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Special Relativity 1

1 Newton’s Laws
Sir Isaac Newton (Figure 1) was born in 1642 and died in 1726 or 1727. What?
How can there be any ambiguity over something so straightforward as the year
of Newton’s death? In his time, two calendars were in use in Europe: the Julian
‘old style’ calendar (introduced by Julius Caesar in 46 BC), and the Gregorian
‘new style’ calendar (introduced by PopeGregoryXIII in October 1582).While
the Julian calendar counts the length of a year as exactly 365.25 days long,
meaning a leap year should occur every four years, the Gregorian calendar has
the following more sophisticated prescription:

Every year that is exactly divisible by four is a leap year, except for years
that are exactly divisible by 100, but these centurial years are leap years if
they are exactly divisible by 400. For example, the years 1700, 1800, and
1900 are not leap years, but the year 2000 is. (US Naval Observatory, 2022)

The Gregorian calendar is now the calendar most widely used across the globe.
Unlike the Julian calendar, it makes the average calendar year 365.2425 days
long, thereby more closely approximating the 365.2422-day ‘solar’ year that is
determined by the Earth’s revolution around the Sun. The merit of the Gregor-
ian over the Julian calendar is that the latter ‘drifts’ with respect to the solar
year (because the Julian calendar does not as accurately line up with the solar
year): given enough time, Christmas in the northern hemisphere would occur
in summer according to the Julian calendar! One does not face these issues
with the Gregorian calendar: in a sense, it is better ‘adapted’ to salient physical
events (in this case, the Earth’s going around the Sun); in turn, this often ren-
ders its descriptions of physical goings-on simpler (for example, the Earth will
be at the same point in its orbit around the sun every year according to the Gre-
gorian calendar, but not according to the Julian calendar). To anticipate some
terminology which I will use later in this section: there is a sense in which the
Gregorian calendar better approximates an ‘inertial frame’ – a coordinatisation
of the world such that our description of physical dynamics is simplest – than
does the Julian calendar.1

In fact, a central question in the philosophy of spacetime physics has to do
with precisely these issues: What does it mean for our physical descriptions to
be ‘well-adapted’ to nature? Is it indeed appropriate (as assumed so far in this
Element) to regard ‘inertial frames’ as those in which physical dynamics sim-
plifies maximally, or is there some other, superior way of understanding such
structures – perhaps in terms of the structures of space and time themselves?

1 Of course the Gregorian calendar is not perfect either: this is why we must introduce ‘leap
seconds’ and other gadgetry in order to forestall ‘drift’ against the solar year.
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2 Philosophy of Physics

Figure 1 Sir Isaac Newton, 1642–1726/7

These are pressing questions, to which I will return throughout this Element –
but they are also tangible questions: the entire set of ideas underlying them is
encapsulated in the ambiguity over Newton’s death year.
My purpose in this section is to expand upon these central themes in the

foundations of spacetime theories, as they constitute the essential bedrock upon
which I will build my philosophical analysis of special relativity in later sec-
tions. In order to proceed, I will turn again to Newton: this time not to his death
date, but rather to his laws. These turn out to be a conceptual minefield – but
grappling with how to understand the content of these laws will afford exactly
the right toolkit with which to address the philosophy of special relativity in
later sections.2

1.1 Newton’s Laws
Let me begin by stating Newton’s laws. These should be familiar to anyone
who has studied high school physics:

N1L: Force-free bodies travel with uniform velocity.
N2L: The total force on a body is equal to the product of that body’s mass and
its acceleration. (F = ma.)
N3L: Action and reaction are equal in magnitude and opposite in direction –
that is, if one body exerts a force F on a second body, then the second exerts
a force −F on the first.

2 In many respects, this first section will be the hardest of the Element, because I will introduce
a large number of concepts and issues in quite short succession. But readers should not be
deterred: I will go into all such concepts and issues in much greater depth in the remaining
sections.
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Special Relativity 3

Stare at these laws for just a minute, and inevitably a range of conceptual
questions will arise. For example:

1. What does ‘force-free’ mean?
2. Is not N1L a special case of N2L? So why state it as a separate law?
3. (Relatedly:) Is N1L supposed to be a definition, or something else?
4. In which frames of reference are these laws supposed to hold?
5. Does N1L presuppose N3L?

Only by answering such questions can we secure a full and clear understanding
of the content of Newton’s laws. But doing so has long been recognised to be
no easy business. Here is Hertz in 1894:

It is quite difficult to present the introduction to mechanics to an intelli-
gent audience without some embarrassment, without the feeling that one
should apologize here and there, without the wish to pass quickly over the
beginnings. (Hertz, 1894)

And here is the physicist Rigden, writing in 1987:

The first law . . . is a logician’s nightmare. . . . To teach Newton’s laws so that
we prompt no questions of substance is to be unfaithful to the discipline itself.
(Rigden, 1987)

As foreboding as the challenge of making sense of Newton’s laws might
seem, an honest philosopher of physics must try to make progress here –
and, indeed, philosophers have engaged with these questions in a surprisingly
diverse range of manners. In my view, in order to appreciate the range of
options which are available in answering the aforementioned questions, it is
helpful to present two approaches which, in many respects, are polar oppos-
ites: the ‘dynamics first’ approach of Brown (2005), and the ‘geometry first’
approach of Friedman (1983). Indeed, I will use these two authors (and their
respective allies) as poles for navigation not just through this section, but over
the course of the entirety of this Element.

1.2 Inertial Frames
I will begin with the fourth question in the preceding list: in which frames
of reference are Newton’s laws supposed to hold?3 Focusing on N1L, it is
transparent that this law cannot hold in all frames of reference, for envisage a

3 For the time being, I make no distinction between a frame of reference and a coordinate system.
Some authors regard the former as consisting in ‘extra structure’ – I will return later to this
idea of ‘extra structure’, but here I set it aside. (For more on the difference between frames and
coordinate systems, see Earman and Friedman (1973).)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
30

05
99

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009300599


4 Philosophy of Physics

force-free body moving with uniform velocity according to some temporal and
spatial coordinates, then move to a coordinate system accelerating with respect
to the first. In this new coordinate system, the force-free body no longer moves
with uniform velocity! Thus, Newton’s laws obtain only in particular frames
of reference.
We can make these points quantitative as follows. In a given coordinate sys-

tem xµ (µ = 0, . . . ,3),4 suppose the path of any free particle can be expressed
as

d2xµ

dτ2 = 0, (1)

where τ is a monotonic parameter on the path in question. Integration yields

xµ (τ) = xµ (0) + τvµ (0) , (2)

where vµ (0) = dxµ

dτ at τ = 0, so we obtain straight-line motion in the four-
dimensional manifold. This is the property which N1L tells us holds of force-
free particles – so in the frames in which N1L holds, we have d2xµ

dτ2 = 0.
Now perform an arbitrary coordinate transformation xµ → x ′µ (xν), along

with an arbitrary parameter transformation τ → λ (τ). Our simple force law
d2xµ

dτ2 = 0 becomes, in the new frame (Brown, 2005, p. 17),

d2x ′µ

dλ2 − ∂2x ′µ

∂xρ∂xγ
∂xρ

∂x ′ν
∂xγ

∂xσ
dx ′ν

dλ
dx ′σ

dλ
=

d2τ

dλ2
dλ
dτ

dx ′µ

dλ
. (3)

So force-free particles accelerate in arbitrary frames (the acceleration is quan-
tified by the two extra terms which have been introduced in this frame:
sometimes, these are called ‘fictitious force’ terms) – they only move on
straight lines in the inertial frames.
It is crucial to note at this point that the frames in whichN1L holds are those

in which the very same dynamics takes a particularly simple form.5 Recalling
our discussion of the calendar systems, let us call the frames of reference in
which Newton’s laws hold the inertial frames of reference. Knox, indeed, gives
the following very sensible definition of inertial frames:

In Newtonian theories, and in special relativity, inertial frames have at least
the following three features:

4 It is standard practice in physics to use Greek indices (µ, ν, . . .) to range over the four coordin-
ates of space and time (where the 0 coordinate is the time coordinate), and to use Latin indices
i, j , . . . to range over the three spatial coordinates. I will follow suit in this Element.

5 Throughout this Element, by dynamical equations taking their ‘simplest form’ in some coord-
inate system, I mean something like those equations exhibiting the fewest number of terms in
that coordinate system. Although somewhat vague, this notion of simplicity is perfectly clear
in practice. For further discussion, see Read, Brown, and Lehmkuhl (2018); Weatherall (2021).
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Special Relativity 5

1. Inertial frames are frames with respect to which force-free bodies move
with constant velocities.

2. The laws of physics take the same form (a particularly simple one) in all
inertial frames.

3. All bodies and physical laws pick out the same equivalence class of
inertial frames (universality). (Knox, 2013, p. 348)

So, Newton’s laws hold in the inertial frames of reference, which are those
coordinate systems in which the dynamics simplify maximally and in which
force-free bodies move with uniform velocities. It is important to note, though,
that this definition of an inertial frame is what is known as a functional defin-
ition: it tells us the properties which we expect (or, indeed, demand) that the
objects in question (here, inertial frames) possess, but it does not (as yet) afford
us any independent means of identifying those objects (again, here frames), or
knowing whether they exist. Indeed, it is exactly at this juncture that authors
such as Brown and Friedman begin to follow different courses. Beginning with
the existence question, Brown maintains that inertial frames do exist in nature:

A kind of highly non-trivial pre-established harmony is being postulated,
and it takes the form of the claim that there exists a coordinate system xµ

and parameters τ such that [ d
2xµ

dτ2 = 0] holds for each and every free particle
in the universe. (Brown, 2005, p. 17)

On the other hand, Friedman denies the existence of inertial frames:

Newtonian physics is (would be) true even if there are (were) no iner-
tial frames. The First Law deals with the existence of inertial frames only
counterfactually: if there were inertial frames (for example, if there were
no gravitational forces), free particles would satisfy [ d

2xµ

dτ2 = 0] in them.
(Friedman, 1983, p. 118)

The difference between our two authors amounts to this. Friedman’s point is
that no particle is actually force-free, so inertial frames in the strict sense do
not actually exist. Brown, on the other hand, would reply that inertial frames
at least approximately exist. In fact, though, Friedman anticipates this response
on behalf of Brown when he writes:

This reply is inadequate. Newtonian physics is only approximately true, but
not because of the existence of gravity [i.e., some universal physical force].
(Friedman, 1983, p. 118)

The reader would be forgiven for finding this passage from Friedman puzzling
at this stage. It will make more sense once we understand in more detail the
differing theoretical commitments of the parties involved – for this reason, I
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6 Philosophy of Physics

will defer a detailed discussion of this response until the end of the following
subsection. For the time being, we need only note this: for Brown, N1L is a
claim about the existence of (approximate) inertial frames in the real world; for
Friedman, by contrast,N1L is a counterfactual statement, since in fact there are
no inertial frames in the actual world. So much for the existence question. But
the question of what the inertial frames are remains. To make progress here,
we must turn now to the first of the questions in our list: what is the meaning
of ‘force-free’?

1.3 Force-Free Bodies
To get a better handle on what it means for a particle to be force-free, we must
turn to N2L, which (recall) says that the total force on a body is equal to the
product of that body’s (inertial) mass and its acceleration. With N2L in mind,
a natural further conceptual puzzle arises: is not N1L just a special case of
N2L, given that the former (it seems) reduces to the latter in the case F = 0?
Friedman straightforwardly gives an affirmative answer to this question. On
the other hand, Brown gives a negative answer:

It will be recalled that the acceleration Üx of the body is defined relative to
the inertial frame arising out of the first law of motion. It is for this reason
that the first law is not a special case of the second for F = 0. (Brown, 2005,
p. 37, fn. 9)

In other words, for Brown, N1L plays the crucial role of telling us what the
inertial frames are; for this reason, and in this sense,N1L is not merely a special
case of N2L. I will come back to this, but before doing so let me explain why
Friedman does think that N2L is a special case of N1L.
For Friedman, notions of acceleration and force are to be defined in terms of

a background spatio-temporal structure. (For the time being, I will not address
the question of the metaphysical status of this spatio-temporal structure, and
its relation to material bodies – that is, I will not address the substantival-
ism/relationalism debate (on which see Pooley, 2013); I will have more to say
on this in later sections, in particular Section 7.) In Newtonian mechanics, for
Friedman, a particle is genuinely accelerating just in case it follows a curved
path with respect to the standard of straightness of paths across time given
by (neo-)Newtonian spacetime.6 A particle is force-free just in case it follows
a straight path with respect to that standard of straightness.7 This gives us a

6 I will explain the ‘neo-’ prefix here, as well as the general notion of spacetime in Newtonian
mechanics, in Section 5 and 6.

7 More on what this standard of straightness amounts to in Sections 5 and 6.
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Special Relativity 7

definition of force-freeness and makes clear that N1L is just a special case
of N2L. Thus, helping oneself to a background spatio-temporal structure as
does Friedman affords elegant and simple answers to the questions of what it
means for a body to genuinely accelerate and what it means for a particle to
be force-free. Indeed, this approach also affords a very straightforward inde-
pendent definition of an inertial frame: the inertial frames are those at rest or
moving uniformly with respect to Newtonian absolute space.8

Brown rejects Friedman’s spacetime-based answers to these questions, for
in his view such explanations are either opaque (what exactly is the relation
between spacetime structure and themotions ofmaterial bodies?) or not explan-
ations at all (if spacetime – as is the case for Brown, as we will see – is to
be reduced to the motions of material bodies and the dynamical laws gov-
erning them, then ultimately I need a way of understanding notions of, for
example, force-freeness with reference to material bodies only). In a sense,
Brown’s philosophical attitude is more empiricist than that of Friedman: he
seeks an understanding of the notion of an inertial frame (say) directly in terms
of material entities, rather than in terms of the (for him) more ethereal notion of
spacetime. In fact, there is a long tradition, going back to Lange, Thomson, Tait,
and others, of attempting to empirically ground the notions of inertial motion,
force-freeness, and so forth (Barbour, 1989, ch. 12); Brown certainly can be
situated as an ally of this tradition.
There are, indeed, a few different ways in which one might seek to define

notions of force-freeness and so forth in an empiricist manner. The approach
Brown favours is to take force-free bodies to be those which are sufficiently
isolated from all other bodies in the universe; one defines such bodies to be
force-free and defines inertial frames as those in which such bodies move with
uniform velocities (recalling the quote from Brown, we can now see why the
fact that a single frame exists in which all such bodies move with uniform
velocities is ‘[a] kind of highly non-trivial pre-established harmony’ (Brown,
2005, pp. 16–17)). Brown takes N1L to offer this prescription implicitly; any
particle accelerating in such a frame is then regarded as subject to a genuine
force, as per N2L. Note that, if such an approach is successful, no appeal to
spacetime structure was needed to afford meaning to the relevant terms under
consideration.
Brown’s own preferred approach is, however, not the only means by which

one might seek an empiricist grounding of the notions of inertial frame,

8 I do not mean to suggest this definition is devoid of problems: open questions remain regarding
why such frames are those in which the motions ofmaterial bodies should simplify maximally.
I will return to this issue in later sections.
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8 Philosophy of Physics

force-freeness, and so forth. Another option is found in what is known as
the ‘regularity relationalism’ of Huggett (2006). I do not need to get into the
details of this view here; rather, a sanitised presentation of the prescription will
suffice:9

1. Find the frame in which the dynamical equations governing the greatest
number of bodies simplify across the total history of the universe.

2. By definition, these are the inertial frames.
3. Any body which follows a straight trajectory in these frames is force-free,

by definition.
4. (It is a conspiracy – the conspiracy of inertia – that these force-free bodies

all follow straight-line trajectories in these frames.)
5. Any body which does not follow a straight-line trajectory in these frames is

subject to a genuine force.
6. N1L is not a special case of N2L because the accelerations in the latter are

with respect to the inertial structure picked out in the former.
7. Extra forces in non-inertial frames are classified as ‘fictitious’.

What are the merits of the ‘Brown-style’ prescription over the ‘Huggett-style’
prescription, or vice versa? One advantage of the latter is that it makes no
initial assumption about the nature of forces in the universe – by contrast,
Brown assumes that forces fall off with distances. On the other hand, Huggett’s
approach assumes that one must have a ‘God’s-eye view’ of the entire material
content of the universe – Brown, by contrast, does not do this.
For my purposes, it does not matter which of these approaches one prefers.

(To anticipate, there are also other empiricist approaches to the meaning of
‘force-free’: for example, Torretti (1983) seeks to identify the inertial frames
with those frames of reference in which N3L holds: I will get back to this
shortly.) The central point is that none of these approaches (seem to) require
recourse to spatio-temporal structure in order to afford meaning to the terms
under consideration.

Question:Which empiricist approach to the content of Newton’s laws
do you think is superior, and why?

Having now better understood the differences between Brown and Friedman
with respect to the notions of inertial frames and force-free bodies, return now
to the quote from Friedman presented at the end of the previous subsection.

9 I should be clear that the following is only inspired by Huggett’s work; I do not mean to claim
he would actually endorse it.
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Special Relativity 9

This, I claim, is best understood as follows. Friedman supposes initially that
Newton’s laws are true, where the relevant terms are to be cashed out in terms
of the structure of (neo-)Newtonian spacetime, as we have already seen. He
also supposes material bodies interact with one another via the gravitational
force. In a universe of sufficient complexity (such as the actual world, at least
when appropriately idealised), the nature of the gravitational interaction will
mean no body is truly force-free, in the sense of moving on a uniform trajectory
with respect to the standard of straightness given by the background spacetime.
For Friedman, the nature of the gravitational force does not mean Newtonian
mechanics is in fact false (which would render the theory, in a certain sense,
self-undermining), but rather that there simply are no inertial frames embodied
as the rest frames of observers in the actual world.
Brown’s perspective is very different: he does not begin by countenancing

entire universes in which such-and-such laws (in this case, Newtonian gravity)
obtain; rather, his concern is to afford meaning to notions and certain terms (in
this case, for example, ‘inertial frame’) such that one may then proceed to build
up one’s theoretical commitments. For Brown, a definition of inertial frames
(say) which obtains only approximately is still sufficient to build up, in a useful
way, the machinery of Newton’s laws. In this sense, while Friedman’s critique
makes sense in the context of his own theoretical commitments, it misfires
against the very different methodology of Brown, who has not even constructed
the notion of the gravitational interaction at the point when he seeks to define
an operationalised notion of inertial frames.
There are various ways of putting the differences between the two parties

here. For ‘geometrical’ authors such as Friedman, it is quite common to take a
‘transcendent’ conception of physics (in the Kantian sense of ‘stepping outside
of the world’), and to account for physical phenomena from that perspective,
with all of the metaphysics it entails (in particular, the metaphysics of particular
physical theories, e.g., Newtonian gravity) as inputs. For ‘dynamical’ authors
such as Brown, by contrast, it is more common to take an ‘immanent’ concep-
tion of physics (in the Kantian sense of being ‘embedded in the world’), and to
construct the relevant metaphysical and physical notions on the basis of empir-
ical studies in the world. This is vague, but I think useful to keep in mind when
one reads debates between the relevant authors: failure to keep track of these
different attitudes can often lead to individuals talking past one another, as the
passage from Friedman indicates.10

10 When put in this way, it is not completely obvious that the two views are incompatible: one
begins with empirical data, ‘ascends’ (via the ‘dynamical’ approach) to a set of metaphysical
commitments, which one then uses to ‘descend’ (via the ‘geometrical’ approach) to explain
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10 Philosophy of Physics

Question: Do you think Brown’s ‘dynamics first’ approach to the con-
tent of Newton’s laws is to be preferred over Friedman’s ‘geometry
first’ approach, or vice versa? Why?

