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1. INTRODUCTION

In his classical 1921 paper Sewall Wright determined the decrease in heterozygosity
in successive generations with various mating systems. Some systems, such as
regular mating of double first cousins in a population of 4, quadruple second
cousins in a population of 8, octuple third cousins in a population of 16, etc., have
the property that the matings are between individuals that areleast related. Wright
designated such systems as having maximum avoidance of inbreeding.

It might be thought that such systems would lead to the minimum decrease of
heterozygosity, but this is not generally true. Although the ‘maximum avoidance’
systems have the slowest initial rate of decrease of heterozygosity, there are other
systems which have more remaining heterozygosity in later generations. The
purpose of this article is to discuss some mating systems for which this is true.

Inbreeding has two related, but distinct effects. One is the decrease in average
heterozygosity; the other is random drift in gene frequencies. A system that
minimizes one of these processes is not necessarily minimum for the other. We shall
consider first some systems that have very slow ultimate rates of decrease in
heterozygosity, and compare these with those having maximum avoidance of
inbreeding. Later, in section 6, we shall consider systems that minimize gene
frequency drift.

Other things being comparable, either kind of inbreeding effect will be less when
the number of progeny per parent is constant. We shall consider only mating
systems in which this is true; we assume that the number of progeny per parent
(or per pair) is exactly two each generation so that the population size remains
constant.

Figures 1, 2, and 3 illustrate the three principal systems of mating to be compared
for a population of size 8. Figure 1 shows maximum avoidance of inbreeding
(quadruple second cousins), Figs. 2 and 3 show, respectively, the systems that we
shall call circular mating and circular pair mating.
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2. CIRCULAR MATING

In the simplest system to be considered, » males and »n females are arranged
alternately so that each individual is mated with its neighbour. The last individual
is mated with the first, so that the system is most easily visualized as circular. Under
this system, each individual after the second generation is the product of a half-sib
mating. Figure 2 illustrates continued circular mating for the case, n = 4.

Fig. 1. Maximum avoidance of inbreeding in a population of constant size 8. This
and the other pedigrees are to be read down ; the oldest generation is at the top.

Let the total number of individuals in a generation be ¥ =2n. We designate by
1, the probability that two homologous loci in an individual in generation #(t = 0,
1, 2, ...) share the same allele; that is, that an individual is homozygous for any
one of the possible alleles at this locus. Similarly, let JJ,(1) be the probability that
two randomly chosen homologous genes in two adjacent individuals in the "
generation share the same allele. In general, let J(k) be the similar probability
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(m-"®)

Fig. 3. Circular pair mating in a population of size 8 (4 pairs). Parentheses designate
cages, and the animals are shown in the cages at the time of mating.
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that two homologous genes in individuals %k steps removed are identical
(k=1,2,...2n—1). Note that because of the circular arrangement.J,(k) = J,(2n — k).

We then have:
I, = J1(1) (2.1)
J(1) = HI(M+11) +2J-1(1) +J-1(2)] (2.2)
J(2) = HJe-1(1) +2J-1(2) +J 1 (3)] (2.3)
Jyk) = HJralk—1)+2Ja(k)+J-1(k+1)] (n—1 2k 2 2) (2.4)
Jn—1) = HJpr1(n—2)+2J1(n—1)+J1(n)] (2.5)
Jin) = ${Jia(n—1) +Jy(n)] (2.6)

The first relation (2.1) follows immediately from the fact that two homologous genes
in an individual are derived from two adjacent individuals in the preceding genera-
tion. The second relation (2.2) is derived from the consideration that two homo-
logous genes, taken one from each of the adjacent individuals, are derived from the
same parent with probability 1/4, from two adjacent individuals with probability
1/2 and from two individuals two steps removed with probability 1/4. When they
are derived from the same individual, they either come from the same gene or from
two homologous genes with equal probability of 1/2. In the former case the
probability is 1 that they share the same allele, while in the latter case, the
probability is 1,3 by definition. Relations (2.3) to (2.5) are derived from similar
considerations and (2.6) follows from (2.4) by putting k== and noting that
Jn—1) =Jy(n+1).

