ (2 ~ O + 2flS(2, 1 + 2'J + 2'2+'3 + . . . + 2'2+'3+--1-'-).

Applying the induction hypothesis again gives
m

5(2, nm) 5= 2 (2 - O - 2"/i2(m - 1){1 + 2'2 + 2'2+'3 + . . . + 2'2+- + ' - } ,

= S ( 2 - 0 - M m - ! ) { « » . - 1 } -

Thus (4.1) will follow provided that
m

2 (2 - O + {M»0 - Mm " I)}*™ + M " - 1) 5= 0. (4.4)

If a e N,
3(2̂  — j ^

2 2 ( _ ) i ) . (4.5)

Hence (4.4) is equivalent to
m Q

V1 fy t \ A * ** „ i p. (m I \ >. A (AfC\
ZJ \ L lr) "r / n «2m i w n -i2fm-11 1 \ "m "•" "21,"1 X̂  —' U. V*-®}

m

Clearly (4.6) holds V f j , . . . , tm > 0 with E (2 - tr) s* 0. Thus assume now that
r = l

where A: 5=0. (4.7)
r = l
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Condition (4.6) then takes the form

(13 . 22™

If m = 2, we have nm = 1 + 2*+5~'2 + 2k+5 > 1 + 2k+5, so that (4.8) will follow
provided that

9 . 25(1 + 2*+5)
10,557 h2(l)>k + l.

The only integral value of k 3= 0 for which this inequality does not hold is k = 1. In this
case, from (4.7), t1 + t2 = 6. By (4.3), therefore,

( ^ 2 ) = (3, 3), (2, 4) or (1,5).

Then ^ — ^ = -0-1369. . . , -0-1449. . . (= -h2{2)) or -0-1194 . . . in each of these
n2

cases respectively, and the case m = 2 is proved.
Assume henceforth that m &3. By (4.7),

Since (13 . 22"1 - 1)(13 . 22(m~1) - 1) < 169. 24m"2, (4.8) will follow if we can prove that

_ _ _ _ _ _ _ 22m+* + l (m(1 + 2rm) + hi{!n _X)^k + l>

that is

_2_ 2*
+4-«-(l + 2'-) + A2(m — 1) S- A: + 1.

It is easily verified that this inequality holds when tm = 3 for all integers k 5= 0 and,
when tm = 4 or 5, it holds for all integers k s* 0 except fc = 1. Hence we are left with the
cases

m

m5=3, fm = 4 o r 5 and _fr = 2m + 2. (4.9)
r= l

Now use identity (2.3), with / = 2, together with the induction hypothesis on
5(2, 1 + 2'3 + 2'3+'< + . . . + 2'3+ •+'m) to obtain

m m

5(2, nm) > 2 (2 - O + 2" 2 (2 - tr) - h2(m - 2){nm - 1 - 2"}.

Then (4.1) will follow if we can show that
m m

2 (2 - tr) + 2" 2 (2 - O + {A2C") - ^2(m ~ 2)}nm + (1 + 2")/i2(m - 2) > 0.
r=l r=2
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Using (4.5) with 5 = 2 and (4.9) this inequality is equivalent to

45 92"1"1

(13 22- - 1)(13 22(m~2) - 1)n m + (1 + 2h)hl{m - 2 ^ 2 + 2"V~ '*)• <4-10)

If ^3=5, 2 + 2''(4 - tx) < 0 and (4.10) follows easily. Hence, in addition to (4.9), assume
that

fj = l, 2, 3 or 4. (4.11)

If m = 3, (4.9) and (4.11) are only satisfied when

(*,, f2> f3) = (1, 3, 4), (1, 2, 5), (2, 2, 4), (2, 1, 5) and (3,1,4).

The corresponding values of —•—— are
n3

-0-1454, . . . , -0 -1198. . . , -0-1516.. . (=-/i2(3)) , -0-1263. . . and -0-1494.. .

respectively, thus settling the case m = 3 of the theorem.
Assume henceforth that m s= 4. Clearly

Accordingly (4.10) will follow if we can show that

45 ?2m~1

_ _ _ _ _ 22m+2-,m(1 + 2,m) + {1 + 2H)hi{m _ 2 ) ^ 2 + 2"(4 -

that is

-^ . 25"'-(l + 2'-) + (1 + 2")h2(m - 2) > 2 + 2"(4 - *,).