1.4 Summary of the Views
Let us return to our list of conceptual questions regarding Newton’s laws, and
consider how both Brown and Friedman would answer these questions. (For
the time being, I omit the fifth question; I will discuss that in the following
subsection.) First Brown:

1. Bodies are to be designated ‘force-free’ on the basis of some to-be-
articulated operational procedure.

2. N1L is not a case of N2L because N1L allows us to identify the inertial
frames (those in which force-free bodies move with uniform velocities);
having fixed such frames, N2L then allows us to identify the particles
subject to genuine forces (and the magnitudes of those forces).

3. N1L is not a definition – force-free particles are not defined to be those
moving with uniform velocity.

4. Newton’s laws are supposed to hold in the inertial frames of reference.

As we know by now, the answers Friedman would give to these four questions
are very different:

1. ‘Force-free’ means moving uniformly with respect to the standard of
straightness given by (neo-)Newtonian spacetime.

2. N1L is a special case of N2L.
3. N1L is not a definition – in fact, it is redundant.
4. As stated in a coordinate-based description, Newton’s laws are sup-

posed to hold in the inertial frames, which are the frames ‘adapted’ to
(neo-)Newtonian spacetime (i.e., are the frames at rest or moving uniformly
with respect to Newtonian absolute spacetime). Insofar as a world (e.g., an
idealised version of the actual world) may in fact contain no bodies which
are truly force-free, N1L cannot be operationalised in that world (in this
sense, N1L obtains only counterfactually).

The reader will notice that, up to this point, I have not mentioned N3L, and
I have not addressed the associated question (5), of whether N1L is a special

further data. This tale of ascent and descent is a familiar one in philosophy, going back to
Plato’s cave. (My thanks to Niels Linnemann for discussions here.)
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Special Relativity 11

case of N3L. This is the final piece of the puzzle regarding Newton’s laws; I
turn now to this issue.

1.5 Newton’s Third Law
What is the conceptual relation between N3L and N1L and N2L? One of the
few authors to address this question in any detail is Torretti, who writes:

[T]he Third Law ofMotion furnishes a Newtonian physicist with all he needs
for distinguishing, in principle, between a particle acted on by a true force
of nature and a free particle accelerating in a particular – necessarily non-
inertial – frame. If a material particle α of mass m experiences acceleration
a in an inertial frame F, it will instantaneously react with force −ma on the
material source of its acceleration. There must exist therefore a material sys-
tem β, of mass m/k, whose centre of mass experiences in F the acceleration
−ka. On the other hand, if a particle α accelerates in a non-inertial frame, its
acceleration must include a component that is not matched by the acceler-
ation of another material system, in direction opposite to the said component,
caused by the action of α on that system. (Torretti, 1983, pp. 19–20)

Torretti continues in an endnote:

The criterion furnished by the Third Law does not, of course, amount to an
‘operational definition’ of a freely moving particle and an inertial frame.
In the above example, the acceleration of β by α’s reaction will generally
be only a component of β’s total acceleration and it might not be easy to
discern it. But the criterion surely bestows a definite, intelligible meaning
on the italicised expressions. (Torretti, 1983, p. 287, n. 16)

Torretti’s claim here is that a frame in which N1L is satisfied is one in which
N3L is satisfied, and vice versa. Moreover, one can thereby in principle – if
not in practice – check whether N3L is satisfied in a given frame, and (if so)
use this fact to identify operationally/empirically the force-free bodies (thus,
this constitutes a third approach to the operational identification of force-free
particles, alongside the Brown-style and Huggett-style approaches discussed
earlier).
Let us focus first on the claim that N1L implies N3L – equivalently, that

N3L is presupposed by N1L. At least in the context of special relativity, this
claim is not correct, for, as Griffiths writes,

Unlike the first two, Newton’s third law does not, in general, extend to the
relativistic domain. Indeed, if the two objects in question are separated in
space, the third law is incompatible with the relativity of simultaneity. For
suppose the force of A on B at some instant t is F (t), and the force of B on
A at the same instant is −F (t); then the third law applies in this reference
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12 Philosophy of Physics

frame. But a moving observer will report that these equal and opposite forces
occurred at different times; in his system, therefore, the third law is violated.
Only in the case of contact interactions, where the two forces are applied at
the same physical point (and in the trivial case where the forces are constant)
can the third law be retained. (Griffiths, 2013, p. 544)

Although Griffiths puts the point in terms of an incompatibility between N3L
and the relativity of simultaneity (see Section 8), the fundamental tension is
between N3L and the relativity principle (see Section 2): in cases such as this
example, in which the forces between the bodies in question (in that example,
α and β) are not mediated by contact interactions, if N3L holds in one frame of
reference F, then it will not hold in a frame F ′ in uniformmotion with respect to
F – that is,N3Lwill not hold in another inertial frame of reference, in violation
of the relativity principle.
In response to this, one might reasonably complain that, at least within the

context of Newtonian forces, there is no reason to doubt this claim. Moreover,
recall from the foregoing discussion that the point of the ‘dynamics first’, more
‘operational’ outlook of authors such as Brown was to build up one’s theor-
etical commitments on the basis of empirical data, without making theoretical
assumptions ab initio. Therefore, to appeal to relativity theory may be to make
a petitio principii against such authors, who could simply define the force-
free bodies to be those moving on uniform trajectories in the N3L-satisfying
frames.
In any case, let us turn now to the other professed direction of implication –

that N3L implies N1L – equivalently, that N1L is presupposed by N3L. Here,
there seem to be counterexamples coming from within the context of Newton-
ian mechanics. For example, consider a Newtonian universe consisting of one
single binary astronomical system, in which two bodies α and β of equal mass
rotate about a common centre ofmass. Consider a frame rotating about said cen-
tre of mass: the force on α will be equal and opposite to the force on β – in spite
of the fact that these two bodies will be subject to (equal and opposite) inertial
effects. This frame is non-inertial, but N3L is satisfied. Thus, any claim that
the satisfaction of N3L implies that the system in question is being described
in an inertial frame of reference is incorrect; rather, the inertial systems are (at
best) a subclass of the N3L-satisfying systems.
Examples like this seem to imply that one cannot invariably use N3L as a

means of operationally identifying the inertial frames – indeed, one can make
this point without having to worry about the reverse direction of implication.
As before, however, it is not obvious that these concerns need animate those
who situate themselves in the ‘dynamical’ camp.
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Special Relativity 13

Question: How general and how serious are problem cases of the
kind introduced in this subsection? In light of this, to what extent can
something of Torretti’s claim be salvaged?

1.6 Summary
I do not deny that this has been a difficult first section. But, by proceeding from
Newton’s laws, I hope to have illustrated that one encounters deep, profound,
and unresolved questions in the foundations of spacetime theories from the
very outset. Proceeding in this way also has the merit of introducing at the
beginning a number of crucial concepts which will animate us over the course
of the remainder of this Element: concepts such as inertial frames, force-free
motion, and dynamical versus geometrical understandings of physics. I will,
indeed, return to all of these issues in the context of special relativity quite
shortly. Before doing so, however, it is necessary to introduce some further
concepts – in particular, the concept of a symmetry of a physical theory. I turn
to this task in the next section.

2 Symmetries and Invariance
My goals in this section are threefold: (i) to introduce the notion of a symmetry
of a physical theory, (ii) to explore how such symmetries might be identified,
and (iii) to convince the reader of the significance of symmetry-based reasoning
in physics.

2.1 The Relativity Principle
Suppose you decide to take the sleeper train from Euston to Fort William; out-
side, it is pitch black – you cannot see a thing. Ignoring the mild jostling from
side to side which inevitably one experiences on a train, can you tell the speed
at which your train is moving? If the train is moving uniformly at 100 mph,
is there any empirical difference inside the train to the situation in which it is
at rest? The answer, of course, is no – and this is one illustration of what is
known as the relativity principle: for a subsystem appropriately isolated from
the environment, the laws of physics inside the system are exactly the same,
whatever the uniform velocity of that system might be.11

11 Galileo was one of the first to present the relativity principle in this form, and his presentation
remains one of the most elegant: see Galilei (1967, pp. 186–7).
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14 Philosophy of Physics

We saw in the previous section that the inertial frames are those frames in
which the dynamical equations governing matter take their simplest form, and
in which force-free bodies move with uniform velocity. When this is combined
with the relativity principle, we arrive at the conclusion that the laws of phys-
ics take their simplest in all of a class of inertial frames, which are related by
uniform velocity transformations. But what exactly are these ‘uniform velocity
transformations’ in Newtonian mechanics, and are they the same transform-
ations which take us between inertial frames in special relativity? (Spoiler:
no!) To answer the first question, we need to investigate the invariance prop-
erties of Newtonian theories. Before doing so, however, there is one other
important conceptual distinction to clear up: that between active and passive
transformations.

2.2 Active versus Passive Transformations
There is an important distinction between active and passive transformations,
the prescriptions for which can be put as follows:

Active transformations: Transform physical system; leave coordinate system
unchanged.
Passive transformations: Transform coordinate system; leave physical sys-
tem unchanged.

The transformations considered in this section can be understood either actively
or passively; more generally, over the course of this Element, I will be explicit
about whether a transformation is active or passive. Although mathematic-
ally active and passive transformations have the same net result, conceptually
they are clearly very different; these differences have turned out to have
quite serious ramifications for various debates in the foundations of spacetime
theories.12

With the distinction between active and passive transformations in hand, we
are in a better position to understand what is going on in the case of Galileo’s
ship (or, equivalently, our original train example). Suppose we apply an active
transformation to a subsystem of the universe. Then, assuming

1. the relativity principle holds, and
2. the subsystem is isolated from that of the environment,

12 The most (in)famous example is the ‘hole argument’ of general relativity – see, for example,
Norton (2022) and Pooley (2021).
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Special Relativity 15

the physics within the subsystem will be unchanged between the pre- and post-
transformed cases. This – an active boost applied to a subsystem, assuming the
relativity principle and dynamical isolation – is what is going on in Galileo’s
ship.

2.3 Galilean Transformations
Let us now return to the main project in this section: to introduce and provide
some means of ascertaining the symmetries of Newtonian physical theories.
For Newtonian theories, I will begin by giving the game away: their symmet-
ries at least include (but do not necessarily exhaust: this will be of significance
later) the Galilean transformations. A Galilean transformation is any coordin-
ate transformation that can be expressed as the composition of a rigid spacetime
translation, a rigid rotation, and a Galilean boost:

Spatial translation ga
(
a ∈ �3): ga (t,x) = (t,x + a).

Time translation gb (b ∈ �): gb (t,x) = (t + b,x).
Spatial rotation gR (R ∈ SO (3)): gR (t,x) = (t,Rx).
Galilean boost gv

(
v ∈ �3): gv (t,x) = (t,x − vt).

How do I show that a given set of physical laws has (say) the Galilean trans-
formations as its symmetries? There are two ways of defining what it means
for a given set of laws to be invariant under a given set of transformations:
the ‘space-of-solutions approach’ and the ‘form-of-equations approach’. I will
illustrate both, beginning with the space-of-solutions approach.
Consider the equation of motion

dr
dt
= −kr . (4)

This has general solution

r (t) = Ae−kt, A ∈ �. (5)

For any such r and any time translation gb , we can form the transformed
structure gbr:

(gbr) (t) = r (t − b)
= Ae−k(t−b)

=
(
Ae+kb

)
e−kt . (6)

This is another solution of the same equation, so we say our equation is time-
translation invariant.
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16 Philosophy of Physics

More generally, the space-of-solutions approach takes the following form:

Space-of-Solutions Approach

1. Identify the set Θ of equations to be investigated.
2. Identify a set S of structures for Θ – that is, identify the type of

object that is mathematically appropriate to be a candidate solution
to Θ.

3. Identify the group G of transformations whose effects on Θ we will
be interested in investigating.

4. For general g ∈ G, identify the action of g on S.
5. Ask whether this action ofG preserves the subset D ⊂ S of solutions

to Θ.

It is also worth considering the case of a demonstration of non-invariance
on the space-of-solutions approach. Let the equation of motion (and hence Θ
and S) be as before. Let G be the group B1 of one-dimensional boosts gv : x 7→
x − vt. The action of any such gv on S is:

(gvr) (t) = r (t) − vt . (7)

For the general solution r (t) = Ae−kt , the transformed structure is given by

(gvr) (t) = Ae−kt − vt, (8)

which is not identical to Be−kt for any B ∈ � – that is, is not a solution of our
original equation. So our equation is not Galilean boost invariant.
So much for the space-of-solutions approach; let us turn now to the form-of-

equations approach. Consider again the equation of motion (4). This equation
is built from various objects: d

dt , r , and k. Under a time-translation gb ,

• d
dt and k transform trivially;

• the function r transforms, as before, as (gbr) (t) = r (t − b).

The transformed equation is therefore

d
dt

r (t − b) = −kr (t − b) . (9)

But asserting that our second equation holds for all t is equivalent to assert-
ing that our first equation holds for all t. Thus, the original equation is time
translation invariant.
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The general format of the form-of-equations approach is this:

Form-of-Equations Approach

1. Identify the set of equations Θ to be investigated.
2. Identify the group G of transformations whose effects on Θ we will

be interested in investigating.
3. Identify an action of G on each of the ingredients in each equation

in Θ.
4. Write down the equations with the transformed (‘primed’) quantities

in place of the untransformed ones.
5. If the result is a set of equations equivalent to the original Θ, then Θ

is G-invariant.

And here is a demonstration of non-invariance of an equation on the form-
of-equations approach. Consider once again the equation of motion (4). Let G
be the group B1 of one-dimensional boosts gv : x 7→ x − vt. The ingredients
of our equation transform as

gv : d
dt

7→ d
dt

; (10)

gv : k 7→ k; (11)

gv : r (t) 7→ r (t) − vt. (12)

So the transformed equation is

d
dt

(r (t) − vt) = −k (r (t) − vt) . (13)

But this is equivalent to the original equation only if −v = vkt, which clearly
cannot hold for all t. The non-equivalence of the untransformed and trans-
formed equations means the original equation is not boost-invariant.
Although I earlier used a very simple toymodel, it is straightforward to apply

both of these approaches to more physically relevant theories. A standard first-
year presentation of Newtonian gravity for two particles is given by (combining
N2L and the law of gravitation):

Üri =
GNm1m2

|r1 − r2 |3
(ri − ri+1) , i = 1,2. (14)

Let G be the group B3 of three-dimensional boosts, {(gv : r 7→ r − vt) : v ∈
�3}. The quantities in our equation transform as

r′i (t) := (gvri) (t) = ri (t) − vt, (15)

Ür′i (t) := (gvÜri) (t) = Üri (t) , (16)
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m′
i := gvmi = mi . (17)

The transformed equation is:

Ür′i =
GNm1m2��r′1 − r′2

��3 (
r′i − r′i+1

)
, i = 1,2. (18)

Eliminating the primes, we have

Üri =
GNm1m2

|r1 − r2 |3
(ri − ri+1) , i = 1,2. (19)

So the equation (14) is form-invariant under Galilean boosts!

Exercise: Generalise this to the N-body problem.

Exercise: Show that Newtonian gravitation is invariant under Galilean
boosts using the space-of-solutions approach.

Having now presented both methods for ascertaining whether a given set
of equations has a given set of symmetries, there are a couple of conceptual
points to make. First: pragmatically, there is some reason to prefer the form-of-
equations approach over the space-of-solutions approach because the former
does not involve having to figure out what the solutions of the equation under
consideration actually are. Second: in each case, we began with an ansatz about
the symmetry group of our equation. Figuring out the full symmetry group of a
set of equations is highly non-trivial.While there is no general method for doing
this, the task can be aided by formulating our theories in certain ways, using
certain objects which have familiar symmetry properties. (I will demonstrate
explicitly what I mean by this in Section 6.)

Question: Are the space-of-solutions approach and the form-of-
equations approach equivalent?

2.4 Newton on Galilean Invariance
I am now going to indulge in an historical digression. Newton claims to infer
Galilean invariance from his laws ofmotion: after setting out the latter, he infers
several corollaries; his ‘Corollary V’ is:

The motions of bodies included in a given space are the same among them-
selves, whether that space is at rest, or moves uniformly forward in a right
line without any circular motion. (Cajori, 1934, p. 20)
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Special Relativity 19

This essentially states that the laws of physics are Galilean invariant. Newton’s
argument for Corollary V is this:

For the differences of the motions tending towards the same parts, and the
sums of those that tend toward contrary parts, are, at first (by supposition),
in both cases the same; and it is from those sums and differences that the
collisions and impulses do arise with which the bodies mutually impinge
one upon another. Wherefore (by Law II) the effects of those collisions
will be equal in both cases; and therefore the mutual motions of the bodies
among themselves in the one case will remain equal to the mutual motions
of the bodies among themselves in the other. A clear proof of which we have
from experiment of a ship; where all motions happen after the same manner,
whether the ship is at rest, or is carried uniformly forwards in a right line.
(Cajori, 1934, p. 20)

Newton’s reasoning here is morally correct, but it is worth pointing to a cou-
ple of non sequiturs in his argument. First: it does not follow from the laws of
motion alone that ‘it is from those sums and differences that the collisions and
impulses do arise with which the bodies mutually impinge upon one another’.
This requires the additional assumption that forces depend only on (vectorial)
differences of positions and/or velocities, not on absolute positions or absolute
velocities. (Consider a particle affected by the force F = −kv.) Second: it does
not follow that ‘the effects of those collisions will be equal’ unless we further
assume that the mass of a given body is independent of the body’s absolute
position and absolute velocity. (Consider particles whose masses are propor-
tional to their absolute speeds.) That said, with these two auxiliary assumptions
in place, Galilean invariance of the laws does follow from N2L (by essentially
Newton’s argument). (For more on this, see (Brown, 2005, §3.2).)