The heterozygosity at time ¢ is proportional to H,=1—1,, From the above
relations the proportion of heterozygosity can be worked out in successive genera-
tions. This was done by digital computer. The heterozygosity as a proportion
of the initial value is shown for populations of size N = 4, 8, 16, and 32 in Table 1,
along with the corresponding changes for maximum avoidance and for circular pair
mating. In each case it will be seen that circular mating has a more rapid initial loss
of heterozygosity, but that eventually the rate of loss is much less.

Relations (2.1) through (2.6) may easily be expressed in matrix form by letting
H,=1-1,and K/(k) = 1—-J,k). Thisis given by

H, [0 10 0 0 00 0 o |H.
K1) 11100 00 0 0 |K-a()
E(2) 0} % %0 00 0 0 |K-(@)

o e
KEmn-2) [0 0 0 0 0 111 0 |K.1n—2)
Km-1| o 0o 0 0 o 0 1 1 1 |K-in—1
K,(n) 0000 0 00 1 3 |Eam

https://doi.org/10.1017/50016672300003797 Published online by Cambridge University Press


https://doi.org/10.1017/S0016672300003797

On the maximum avoidance of inbreeding 403

Table 1. Decrease in heterozygosity with maximum avoidance of inbreeding (M),

circular pairmating (CP),and circular mating (C) in populations of size 4, 8,16, and 32.

The value given 1s H,/Ho, where H, is the heterozygosity in generation t. 1—X is the
asymptotic rate of decrease in heterozygosity per generation

N=4 N=8 N=16 N =32

Al A A A
) s N — N \

t M,CP C M CP C M (0 C M Cp C

0 1000 1000 1-000 1-000 1-000 1-000 1-000 1-000 1-000 1-000 1-000
1 1000 1-000 1-000 1-000 1-000 1-000 1-000 1-000 1-000 1-000 1-000
2 1-000 0-875 1-000 1.000 0-875 1-000 1.000 0-875 1-000 1-000 0-875
3
4

0-875 0-813 1-000 0-938 0-813 1-000 0-938 0-813 1-000 0-938 0-813
0-813 0-750 0-938 0-906 0-758 1.000 0-906 0-758 1-000 0-906 0-758

5 0750 0-695 0906 0-875 0-715 0-969 0-879 0-7156 1-000 0-879 0-715
10 0492 0477 0755 0-732 0-577 0-891 0-777 0-577 0953 0-777 0-577
15 0-324 0-327 0-628 0-614 0-494 0-817 0-709 0-499 0-915 0-711 0-499
20 0213 0-224 0-522 0-514 0-432 0750 0-655 0446 0-878 0662 0-446
25 0140 0-154 0434 0-431 0379 0-688 0-608 0-407 0-842 0-623 0-407
30 0092 0105 0-361 0-361 0-334 0632 0-566 0-377 0-808 0-592 0-377
40 0-040 0-050 0-250 0-254 0-259 0-532 0-490 0-333 0-744 0-542 0-333
50 0-017 0-023 0173 0178 0-202 0-448 0-424 0-300 0685 0-503 0-302
70 0003 0005 0-083 0-088 0-122 0-318 0-318 0-252 0-581 0-443 0-259
100 0-000 0-000 0-027 0-030 0-057 0-190 0-207 0-199 0-454 0-374 0-219

150 0-004 0-005 0-016 0-080 0-101 0-136 0-301 0-287 0-180
200 0-000 0-001 0004 0-034 0-049 0-092 0-199 0-220 0-156
300 0-000 0-000 0-006 0-012 0-043 0-087 0-130 0-123
400 0-001 0-003 0-020 0-038 0-077 0-099
500 0-001 0-009 0-017 0-045 0-080

1—A 0-0804 0-0727 0-0362 0-0347 0-0249 0-0170 0-0142 0-0076 0-0082 0-0053 0-0021

We designate this (n+ 1) x (n+ 1) matrix by 4. Also we designate |4 —AI| by
F,(A), so that the characteristic equation of 4 is written as

F,Q) = [4-M] =0

The ultimate ratio by which the frequency of heterozygotes decreases from one
generation to the next is given by the largest root of this equation. For N =2, 4, 6
and 8, the characteristic equations and the corresponding dominant roots are as

follows:

N=2;, Fi()) = 2-3-%1=0
A = 0-8090

N=4; Fs0) = —23+X2—2% =0
A = 09273

N =6; FsA) = M—38+Z02+FZA-4=0
A = 0-9606

N=28; Fsd) = =M+ -28+LE2+fA—52=0
A = 09751
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The case with N = 2 is ordinary brother—sister mating with recurrence relation
H, = }H, 1+ }H, , for heterozygote frequencies (Wright, 1921). To compute the
dominant root for a larger n, a more general treatment of the characteristic equation
is required and this can be done as follows.