Equivalently, this is the condition

f9-0532... if rm = 4

•7869... if f_ = 5 '

which holds for fj = 1, 3 or 4. Thus it now remains to consider the cases
m

m 2 M , tx = 2, tm = Aor5 and 2 r r = 2m + 2. (4.12)
r = l

In the following we choose the maximal integer / satisfying

3 * £ / s s - i - l and r, = r2 = . . . =f,_2 = 2. (4.13)

Using identity (2.3) and the inductive hypothesis for

S(2, l + 2"+1 + .. .+2"+ 1 +-+ ' '")
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we have
m m m

5 ( 2 , nm) 2* £ (2 - 0 + 2" 2 (2 - * , ) + . . . + 2 " + * + - + 1 » - 2 (2 - rr)
r = l r=2 r= ,

- h2{m - 7){nm - 1 - 2'1 - 2'1+'2 - . . . - 2'1+'2 - + " - ' } .

Hence

5(2, «m) 3= -h2(m)nm

provided that
n\ m m

2 (2 - rr) + 2" 2 (2 - O + • • • + 2"+'2+-+"- 2 (2 - O
r=l r=2 r=/

+ {A2(»0 - h2(m - l)}nm + {1 + 2" + 2"+'2 + . . . + 2h+h+-+"-'}h2(m - /) & 0

With (4.5), (4.12) and (4.13), this condition takes the form

•xn21 — n92(m-')+3

~3{ - i ; + W - i - ^ + (13 . 2 ^ - 1)(13 . 22C"-'> - 1) nm

+ {i(22'~2 - 1) + 22/-4+"-}/i2(m - 0 ^ 0 . (4.14)

If

t >5 (f — 4)22'~4+('-' s=22/+1 > 2(22I~2 — 1)

and (4.14) follows easily. Thus, in addition to the conditions of (4.13), we can assume that

f,_, = 1,2,3 or 4. (4.15)

Obviously,

nm > 22m+2-'-(l + 2'-) 3* 33. 22m~3 for fm = 4 or 5.

Thus

/-IO -12m _ i \ / i -5 92(m-/) _ i \ n"" ^ 169 (2 ~ 1) ,

and (4.14) is a consequence of

7,(7, *,_,) + 72(7) + T3(l, r,.,)A2(m - /) > 0 (4.16)

subject to3^/=£/n — 1 and f,_! e {1, 2, 3, 4}, where

7,(7, f,_,) = - § (22'"2 - 1) + (f,_, - 4)22/-4+"-, 72(7) = ^ (22/ - 1)

and 73(7, f,_,) = K227"2 - 1) + 22 /-4 +"-.
It is easily verified that
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122 D. M. E. FOSTER

and (4.16) follows. Also

7i(/, 3) + T2{1) + T3(l, 3)h2(m -l) = - ^ ( 2 2 / - 1) + h{l. 221'2 - \)h2{m -1)

= 1. 22'-2{h2(m - / ) - » + HT& " h2{m - /)}.

If m -12= 2, h2(m -1) s* h2{2) > $& and & > ̂  > /i2(m - /), so that (4.16) follows in this
case. If m-l = l and f,_1 = fm_2 = 3, the conditions of (4.12) and (4.13) can only be
satisfied if tm_x + tm = 5, whence (tm_u tm) = (1, 4). Thus

f1 = ...=fm_3 = 2, fm-2 = 3, rm-! = l and rm = 4,

and it may be verified that, in this case,

S(2,nm) _ 2(2^-1)

We have, too

/, 4) + r2(/) = 5^(425 . 227"1 + 41) > 0

and (4.16) follows again.
Now it remains to consider the case (/_x = 2. In this case we have l = m — \, since

l^m-2 (I chosen maximal) implies f,_! ¥= 2. For / = m - 1 only the following two cases
are possible, because of (4.12) and (4.13):

(a) tl = t2=...=tm-2 = 2, tm = 5 and tm^ = l

and

(0) t1 = t2 = ...=tm_2 = 2, fm = 4 and /m_, = 2.