2.5 Poincaré Transformations
So far, I have introduced the Galilean transformations, as well as two differ-
ent methods for checking whether a given set of equations has a given set of
transformations as symmetries. Of course, though, the Galilean transformations
are not the only set of transformations of physical interest – and, indeed (to
anticipate), the transformations which are most relevant to special relativity
are the Poincaré transformations. We saw that a Galilean transformation can be
expressed as the composition of a rigid spacetime translation, a rigid rotation,
and a Galilean boost. A Poincaré transformation is any coordinate transform-
ation that can be expressed as the composition of a rigid spacetime translation,
a rigid rotation, and a Lorentz boost:13

13 Here, I use the Einstein summation convention, according to which repeated indices in a term
are summed. I also use four-dimensional index notation, which will be discussed in detail in
Section 6.
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Spacetime translation gaµ

(
aµ ∈ �4) : gaµ (xν ) = xν + aν .

Spatial rotation and Lorentz boost gΛµ
ν

(
Λ

µ
ν ∈ SO (1, 3)

)
: gΛµ

ν
(xν ) = Λν

σ xσ .

In both cases, we have a rigid translation, a rigid rotation, and a boost. But the
boosts are different in the two cases. To render this explicit: here is a Galilean
boost in the x direction:

t ′ = t, (20)

x ′ = x − vt. (21)

By contrast, here is a Lorentz boost in the x direction (γ := 1/
√

1 − v2/c2):

t ′ = γ
(
t − vx

c2

)
, (22)

x ′ = γ (x − vt) . (23)

Question: Is there any reason to prefer c → ∞ or v/c → 0 as a way of
taking the non-relativistic limit of the Lorentz transformations? What
additional assumptions does one need to make in order to recover the
Galilean boosts from the Lorentz boosts when v/c → 0?

The first set of physical laws which were discovered to be Poincaré invari-
ant were Maxwell’s equations. In their typical three-vector formulation, these
read:14

∇ · E = ρ, (24)

∇ · B = 0, (25)

∇ × E = −∂B
∂t
, (26)

∇ × B = J + ∂E
∂t
. (27)

Maxwell’s equations are invariant under Poincaré transformations; they are not
invariant under Galilean transformations. One might indeed say it was the dis-
covery of a set of dynamical laws which were Poincaré invariant rather than
Galilean invariant which precipitated the crisis in nineteenth-century physics
which eventually led to the development of special relativity. It is this crisis I
am going to discuss in the next section.

14 Note that changing just one sign inMaxwell’s equations will change their symmetry properties:
see Heras (1994).
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3 The Michelson–Morley Experiment
I intimated at the end of the previous section that the discovery of Maxwell’s
equations – which are invariant under Poincaré transformations – precipitated
a crisis in nineteenth-century physics. Here is a quick and dirty way to see the
issue, in terms of symmetries.15 We have seen that Newtonian mechanics is
invariant under Galilean transformations – that is, translations, spatial rotations,
andGalilean boosts.We have also seen that electromagnetism is invariant under
Poincaré transformations – that is, translations, spatial rotations, and Lorentz
boosts. Suppose we lived in a world in which both of these theories were true.
Then the overall invariance group of the physical laws of the world would be
the intersection of these two groups – that is, the group of translations and
spatial rotations (no boosts). The lack of boost invariance would then imply (up
to translations and spatial rotations) the existence of a preferred frame! So in
the wake of Maxwell’s electromagnetism in the nineteenth century, physicists
anticipated violations of the relativity principle.16

What did people take the significance of this predicted preferred frame to
be? From Maxwell’s equations, one can derive that the speed of light is c (see,
e.g., Jackson, 1998). It is natural to identify this statement as holding true in
the aforementioned preferred frame. In this frame, with respect to what is light
moving? The nineteenth-century answer is some background structure: the
ether, which was supposed to be the medium in which light waves propagate.
So (the thought goes) light moves at c in the rest frame of the ether– and this is
the preferred frame in which Maxwell’s equations hold. This was an extremely
sensible thing for nineteenth-century physicists to think, since it rests only on
the assumption that light is like all other waves, insofar as (i) it has a medium,
and (ii) its speed is independent of the speed of the source (and, insofar as one
takes the wave in question to have a medium, a function only of the speed of
that medium).17

15 This presentation is anachronistic because in fact around the time these events were unfold-
ing in physics (i.e., the 1880s), the symmetry group of Maxwell’s equations was yet to be
discovered: see Brown (2005, p. 2). Still, the presentation here has the merit of pedagogical
clarity.

16 To repeat the point of the previous footnote: physicists arrived at this conclusion on the basis of
the wave-like nature of light (more on which below), rather than on the basis of consideration
of symmetry groups. Nevertheless, the central conclusion – the existence of a preferred frame –
is the same on either account.

17 Sometimes, when one first encounters special relativity, (ii) is marketed as a novel feature of
light. But this is badly confused, since it is a feature of all waves. As we will see, the distinctive
feature of light has to do with the nature of its medium (specifically, it has to do with the fact
that we no longer believe the medium exists!).
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That light moves at c only in the rest frame of the ether, and moves at c ± v

in a frame moving at velocity v with respect to the ether (because, from Max-
well’s equations, the speed of light is independent of the speed of the source –
to repeat, the situation here is exactly the same as for all other waves18), is an
empirical hypothesiswhich should be testable. In the nineteenth century, physi-
cists indeed did attempt to test this hypothesis – all tests ended in null results.
The most famous of these experiments is the Michelson–Morley experiment,
which I will consider in detail in this section.

3.1 The Michelson–Morley Experiment
How did physicists attempt to test these predictions? By far the most famous
such attempted experimental test was the Michelson–Morley experiment.19 As
we have already discussed, assuming that the Earth is moving with some vel-
ocity with respect to the ether, there should (the thought went) be differences
in the observed velocity of light, which should be detectable. It was exactly
these differences which the Michelson–Morley experiment was designed to
detect. In Figure 2, I have drawn a schematic representation of the set-up of
this experiment, which was designed to work as follows:

1. The interferometer sends a beam of coherent light from a source towards a
half-silvered mirror.

2. Here the beam is split into two components that continue at right angles to
one another: one down ‘arm A’ and the other down ‘arm B’.

3. A short distance later, each half-beam encounters a second (fully silvered)
mirror and is reflected back. The beams are recombined, and the resulting
interference pattern is observed on a detector screen.

4. The observed pattern will depend on:
(a) the lengths of arms A and B, and
(b) the speed of travel of the light along each arm in each direction.

In a lab that is moving relative to the ether with speed v, the speed of light
relative to the lab frame is expected to be anisotropic: it should be c − v in
the direction of the lab’s motion, c + v in the opposite direction, and

√
c2 − v2

18 Indeed, the wave equation for sound is also invariant under Poincaré transformations – albeit
with an invariant speed which is not c, but rather the speed of sound. These parallels raise
interesting questions regarding whether (and under what circumstances) one might be led to
a relativistic theory on the basis of (say) sound waves, rather than light waves. I will not go
into this further here – suffice it to say that exploring the parallels is an illuminating peda-
gogical exercise. For recent discussions on these matters, see Cheng and Read (2021); Todd
and Menicucci (2017); Todd, Pantaleoni, Baccetti, and Menicucci (2021).

19 For further details, see Brown (2005, ch. 4).
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Figure 2 Set-up of the Michelson–Morley experiment

in directions perpendicular to that of the lab’s motion (the third velocity can
be computed via a straightforward application of Pythagoras’ theorem). If we
could ensure that the armswere exactly equal in length, then anything other than
constructive interference would indicate the presence of an ether wind. Unfor-
tunately, ensuring this was not technologically feasible when Michelson and
Morley performed their experiment. However, regardless of the arm lengths,
rotating the apparatus should change the interference pattern in a predictable
manner in a moving frame, and would not if the apparatus were at rest with
respect to the ether. Thus we look for this post-rotation change as a signature
of the ether wind.
More quantitatively, the reasoning proceeds as follows. Suppose (for simpli-

city) that the two arms are of equal length, L. The out-and-back time for light
to travel along the arm that is parallel to the ether drift should be

∆t‖ =
L

c − v
+

L
c + v

=
2Lc

c2 − v2 . (28)

The out-and-back time for light to travel along the arm that is perpendicular to
the ether drift should be

∆t⊥ =
2L

√
c2 − v2

. (29)

The time difference before rotation is then given by

∆t‖ − ∆t⊥ =
2
c

©«
L

1 − v2

c2

− L√
1 − v2

c2

ª®®¬ . (30)

By multiplying by c, the corresponding length difference before rotation is

∆1 = 2
©«

L

1 − v2

c2

− L√
1 − v2

c2

ª®®¬ . (31)
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After rotation, the length difference is given by

∆2 = 2
©«

L√
1 − v2

c2

− L

1 − v2

c2

ª®®¬ . (32)

Dividing ∆1 − ∆2 by the wavelength λ of the light used in the interferometer,
the fringe shift n is found:

n =
∆1 − ∆2
λ

≈ 2Lv2

λc2 . (33)

If L = 11m, λ = 550nm, and v = 30kms−1, this gives an expected fringe shift
of ∆n ≈ 0.4 – certainly large enough to be observable (despite the fact that the
effect is second order in v/c).
A couple of comments are helpful at this stage. First, one might wonder: is

not a length of 11m pretty big for the experiment? Yes – in fact, Michelson and
Moreley implemented this effective length by using mirrors to bounce light
back and forth in their detectors (this method is by now standard, and it is
also used in modern interferometers such as LIGO, which was used to detect
gravitational waves, as predicted by general relativity). (See Figure 3, from the
original paper by Michelson and Morley (1887), in which they illustrate this
use of mirrors.) Second, one might wonder: where did the velocity of 30kms−1

come from? The simple answer is that this was a guess: that velocity is the
approximate orbital velocity of the Earth around the Sun, so it seems as good

Figure 3 Diagram of the Michelson–Morley experiment (Michelson &
Morley, 1887)
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as any other from the point of view of rendering quantitative the theoretical
predictions regarding this experiment.
In any case, we already know the punchline to this story: The result of the

Michelson–Morley experiment was null – rotating the apparatus did not lead to
a detectable fringe shift. Michelson and Morley concluded that ‘if there be any
relative motion between the earth and the luminifeous ether, it must be small’
(Michelson & Morley, 1887, p. 341); here, ‘small’ means ‘probably less than
one-sixth of the earth’s orbital velocity, and certainly less than one-fourth’. This
null result was a mystery: this ‘small relative motion’ might obtain by luck at
any given instant, but it is difficult to see how it could obtain throughout the
Earth’s orbit. (Assuming that the ether is an inert background, then of course
the Earth cannot be at rest with respect to it at every point in its orbit; on the
other hand, if the ether is not inert, then it would have to be the case that the
Earth (say) drags the ether around its orbit, so that there is no detectable relative
motion between the two – but that hypothesis was ad hoc; moreover, the drag
hypothesis was already losing favour when the Michelson–Morley experiment
was performed.20)
It is worth reiterating the puzzle presented by these null results; we can do

so by treating the Earth as in essence an analogue of Galileo’s ship. Suppose
the Earth is at rest with respect to the ether at some point in its orbit. Then
the Earth will be moving with respect to the ether at some other point in its
orbit. It will look like the Earth is, therefore, a Galileo ship-type subsystem
which has been actively boosted. If all physics were Galilean invariant, we
would expect the same physical laws on the Earth in the two scenarios. But
electromagnetism is not Galilean invariant (it is Poincaré invariant) – so (the
thought goes) we should expect violations of the (Galilean) relativity principle
manifesting themselves in different detected velocities of light in the two cases.
How to explain that this was never observed?

3.2 Lorentz’s Programme
It would be easy, through the lens of post-Einsteinian physics, to denigrate the
ether theorists as foolish for having chased after a will-o’-the-wisp in the form
of the ether. But it bears stressing that there was no reason at the time to doubt
the analogies between light and other waves such as sound and water. More-
over, as we will see, the work undertaken by physicists such as Fitzgerald,
Larmor, and Lorentz in the wake of the Michelson–Moreley null result pro-
vided the fuel to ignite Einstein’s relativistic revolution. So these physicists

20 For further discussion of this drag hypothesis, see Ryckman (2017, pp. 172–3) and Norton
(2018, ch. 8).
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have every right to be dubbed, in Brown’s words, ‘the trailblazers’ (Brown,
2005, ch. 4).
Let us begin with Fitzgerald, who in 1889 suggested that ‘almost the only

hypothesis’ capable of reconciling the Michelson-Morley experiment with the
apparent fact that the Earth dragged a negligible amount of ether was that

the length of material bodies changes, according as they are moving through
the ether or across it, by an amount depending on the square of the ratio of
their velocities to that light. (FitzGerald, 1889)

He continued:

We know that electric forces are affected by the motion of electrified bod-
ies relative to the ether and it seems a not improbable supposition that the
molecular forces are affected by the motion and that the size of the body
alters consequently. (FitzGerald, 1889)

The idea here is that we do not observe violations of the relativity principle in
the sense of the frame-dependence of the velocity of light, for material bodies
contract under velocity boosts in just such a way as to compensate for such
effects and yield the recorded null result. Lorentz, indeed, would arrive at the
same idea in 1892; Larmor would also adopt the idea in his 1900 book, Aether
and Matter.
To be a little more concrete (and here I follow the presentation of

Brown (2005, §4.4)), Lorentz introduced a longditudinal factor, C‖ = 1 + δ,
and a transverse factor, C⊥ = 1 + ϵ . He claimed the null result required

ϵ − δ ∼ v2

2c2 . (34)

Contraction in this manner would cancel out the different velocities of light
and lead to no phase shift effects at the detector. Lorentz would later push this
idea further with his ‘theorem of corresponding states’ (Lorentz, 1895). This
was designed to show that no first- or second-order ether-wind effects would be
discernible in experiments involving optics and electrodynamics. In the second
version of this theorem, the Lorentz transformations finally appear; however,
until Einstein’s work in 1905 (see Section 4), Lorentz continued to believe that
the true coordinate transformations were the Galilean ones and that these new
transformations were merely a useful formal device.
In sum, the reasoning of the ether theorists can be laid out as follows:

1. When I consider the Earth at rest versus moving with some velocity v, I am
to construe those states as related by Galilean transformations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
30

05
99

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009300599


Special Relativity 27

2. Since Maxwell’s equations are not invariant under such transformations,
I should expect different electromagnetic physics in the two states – in
particular, I should expect a different velocity of light in the pre- and
post-transformed states.

3. In light of the null results of experiments such as that of Michelson and
Morley, I postulate that material bodies contract under Galilean boosts – that
is, I postulate more relativity principle–violating physics to cancel out the
first relativity principle–violating physics and explain why I do not observe
violations of the relativity principle.

Einstein would reject (1) – I will tackle in detail how he achieved this in
the following section, but in brief for now: he would argue that when I con-
sider the Earth at rest versus moving with some velocity v, I am (in light
of the dynamical constitution of the bodies under consideration) to construe
those states as related by Lorentz transformations, so that (a) the speed of light
does not vary from inertial frame to inertial frame, and (b) accordingly, no ad
hoc compensating dynamical effects are required in order to save the relativity
principle.21

Continuing to focus on the ether theorists’ dynamical contraction hypoth-
eses, I wish to make one further point here. As time went on, the exact
nature of dynamical contraction required to underwrite the null results of
Michelson–Morely-type experiments became increasingly ad hoc. As Brown
writes,

Lorentz noted that the theorem of corresponding states actually implies that
the frequency of oscillating electrons in the light source is affected bymotion
of the source, and it is this fact that gives rise to the change in frequency
of the emitted light. But Lorentz realized that the oscillating electrons only
satisfy Newton’s laws of motion if it is assumed that both their masses and
the forces impressed on them depend on the electrons’ velocity relative to
the ether. The hypotheses in Lorentz’s system were starting to pile up, and
the spectre of ad hocness was increasingly hard to ignore (as Poincaré would
complain). (Brown, 2005, p. 56)

Something had to give – enter Einstein.

21 Of course, the Lorentz transformations famously entail the phenomenon of length contraction,
which will be discussed in detail in Section 9, but for the time being we should take this to have
a different conceptual status to the kind of contraction postulated by authors such as Fitzgerald,
Larmor, and Lorentz – in effect, Einstein elevated contraction to a kinematical effect.
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4 Einstein’s 1905 Derivation
In 1905, Einstein published four papers in the journal Annalen der Physik, each
of which precipitated a revolution in physics. The papers were on:

1. The photoelectric effect. (Einstein, 1905c)
2. Brownian motion. (Einstein, 1905b)
3. Special relativity. (Einstein, 1905d)
4. Mass–energy equivalence. (Einstein, 1905a)

Quite rightly, the year would come to be known as Einstein’s annus mirabilis.
Einstein’s 1905 derivation of the Lorentz transformations in his third annus
mirabilis paper, ‘On the Electrodynamics of Moving Bodies’, purports to
account for all null ether wind experiment results, without recourse to dynam-
ical considerations à la Lorentz et al. In effect, it elevates contraction from
a dynamical effect to a kinematical effect: all physics must be conditioned
such that it is invariant under Lorentz boosts. In this way, the relativity prin-
ciple could be reconciled with the Poincaré invariance of Maxwell’s equations.
Distinctive features of Einstein’s approach include the following:

1. It eliminates ‘asymmetries which do not appear to be inherent in the
phenomena’ (Einstein, 1905d). (Here, Einstein is referring to Lorentz’s
responses to the null ether wind results.)

2. It accounts for all null ether wind results.
3. It does not postulate an ether, or a standard of absolute rest, at all.
4. It is a ‘principle theory’ rather than a ‘constructive theory’.

The idea is that when one boosts a material body with velocity v, one should
(in light of the dynamics of that body – more on this below) take it that the
boosted state is related to the original state by a Lorentz transformation rather
than a Galilean transformation. In this way, one need not invoke dynamical
contraction hypotheses in order to compensate for the fact that the velocity
of light would differ in frames related by Galilean boosts. In other words, for
Einstein, the theorists which preceded him had misunderstood the nature of
boosts. Here is how Einstein put the matter:

Examples of this sort, together with the unsuccessful attempts to discover
any motion of the earth relatively to the ‘light medium’, suggest that the
phenomena of electrodynamics as well as of mechanics possess no properties
corresponding to the idea of absolute rest. They suggest rather that, as has
already been shown to the first order of small quantities, the same laws of
electrodynamics and optics will be valid for all frames of reference for which
the equations of mechanics hold good. (Einstein, 1905d)
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My purpose in this section is to dissect Einstein’s 1905 derivation of the Lor-
entz transformations. Before doing so, however, I should say something on the
aforementioned distinction between ‘principle’ and ‘constructive’ theories of
physics.