By expanding the determinant |4 — AI| with respect to the first two and the last
two rows, we get

A1
Fo0) = X3 =) (1 4a@— 4+ (3- 75 @12 = 40)+
+(3)2(1)"3¢,-3(2 — 42), (2.8)
where ¢,(-} is an n x n determinant known as Wolstenholme’s determinant, defined
by
‘'z 1 0 0 0 0 0]
11 z 1 0 0 0 01
101 = 1 0 0 0}
$ale) = | _ I (2.9)
‘ - . . . 4
0000 . .01 @ |

(cf. Rutherford, 1952). One of the important properties of this determinant is that
if x = —2co0s8, then

_ LSin(n+1)0
$a(2) = (=1) " sing " (2.10)
Thus, if we put
2—4X = —2cosf
or
A= H1+ cosb) (2.11)
then, (2.8) reduces to
F,A) = (—})*[sinfsinnb — cos nd). (2.12)

This shows that the dominant root and, indeed, all the roots of the characteristic
equation are given by (2.11) with 8 satisfying the equation.

(2.13)

Though (2.12) was derived by assuming |4 — AI| has at least 4 rows, it turns out that
(2.13) is valid for all » = 1.
For a large », the following series expansion is useful to compute the dominant
root:
772 774
TT6(mt 1) AB@myE

A =1 (2.14)

Since H, is the probability that an individual in the ¢ generation is heterozygous

with respect to the locus under consideration, 1 — A with A given by (2.14) is equal to
the rate of decrease of heterozygosity at the state of steady decay. As n becomes
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large, the higher terms of the series decrease in absolute value very rapidly, so that
for n > 4, the first two terms of the series are sufficient to evaluate the dominant
root for any practical purpose. Thus we obtain
a2
Az l—m (N — o0) (2.15)

Since it is known that A = 1—(1/2N) for a randomly mating population of N
breeding individuals, the above result shows that under circular individual mating
the decrease of heterozygosity is extremely slow on a long-term basis. However it
may be many generations before the superiority over other mating systems is
manifest—so long that much of the heterozygosity is already lost.

For a monoecious organism, circular mating can be carried out among odd
numbers of individuals, but we will not consider such a case in this paper.

3. CIRCULAR PAIR MATING

Although circular mating is extremely effective in slowing down the progress
toward homozygosity in the long run, it is not a convenient mating system in
practice because each individual has to be mated twice. A rather similar system is
what we have called circular pair mating. This is illustrated for a population of 8in
Fig. 3. If the animals are thought of as being in four cages, indicated by parentheses,
then in each generation a male is mated with a female in the cage to his right. This
system, being monogamous, should be very convenient for insects or litter-bearing

--a)

)

Fig. 4. Circular pair mating; same as Fig. 3 except that the animals are shown in
cages at the time of birth.

mammals. It was suggested by J. B. S. Haldane in a personal communication to
Professor Wright.

Figure 3 is drawn with the animals in their cages at the time of mating. For
analytical purposes we have found it somewhat simpler to draw the pedigree with
the animals in their positions at the time of birth, as shown in Fig. 4.

Asbefore, let I, be the probability that anindividual in generation ¢ is homozygous.
Let J,(0) be the probability that the homologous genes taken one from each of the
sibs born in the same cage in generation ¢ are the same allele. Similarly, we will
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denote by J,(k) the probability that two homologous genes taken one from each of
two newly born individuals in cages k steps apart are identical alleles.
In circular pair mating, the number of pairs may be either even or odd. In the
former case we will denote the number of pairs by 2n and in the latter by 2n +1.
First consider the even case (2n pairs) where the total number of individuals is
N =4n. The recurrence relation connecting the I and J’s in two consecutive
generations are as follows:

I, = J,4(1) (3.1)

J(0) = 321 +1) +Ja(1)] (3.2)

Juk) = {1k — )+ 2J (k) +J 1 (k+1)] (1 =k = n-1) (3.3)
Jin) = $J-1(n—1) +J -1 (n)] (3.4)

These are readily derived by arguments very similar to the ones through which
(2.1)-(2.8) were derived.