For case (a-) it may be verified that

5(2, Q 13 • 2 2 " - 3 - 2
^ 101. 2s—3 - 1

and, for case (j8), we have

< * a ( m ) '

giving the critical form for nm.

5. Proof of Theorem 2*. For the case q = 3 we have to prove that, if nm -
ao3'o + a13'°+'' + . . . + a m 3 ' ° + ' 1 + " + ' ' " where to = 0, tu...,tmeN and a0, alt..., am e
{1,2} then, f o r m ^ O ,

n-^-h3(m) where h3(m)= 3m+i_5- (5-1)
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With the usual notation,

no = ao and «i = ao + fli3'' + a23'1+'2 + . . . + ai3
h+'2+" +/' (l=£i=£m),

and (1.10) takes the form
m m

5(3, nm) = 2 «,(«," l)3'°+"+ +'- + 2 X (a, - (>,-,•
r=0 r=l

If m = 0, 5(3, n 0 ) = «o(flo — 1) ̂  0 = — /i3(0) and (5.1) holds with equality when n0 = a0 =
1.

We prove the case m = 1 separately, before using an inductive proof for the general
case. However it is useful first to obtain two preliminary results.

LEMMA 5.1. Ifm^O,

5(3, nm)
> - 1 .

Proof. If m = 0, —— = a 0 - 1 =*0. Thus choose m ? l and assume that

^ > - 1 for all integers m' with 0=£m'=£m-l.

By (2.1)

5(3, nm) = 5(3, /!„_,) + flm(am - 1)3'1+-+'- + 2(am - ;m)nm_,,

>- / t m _ , +2(1-fmK.- i>

using the inductive hypothesis and am s= 1. It follows that

provided that

By (2.4),
nm 2tm-\

and it is easily verified that

- — i < - for all integers tm 5= 1.

LEMMA 5.2. Ifm^O and am = 2, then 5(3, nm) >0.
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Proof. If w = 0, 5(3, n0) = flo(flo ~ 1) = 2. Thus assume that ms^l. By (2.1), if
am = 2 we have

5(3, nm) = 5(3, nm_{) + 2 . 3 " + - + ' - + 2(2 - tn)nm.x,

using Lemma 5.1.
Thus if fm = 1, 5(3, nm) > 0. If fm s* 2,

But /!„_! <3" + - + ' " - 1 + 1 , and it is easily verified that

{2tm - 3)3'i+-+'-i+i < 2 . 3'i+-+'« for rm s= 2,

giving 5(3, «m) > 0.

Proof of ' n ss - | j . We have «i = a0 + a^'1 and 5(3, n1) = ao(ao - 1) + fli(fli -

1)3'' + 2{ax - tx)a0. By Lemma 5.2, we can assume that ax = 1.
If a0 = 1, we have

5(3, Wl) ^ 2(1 - rQ
«i 1 + 3" '

For fj = 1,2 and 3, —-—— takes the values 0, - 5 and -7 respectively, and thereafter
nx

continues to increase towards 0 as tx-* 00.
If a0 = 2, we have

5(3,n1) = 2(3-2f1)
nt 2 + 3" "

For tx = \, 2 and 3, - ^ — - takes the values 3, ~ n and - ^ respectively, and then
nx

continues to increase towards 0 as *!-»«. Hence

^ n - ^ with equality only when nx = 2 + 33.
nx

Proof ofS^3' Hm) ^ -h3{m), (m^2). Assume that ^ ' " " ' ^ - ^ ( g i ' ) for all
nm

 nm'

integers m' satisfying l = s m ' ^ m - l . By Lemma 5.2, we can take am = 1 and then, by
(2.1), we have

5(3, nm) = 5(3, /!„_,) + 2(1 - tm)nm.v

If tm = 1,
5(3, «

https://doi.org/10.1017/S001708950000673X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000673X


THE SUM OF DIGITS FUNCTION 125

and the induction hypothesis, together with (2.4), yields

^_ m _ _hi{m)

If tm 3= 2, we have on applying the induction hypothesis

{ 3 i m ) ( m ) }

n

{h3(m-l) + 2(tm-l)}'"-11 + 3

5(3 n ) 2(t — 1) + 2

As / i 3 ( m - l ) < i we have ' m) > -f(tm) where f(t) = —,—^rrr2- N o w / ( 2 ) H ,
nm 1 + 3

/(3) = 7» /(4) = 49 < ^3(2) and /(f) continues to decrease as t increases, so that (5.1)
follows if tm 3= 4. Thus we only need consider the cases when tm = 2 or 3.