4.1 Principle and Constructive Theories
The theory presented in Einstein’s 1905 article is something which he would
later recognise as a ‘principle theory’ rather than a ‘constructive theory’.
Einstein introduced this distinction in a 1919 article in the London Times:

Most [theories in physics] are constructive. They attempt to build up a picture
of the more complex phenomena out of the materials of a relatively simple
formal scheme from which they start out. Thus, the kinetic theory of gases
seeks to reducemechanical, thermal, and diffusional processes tomovements
of molecules . . .

[Principle theories, by contrast,] employ the analytic, not the synthetic
method. The elements which form their basis and starting point are not
hypothetically constructed but empirically discovered ones, general char-
acteristics of natural processes, principles that give rise to mathematically
formulated criteria which the separate processes . . . have to satisfy . . . The
theory of relativity belongs to the latter class. (Einstein, 1919)

The distinction between principle and constructive theories Einstein presents
in this passage can be cashed out thus:

Constructive theories: Theories which attempt to provide a detailed dynam-
ical picture of what is microscopically going on, from which predictions for
observable phenomena can be derived.
Principle theories: Theories which take certain phenomenologically well-
grounded principles, raise them to the status of postulates, and derive from
them constraints on what the underlying detailed dynamical equations could
be like, without attempting to give a fully detailed account of what those
equations are.

A paradigmatic example of a principle theory is thermodynamics; the ‘phe-
nomenologically well-grounded postulates’ in this case are the laws of thermo-
dynamics, from which one derives (say) relations between certain functions of
state. The corresponding constructive theory in this case, as Einstein points out
in this passage, would be the (statistical) kinetic theory of gases.
Onemight think constructive theories are superior to principle theories, in the

sense that the former can provide deeper, mechanistic explanations for physical
phenomena in a way the latter cannot. But in that case, why was Einstein’s 1905
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formulation of special relativity – which (in 1919) he declared a principle the-
ory – so celebrated? One might be motivated to construct a principle theory
by wanting to make some progress before the fully detailed microphysical pic-
ture (constructive account) is known. Einstein in 1905 saw himself as being in
this situation: Lorentz had been pursuing a constructive approach, but Einstein
was suspicious that the true equations governing intermolecular forces were a
long way off.22 It is, however, worth registering Einstein’s reservations about
principle theories:

It seems to me . . . that a physical theory can be satisfactory only when it
builds up its structures from elementary foundations. (Einstein, 1995)

[W]hen we say we have succeeded in understanding a group of natural pro-
cesses, we invariably mean that a constructive theory has been found which
covers the processes in question. (Einstein, 1919)

4.2 Einstein’s 1905 Article
Having recognised that Einstein was following the principle theory approach in
his 1905 article – simply assuming (on the basis of phenomenological observa-
tions, e.g., no observed violations of the relativity principle) that the symmetry
group for the laws of mechanics should be the same as the symmetry group
for the laws of electromagnetism, without a clear understanding of the dynam-
ics of matter which would underwrite this fact – I will now present Einstein’s
derivation of the Lorentz transformations as presented in his 1905 article.
Before I begin, there is one additional point to make. One might reasonably

have questions about Einstein’s methodology in his article. Since the Lorentz
transformations were already known by 1905, what was Einstein adding to

22 It does not have to be only historical circumstances which justify the use of principle the-
ories – Einstein himself in his 1919 article points out that such theories have the merit of
being connected directly with empirical experience and so of indubitability (here, there are
interesting and under-explored connections with the programme of ‘constructive axiomatics’
promulgated by Reichenbach (1969): see Dewar, Linnemann, and Read (2022); Linnemann
and Read (2021) for discussion). Moreover, certain explanatory factors may militate in favour
of the use of principle theories – as Van Camp writes:

Constructive theories are grounded in their ability to offer causal-mechanical explan-
ations of phenomena, a type of scientific explanation most prominently advocated by
Salmon (1984).

Principle theories are also explanatory. The primary function of a principle theory
is tied to the explanatory role it plays through unification. The theory of explanation
as unification was first advanced by Friedman (1974) and has been developed since
by Kitcher (1989). (Van Camp, 2011, pp. 23–4)

For further discussion, see Read (2020b) and references therein.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
30

05
99

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009300599


Special Relativity 31

extant knowledge? The point is that Lorentz et al. derived these transform-
ations on the basis of detailed dynamical considerations. By contrast, Einstein
would (a) proceed via phenomenological considerations regarding light and the
relativity principle (and so would avoid having to make unjustified conjectures
regarding underlying dynamics), and (b) would, as we have already seen, ele-
vate the resulting transformations to a kinematical constraint. I will come back
to these differences between Einstein and Lorentz.

4.2.1 Einstein’s Operational Understanding of Coordinates

At the beginning of his article, Einstein is explicit that he has an operational
understanding of coordinates. This understanding means he requires spatial
coordinates to ‘match’ the length of rigid measuring rods that are at rest in
the system in question, and time coordinates to ‘match’ the tickings of clocks
at rest in that system. Einstein would come to regret this appeal to rigid rods
and regular clocks in his articulation of his understanding of coordinates, as I
will discuss in what follows (cf. Giovanelli, 2014); moreover and more gen-
erally, Einstein would struggle throughout his career with how to understand
coordinate systems (on this, see Giovanelli, 2021).
For my purposes in this subsection, I will follow Einstein in simply assuming

this understanding of coordinates. Indeed and in any case, even to set up one
coordinate system, we need more than this: we need to decide how to synchron-
ise clocks that are spatially separated from one another. Having presented his
understanding of coordinates, Einstein turns his attention to this very matter.

4.2.2 The Definition of Simultaneity

Consider the following set-up: two mirrors A and B are some fixed distance
L apart. A photon is fired from A at event (i.e., spacetime point) A1, bounces
off B at B2, and returns to A at A3, as per Figure 4 (there, space runs along
the horizontal axis and time along the vertical axis, as is standard). Now ask:
which point on the worldline of mirror A is simultaneous with point B2 on the
worldline of mirror B? The natural answer stipulated by Einstein (following
Poincaré) is the following (here ‘tA’ indicates the time read off by a clock at A;
mutatis mutandis for B):

tB (B2) = tA (A1) +
1
2
(tA (A3) − tA (A1)) . (35)

That is, B2 is simultaneous with the point halfway between A1 and A3 on A’s
worldline. This makes the one-way speed of light isotropic. (One would be
perfectly within one’s rights to ask whether this is the only way of ‘spreading
time through space’ in special relativity—Iwill return to this issue in Section 8.)
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Figure 4 The ‘light clock’ set-up presented by Einstein (1905d)

For the time being, we can treat this as a conventional choicemade by Einstein
for how to synchronise distant clocks: typically, it is referred to as the Einstein–
Poincaré clock synchrony convention.

4.2.3 Einstein’s Two Postulates

We turn now to the main event: Einstein’s two postulates of special relativity.
These are the relativity principle (RP) (which we have already discussed at
some length) and the light postulate (LP) (on which we also remarked in the
previous section). As stated by Einstein, these read as follows:

RP: The laws by which the states of physical systems undergo change are not
affected, whether these changes be referred to the one or the other of two
systems of coordinates in uniform translatory motion.
LP: Any ray of light moves in the ‘stationary’ system of coordinates with
the determined velocity c, whether the ray be emitted by a stationary or by
a moving body. Hence

velocity =
light path

time interval
,

where time interval is to be taken in the sense of the definition in Section 1.

Note that bothRP andLP accord with themethodology of a principle theory: as
we have already seen, (i) there were no empirically observed violations of RP,
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and (ii) light is a wave, so (like all waves) is such that the speed of the wave
is independent of the speed of the source (which is LP). (Sometimes, LP is
identified with the ‘constancy of the speed of light’, but this is not how the prin-
ciple is stated. The constancy of the two-way speed of light in inertial frames
follows from a combination of RP and LP; in non-inertial frames, the speed
of light need not be c.) Einstein’s point is going to be that (a) these conditions
(plus the extra assumptions involved in the 1905 paper, namely those discussed
elsewhere in this section) together imply that transformations between frames
are the Lorentz transformations, and (b) if all material bodies are governed by
equations which are invariant under these transformations, then one no longer
predicts violations of RP, so there is no longer any need for a preferred frame,
a fortiori no longer any need for an ether.

4.2.4 Homogeneity, Isotropy, and Reciprocity

The game is now to derive coordinate transformations from these principles,
along with a couple of others. In particular, Einstein will also need to assume:

1. The homogeneity of space and time. (‘Every point in space and time is the
same as every other.’)

2. The isotropy of space. (‘There is no privileged direction in space.’)

Note that homogeneity and isotropy are not equivalent: an example of an
homogeneous but anisotropic space would be (say) a set of vectors all pointing
in the same direction in a space; an example of an inhomogeneous but isotropic
space would be one line γ, with vectors emanating radially from this line (in
this case, the space is inhomogeneous, but isotropic about γ).
Also worthy of mention is the principle of ‘Reciprocity’, which states the fol-

lowing: if two inertial coordinate systems S and S′ are such that S′ is moving
with speed v in the positive x direction relative to S, then S is movingwith speed
v in the negative x direction relative to S′. As Brown mentions, this principle
holds if and only if the Einstein–Poincaré synchrony convention is adopted
in both S and S′ (Brown, 2005, p. 118). Von Ignatowski claimed Reciprocity
follows from RP alone; however, in the absence of any stipulation regarding a
clock synchrony convention, this claim is incorrect (Torretti, 1983, p. 79). Berzi
and Gorini (1969), however, showed that Reciprocity can be derived from a
combination of RP and spatial isotropy. Although these observations are inde-
pendently interesting, the main point regarding Reciprocity I want to make is
this: although the principle can be invoked at certain points in Einstein’s deriv-
ation (see below), it is not necessary to take this as an independent assumption:
rather, it can be derived from Einstein’s other assumptions.
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4.2.5 Linearity of the Transformations

Homogeneity implies that the transformations between inertial frames must be
linear. Einstein does not spell this out, but a reconstruction can be found in
Brown (2005, §2.3). Generic transformations between frames can be written

x ′µ = f µ (xν) . (36)

Suppose the transformations encode information on the behaviour of rods
and clocks (recall Einstein’s operational understanding of coordinate systems).
Then such behaviour should not depend on where the rods and clocks find
themselves in space or time, on pains of violation of homogeneity. Consider
now the infinitesimal version of the transformation law,

dx ′µ =
∂ f µ

∂xν
dxν . (37)

Homogeneity implies that the coefficients ∂ f µ/∂xν must be independent of the
xν coordinates, which means f µ must be linear functions of the coordinates xµ.

4.2.6 Lorentz Transformations up to ϕ (v)

Following Einstein, we now let K be a ‘stationary’ system and let (t, x, y, z) be
coordinates for K , determined by the conditions of surveyability-using-rods-
and-clocks-that-are-stationary-in-K and the Einstein definition of simultaneity
applied in K (for t). We let k be a system of coordinates that is moving
with speed v along the positive x-direction relative to the ‘stationary’ system
K , and let (τ, ξ, η, ζ) be coordinates for k, determined by the conditions of
surveyability-using-rods-and-clocks-that-are-stationary-in-k and the Einstein
definition of simultaneity applied in k (for τ). Using Einsteinian synchrony
in k and the linearity of the coordinate transformations, Einstein derives (I will
omit his steps, since they are straightforward)

τ = ϕ (v) γ
(
t − vx

c2

)
. (38)

Now consider a light ray emitted from the origin in the positive ξ-direction.
Using RP and LP to write down expressions for the relationship between ξ
and τ that holds on the path of this ray, and similarly (using RP alone) for the
relationship between x and t that holds on the path of this ray, Einstein likewise
derives that

ξ = ϕ (v) γ (x − vt) . (39)

Similarly, by considering rays of light emitted in the η and ζ directions from
the perspectives of both K and k, Einstein obtains
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η = ϕ (v) y, (40)

ξ = ϕ (v) z. (41)

(38)–(41) are the Lorentz transformations up to a velocity-dependent factor
ϕ (v).

4.2.7 Final Steps

The final steps involve setting ϕ(v) = 1, and thereby recovering the Lorentz
transformations. First, one invokes RP and Reciprocity in order to argue that
ϕ (v) ϕ (−v) = 1. Now, given Einstein’s operational understanding of coordin-
ates, ϕ (v) can be interpreted physically as the inverse of the transverse length
contraction factor – that is, the factor by which setting a body in motion causes
that body to shrink in the direction perpendicular to its motion. Given that inter-
pretation, isotropy entails that ϕ (v) = ϕ (−v), so one has ϕ(v)2 = 1. We then
argue somehow against the rogue possibility that ϕ (v) = −1 (using continuity
and ϕ (0) = +1? – Einstein does not discuss this explicitly). It then follows that
ϕ (v) = 1. This yields the by-now familiar Lorentz transformations!

4.3 Einstein versus the Trailblazers
Einstein’s 1905 paper predicts once and for all the null result of ether wind
experiments such as that of Michelson andMorley. Indeed, it does so trivially –
just by insisting upon RP alongside LP. As I have already mentioned, one
way to understand Einstein is as insisting that the laws of mechanics should
also be Poincaré invariant – he is making Poincaré invariance universal, as a
kinematical constraint. One sometimes finds the claim that Lorentz was not
happy with Einstein’s approach, as might seem apparent in passages such as
the following:

Einstein simply postulates what we have deduced, with some difficulty
and not altogether satisfactorily, from the fundamental equations of the
electromagnetic field. (Lorentz, 1892, p. 230)

To be fair to Lorentz, however, he followed this passage with this concession:

By doing so, he may certainly take credit for making us see in the negative
result of experiments like those of Michelson, Rayleigh and Brace, not a for-
tuitous compensation of opposing effects but the manifestation of a general
and fundamental principle. (Lorentz, 1892, p. 230)

As Brown (2005, p. 68) writes, ‘The full meaning of relativistic kinematics was
simply not properly understood before Einstein’.
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It is worth asking how radical Einstein’s 1905 approach really was. Arguably,
Newton himself was constructing a principle theory – the postulates being his
three laws ofmotion.When combinedwith theRP and the auxiliary hypotheses
mentioned in Section 2, these imply the Galilean invariance of physical laws
(as a kinematical constraint – i.e., independent of the details of the particular
dynamics governing matter). This indeed was achieved by Albert Keinstein in
1705: see Brown (2005, §3.3).23

Question:Given the information provided in this section, was Einstein,
in deriving a different kinematical constraint (viz., Poincaré invariance,
rather than Galilean invariance), really any more radical than Newton?

4.4 Einstein’s Later Misgivings
Einstein would later voice certain misgivings about his 1905 derivation, in
particular regarding:

1. The treatment of rods and clocks as primitive bodies, not ‘moving atomic
configurations’. (Einstein, 1921, 1969)

2. The special role of light. (Einstein, 1935, 1969)

On (1), here is what Einstein wrote in his Autobiographical Notes:

One is struck [by the fact] that the theory [of special relativity] introduces
two kinds of physical things, i.e. (1) measuring rods and clocks, (2) all
other things, e.g., the electromagnetic field, the material point, etc. This, in
a certain sense, is inconsistent; strictly speaking measuring rods and clocks
would have to be represented as solutions of the basic equations (objects
consisting of moving atomic configurations), not, as it were, as theoretically
self-sufficient entities. However, the procedure justifies itself because it was
clear from the very beginning that the postulates of the theory are not strong
enough to deduce from them sufficiently complete equations . . . in order to
base upon such a foundation a theory of measuring rods and clocks. . . .But
one must not legalize the mentioned sin so far as to imagine that intervals are
physical entities of a special type, intrinsically different from other variables
(‘reducing physics to geometry’, etc.). (Einstein, 1969)

The point is that (as per its being a principle theory) Einstein’s approach in 1905
simply assumes that boostable rods and clocks exist, which when boosted read
of intervals as per a Lorentz transformed frame. Ultimately, this is a dynamical

23 Please note that Keinstein is fictional!
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assumption which should be justified rather than assumed: I will return to this
issue in Section 7.
On (2), Einstein wrote this:

The special theory of relativity grew out of the Maxwell electromagnetic
equations. But . . . the Lorentz transformation, the real basis of special-
relativity theory, in itself has nothing to do with the Maxwell theory.
(Einstein, 1935)

The Lorentz transformation transcended its connectionwithMaxwell’s equa-
tions and had to do with the nature of space and time in general. (Brown,
2005, p. 73)

The point here is that the later Einstein viewed the appeal to Maxwell’s elec-
trodynamics in the 1905 paper as an heuristic tool into special relativity (based
upon the historical contingency that the first Poincaré invariant laws discovered
were Maxwell’s), but in fact, once the completed theory of special relativ-
ity is in hand, one recognises that it has nothing in particular to do with
electrodynamics. Here is how the later Einstein put the point:

The content of the restricted relativity theory can accordingly be summar-
ised in one sentence: all natural laws must be so conditioned that they are
covariant with respect to Lorentz transformations. (Einstein, 1954)

4.5 The Ignatowski Transformations
In 1911, von Ignatowski sought to derive the Lorentz transformations using
RP, but without LP. This claim should elicit suspicion: which of the remain-
ing assumptions is violated by Newtonian physics (complete with Galilean
transformations – cf. again the fable of Keinstein)? Let us delve into this.
The Ignatowski transformations (i.e., those von Ignatowski derived in his 1911
article) read as follows, where K is some hitherto unspecified constant:

t ′ =
(
1 − Kv2

)−1/2
(t − Kvx) , (42)

x ′ =
(
1 − Kv2

)−1/2
(x − vt) , (43)

y′ = y, (44)

z′ = z. (45)

Note now three special cases:

• Setting K = 0 yields a Galilean transformation.
• Setting K = 1 yields a Lorentz transformation.
• Setting K = −1 yields a Euclidean transformation.
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Recall that Galilean transformations consist of rigid three-dimensional spatial
rotations, Galilean boosts, and rigid translations; Poincaré transformations con-
sist of rigid three-dimensional spatial rotations, Lorentz boosts (together, these
are the ‘Lorentz transformations’), and rigid translations. We have not seen the
four-dimensional Euclidean transformations up to this point, but these consist
of rigid four-dimensional rotations plus rigid translations.
These results vindicate our suspicion: Galilean, Lorentz, and Euclidean

transformations are thus all special cases of Ignatowski transformations. So
droppingLP is not sufficient to derive the Lorentz transformations. Sometimes,
authors rule outK = −1 as ‘unphysical’ (see, e.g., Pelissetto and Testa (2015)) –
to this one should also object, for there are plenty of physical applications of
theories with Euclidean symmetries – for example, any theory which uses the
Poisson equation.24

5 Spacetime Structure
Up to this point, we have witnessed the crisis in physics which precipitated
the advent of special relativity; we have also seen Einstein’s derivation of the
Lorentz transformations, the upshot of which was supposed to be that these
transformations constitute a kinematical constraint on future physical theoris-
ing. So far, however, mention of spacetime has been conspicuously absent: we
have not seen the term since Section 1!
It was only in 1909 that Minkowski showed that theories with Poincaré sym-

metries can be understood as being set in what has become known asMinkowski
spacetime. In his paper, Minkowski introduced the ‘world-postulate’: the prin-
ciple that all fundamental physical laws must be conditioned so as to be
Poincaré invariant. This, as we have seen, was already to be found in Ein-
stein, but by expressing this notion in four-dimensional geometrical language,
Minkowski felt he had shown how ‘the validity of the world-postulate . . . now
lies open in the full light of day’ (Minkowski, 1909).