Let H,=1—1,and K/(k) =1-J(k), k=0, 1,2, ..., n, then we have

H, 00100 0 0 0f |H_

K,(0) } 0300 0 0 0] |K, 1(0)

K1) 0 + 3 %0 0 0 0 |K1)

K@ |_f0o 0} % 3 0 0 0 [K-2) 35
Km-1)| [0 0 0 0 0 } o} O |Eam—-1)

K,(n) 0000 0 0 3 i |Kim)

The characteristic equation of the above (n+2)x (n+2) matrix can again be
expressed in terms of Wolstenholme’s determinant ¢,(-) as follows:

Fa) = @424 - Ndu-1(2— 42) + 43 — A%, —a(2 — 44) —

—(A+3),-3(2—41)] = 0. (3.6)
This leads to
A = (1 +cosb)
sing = _ootnb. (3.7)
" 2+cosb
For a large n, we obtain
2
or, putting » = N /4,
2
A=1- TP (3.9

Numerical values are given in Table 1.
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In the case of odd (2% + 1) pairs, the total number of individualsis N = 4n + 2 and
the equation corresponding to (3.5) becomes

H, 001 0 0 0 0| | H_
K(0) 1 030 0 0 0] |Kia(0)
K1) 0+ 4 . .0 0] | Kpa(1)
o= . (3.10)
Km-1| [0 0 0 0 1ot ot K-
K/n) 0 0 0 0 0 1 3| |K-m)
In this case, the equation giving A turns out to be as follows:
= 3(1+cos 0)
tand _ (C0s20+cosf—1 bl (3.11)
2 ~ \cos20+3c0s0+3) "
For a large n, we obtain
2 1
A=1-T - 12
16(n+ 12’ @12
or, putting n = (N —2)/4,
=1 ™ 3.13
= e (3.13)

which fortunately is the same as (3.9). Comparison of (3.13) or (3.9) with (2.15)
shows that asymptotically circular pair mating needs twice as many individuals as
the circular individual mating to attain the same rate of decrease in heterozygosity.

4. CIRCULAR SUBPOPULATION MATING

Under some circumstances it may be convenient to have several parents in a
single cage. It is natural to extend the circular mating system to include this
possibility. For example, each generation the male progeny could be transferred
one cage to the right.

Let the number of cages be 2n (or 2n+ 1 if the number is odd) and in each cage
let m* be the number of males and m** be the number of females. Figure 5illustrates
an example where 2n = 4, m* = 2, and m** = 3.

We assume that mating within a cage or subpopulation is random and that each
parent of a given sex has the same expectation of progeny. As before, we denote
by I the probability that an individual in the #*® generation is homozygous with
respects to any of the alleles, 41, 42, etc. Let J,(k) be the probability that two
homologous genes taken one from each of two newly born individuals coming from
subpopulations & steps apart are identical. In particular, J(0) stands for the
probability of two homologous genes taken one from each of two newly born
individuals within a subpopulation are the same allele.
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In the case of an even number of subpopulations, if 2» is the number of sub-
populations such that the total number of breeding individuals is

N = 2n(m* + m**),

we have the following recurrence relations:

I, = Ja(1) (4.1)
e R
+%[,%g (HTIH)T(l ) J-1(0) }+lJ,_ (4.2)

T(k) = (b= D)+ 2 () +Ja(k+1)] 1Sk Sn-1)  (4.3)

Jyn) = ${Ji-1(n—1) +J-1(n)] (4.4)

These relations are similar to (3.1)-(3.4) and only (4.2) requires explanation:
Two homologous genes, taken one from each of two individuals within a sub-

Fig. 5. Circular population mating for 4 populations, each with 2 males and 3 females.

population, are either derived from the same parental subpopulation or from two
adjacent parental subpopulations with equal probability of 1/2. In the former case,
they are either derived from a male, or a female, with equal probability of 1/2. If
paternal, they are derived from the same male with probability 1/m*, and from
different males with probability 1 —1/m*. Similarly, if maternal, they are derived
from the same female with probability 1/m** and different females with probability
1—1/m**. Irrespective of whether they are derived from male or female, the
probability of the two homologous genes sharing the same allele is (1 4- I,_,)/2 if they
are derived from the same individual and J,—;(0) if they are derived from different
individuals originated from the same subpopulation. On the other hand, if they
are derived from adjacent parental subpopulations, the probability that they share
the same allele is J,—1(1).
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Let H,=1,—I,and K,(k)=1—-J(k),k=0,1,2,...,n. Then

H, 0 0 10 . .00 0 [B.