By (2.2), we have
m

5 ( 3 , n m ) = ao(ao - 1) + 2a0 £ ( a r - tr) + 3 " 5 ( 3 , fll + a 2 3 ' 2 + a33'*+" + . . . + a m 3 ' 2 + ' 3 + - + ' - ) ,
r = l

and applying the induction hypothesis once again we see that
m

5(3, nm) 2* ao(ao - 1) + 2a0 2 (ar ~ tr) - (nm - ao)h3(m - 1).
r = l

Thus 5(3, nm) 5= -h3{m) provided that
m

ao(ao - 1) + 2a0 E (ar - O + {^3(^) - h3(m - l)}nm + a0h3(m - 1) & 0. (5.2)

Since 0«h 3 (m — 1) < h3(m) for m s= 1, this inequality is easily satisfied when
m

E (ar - fr) *= 0- Thus suppose henceforth that
r= l

a|II = l, fm = 2 o r 3 and ^ (ar-tr) =-1-k where )ts=0. (5.3)
r=\

Then (5.2) takes the form

{h3(m) - h3(m - \)}nm + a0h3{m - 1) 5= ao(3 - a0 + 2k). (5.4)

The case m = 2. We have A3(m) - /i3(m - 1) = ^ - ^ = ^ , and nm = n2 3= 1 + 3'1 +
3'1+'2 where, from (5.3),
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If t2 = 2, (5.4) will follow provided that

& ( 1 + 3°>+k + 3°>+k+2) + %a0 5= ao(3 -ao + 2k). (5.6)

For ao = l, (5.6) holds except when k = 0 and a1 = l. In this case, «2 = l + 3 + 33

and ~ = 7~<o:? ^ o r flo = 2, (5.6) holds except when k = l and aY = \.
l%2 3 1 LD

Then n2 = 2 + 32 + 34 and ; = —, giving rise to the critical case.
/z2 23

If r2 = 3, (5.4) will follow provided that
& ( 1 + 3»>+k-1 + 3">+k+2) + i%a0 5= ao(3 - a0 + 2k). (5.7)

For ao = 1, (5.7) holds except when k = 0 and aj = 1. But, from (5.5), this implies that
t-L = 0 so that this possibility is excluded. For a0 = 2, (5.7) holds except when k = 0 or 1
and ax = 1. From (5.5), k = 0 and aj = 1 imply once again that tx = 0. If & = 1 and a1 = \

we have n2 = 2 + 3 + 34 and - ^ ^ = — <—.2 n2 43 23
The case m^3. We have

64.3m 64
,.3V,,., »3v» v ( 7 . 3 m + 1 - 5 ) ( 7 . 3 m - 5 ) 49.3m + 1

and

=s i{3m- ! - 1 + 2(1 + 3'-

Thus

{h3(m) - h,(m - \)}nm > & {2(1 + 3'™)3"+-•-»--»-" + 1 -

and (5.4) will hold if we can prove that

#{2(1 + 3 ' - ) 3 " + - + ' - - - + 1 + 1 - ft =*fl0(3 - fl0 + 2* - £ ) . (5.8)

From (5.3) we have the condition

m 1 + fc-l if tm = 3. <S»

Suppose first that

fli + . . . +am_1 = m-l or equivalently ax = .. . =am_l = 1. (5.10)

Then (5.8) is equivalent to
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where

7i(«0, k) = flo(3 -ao + 2k- £ ) , T2(k) = ^ ( 2 0 . 3* + f)

and

The small values of k give rise to the following values of 7,, 72 and 73:

7,(1, 0) = 1-73 . . . 72(0) = 1-51. . .