Question: Can what Minkowski suggests here be understood as a pre-
cursor to a Friedman-style ‘geometrical’ approach to physical theories?
(Cf. Section 1.)

My purpose in this section is to explain what this spatiotemporal structure
amounts to, as well as to compare this structure with the Newtonian space-
time structures of which we already saw a little in Section 1. Before doing

24 For further discussion on this point, see Read and Cheng (2022).
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so, however, it is worth mentioning Einstein’s initial reaction to Minkowski’s
spatiotemporal reformulation of special relativity. In response to Minkowski’s
somewhat grandiose claim that, having set theories in his spacetime, ‘Hence-
forth space by itself, and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an independent
reality’ (Minkowski, 1909), Einstein accused this work of being ‘superflu-
ous learnedness’ (Pais, 1982). At the end of Section 6, I will consider what
it even means for a theory to be ‘special relativistic’; this reaction on the part
of Einstein will be worth bearing in mind.

5.1 Two Conceptions of Geometry
Before introducing the specific details of Minkowski spacetime, we need to
take a step back. In general, there are two different approaches to under-
standing geometrical notions: the ‘Kleinian approach’ and the ‘Riemannian
approach’:25

Kleinian conception: Geometry is characterised via the invariance groups of
certain structures under coordinate transformations.
Riemannian conception: Geometry is characterised via tensors and other
coordinate-independent differential-geometric structures.

In this section, I will focus on the Kleinian approach and defer a discussion
of the Riemannian approach to Section 6. The general idea of the Kleinian
approach – from a physical point of view – is as follows. We have seen that
the inertial frames are those coordinate systems in which dynamical equations
governing matter take their simplest form and in which force-free particles
move with uniform velocity. Sometimes, people also think about the inertial
frames as those frameswhich respect spacetime’s ‘inertial structure’ in a certain
way. On the Kleinian approach, one can then use the transformations between
the inertial frames of a theory to ascertain that theory’s spacetime geometrical
commitments. The three-point plan is this:

1. Specify the class of coordinate transformations which relate the inertial
frames in the theory under consideration.

2. Identify the structures and quantities which are invariant under those
transformations.

3. Regard these structures and quantities as picking out different kinds of
spacetime.

25 For more detail on the distinction between these two approaches, see Wallace (2019).
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I am first going to illustrate how the Kleinian approach works in the case of
Newtonian theories; after doing this, I will return to special relativity.

5.2 Spacetime Structure in Newtonian Physics
Perhaps surprisingly, the question of the spacetime structure of Newtonian
mechanics turns out to be a delicate business – in fact, muchmore delicate than
in the case of relativistic theories. There is indeed a hierarchy of possible ‘clas-
sical’ spacetime structures for Newtonian mechanics: running from strongest
to weakest, this reads (Earman, 1989, ch. 2):

Aristotelian spacetime
↓

Newtonian spacetime
↓

Neo-Newtonian/Galilean spacetime
↓

Maxwellian/Newton–Huygens spacetime
↓

Leibnizian spacetime
↓

Machian spacetime

5.2.1 Aristotelian Spacetime

Let us begin with Aristotelian spacetime as conceived on the Kleinian
approach.26 Suppose one has a physical theory in which the dynamical equa-
tions take their simplest form in coordinate systems related by the following
(rather restricted!) set of Aristotelian transformations:

t 7→ ± t + τ (46)

x 7→ Rx (47)

One now asks: what is preserved under such transformations? In this case,
a great deal! The following structures are all invariants of these Aristotelian
transformations:

1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.

26 Throughout the following, R ∈ SO (3) and any functions of t are smooth.
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Figure 5 Aristotelian spacetime and the distinctions meaningful therein

5. A preferred velocity.
6. A preferred point.

In every case, the reason is that the structure in question is unaffected by time
translations/inversions and/or spatial rotations – which exhaust the Aristotelian
transformations. Given this, one can draw a picture of a spacetime which pre-
serves all of these notions – see Figure 5. In this figure, let the vertical line on
the left be the preferred point; anything co-moving with respect to the preferred
point has the preferred velocity (and acceleration – i.e., standard of straight-
ness of paths across time). In the spacetime, there is also a standard of rotation,
allowing one to adjudicate on whether an object is spinning (this is represented
by the curved arrows to the right); there is also a preferred notion of spatial dis-
tance at a time (on the grey hypersurfaces), and of temporal distance (between
the grey hypersurfaces). Thus, respectively, absolute position, velocity, accel-
eration, rotation, temporal distance, and spatial distance are all well defined in
Aristotelian spacetime.

5.2.2 Newtonian Spacetime

Suppose now that one liberalises the Aristotelian transformations to the follow-
ing class of Newtonian transformations:

t 7→ ±t + τ (48)

x 7→ Rx + a (49)

In particular, note that the Newtonian transformations – unlike the Aristotelian
transformations – allow for constant translations of the spatial coordinates. This
means a preferred point is no longer well defined in Newtonian spacetime, for
such a point would not be left invariant by spatial translations! Thus, only the
following concepts are well defined in Newtonian spacetime:
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Figure 6 Newtonian spacetime, in which the universe has no preferred point

1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.

Accordingly, schematically, a picture of Newtonian spacetimemight take the
form presented in Figure 6. Here, the dashed lines are supposed to indicate that
the two trajectories can be mapped into one another using the transformations
of the Newton group, so there is no sense in this spacetime structure in which
one is ‘preferred’ over the other. (In later diagrams in this section, the same
rationale underlying the dashing applies.) Although here one no longer has a
preferred point, one retains the trans-temporal identity of spacetime points qua
spatial points, which affords a ‘rigging’ (i.e., congruence of vertical lines) with
respect to which absolute velocity and acceleration can be defined.

5.2.3 Neo-Newtonian/Galilean Spacetime

Let us press on in the same spirit. Suppose one now liberalises the Newtonian
transformations to the Galilean transformations:

t 7→ ±t + τ (50)

x 7→ Rx + vt + a (51)

Galilean transformations – unlike Newtonian transformations – now allow
for constant velocity transformations of the spatial coordinates. This means
a preferred velocity is no longer well defined in Galilean spacetime (some-
times called ‘neo-Newtonian spacetime’ – these terms are completely
interchangeable), for such a velocity would not be preserved under Galilean
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Figure 7 Galilean spacetime, in which there is no notion of absolute velocity

transformations! Thus, only the following concepts are well defined in Galilean
spacetime:

1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.

(Again, one can convince oneself that structures (1)–(4) are well defined
in Galilean spacetime.) Schematically, a picture of Galilean spacetime would
appear as in Figure 7. Here, the curved line is supposed to indicate that a stand-
ard of absolute acceleration remains in Galilean spacetime, even though one
can map a vertical dashed line (i.e., the worldline of a body with some uniform
velocity) to a non-vertical but straight dashed line (i.e., the worldline of a body
with some other uniform velocity) by the action of the Galilean group. One
might be puzzled by this: how can there be a standard of absolute acceleration,
but not of absolute velocity? At this point, suffice it to say that this is a well-
defined mathematical possibility; I hope to shed further light on this question
in the following section, when I discuss the Riemannian approach to geometry.

5.2.4 Maxwellian/Newton–Huygens Spacetime

Next, suppose we liberalise the Galilean transformations to the Maxwell
transformations:

t 7→ ±t + τ (52)

x 7→ Rx + a (t) (53)
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Figure 8 Maxwellian spacetime, in which there is no notion of absolute
non-rotational acceleration

We now allow for arbitrary time-dependent transformations of the spatial
coordinates. In this case, a preferred acceleration (i.e., standard of straight-
ness of paths across time) is no longer well defined, for it is not preserved
under such transformations. Thus, only the following concepts are well defined
in Maxwellian/Newton–Huygens spacetime (again, the terms are completely
interchangeable):

1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.

Schematically, a picture of Maxwellian spacetime might appear as in Figure
8. In this case, one can no longer distinguish between curved and straight lines
through this spacetime structure.

5.2.5 Leibnizian Spacetime

Suppose we liberalise the Maxwell transformations to the Leibniz transform-
ations:

t 7→ ±t + τ (54)

x 7→ R (t) x + a (t) (55)

In this case, we allow for arbitrary time-dependent rotations of the spatial
coordinates. This means a standard of rotation is no longer well defined in
Leibnizian spacetime, for rotation rate need not be left invariant under such
transformations. Thus, only the following transformations are well defined in
Leibnizian spacetime:
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Figure 9 Leibnizian spacetime, in which there is no notion of absolute
rotation

1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.

Schematically, a picture of Leibnizian spacetime might then look appear as
in Figure 9. Here, dashing of the curved arrows is supposed to indicate that
there is no standard of rotation in Leibnizian spacetime.

5.2.6 Machian Spacetime

Now suppose we liberalise the Leibniz transformations to the Machian trans-
formations:

t 7→ f (t) ( f monotonic) (56)

x 7→ R (t) x + a (t) (57)

We now allow for arbitrary rescalings of the temporal coordinates; this
means a preferred notion of temporal distance is no longer well defined in
Machian spacetime, for temporal distance is not an invariant of such transform-
ations. Thus, only the following transformations are well defined in Machian
spacetime:

1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.
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Figure 10 Machian spacetime, in which there is no notion of absolute
temporal duration

Schematically, a picture of Machian spacetime might appear as in Figure
10. Here, dashing of the temporal intervals between spatial hypersurfaces is
supposed to indicate that such intervals are not invariants of the Machian
transformations.

5.2.7 Summary

This constitutes the standard hierarchy of classical spacetimes, as one finds
in, for example, Earman (1989, ch. 2). I think it suffices by now to illustrate
the general point: as one liberalises one’s class of allowed transformations
(which, physically, are to be understood as relating the frames of reference in
which one’s description of the physics takes its simplest form), the number of
invariants of those transformations decreases; thus, one’s spacetime geomet-
rical structure (understood as per the Kleinian approach) becomes, in a clear
sense, weaker. The general moral here is worth keeping in mind:

More symmetries ⇐⇒ Less structure

Also worthy of mention is that there are other possible elements of the hier-
archy of classical spacetimes which I have elided on the grounds that they are
not necessary to make these points. First: one might allow reflections of the
spatial coordinates, so x 7→ ±x; in this case, spacetime would no longer have
a preferred spatial orientation (see, e.g., Huggett (2000)). Second: one might
allow for rescalings of the spatial coordinates: x 7→ Ωx (here, Ω is a matrix
implementing a possibly spacetime-dependent scale transformation); in this
case, only spatial conformal structure (i.e., angles, but not distances) would
be well defined.27

27 The resulting spacetime has a claim to be the correct spacetime structure for the programme
of ‘shape dynamics’ (Read, 2023). For more on shape dynamics, see Mercati (2018).
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5.3 Spacetime Structure in Special Relativity
By now, I have spent a lot of time presenting different classical spacetime struc-
tures through the lens of the Kleinian approach. At this point, we must ask:
how does the spacetime structure of special relativity compare with that of the
spacetimes we have just seen? To answer this question, it is helpful to switch
notation. Consider again the coordinate transformations associated with Gali-
lean spacetime. So far, I have written these in vector notation, as in (50) and
(51). The equivalent expressions in index notation would be

t 7→ ±t + τ (58)

xi 7→ Ri
j x j + vit + ai (59)

Note that all termsmust have the same free indices, and the Einstein summation
convention is used (so that indices which appear twice in a term are summed
over). By convention, we use Latin indices (i, j, . . . = 1,2,3) for spatial indices,
and Greek indices (µ, ν, . . . = 0,1,2,3) for spacetime indices.
With this in mind, we can present the Poincaré transformations as follows:

xµ 7→ Λµ
ν xν + aµ (Λµ

ν ∈ SO (1,3)). (60)

The spacetime structure left invariant under the action of the Poincaré trans-
formations just is the spacetime structure Minkowski introduced in 1909. In
thisMinkowski spacetime, there is:

1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.
7. A notion of spacetime distance.

Note that what is well defined and what is not in Minkowski spacetime cuts
across the classical hierarchy: in all of our classical spacetimes, there was a
well-defined notion of spatial distance; by contrast, this is not an invariant of
the Poincaré transformations. By contrast, there is a preferred notion of straight-
ness of paths across time (translating into a notion of absolute acceleration),
unlike (e.g.)Maxwellian, Leibnizian, orMachian spacetime. On the other hand,
one very important invariant of the Poincaré transformations is the interval – a
notion of four-dimensional spacetime distance, which can be written

I = −c2dt2 + dx2 + dy2 + dz2. (61)
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Figure 11 The (schematic) structure of Minkowksi spacetime

The interval I is preserved in all inertial frames in special relativity – that is,
in all frames related by Poincaré transformations. It can be used to distinguish
between three different kinds of trajectory through spacetime:

1. Timelike paths (representing the trajectories of massive bodies), which are
such that the tangent vector to the path at every point is such that I < 0.

2. Spacelike paths (representing the trajectories of superluminal bodies), which
are such that the tangent vector to the path at every point is such that I > 0.

3. Null paths (representing the trajectories of massless bodies such as light
rays), which are such that the tangent vector to the path at every point is
such that I = 0.

Together, these three kinds of trajectory pick out the famous ‘lightcone’ struc-
ture of special relativity. Schematically, then, a picture ofMinkowski spacetime
might appear as in Figure 11. What I mean by this figure is the following. The
two lines on the left indicate that one can still distinguish straight (i.e., non-
accelerating) from curved (i.e., accelerating) paths through this spacetime (one
also has a standard of rotation in Minkowski spacetime, but I have not rep-
resented that in the diagram). On the right, the cross represents the lightcone
structure of the theory; the two lines within the forward ‘lobe’ of the cross
represent two distinct timelike vectors.

5.4 Further Reflections on Spacetime
Up to this point, I have introduced both the hierarchy of classical spacetimes, as
well as Minkowski spacetime, via the Kleinian approach. I will close this sec-
tion with some further philosophical points regarding the nature of spacetime.
The first regards the connection between spacetime and dynamical laws.
In Section 2, we saw that the laws of Newtonian mechanics are invariant

under Galilean transformations. But these are the transformations associated
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with Galilean spacetime, as we have seen. It is natural, therefore, to regard
Newtonianmechanics as set inGalilean spacetime. Earman (1989, ch. 3)makes
it a very general principle that the spacetime and dynamical symmetries of a
theory should match, by laying down the following two conditions:28

SP1: Any dynamical symmetry of T is a spacetime symmetry of T .
SP2: Any spacetime symmetry of T is a dynamical symmetry of T .

The idea is this: if there are dynamical symmetries which are not spacetime
symmetries, then (by our mantra that ‘more symmetries’ is equivalent to ‘less
structure’) there is spatiotemporal structure which is not relevant to the dynam-
ics. In that case, by an Occamist norm, such structure should be expunged.
On the other hand, if there are spacetime symmetries which are not dynamical
symmetries, then it seems that one’s dynamics adverts to structures which do
not exist. It is questionable whether this is even coherent: Belot (2000) calls it
‘arrant knavery’.29

In this sense, one might accuse Newton of having made a mistake in postu-
lating that Newtonian rather than Galilean spacetime is the correct spacetime
setting for his theory. The thought here is that we have neither a priori nor
direct empirical access to the structure of spacetime we live in; rather, our
guide to which structure obtains is in the dynamical laws: we should postulate
as much structure as is required to state (the invariance properties of) the laws
of our best physical theories, and no more. (To repeat, this is essentially the
content of Earman’s conditions.) With hindsight, Newton violated this require-
ment: Newtonian physics can be formulated in (merely) Galilean spacetime,
not Newtonian spacetime (as Newton maintained). Occam’s razor thus advises
against postulating a standard of absolute rest in addition.30

Raising this point presents the following question: is it indeed the case that
Galilean spacetime is the correct spacetime setting for Newtonian mechanics
(given Earman’s conditions), as is by now the standard line? If we follow the
methodology of moving from Newtonian to Galilean spacetime as the correct
spacetime setting for Newtonian mechanics, then (it seems) the discovery of
further symmetries of the Newtonian laws would likewise motivate moving

28 Myrvold (2019) has gone further, arguing these principles are analytically true (cf. Acuña
2016). I will return to this suggestion in Section 7.

29 For what it is worth, I disagree with Belot’s claims that such approaches are incoherent. For
example, Huggett’s regularity relationalism (2006) – recall Section 1 – begins with an impov-
erished spacetime ontology yet gives a precise prescription for how further spatiotemporal
commitments may be secured via dynamical considerations.

30 While this might be true in principle, I agree with Dasgupta (2016) that in practice, since New-
ton did not have the concept of Galilean spacetime, he was justified in believing in Newtonian
absolute space and thereby in violating Earman’s principles.
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to a different spacetime setting again, with even less structure than Gali-
lean spacetime. With this in mind, consider Newton’s ‘Corollary VI’ in the
Principia:

If bodies moved in any manner among themselves are urged, in the direction
of parallel lines by equal accelerative forces, they will all continue to move
among themselves, after the same manner as if they had not been urged by
those forces. (Cajori, 1934, p. 21)

This points out that there is no standard of linear acceleration in Newtonian
mechanics – so perhaps the correct spacetime setting for the theory should
be Maxwellian spacetime. This suggestion was raised by Saunders (2013) and
remains controversial – see, for example, Knox (2014) and Wallace (2020).
The second point I wish to make is this. If we impose extra structure on

Galilean spacetime (namely, a standard of rest), we can recover Newtonian
spacetime. Perhaps more surprisingly, however, if we impose extra structure on
Minkowski spacetime (namely, again, a standard of rest), we can also recover
Newtonian spacetime. So, as Barrett summarises:

There is a precise sense in which Newtonian spacetime has more structure
than both Galilean spacetime and Minkowski spacetime. But in this same
sense, Galilean and Minkowski spacetime have incomparable amounts of
structure; neither spacetime has less structure than the other. The progres-
sion towards a less structured spacetime therefore does not continue into the
relativistic setting. (Barrett, 2015, p. 37)

6 General Covariance
In this section, I am going to explain how the second of our two approaches to
geometry – the Riemannian approach – works. Ultimately, I will return to both
the classical hierarchy and Minkowski spacetime. Before doing so, however,
I need to say a little more on the different ways in which one might present a
given set of physical laws.