1 1 1

. — 1
90 w Goam) 20 00 0| |Ka(0)
K,(n-1) 0 0 0 0 + 31 K, 1(n—1)
K(n) 0 0 0 0 0 % 4 K,(n)

where m is the harmonic mean of the number of males and females;

n oA k) )

Performing the calculation as before, the characteristic equation giving A becomes
A= 31+ cos®)

cotnf (4.7)

sinf = m(l+ cos8)+1

For a large value of n, the dominant root may be calculated from

w2

A= 1—16(n+2m+ 1)2

(4.8)
If the number of subpopulations is odd, say 2n + 1, the matrix of transformation
corresponding to (4.5) should be modified slightly such that the last row is
0, ..., 0, %, 2) rather than (0, ..., 0, {, ). The characteristic equation may be
worked out as in the case of even numbers of subpopulations. -

5. COMPARISON OF VARIOUS MATING SYSTEMS WITH RESPECT
TO THE RATE OF DECREASE OF HETEROZYGOSITY

It has been shown by Wright (1931) that in a random-mating population of
N breeding individuals equally divided between males and females, the rate of
decrease of heterozygosity is approximately 1/(2N) per generation, i.e.

1=A ~ = (5.1)
~A~ o .
With N breeding individuals, but under ‘maximum avoidance’ of consanguineous
mating, the ultimate rate of decrease of heterozygosity is asymptotically 1/(4N) per
generation (see Wright, 1951), i.e.

1-2 ~ (5.2)
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From the common notion that the decrease of heterozygosity is directly related
to the intensity of inbreeding, these results seem to show that 1/4N is the minimum
rate of decrease of heterozygosity that can possibly be attained with N breeding
individuals per generation. Furthermore, Wright (1931) has shown that if each
individual leaves exactly two offspring per generation, the effective size of popula-
tion is approximately twice the actual size. In other words, we again have relation
(5.2). Thus it is natural to infer that in addition to keeping the number of offspring
equal between different individuals, if matings between close relatives are avoided,
‘the inbreeding coefficient in any generation is slightly lower and is more uniform
between the individuals in the generation than if matings between close relatives
are allowed ; but the rate of inbreeding is the same’ (Falconer, 1960).

1-0
0-8+
0-6
CP

0-4- C

0.2.

T T T T T T —T T
0 20 40 60 80 100 120 140 160 180 200

Fig. 6. Decrease of heterozygosity in a population of size 16 for circular mating (C),
circular pair mating (CP), and maximum avoidance of inbreeding (M). Ordinate:
heterozygosity as a fraction of initial heterozygosity ; abscissa: time in generations.

Actually, an inquiry on this point from Dr Y. Yamada to one of us (M.K.)
provided the stimulus to work on the problem. Thus the general result that, under
circular mating, the ultimate rate of decrease in heterozygosity is proportional to
1/N2 rather than to 1/N was quite an unexpected one.

The processes of change in heterozygote frequencies under circular matings and
the ‘maximum avoidance of inbreeding’ are illustrated in Figs. 6 and 7 for N = 16
and 32.

They show that the decrease of heterozygosity is always more rapid in the
circular matings than in the maximum avoidance system during the earlier stages
of inbreeding, after which the latter starts to lose heterozygosity more rapidly. The
point at which this transition occurs depends on the population size as well as the
type of circular mating.

The practical utility of circular mating systems for maintaining heterozygosity is
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limited by the fact that much of the heterozygosity is lost before the circular mating
systems become advantageous. The point of transition is difficult to determine

analytically, but some idea of the numerical values can be gotten from Figs. 6 and 7
and Table 1.