7i(2,0) = l - 4 7 . . . 73(0) = 1-41. . .

7,(1, 1) = 3-73 . . . 72(1) = 4 - 4 1 . . .

7,(2,1) = 5-47. . . 73(1) = 4-12 . . .

7,(1,2) = 5 - 7 3 . . . T2(2) = 13-12.. .

71(2, 2) = 9-47. . . 73(2) = 12-25 . . .

7,(1,3) = 7 -73 . . . 72(3) = 39-24.. .

7,(2, 3) = 13-47 . . . 73(3) = 36-63 . . .

As k increases, the values of T2(k) and T3(k) increase exponentially while those of
7,(a0, k) increase only linearly, and it is not difficult to prove that Tx{a0, k) < Tt{k) if i = 2
or 3 for all k 2s 4, and (5.11) holds. From inspection of the above table, we see that (5.11)
is true except in the following cases:

(0 * = 0:(«„,',„) = (1.2), (1,3) or (2,3)
and

(ii) * = l : (a0 j fm) = (2 ,2)or (2 ,3) .

However, from (5.9) and (5.10), it is not possible to have tm = 3 when A: = 0 since this
would imply that f, + . . . + tm_x = m - 2. Thus case (i) reduces to

(0' * = 0 : ( f l 0 ,O = (l»2).

From (5.9) and (5.10), this implies that (a0, au . . . , am) = (1, 1, . . . , 1) and
(fi,. . . , f M - i , tm) = (1, . . . , 1,2). Hence

nm - 1 + 3 + 32 + . . . + 3"1-1 + 3 m + 1 = 2-(3m - l) + 3 m + 1 = £(7. 3m - 1)

and 5(3, nm) = 2(1 - 2) . i(3m - 1) = - ( 3 m - 1), giving

l m ) _ 2 ( 3 m - l ) < 6 (3 m -1 )

nm 1.5—1 1.5 — J

Now consider case (ii). If k = 1 and tm = 5, we see from (5.9) and (5.10) that
{, + . . . + fm_, = m-l, giving /, = . . . = rm_, = 1. Thus , if (a0, tm) = (2, 3), we have

(fl0, fli,.... a m ) = ( 2 - 1 , • • • » ! ) and (*„ . . . , tm.u tm) = ( 1 , . . . , 1, 3).
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This gives

nm = 2 + 3 + 32 + . . . + 3"1"1 + 3 m + 2 = | ( 3 m + 1) + 3 m + 2 = i(19 . 3

and

5(3, nm) = 2 + 2(1 - 3) . | ( 3 m + 1) = - 2 . 3m.

Hence

which is true for m s* 1.
If * = 1 and (a0, tm) = (2, 2) we have, from (5.9) and (5.10), (a0, au . . . , am) =

(2, 1 , . . . , 1) and tx + . . . + tm^x = m. \itx = 2 then t2 = . . . = fm_j = 1, and we have

and

S(3, «„,) = 2 + 2(1 - 2) . 2 + 2(1 - 2) . | ( 3 m + 1 - 5) = - 3 ( 3 m - 1).

Thus

5(3, nm) = 6(3m - 1)

nm 7 . 3 m + 1 - 5 '

and this is the critical case. Alternatively if tx = 1, there is some r with 2 ^ r =£ m - 1 such
that

»! = . . . = fr_! = 1, rr = 2, fr+1 = . . . = »„_! = 1.

[If r = m - 1, this condition should read t1 = . . . = rr_x = 1, fr = 2.] In this case

nm = 2 + 3 + . . . + 3 r - 1 + 3 r + 1 + . . . + 3m + 3 m + 2 ,

so that

and

Also it may be verified that 5(3, nm) = - ( 3 m + 1 - 3r), giving

S(3,nm)= 6(3m-y-x) ^ 6(3

which is true.
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It remains to observe that when

«! + . . . + am_i = m — 1 + u where u & 1,

the values of T2(k) and T3(k) in (5.11) are replaced by T2(k + u) and T3(k + u) while those
of Tx(a0, k) remain unaltered. Inspection of the tabulated values shows that the
inequalities (5.11) are always satisfied. Hence the theorem is proved.
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