6.1 Physical Laws
In the previous section, I introduced briefly the four-dimensional index nota-
tion. Let us now consider how to write some familiar physical laws using this
index notation. I will begin with the free, massless Klein–Gordon equation,
which is a four-dimensional wave equation for a scalar field ϕ:

− 1
c2
∂2ϕ

∂t2 +
∂2ϕ

∂x2 +
∂2ϕ

∂y2 +
∂2ϕ

∂z2 = 0. (62)
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Completely equivalently, I can write this equation using a matrix, as follows:

(
1
c

∂
∂t

∂
∂x

∂
∂y

∂
∂z

) ©«
−1

1
1

1

ª®®®®¬
©«

1
c

∂
∂t
∂
∂x
∂
∂y
∂
∂z

ª®®®®¬
ϕ = 0. (63)

Calling the vector of partial derivatives ∂µ (µ = 0 . . . 3) and the matrix ηµν , I
can again write this (completely equivalently!) using the Einstein summation
convention (where, recall again, repeated indices are summed) as follows:

ηµν∂
µ∂νϕ = 0. (64)

It is important to stress that the content of (64) is exactly the same as that of
(62): it still describes the same behaviour of the field ϕ, in the same coordinate
system. Yet there are merits to the latter syntactic formulation: not only does it
save ink, but (as we will see shortly), it also helps us to ascertain the symmetries
of this equation (a point to which I alluded in Section 2).
Before I get onto this, I will introduce a couple more examples. Consider the

Newton–Poisson equation, which describes the gravitational potential ϕ in the
field formulation of Newtonian gravity (here ρ is the mass density field):

∂2ϕ

∂x2 +
∂2ϕ

∂y2 +
∂2ϕ

∂z2 = 4πρ. (65)

As before, I can rewrite this equation using a matrix as follows:

(
1
c

∂
∂t

∂
∂x

∂
∂y

∂
∂z

) ©«
0

1
1

1

ª®®®®¬
©«

1
c

∂
∂t
∂
∂x
∂
∂y
∂
∂z

ª®®®®¬
ϕ = 4πρ. (66)

Defining ∂µ exactly as before, and now calling the matrix hµν , I can write this
equation as follows, where the Einstein summation convention is used:

hµν∂µ∂νϕ = 4πρ. (67)

Again, it bears stressing that the content of (67) is exactly the same as the
content of (65). Moreover, the advantages of this formulation are the same
as in the previous case: (i) it is more compact, and (ii) it is easier to use this
formulation to ascertain the symmetries of the equation than the first.
The third example is particularly relevant to special relativity: Maxwell’s

equations. Recall again that, in the usual three-vector presentation, these
equations read:

∇ · E = ρ, (68)
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∇ · B = 0, (69)

∇ × E = −∂B
∂t
, (70)

∇ × B = J + ∂E
∂t
. (71)

If I define the following two objects:

Fµν =

©«
0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

ª®®®®¬
, (72)

Jµ =

(
ρ

Ji

)
, (73)

then Maxwell’s equations can be written:

ηµλ∂
λFµν = Jν, (74)

∂µFνλ + ∂νFλµ + ∂λFµν =: ∂[µFνλ] = 0. (75)

As before, at this stage, (74) and (75) are simply a compact and convenient
reformulation of our initial version of equations (68)–(71).

Exercise: Plug components into (74) and (75) in order to recover
Maxwell’s equations in their three-vector forms, (68)–(71).

Having put all these examples on the table, let us think about the second
professed advantage: that the latter (more compact) formulations make it eas-
ier to ascertain the symmetries of these equations. The Klein–Gordon and
Maxwell theories both feature explicit coupling to ηµν . The simplest form of
these equations will be preserved under coordinate transformations which pre-
serve the diagonal form of ηµν – that is, coordinate transformations such that
Λσ

µΛ
λ
νησλ = ηµν . But these are just the Lorentz transformations!

Exercise: Verify that the condition Λσ
µΛ

λ
νησλ = ηµν picks out Lor-

entz boosts and/or spatial rotations.

Indeed, the equations are also invariant under translations, making them invari-
ant under the full Poincaré group. One sometimes hears the claim that writing
a theory using four-dimensional indices makes the symmetries of one’s equa-
tions ‘manifest’ – this can be misleading, but the point is that it is easier to read
off the symmetries of equations when they are formulated in this way.
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Exercise: Show explicitly that the Klein–Gordon equation (64) and
Maxwell equations (74)–(75) are invariant under Poincaré transform-
ations.

We can use exactly the same methodology to demonstrate the Galilean
invariance of the Newton–Poisson equation (67). This equation features expli-
cit coupling to hµν . The simplest form of this equation will be preserved under
coordinate transformations which preserve the diagonal form of hµν – that
is, coordinate transformations such that Mµ

σ Mν
λ hσλ = hµν . Assuming that

the transformations are linear (i.e., assuming that the change-of-basis matrices
Mµ

σ are not functions of spacetime coordinates), these are just the Gali-
lean transformations (up to a constant rescaling of t31), once we also include
translations.32

Exercise: Show explicitly that the Newton–Poisson equation (67) is
invariant under Galilean transformations.

The point to stress here is that so far we have just repackaged these dynam-
ical equations – we have not fundamentally changed their symmetry properties.
In fact, the index notation makes it pretty easy to transform to an arbitrary
coordinate system and see these equations in their general (and ugly!) form:
indeed I did this explicitly in the case of N1L in Section 1.

Exercise: Transform (1) to arbitrary coordinates and thereby reproduce
(3) from Section 1.

One can also show this in the case of, for example, the Klein–Gordon
equation: explicitly, the transformation proceeds as follows:

ηµν∂
µ∂νφ = 0

ηµν
∂

∂xµ

∂

∂xν
φ = 0

31 If one considers the symmetries of the Newton–Poisson equation only, one in fact finds that the
allowed transformations of the temporal coordinate are t 7→ κt for some constant κ; one can
only set κ = ±1 if one assumes that the symmetries in addition preserve a standard of temporal
distance, which, strictly speaking, is not part of the content of the Newton–Poisson equation.

32 If one liberalises the linearity condition, one finds that (67) is in fact invariant under the Leibniz
group of transformations. This is not so surprising once one notes that (67) is a static, three-
dimensional equation, so changes in the temporal direction should leave it unchanged. When
one also considers the force equation of Newtonian gravity, the symmetry group of the theory
is restricted.
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−→ ηµν
∂xµ′

∂xµ

∂

∂xµ′

(
∂xν′
∂xν

∂

∂xν′
φ

)
= 0

ηµν
∂xµ′

∂xµ

(
∂2xν′
∂xµ′∂xν

∂

∂xν′
φ +
∂xν′
∂xν

∂

∂xµ′

∂

∂xν′
φ

)
= 0

ηµν
∂2xν′
∂xµ∂xν

∂ν
′
φ + ηµν

∂xµ′

∂xµ

∂xν′
∂xν
∂µ

′
∂ν

′
φ = 0.

Note the extra term in the non-inertial frame (cf. fictitious forces in (3)).

6.2 General Covariance
Can we write theories in what is known as a generally covariant form – that
is, a form which holds in an arbitrary frame? (Note that the terminology ‘gen-
eral covariance’ is confusing here – it should really be ‘general invariance’,
but to mesh with the literature I will use the standard term.) Einstein circa 1915
thought the answer to this question was no, and that this is what made his newly
developed general relativity special. But Kretschmann said in 1917 to Ein-
stein: yes. Indeed, speaking anachronistically, there are (at least) two different
ways to render a theory generally covariant:33

1. Write its equations in an arbitrary frame, with all extra terms included.
2. Write the theory in a coordinate-independent language.

We have seen (1) both with moving from equation (1) to equation (3) and with
our transformation of the Klein–Gordon equation to an arbitrary frame. Let us
now think a bit more about (2). To do this, we need to be clear about the dis-
tinction between (i) geometric objects and (ii) the components of those objects
in a given coordinate system.
To illustrate this difference, consider a vector which I will call va: the com-

ponents of this vector in one given (Cartesian) coordinate system could be as
per Figure 12. If I now rotate the coordinate system (i.e., do a passive trans-
formation), the vector will remain unchanged, but its components will differ,
perhaps as per Figure 13.
One might, in light of this, seek to write down different dynamical equa-

tions for a physical theory, which are liberated altogether from coordinate
systems, and which treat with geometric objects themselves, rather than the
representations of those objects in some coordinate system.34 To write a the-
ory in a coordinate-independent way, we move from using coordinate indices
(µ, ν, . . .), which represent the components of objects in a particular coordinate

33 For historical background, see Norton (1993).
34 For some reflections on whether this is always possible, see Pitts (2012); Read (2022).
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Figure 12 A vector va and its components vµ in some coordinate system

Figure 13 A vector va and its components v′µ in a distinct coordinate system

basis, to abstract indices (a, b, . . .), which directly represent the objects them-
selves. For example, in the case of the Klein–Gordon equation, move from (64)
to

ηab∇a∇bϕ = 0. (76)

This involves no reference to a coordinate system at all – so it a fortiori holds
in all coordinate systems. Note in particular that in order to make this move,
we have introduced two new objects: (what is known as) a rank-2 tensor field
ηab , and a derivative operator ∇. Suffice it to say that both of these objects can
be defined in a coordinate-independent manner (Friedman, 1983; Malament,
2012).
This move is not always metaphysically innocent. Sometimes, one finds the

claim that writing our theories in a coordinate-independent language makes
manifest the full ontological commitments of those theories. For example,
in the case of Klein–Gordon theory, the claim would be that coordinate-
independent presentations make manifest the commitment of the theory not
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merely to the field ϕ, but also to another field, ηab – Minkowski space-
time (along with its compatible derivative operator ∇ – ‘compatible’ means
∇aηbc = 0). But should this be regarded as representing an autonomous entity
(i.e., object in our ontology), or just as being a codification of the symmetries of
the coordinate-based dynamical equations from which we began? I will return
to this issue in detail in Section 7.

6.3 The Riemannian Conception of Geometry
Rather than identifying geometrical structures as the invariants of a given set
of transformations (as per the Kleinian approach), the Riemannian approach
directly presents and defines such structures without any reference to coordin-
ate systems (the technical details of how this works are often sophisticated, but
see, e.g., Friedman, 1983 andMalament, 2012 for explicit presentations of how
objects of the kind I will discuss in the remainder of this section can be defined
on the Riemannian approach).35 The Kleinian and Riemannian approaches
are complementary, insofar as the transformations specified in the Kleinian
approach are those transformations which would leave invariant the structures
presented on the Riemannian approach, were they to be written in a coordinate
basis.
For the time being, I will simply present the Riemannian approach, first to

the hierarchy of classical spacetime structures we saw in Section 5, and then to
special relativity. To begin, recall again that the following structures are well
defined in Aristotelian spacetime:

1. A notion of spatial distance.
2. A notion of temporal distance.
3. A standard of rotation across time.
4. A notion of straightness of paths across time.
5. A preferred velocity.
6. A preferred point.

To underwrite these notions, on the Riemannian approach, we specify Aristo-
telian spacetime as a tuple of geometric objects, 〈M, tab, hab,∇,σa, ξ〉. Here, M
is a four-dimensional differentiable manifold representing the points of space-
time; tab is a temporal metric field of signature (1,0,0,0) which represents
temporal distance relations between spacetime points; hab is a spatial met-
ric field of signature (0,1,1,1) representing spatial distance relations between

35 Whether the Riemannian approach really makes no appeal to coordinate systems is question-
able – see Wallace (2019)—but I will set this aside here.
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spacetime points;∇ is a derivative operator affording standards both of straight-
ness of paths and of rotations; σa is a timelike (in the sense that tabσb , 0)
vector field representing trans-temporal identities of spacetime points qua spa-
tial points and affording a standard of rest; and ξ is a scalar field identifying the
preferred point in this spacetime. (As I say, I will not go further into the tech-
nical details here, but interested readers should consult, e.g., Earman, 1989;
Friedman, 1983; Malament, 2012.)
As one weakens the spacetime structure in the classical hierarchy, fewer and

fewer geometrical notions become meaningful, as we have already seen. This
is captured easily in the Riemannian approach: one simply defines fewer and
fewer geometrical objects in one’s spacetime models. Using the same objects
as before, the entire classical hierarchy can be captured as follows:

Aristotelian spacetime: 〈M, tab, hab,∇,σa, ξ〉
Newtonian spacetime: 〈M, tab, hab,∇,σa〉
Galilean spacetime: 〈M, tab, hab,∇〉
Maxwellian spacetime: 〈M, tab, hab, [∇]〉
Leibnizian spacetime: 〈M, tab, hab〉
Machian spacetime: 〈M, hab〉

There are a couple of further points to make at this stage. First: as already
mentioned, it is now Galilean spacetime which (for better or worse) is regarded
as the ‘correct’ spacetime setting for Newtonian mechanics. It is for this reason
that authors such as Malament (2012) simply present Newtonian gravity in this
setting, without identifying Galilean spacetime by name. Second: one might
wonder what the square brackets are doing in the presentation of Maxwellian
spacetime. Typically, when one sees such notation in mathematics, what is
meant is an equivalence class of the relevant object (within the brackets). In
this case, [∇] denotes the equivalence class of derivative operators ∇ which
differ on their standards of linear acceleration (i.e., differ on the adjudications
of which one-dimensional paths through spacetime are bent – i.e., accelerating),
but which agree on their standard of rotation (i.e., agree in the adjudications of
whether bodies are rotating). Thus, by taking this equivalence class, we secure
exactly the structure we defined in the previous section to be implicated in
Maxwellian spacetime – and no more.
As another example in which the same notation appears, typically conformal

structure – which encodes facts about angles but not facts about distances – is
written in the Riemannian approach using square brackets. For example, one
might yet further weaken Machian spacetime to encode only conformal struc-
ture on the spacelike hypersurfaces: in this case, one could write the models of
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the theory as 〈M,
[
hab

]
〉. Now, in all such cases, one might complain that it

would be better (in the sense of: more physically perspicuous) to define geo-
metric objects such that exactly as much structure as required is introduced
from the outset, rather than by (a) introducing something with too much struc-
ture, then (b) telling us to forget about some of it. I agree!36 Indeed, Weatherall
(2018) has shown recently that it is possible to write Maxwellian spacetime
using a ‘standard of rotation’ ⟲ which meets this desideratum. Thus, in fact, it
would arguably be better – and more physically/metaphysically perspicuous –
to write the models of Maxwellian spacetime as 〈M, tab, hab,⟲〉.37

6.4 What Is Special Relativity?
By now, we understand (i) the genesis of special relatvity, (ii) the content of
Einstein’s 1905 paper, and (iii) the different senses in which one might under-
stand the spatiotemporal commitments of physical theories, including special
relativity. But, having achieved all this, the following question arises naturally:
just what is special relativity? In fact, there are at least three different options
on the table:

1. Special relativity consists of the RP, the LP, whatever supplementary prin-
ciples are needed to derive the Lorentz transformations therefrom, and said
derivation of the Lorentz transformations.

2. Special relativity is the statement that the laws of physics (in standard
formulation) are Poincaré invariant.

3. Special relativity is the statement that spacetime structure (over and above
topological and differentiable structure) is exhausted by Minkowski space-
time.

In the coming sections of this Element, we will see how different views on the
nature of special relativity can have substantial impacts upon one’s preferred
resolution to certain philosophical puzzles which arise in that theory (however
construed).

Question: Which of these options do you think best captures the
‘essence’ of special relativity? Or is this a wrong-headed question, and,
if so, why?

36 Here, there are connections to a recent philosophical debate about ‘sophistication’: see Dewar
(2019); Martens and Read (2020).

37 In the case of conformal structure, one can use a tensor density – see, for example, Linnemann
and Read (2021).
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7 Dynamical and Geometrical Approaches
One of the central and recurring themes of this Element regards the pro-
found differences between ‘dynamical’ and ‘geometrical’ approaches, both to
articulating the content of physical theories (e.g., Newtonian mechanics – see
Section 1) and to the explanations of physical phenomena (e.g., the twin para-
dox time differential – see Section 10). In this section, I will address head-on
some of the central differences between authors in these two camps (while
also recognising that there are substantial differences internal to each of these
camps).38

7.1 Bell’s Lorentzian Pedagogy
John Bell, in his famous article ‘How to Teach Special Relativity’ (2004), con-
siders an atom as modelled by classical Maxwell theory. He shows that, when
such an atom is accelerated gently up to some constant velocity, its moving
state will be contracted with respect to its stationary state, in accordance with
the length contraction of subsystems under active Lorentz boosts. The moral –
what he calls Lorentzian pedagogy – is that we can explain the behaviour of
macroscopic systems via appeal to the micro-dynamical underpinnings of those
systems. In particular, we can do so without ‘premature philosophizing about
space and time’ (Bell, 2004).
Brown and Pooley (2001) take inspiration from Bell’s Lorentzian pedagogy:

they maintain that appeal to the fundamental physical laws governing the sys-
tems under consideration can explain the behaviour of those systems. I will
come back to this in a minute, but for the time being note that Bell himself
stresses that there are some limitations to his particular electron model as a
means of illustrating the Lorentzian pedagogy:

Can we conclude then that an arbitrary system, set in motion, will show pre-
cisely the Fitzgerald and Larmor effects? Not quite. There are two provisos
to be made.

The first is this: the Maxwell–Lorentz theory provides a very inadequate
model of actual matter, in particular solid matter. It is not possible in a
classical model to reproduce the empirical stability of such matter. . . .