1-0

08

0-61

0-41

02

i T T 1 T ‘
0 50 100 150 200 250 300 350 400 450 500

Fig. 7. Decrease of heterozygosity in a population of size 32.

Although the ultimate rate of decrease in heterozygosity, 1 — A, may not be very
important in judging the merit of various mating systems for practical use, it is of
considerable theoretical interest. A problem thatimmediately comes up is whether
there is any mating system that gives a smaller value of 1 —A than circular mating
for the same population size. We have not found any that is applicable to populations
that have separate sexes. For example, Fig. 8 shows a system suggested by Dr Y.

Fig. 8. A mating system that combines circular and circular pair systems.

Yamada that is a mixture of circular and circular pairs. For the case of N = 6, the
equation determining A is
— (4A)8 4+ 3(4A)5 + 5(4A)4 — (41)3 — 23(4A)2 —6(4A) +12 = O

from which we get 1 — A = 0-0465 as the ultimate rate of decrease in heterozygosity.
Since the corresponding values for the circular individual and the circular pair
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matings are respectively 1—A = 00395 and 0-0494, this system is intermediate
between these two circular mating systems with respect to the ultimate rate of
decrease in heterozygosity.

For a monoecious population in which self-fertilization is allowed, it is possible to
produce an example which gives a smaller value of 1—A than circular individual
mating (for equal N). Figure 9 illustrates a mating scheme in which selfing and
sib-mating are systematically mixed among three monoecious individuals compared

Fig. 9. Partial self-fertilization without subdivision into lines for N = 3 compared to
circular mating.

with circular mating involving three monoecious individuals. In the former case,
the equation determining A turns out to be

3204 -1503—-8A2—-21—-1 =0
from which we get 1 —A = 0-1013. In the latter case,
SA2—6A—1 =0

and the ultimate rate of decrease in heterozygosity is 1 —X = 0-1096.

Thus, more intense inbreeding of individuals within the line produces a lower
ultimate rate of decrease in heterozygosity, provided there is no permanent splitting
of the population into isolated lines. An extreme example would be a system of
self-fertilization or sib-mating for several generations, with random mating inter-
spersed. By lengthening the interval between the random matings the ultimate
rate of decrease in heterozygosity could be made as small as desired. Conversely, a
system that avoids mating of relatives for as long as possible does so at the expense
of a more rapid final approach to homozygosis.

The circular and circular pair systems have the same mating pattern each
generation, as do the maximum avoidance systems. Among such systems it would
appear that circular mating has the slowest ultimate rate of approach to homo-

zygosity.
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It is interesting to note that circular mating and circular pair mating for popula-
tions of infinite size have already been worked out, although they are usually not
thought of in this sense. The half sib mating scheme of Wright (1921, p. 138) would
be equivalent to circular mating if the right and left ends of the pedigree were joined.
Likewise, Wright’s first cousin mating scheme (p. 140) is equivalent to circular pair
mating in a population of infinite size. As expected, the heterozygosity change in
the first few generations of our systems agree with those of Wright.

6. MATING SYSTEMS THAT MINIMIZE RANDOM GENE FREQUENCY DRIFT

It is frequently desirable to keep the gene frequencies of a population as constant
as possible, as for example in a control population for a selection experiment.

In considering mating systems that minimize gene frequency drift it is clear that
the first requisite for such a system is that the number of progeny per parent be
constant. Assuming that each individual leaves exactly two offspring, the variance
in the change in frequency of a particular allele 4 from generation ¢ to generation
t+ lis given by H,/8N, where H, is the proportion of heterozygotes in generation ¢.
This is because each heterozygote contributes two genes, randomly chosen, and
hence with variance 2x 4 x { =4. With N parents there are NH, heterozygotes,
with a variance in number of A alleles contributed of NH,/2. Thus, among the 2N
genes contributed, the variance in 4 allele frequency is NH,/2 — 4N2, or H,/8N.

Therefore, the gene frequency variance after 7' generations is

V= oy = H

that is, the total random drift is proportional to the sum of the heterozygote
frequencies in all previous generations. If there are L isolated lines, each with ¥
individuals, the variance in average gene frequency becomes 1/L of the above value.
Thus it is desirable to adopt a mating system in which heterozygosity decreases
rapidly and the population breaks up into as many lines as possible.