The second proviso is this. Lorentz invariance alone shows that for any
state of a system at rest there is a corresponding ‘primed’ state of that system
in motion. But it does not tell us that if the system is set anyhow in motion,
it will actually go into the ‘prime’ of the original state, rather than into the
‘prime’ of some other state of the system at rest. In fact, it will generally

38 For more on this debate, see Brown and Read (2021); Huggett, Hoefer, and Read (2022);
Read (2020a, 2020b).
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do the latter. A system set brutally in motion may be bruised, or broken, or
heated, or burned. (Bell, 2004, pp. 74–5)

Here, Bell is stressing that, in order for the Lorentzian pedagogy to go through
in full detail, we had better

1. appeal to the fundamental laws governing the physical systems under
consideration, and

2. hope we can actually build stable bodies (such as rods and clocks) from
matter governed by such laws.39

In a sense, this point is not novel to Bell. Here is Pauli, writing on the
selfsame issues:

Should one, then, completely abandon any attempt to explain the Lorentz
contraction atomistically? We think that the answer to this question should
be No. The contraction of a measuring rod is not an elementary but a very
complicated process. It would not take place except for the covariance with
respect to the Lorentz group of the basic equations of electron theory, as well
as of those laws, as yet unknown to us, which determine the cohesion of the
electron itself. (Pauli, 2000, p. 15)

So, if one takes certain macroscopic, phenomenological special relativistic
effects – for example, canonically – the contraction of rods and dilation of
clocks (discussed in detail in later sections of this Element), the thought is that
it would be legitimate to explain those effects in terms of the micro-constituents
of the systems under consideration. As a matter of practical fact, however, we
might lack an understanding of the physics of such micro-constituents, or it
might be that to work out which such physics is experimentally intractable
(consider, e.g., the number of degrees of freedom in statistical mechanics, often
thereby requiring recourse to thermodynamics). For this reason, Brown and
Pooley (2004) advance what they call a truncated Lorentzian pedagogy:

In order to predict, on dynamical grounds, length contraction formoving rods
and time dilation for moving clocks, Bell recognised that one need not know
exactly how many distinct forces are at work, nor have access to the detailed
dynamics of all of these interactions or the detailed micro-structure of indi-
vidual rods and clocks. It is enough, said Bell, to assume Lorentz covariance
of the complete dynamics – known or otherwise – involved in the cohesion
of matter. We might call this the truncated Lorentzian pedagogy. (Brown &
Pooley, 2004, p. 7)

39 This is closely related to the ‘clock hypothesis’, introduced in Section 10.
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The suggestion is that we can offer a partial explanation of special relativis-
tic effects via appeal to the Poincaré invariance of the dynamical laws. A full
(untruncated) explanation is deferred.

7.2 Constructive and Principle Theories, Reprised
Recall from Section 4 that a constructive theory attempts to provide a detailed
dynamical picture of what is microscopically going on, from which predic-
tions for observable phenomena can be derived. A principle theory, by contrast,
takes certain phenomenologically well-grounded principles, raises them to the
status of postulates, and derives from them constraints on what the under-
lying detailed dynamical equations could be like, without attempting to give
a fully detailed account of what those equations are. The Lorentzian peda-
gogy suggests (straightforwardly) that the detailed microdynamics associated
with special relativistic systems would provide the constructive account of the
behaviour of those systems. Here, indeed, is Bell circa 1992 on precisely this
matter:

If you are, for example, quite convinced of the second law of thermodynam-
ics, of the increase of entropy, there are many things that you can get directly
from the second law which are very difficult to get directly from a detailed
study of the kinetic theory of gases, but you have no excuse for not looking at
the kinetic theory of gases to see how the increase of entropy actually comes
about. In the same way, although Einstein’s theory of special relativity would
lead you to expect the FitzGerald contraction, you are not excused from see-
ing how the detailed dynamics of the system also leads to the FitzGerald
contraction. (Bell, 1992, p. 34)

Clearly, Bell is suggesting that the fundamental microdynamics governing
physical systems can provide a constructive underpinning of (macroscopic)
special relativistic effects. Brown and Pooley are fully on board with this les-
son, but others – certain geometricians – have a very different story to tell.40

To be concrete, here is Janssen’s very different take on the constructive theory
associated with Einstein’s 1905 special relativity:

Minkowski (1909) did for special relativity, understood strictly as a principle
theory, what Boltzmann had done for the second law of thermodynamics. It
turned special relativity into a constructive theory by providing the concrete
model for the reality behind the phenomena covered by the principle theory.
(Janssen, 2009, p. 40)

40 The story is subtle when it comes to some advocates of a geometrical view – for example,
Maudlin (2012). As we will see, Maudlin is also completely on board with this lesson from
Bell, yet nevertheless maintains that geometry has a significant role to play in the explanation
of physical effects and phenomena.
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The idea is that it is Minkowski spacetime structure which affords the con-
structive underpinning of special relativity. The state of play at this point, then,
can be summarised as follows:

Spacetime structure Dynamical laws

Behaviour of physical bodies

Constructive explanation? Constructive explanation?

7.3 Arrows of Explanation
In order to make progress in this dispute regarding the constructive under-
pinnings of special relativistic phenomena, authors change focus: to whether
spacetime structure explains the form of the dynamical laws governing the mat-
ter out of which our physical systems are constructed, or vice versa. Proponents
of a ‘dynamical’ view à la Brown maintain something like this:

Spacetime structure Dynamical laws

Behaviour of physical bodies

Constructive explanation?

Explain?

On the other hand, proponents of a ‘geometrical’ view à la Friedman, Janssen,
or Maudlin maintain something like this:

Spacetime structure Dynamical laws

Behaviour of physical bodies

Constructive explanation?

Explains?

Our authors indeed recognise explicitly their disagreements as such. Here,
again, is Janssen:

Our central disagreement . . . is a dispute about the direction of the arrow
of explanation connecting the symmetries of Minkowski spacetime and the
Lorentz-invariance of the dynamical laws governing systems in Minkowski
spacetime. I argue that the spacetime symmetries are the explanans and that
the Lorentz invariance of the various laws is the explanandum. Brown argues
that it is the other way around. (Janssen, 2009, p. 29)

Brown agrees on the nature of this dispute, but (by now predictably!) does
not think spatiotemporal geometrical explanations hold together:
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Here we are at the heart of the matter. It is wholly unclear how this
geometrical explanation is supposed to work. (Brown, 2005, p. 134)

As a matter of logic alone, if one postulates spacetime structure as a self-
standing, autonomous element in one’s theory, it need have no constraining
role on the form of the laws governing the rest of the theory’s models. So
how is its influence supposed to work? Unless this question is answered,
spacetime cannot be taken to explain the Lorentz covariance of the dynamical
laws. (Brown & Pooley, 2004, p. 84)

Rather, Brown and Pooley propose to reverse the arrow of explanation, so
that:

the appropriate structure is Minkowski geometry precisely because the laws
of physics . . . are Lorentz covariant. (Brown & Pooley, 2004, p. 80)

There are three points to note on the proposal Brown and Pooley are making
here. First, inasmuch as the position seeks to reduce spacetime structure to facts
about the dynamical laws, arguably it is best understood as a modern-day form
of relationalism (according to which spacetime is derivative – in some way or
other – onmaterial bodies and their behaviours)—see Pooley (2013).41 Second,
arguably, the view renders the connection between spacetime and dynamical
symmetries analytic: spacetime structure just is an expression of dynamical
symmetries (Myrvold, 2019; Acuña, 2016).42 Third, if this view can indeed be
made to hold together, then there is a clear sense inwhich spacetime symmetries
(and structure) are explained by dynamical facts.43

To summarise so far, then: certain ‘geometrical’ authors such as Janssen
maintain that spacetime structure explains the behaviour of matter and the
symmetries of the associated laws. For Brown and Pooley, this is mysteri-
ous; they propose to reverse the arrow of explanation by ontologically reducing
spacetime structure to an expression of the symmetries of the dynamical laws
for material bodies, which (for them) are to be regarded as conceptually
prior.44

41 It has not escaped notice that this position is not neutral on the metaphysics of laws of nature:
see Brown and Pooley (2004); Huggett (2009); Read (2020b).

42 Brown is broadly on board with this claim – see Brown and Read (2021).
43 For further discussion, see Read (2020b) and references therein.
44 Several authors have reasonably asked whether one can articulate these laws without presup-

posing spacetime structure. I touched on this question in Section 6, but see, for example,
Dewar (2020) for further discussion, as well as my discussion of Norton (2008) in what
follows.
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7.4 Geometrical Sub-views
In order to better understand the geometrical position, I nowwant to distinguish
several different possible versions of this view:

Version A: Spacetime structure (e.g., the Minkowski metric field ηab in spe-
cial relativity) is ontologically autonomous and primitive, and (in some sense
to be articulated) constrains the dynamical behaviour of matter.
Version B: Spacetime structure is not necessarily to be construed as onto-
logically autonomous and primitive, but is, rather, a universal kinematical
constraint on possible physical theorising. (This position is close to that
stated explicitly by Janssen (2009)). This kinematical constaint could be, for
example,

1. a ‘meta-law’, in the sense of Lange (2007), or
2. a pragmatic restriction (more on which below).

Versions A and B.1 are both what I referred to in Read (2020a) as ‘unquali-
fied geometrical views’, in the sense that both are subject to Brown and
Pooley’s challenge: how is this geometrical explanation supposed to work?45

Version B.2 is, by contrast, a ‘qualified geometrical view’, in the sense that
this charge does not apply to it: we can use (e.g.) ηab to explain the behaviour
of matter (including the symmetry properties of the laws governing matter),
once we have restricted to a certain allowed class of laws (namely, those
which are Poincaré invariant). We will see this view explicitly in a quote
from Maudlin – so there is little doubt that Maudlin counts as a ‘qualified
geometrician’.
Before I get to Maudlin’s views in more detail, though, I want to ask the

following question: in what sense can a qualified geometrical approach offer
a constructive explanation of the behaviour of the physical bodies under con-
sideration? This is a good question, since not all proponents of a geometrical
view profess to hypostatise spacetime (Janssen (2009), for example, explicitly
does not do this). Since constructive explanations (i.e., explanations in terms
of constructive theories: see Read (2020b)) make appeal to physical entities
and goings-on, it seems to me that Janssen occupies an unstable position in
both refusing to hypostatise spacetime yet nevertheless suggesting spacetime
can offer constructive explanations of physical phenomena: in my view, the
former is a necessary condition for the latter. Of course, though, this is not
to say a non-hypostatised spacetime cannot offer other kinds of explanations

45 For Brown on Version B.1, see Brown and Read (2021, p. 76).
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of physical goings on – perhaps unificatory explanations, in the manner of
Friedman (1974).46

What, then, of Maudlin? The following passage is revealing:

Complete physical understanding of an equilibrium state would require a
complete account of the internal structure of the rigid system, both its com-
position and the forces among its parts. But even absent such a detailed
account, we can make some general assertions about rigid bodies in any
Special Relativistic theory. The fundamental requirement of a relativistic
theory is that the physical laws should be specifiable using only the rela-
tivistic space-time geometry. For Special Relativity, this means in particular
Minkowski space-time. It is the symmetry of Minkowski space-time that
allows us to prove our general result. (Maudlin, 2012, p. 117)

Note that the first sentence here is completely consistent with the Lorentzian
pedagogy, so Maudlin wholly concurs with Brown and Pooley on this point.
When Maudlin then writes that ‘[t]he fundamental requirement of a relativistic
theory is that the physical laws should be specifiable using only the relativ-
istic space-time geometry’, this is also something to which the advocate of
the dynamical approach should be able to assent (as a mathematical claim, at
least). The remaining issues are (a) whether this spacetime structure is onto-
logically autonomous, and (b) whether it can offer a constructive explanation
of the aforementioned effects. Advocates of the dynamical approach will assent
to neither (a) nor (b), whereas Maudlin, I take it (albeit not in this quote!), will
assent to both (a) and (b). Once one recognises Maudlin as a ‘qualified geom-
etrician’, however, there does not seem to be anything profoundly problematic
in his position (for further discussion, see Read (2020a)).

7.5 Norton’s Challenge
Having clarified the different forms a geometrical view might take, I now
want to turn to a different issue. Norton claims the whole idea of a ‘dynamical
approach’ to spacetime is question-begging:

Constructivists, such as Harvey Brown, urge that the geometries of Newton-
ian and special relativistic spacetimes result from the properties of matter.
Whatever this may mean, it commits constructivists to the claim that these
spacetime geometries can be inferred from the properties of matter without
recourse to spatiotemporal presumptions or with few of them. I argue that the
construction project only succeeds if constructivists antecedently presume
the essential commitments of a realist conception of spacetime. (Norton,
2008, p. 821)

46 For further discussions on all these issues, see Acuña (2016); Read (2020b).
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Recall from Section 6 that, when constructing spacetime theories (on the
Riemannian approach, at least), we begin by writing down a differentiable
manifold M , before writing down certain additional (e.g.) metrical structure
on that manifold. For example, recall that the spacetime structure of special
relativity (on the Riemannian approach) is 〈M, ηab〉; the (Galilean) space-
time structure of Newtonian mechanics is 〈M, tab, hab,∇〉. Norton’s claim is
that Brown must presuppose the manifold M in order to write down dynam-
ical equations for matter fields (for these equations hold at spacetime points),
and so to get his relationalism about metric structure off the ground. So
Brown’s approach fails, according to Norton, for it implicitly makes certain
spatiotemporal presuppositions.
Is this fair? Let us consider two responses to Norton. The first is from Pooley,

who accuses Norton of misunderstanding the scope of the dynamical project:47

The advocate of the dynamical approach need not be understood as eschew-
ing all primitive spatiotemporal notions (pace Norton, 2008). In particular,
one might take as basic the ‘topological’ extendedness of the material world
in four dimensions. (Pooley, 2013, p. 55)

[T]he project was to reduce chronogeometric facts to symmetries, not to
recover the entire spatiotemporal nature of the world from no spatiotemporal
assumptions whatsoever. (Pooley, 2013, p. 57)

Others have argued that it is unreasonable to say Brown does not have a rela-
tional account of the manifold, as indeed seems to be exhibited in the following
passages:

In pre-quantum physics then, space-time points are perhaps best viewed
not as entities in their own right, but as correlations or links between the
individual degrees of freedom of distinct physical fields. (Brown, 1997,
p. 68)

The simplest (and to my mind the best) conclusion, and one which tallies
with our usual intuitions concerning the gauge freedom in electrodynamics,
is that the space-time manifold is a non-entity. (Brown, 2005, p. 156)

One might, however, regard these statements as mere promissory notes: how
exactly is Brown to eliminate his apparent commitment to manifold points?
Menon (2019) takes up this challenge, using the machinery of ‘algebraic fields’
to show that manifold points can be understood as ‘structural properties of mat-
ter’, in line with the quote from Brown. This work has very recently been
developed further by Chen and Fritz (2021) – but a more sceptical response

47 See also Stevens (2020).
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is given by Linnemann and Salimkhani (2021). One concern expressed in the
latter of these articles is this: how does demonstrating the existence of a map-
ping between (i) theories in their traditional manifold setting, and (ii) these
theories formulated in terms of algebraic fields, actually resolve Norton’s chal-
lenge? For this, one would surely need to argue that the formulation in (ii)
is metaphysically prior to the formulation in (i) – but how would any such
argument proceed?
These debates are ongoing. But what we can say, in light of the recent writ-

ings of inter alia Pooley and Menon, is that it is not clear whether Norton’s
charges against the dynamical approach find their mark.

8 The Conventionality of Simultaneity
Having presented the genesis of special relativity, several different ways in
which one might understand the content of the theory, and the general archi-
tecture of the dynamical/geometrical debate, in the coming sections, I will
introduce and chart the space of possible responses to some important spe-
cial relativistic paradoxes and conceptual conundrums. I will begin with one
of the most long-standing: the question of whether simultaneity is conven-
tional in special relativity. We have seen in Section 4 some hints as to what
this might mean; before explaining this in full detail, however, I must recall a
better-known special relativistic phenomenon: the relativity of simultaneity.

8.1 The Relativity of Simultaneity
Recall the set-up introduced in Einstein’s discussion of distant simultaneity in
his 1905 article. Suppose one bounces a light ray from mirror A to mirror B,
then back again to mirror A, as per Figure 4. Which point on the worldline of
mirror A is simultaneous (according to a clock at A) with the ‘bounce’ point B2

on the worldline of mirror B (according to a clock at B)? As we have already
seen, Einstein stipulated the following natural answer to this question:

tB (B2) = tA (A1) +
1
2
(tA (A3) − tA (A1)) . (77)

This is the Einstein–Poincaré clock synchrony convention. If we apply this in
all frames, then the relativity of simultaneity – which means adjudications on
simultaneity will vary from inertial frame to inertial frame so that simultaneity
is not an invariant of the relevant transformations – follows, as can be seen in
Figure 14. Here, we consider a new coordinate system G in which our set-up
(consisting of the two mirrors A and B and a bouncing light ray) is moving uni-
formly; by applying the Einstein–Poincaré synchrony convention in this frame,
one finds tilted simultaneity hyperplanes. So, if we understand simultaneity à
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Figure 14 The Einstein–Poincaré clock synchrony convention in two
co-moving frames F and G, and the respective simultaneity surfaces SimF

and SimG

la Einstein, then the frame-relativity of simultaneity follows. But could it be
that, even in one particular frame, there is no fact about which point on the
worldline of mirror A is simultaneous with point B2 on the worldline of mirror
B? One who thinks this would have to say there are no facts about simultan-
eity even in one frame – and thus these can be fixed by convention only. This
is the conventionality of simultaneity, which is conceptually distinct from the
relativity of simultaneity.

8.2 The Conventionality of Simultaneity
One of the first authors to explore systematically the possibility of other sim-
ultaneity conventions was Reichenbach in The Philosophy of Space and Time
(1958). Reichenbach maintained that we are free to make stipulations differ-
ent from those of the Einstein–Poincaré convention about which point on the
worldline of mirror A is simultaneous with event B2 on the worldline of mirror
B. To reflect this, he generalised Einstein’s simultaneity relation by replacing
the factor of 1/2 in (77) with an ϵ-factor, such that ϵ ∈ [0,1]:

tB (B2) = tA (A1) + ϵ (tA (A3) − tA (A1)) , 0 < ϵ < 1. (78)

Reichenbach’s underlying thought was this: nothing in the formal structure of
special relativity fixes which synchrony convention we must use; it is, rather,
an additional input choice. This indeed squares with the way in which we have
already seen that Einstein understood the matter of distant clock synchrony in
special relativity.
How would the description of physical goings-on change if one were to

deploy a non-standard (i.e., ϵ , 1/2) simultaneity convention in the rest frame
of the set-up? The answer is illustrated in Figure 15: simultaneity hyperplanes
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Figure 15 The ϵ = 1/4 convention in a frame F

in this convention will be tilted. Moreover, if we choose, for example, ϵ = 1/4,
simultaneity is still frame-relative – that is, simultaneity hypersurfaces will still
shift on transforming to frames co-moving with the original frame (assuming
the same convention is used in the moving frame). Finally, any ϵ , 1/2 will
mean the one-way speed of light is not isotropic.48

Why did Reichenbach bound ϵ by 0 and 1? Here is Brown on this question:

I will have more to say about this Reichenbach factor ϵ shortly, but note that
it is widely assumed that ϵ must be restricted to the closed set [0,1] . . . This is
to ensure that in one direction light does not propagate backwards in time. It
is often claimed that such a possibility would violate the fundamental canons
of causality, but it is a hum-drum experience for airline travellers flying East
across the International Date Line.