For a randomly mating population of N monoecious individuals and constant
number of progeny per parent H, = AH, ; where 1 —A = 1/(4N — 2) (see Kimura &
Crow, 1963), so that

Ho Ho
Ve = 8Ntz HoX = gy = sy 4V —2) (6.2)

If, instead, the population is split into ¥ self—fertilizing lines, A = } in each line and
_ 1 Hy _ 2H,
* " N'81-A) 8N

thus by splitting into N selfing lines the total accumulated variance is reduced to
1/(2N —1) of the value in a randomly mated population.
If there are separate sexes the change of heterozygosity is given by

(6.3)

P,
H, = (1-P)H 1+ gtHz—z

2F
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where P, is the probability that two homologous genes in generation ¢ come from the
same individual in generation ¢ — 2 (Wright, 1951 ; Kimura & Crow, 1963). If each
parent leaves the same number of progeny (which implies equal numbers of male and
female parents), P, = 1/(2N —2) and we have

2N -3 1

Ht 2N 2Ht 1+ 7\ 4Ht‘2
S H, = Ho(4N —2)
=0
Vo = HT\‘;(4N—2) (6.4)

Note that (6.2) and (6.4) are the same; i.e. the situation is not changed by having
seperate sexes.
If the population is split into N /2 sib-mated lines

6H,

Vo = 3x

and the drift variance is decreased to 3/(2N — 1) of the value with random mating.

These examples clearly show that in order to keep the total drift to a minimum,
the population should be split into as many lines as possible.

If the population is not split into lines the system that has the least total hetero-
zygosity over the generations considered is preferred. From Figs. 6 and 7 it is clear
that circular mating is the best of the systems considered, since for any particular
generation the area under this curve to the left of the generation is least.

If we ask for the limit, each of these systems (or any other that does not lead to
population subdivision) leads to the same result, for eventually one allele will
become fixed. Therefore

Vo =p(l-p) (6.5)

where p is the initial frequency of the allele under consideration.
This can be verified by noting that, with random mating in a finite population,

Ho = 2p(1-p)(1 — )

o = 51;\,—% (Kimura & Crow, 1963)
Substituting these into (6.2) or (6.4) leads to (6.5).

The relationship between minimum gene frequency drift and minimum ultimate
decrease in heterozygosity can now be seen. Minimization of random drift is
accomplished by intense inbreeding in the early generations and subdivision of the
population into as many lines as possible; for example, self-fertilization if this is
possible. By crossing such lines at random a population can be reconstituted and
the final approach to homozygosity of such populations, successively reconstituted,

will be minimal.

https://doi.org/10.1017/50016672300003797 Published online by Cambridge University Press


https://doi.org/10.1017/S0016672300003797

On the maximum avoidance of inbreeding 415
7. SUMMARY

Mating systems in which the least related individuals are mated have been
designated by Wright as having maximum avoidance of inbreeding. For such
systems the initial rate of decrease in heterozygosity is minimum. However, some
other systems have a lower rate of decrease in later generations.

Circular mating, in which each individual is mated with the one to his right and
to his left, leads to an asymptotic rate of decrease in heterozygosity of
1-A~ #2/(2N +4)2 compared with 1/4N for maximum avoidance systems.
Circular pair mating, in which for example each male progeny is moved one cage to
the right, leads to 1 —A ~ #2/(N + 12)2. Other similar systems are discussed.

For minimum gene frequency drift, a mating system should have a constant
number of progeny per parent and the population should be broken up as rapidly as
possible into the maximum number of lines. The gene frequency variance at
generation 7' within a line is

1 T-1
Ve 5%

where N is the number in the line and H, is the proportion of heterozygotes in
generation ¢. Although the three mating systems, circular, circular pair, and
maximum avoidance (and many others) have the same amount of random drift
ultimately, at any generation circular mating has the smallest drift variance, ¥,
and circular pair next smallest.

We are indebted to Mr Joseph Felsenstein for computer programming, and to
Drs Hans Schneider, Gene Golub, and Joel L. Brenner for assisting one of us (M. K.)
in obtaining eigenvalues. We should like also to thank Drs Sewall Wright and Alan
Robertson for suggestions that helped us see the problem more clearly and for

reading the manuscript.
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