I can testify, having flown from New Zealand to both North and South
America, that arriving before you left is survivable! . . .Come to think of
it, every telephone call from, say Australasia to the UK, involves a signal
arriving before it left, and no one seems the worse for it. (Brown, 2005, p. 97)

Brown is stressing that we are free to coordinatise space and time in any way
we please; even if a particular coordinatisation yields descriptions of physical
events according to which there is (say) communication backwards in time,
this will not lead to logical catastrophe. Therefore, although choosing ϵ < [0,1]
might yield just such descriptions, this is not per se problematic. This point is
surely correct, yet one might feel Brown has missed something. Huggett hits
the nail on the head here when he writes:

48 The conventionality of simultaneity as discussed here is closely related to the fact that it is not
possible to measure the one-way speed of light (Salmon, 1977).
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Now of course we are logically free to coordinatize as we please, and so
we can assign, in principle, the same ‘time’ coordinate to any pair of points
we wish. Indeed, in the sense that coordinates are just labels for points, we
could attach absolutely any numbers to any points we liked. At certain points
(e.g., PR, 20, 97) Brown seems to mean nothing more by ‘convention’, but
surely this sense has little philosophical import.

A more weighty issue that motivates conventionalism is that of the sta-
tus of spacetime geometry. The realist-minded about geometry will evaluate
different choices of coordinates according to how well they express the
geometric properties of the spacetime manifold. Of course, even if the mani-
fold were a substance, with intrinsic geometric structure, then we could
still assign coordinates as we chose without affronting logic; but if there
are intrinsic facts of the matter about the geometry of spacetime then some
coordinates are ‘better’ than others. (Huggett, 2009, pp. 410–11)

Here is how I would put the point. It is of course uncontroversial that we
can coordinatise space and time in any way we please, and that descriptions of
physical events may be counter-intuitive or unnatural in some such coordinati-
sations. However, theories come endowed with laws with certain symmetries,
and the question is: to what extent do such symmetries fix (i.e., leave invariant –
see Section 5) certain notions – most relevantly for us in this section, simultan-
eity? Note that, in fact, it does not matter whether one has a ‘dynamics-first’
view such as that of Brown or a ‘geometry-first’ view such as that of Friedman
in order to make this point. In both cases, the issue is: given those symmetries,
which notions are or are not well defined?49

Moving on from these issues, let us explore the ramifications of choosing
non-standard (i.e., ϵ , 1/2) simultaneity conventions. Once one recognises the
possibility that ϵ , 1/2 (however one takes the quantity to be bounded), an
array of different possible means of ‘spreading time through space’ arise. I will
focus on two, which I will call the ‘Reichenbach-I’ and ‘Reichenbach-II’ syn-
chrony conventions. Let us begin with the former. Suppose we send a light
ray out in both directions with an ϵ = 1/4 convention. Simultaneity surfaces
will not be flat, and there will be a preferred position in the reference frame.
This is represented by the line in Figure 16 marked ‘ϵ = 1/4’, bent at A. About
A, the description of the one-way speed of light is isotropic, but highly non-
homogeneous due to the preferred point. (On one natural understanding, C2

and B2 are simultaneous from the point of view of A but not from the point
of view of C, so what counts as simultaneous is not just frame-dependent, but

49 Brown (2005, p. 20) also claims simultaneity is conventional in Newtonian mechanics –
however, the same criticisms would apply to that claim.
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Figure 16 ϵ = 1/2 and ϵ = 1/4 Reichenbach-I conventions

position-dependent. A second natural understanding would have it that C2 and
B2 are simultaneous tout court – but then there is something metaphysically
privileged about A, which might seem mysterious.)
One objection to the Reichenbach-I synchrony convention is due to Torretti

(1983, ch. 7). Call a timescale (i.e., an assignment of temporal coordinates
to spacetime points) inertial just in case, relative to that timescale, free bod-
ies have (or would have) constant velocities. Then an assignment of temporal
coordinates as per the Reichenbach-I convention does not define an inertial
timescale. To see this, consider a free body which crosses A’s worldline. As
the particle moves from one side of this worldline to the other, it (according to
this way of spreading time through space) accelerates instantaneously – in spite
of the fact that no force is acting on it. Given this, we can say that, when one
adopts non-standard synchrony on the Reichenbach-I convention, the resulting
frames of reference are not inertial frames (recalling Knox’s functional defin-
ition of inertial frames given in Section 1), for they implicate free bodies in
arbitrary accelerative motions.
Turn now to the Reichenbach-II synchrony convention. In this case, we set

coordinated values of ϵ on either side of (in our example) A’s worldline, such
that no ‘bend’ arises in the simultaneity hypersurfaces. Suppose, for example,
that we set ϵ = 1/4 on one side, then we set ϵ ′ := 1 − ϵ = 1 − 1/4 = 3/4 on
the other side. This will yield flat simultaneity surfaces (Figure 17). Around A,
space will be anisotropic but homogeneous: light travels faster in the rightwards
direction. Note that Torretti’s objection does not apply in this case.
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Figure 17 The Reichenbach-II convention

We have already seen that the description of the selfsame physical events can
change, depending upon one’s choice of simultaneity convention. Indeed, the
derivation of the Lorentz transformations assumes standard (ϵ = 1/2) synchrony;
adopting non-standard synchrony would require changing, inter alia:50

• The form of the Lorentz transformations.
• Length contraction and distances in a frame (typically a rod will contract
differently when moving in different directions).

• Time dilation.
• How fast something moves relative to a reference frame.

Of course, though, empirically accessible quantities will have to stay the same
(otherwise our synchrony convention wouldmake an observable difference and
no longer be a convention!). For example, the time read by two clocks when
reunited after a ‘twin paradox’ journey will have to be the same, given any
synchrony convention (Section 10).

8.3 Arguments against Conventionality
Since the possibility of the conventionality of simultaneity in special relativity
was first raised, a number of different arguments have been presented to the
effect that, in fact (and in spite of the foregoing discussions), simultaneity is
not conventional in this theory. These arguments intimate that if one attends
sufficiently carefully to the conceptual architecture of the theory, one will find
only one simultaneity convention is permitted (typically, ϵ = 1/2 synchrony).
Here, I will focus on two of the best-known such arguments:

50 For details here, see Anderson, Vetharaniam, and Stedman (1998); Winnie (1970).
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1. Arguments from slow clock transportation.
2. Malament’s 1977 (purported) proof of non-conventionality.

8.3.1 Slow Clock Transport

The thought underlying the idea of synchrony by slow clock transport is this.
Take two clocks, A and B, which are initially spatiotemporally coincident and
synchronised. Now transport B infinitesimally slowly away from A. In such a
scenario, the internal workings of the clock should not change, so the clocks
(the thought goes) should continue to tick in step after B has been transported
away from A.51 In turn, this recovers standard synchrony.
The idea of using slow clock transport to establish a privileged simultaneity

convention goes back (at least) to Eddington (1924) (although Eddington did
not actually endorse this proposal). There are, however, a number of concerns
with the approach, which have since been articulated. One is that the whole
idea is question-begging because until the clocks are synchronized, there is no
way of measuring the one-way velocity of the transported clock. In order to
tackle this concern, Bridgman (1967, p. 26) used the ‘self-measured’ velocity,
determined by using the transported clock to measure the time interval. How-
ever – in fact, like Eddington – he did not see this scheme as contradicting the
conventionality thesis:

What becomes of Einstein’s insistence that his method for setting distant
clocks – that is, choosing the value 1/2 for ϵ – constituted a ‘definition’ of
distant simultaneity? It seems to me that Einstein’s remark is by no means
invalidated. (Bridgman, 1967, p. 66)

The point is that using the slow clock method to synchronise distant clocks is
itself just another synchrony convention. It is also, of course, completely irrele-
vant for clocks which are not originally transported away from one another in
this way.

8.3.2 Malament’s 1977 Theorem

I will now dedicate some attention to a theorem proven by Malament (1977),
which was (and continues to be) interpreted by many as demonstrating
unequivocally that simultaneity is not conventional in special relativity, and
that only the ϵ = 1/2 convention is allowed. As Brown puts it, Malament’s proof
is

51 Note that here the ‘clock hypothesis’ – which I will discuss in detail in Section 10 – is invoked
implicitly.
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a result which virtually single-handedly managed to swing the orthodoxy
within the philosophy literature from conventionalism to anticonventional-
ism. (Brown, 2005, p. 98)

The content of Malament’s result is this. He claims to prove that the simul-
taneity relation S (·, ·) picked out by the standard (ϵ = 1/2) convention is the
only such relation

(a) which is invariant under all O-causal automorphisms (i.e., maps from
Minkowski spacetime to itself preserving the lightcone structure and map-
ping the worldline of some observer O to itself),

(b) which is an equivalence relation,
(c) for which there exist world points p and q, one of which is onO’s worldline

and one of which is not, such that S (p,q), and
(d) which is not the universal relation.

That is, Malament considers a world with only one inertial observer O, along
with the causal (i.e., lightcone) structure of special relativity. He then con-
siders the simultaneity relations which can be defined from this structure –
that is, which respect the symmetries of this structure, which are known as the
‘O-causal automorphisms’ (if a symmetry relation were not to respect the sym-
metries of this structure, then it would – by themantra of Section 5 – presuppose
implicitly further structure, which is ex hypothesi prohibited), and shows that,
subject to the further aforementioned (supposedly innocuous – but see, e.g.,
Grünbaum (2001); Janis (2018) for for discussion and criticism) constraints,
this picks out uniquely the standard synchrony relation as the simultaneity
relation which O would be able to use in order to ‘spread time through space’.
What exactly are the O-causal automorphisms? They include all and only:

1. Translations along O.
2. Scale expansions.
3. Reflections about a hypersurface orthogonal to O.
4. Spatial rotations.

Visually, from left to right, these transformations are presented in Figure 18
(based upon Norton, 1992, p. 226). The idea is this: given an inertial world-
line O in Minkowski spacetime, there is only one simultaneity relation which
an observer represented by the wordline could define – namely standard syn-
chrony. Any other simultaneity relation would not be invariant under O-causal
automorphisms and so (to repeat) would imply a commitment to further spa-
tiotemporal structure beyond that of Minkowksi spacetime. One prominent
author who gives exactly this line of argument is Friedman:
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Figure 18 The O-causal automorphisms

So we cannot dispense with standard simultaneity without dispensing with
the entire conformal structure of Minkowski space-time. Second, it is clear
that if we wish to employ a nonstandard [simultaneity] we must add fur-
ther structure to Minkowski space-time. . . . This additional structure has no
explanatory power, however, and no useful purpose is served by introducing
it into Minkowski space-time. Hence the methodological principle of parsi-
mony favors the choice ofMinkowski space-time, with its ‘built-in’ standard
simultaneity, over Minkowski space-time plus any additional nonstandard
synchrony.

These considerations seem to me to undercut decisively the claim that the
relation of [simultaneity] is arbitrary or conventional in the context of special
relativity. (Friedman, 1983, p. 312)

Friedman’s point is that, in order to articulate non-standard synchrony conven-
tions in a given frame in special relativity, one must introduce extra structure.
But, just as the extra structure in Newtonian spacetime (i.e., persisting points
of absolute space – see Section 5) is unnecessary to state the laws of Newton-
ian mechanics, so too is this extra structure otiose in the relativistic case. Thus,
Friedman is stating that while we could articulate non-standard synchrony con-
ventions in a given frame, this would involve introducing extra structure, and
we have an Occamist norm to not do so (cf. Dasgupta, 2016). This is the import
of Malament’s result for Friedman.
Not all authors agree with Friedman. Brown’s response, perhaps predictably,

is very different:

Why should we consider defining simultaneity just in terms of the limited
structures at hand in the Grunbaum–Malament construction, namely an
inertial world-line W and the causal, or light-cone structure of Minkowski
space-time? (Brown, 2005, p. 100)

The thought is this: in the real world, there are multiple observers, each with
an associated worldline. What is wrong with saying O is to use the standard
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simultaneity relation of O′ – which need not be a standard simultaneity rela-
tion for O? Malament’s proof, the thought goes, would have relevance only in
the impoverised (and utterly counterfactual!) case in which only one inertial
observer exists in a background Minkowksi spacetime. (See here also Janis,
2018.)
In fact, however, Brown’s qualms run deeper than this: in the Malament

world, it is not obvious that we have enough physical structure to set up coord-
inates at all (how, operationally, is one to ‘spread time through space’ with
only one worldline – that of O?). There would, for example, be no way to set
up ‘radar coordinates’ in such a world. (Not only this, but in fact stronger: it is
not obvious that Brown – with his views that spacetime geometry is ultimately
to be regarded as a codification of dynamics – will regard the Malament world
as coherent to begin with!) So, given an operational understanding of coordin-
ates (recall Section 4), it is not clear that it is legitimate to speak of simultaneity
relations at all in that world. And in the actual world, there are many observers
and much physical structure, which should afford ample opportunity to define
non-standard simultaneity relations forO. Either way, Malament’s proof seems
to fail to show what is claimed.
For what it is worth, I find Brown’s reasoning here convincing. But it is

helpful to recall the different possible understandings of the content of special
relativity (Section 6) in order to understandwhy the issue of the conventionality
of simultaneity continues to propel authors in different directions. If one under-
stands (as on the third option) special relativity to just be a theory ofMinkowski
spacetime and what is derivable therefrom, then the Malament–Friedman line
that simultaneity is not conventional in special relativity (because only stand-
ard synchrony is definable using only one observer and said structure) looks
more plausible. But if one has the second understanding, according to which
special relativity has to do with Poincaré invariant material laws, then argu-
ably Brown’s position becomes the more plausible (here, there is no limit to
the number of material bodies involved). Interestingly, if one takes the first
understanding, according to which special relativity essentially amounts to the
content of Einstein’s 1905 paper, then there is a sense in which simultaneity is
not conventional in the theory, for standard synchrony is baked into its axioms!
This highlights that there can be both theory-external notions of convention-
alism – which additional, super-empirical, assumptions to insist upon when
building a theory? – and theory-internal notions of conventionalism – having
fixed a theoretical edifice, what is definable uniquely therefrom and what is
not?
Let me close this section with one broader thought. Famously, Quine, in his

critique of the analytic/synthetic distinction, maintained that ‘the lore of our
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fathers is . . . a pale grey lore, black with fact and white with convention. But I
have found no substantial reasons for concluding that there are any quite black
threads in it, or any white ones’ (Quine, 1951). If correct, this would imply
that there is no clean distinction between the (supposedly) empirically motiv-
ated inputs in Einstein’s 1905 derivation of the Lorentz transformations (e.g.,
his two postulates) and the (supposedly) conventional inputs (e.g., standard
synchrony).

Question: How plausible is Quine’s position in the context of special
relativity?

9 Frame-Dependent Effects
The phenomena of time dilation, length contraction, and the relativity of sim-
ultaneity are often presented as the bread and butter of special relativity.
However, there are good reasons for doubting the reality of these phenom-
ena, for they are frame-dependent effects which do not admit of a description
liberated from coordinate systems. So: are these truly physical effects or not?

9.1 Time Dilation
I will begin with time dilation: the famous special relativistic result that ‘mov-
ing clocks run slow’. It is easy to demonstrate time dilation directly from
Einstein’s two postulates: in a frame moving uniformly with respect to the
light clock set-up Einstein presented at the beginning of his 1905 paper (Figure
4), the light will still travel with velocity c, but will now have to traverse the
hypotenuse of a triangle – meaning the time between ticks will be greater.
The result can also be derived directly from the Lorentz transformations.

Considering two coordinate systems related by a Lorentz boost in the positive
x-direction, we have, where β := v/c,

c∆t ′ = γ (c∆t − β∆x) , (79)

∆x ′ = γ (∆x − βc∆t) , (80)

∆y′ = ∆y, (81)

∆z′ = ∆z. (82)

Setting∆x = 0 in the first of these Lorentz transformations, we have∆t ′ = γ∆t.
Thus, given a clock stationary in one frame, that clock will tick more slowly in
a Lorentz-boosted frame.
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But here is the rub: time dilation seems to arise because the time elapsed
between ticks on a clock is frame-relative. So it seems that one ‘gets a clock to
slow down’ merely by changing one’s own frame of reference; but, in so doing,
one clearly does nothing at all to the clock itself. (In other words, one need only
perform a passive rather than an active transformation in order for time dila-
tion to manifest itself – recall Section 2.) This line of thought seems to suggest
that time dilation is not a real physical effect, but is a ‘merely perspectival’
one. Moreover, whether or not a clock moving in a given direction runs slow
relative to any given frame depends upon how distant clocks are synchronised
in that frame. Hence, conventionalists about simultaneity should also, for con-
sistency, be conventionalists about time dilation – and this might reasonably
further undercut any thought that time dilation is a ‘real’ phenomenon.

9.2 Length Contraction
Le me turn now to length contraction. Like time dilation, this phenomenon can
be derived from Einstein’s two postulates, as well as directly from the Lorentz
transformations. This time, I will skip directly to the second. Consider again a
boost in the positive x-direction. Combining (79) and (80), we have

∆x ′ = γ∆x − βc∆t ′ − β2γ∆x. (83)

Setting ∆t ′ = 0, we have

∆x ′ = γ∆x
(
1 − β2

)
. (84)

But γ−2 = 1 − β2, so

∆x ′ =
1
γ
∆x. (85)

So, given a rod stationary in one frame, the distance between the ends of that
rod at a given time will be smaller in a Lorentz-boosted frame.
Once again, there are worries here regarding perspectivalism and conven-

tionalism. Length contraction seems to arise because the length of a rod is
frame-relative. So it seems that one ‘gets a rod to contract’ merely by changing
one’s own frame of reference; but, in so doing, one clearly does nothing at all to
the rod itself. This line of thought seems to suggest length contraction is not a
real physical effect, but is a ‘merely perspectival’ one. Moreover, note that the
length of a given object in a given frame depends upon the synchrony scheme
for distant clocks in that frame – if (and only if) the object is moving relative to
the frame in question. Hence, conventionalists about simultaneity should also,
for consistency, be conventionalists about lengths of moving bodies – and this
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might reasonably further undercut any thought that length contraction is a ‘real’
phenomenon.

9.3 Bell’s Rockets
We have already seen the relativity of simultaneity in the previous section, so I
will skip an explicit discussion of that phenomenon here. Rather, I will turn now
to the question of whether frame-dependent explanations in special relativity
are – or can be – legitimate (as contrasted with the question of whether frame-
dependent phenomena are physically real.) One of the most famous places in
which frame-dependent explanations come to the fore is a thought experiment
due to Bell (again in his article ‘How to Teach Special Relativity’), regarding
two rockets:

Three small spaceships, A, B and C, drift freely in a region of space remote
from other matter, without rotation and relative motion, with B and C
equidistant from A.

On reception of a signal from A, the motors of B and C are ignited and
they accelerate gently.

Let the ships B and C be identical, and have identical acceleration pro-
grammes. Then (as reckoned by the observer in A) they will have at every
moment the same velocity, and so remain displaced one from the other by
a fixed distance. Suppose that a fragile thread is tied initially between pro-
jections from B and C[, and that] it is just long enough to span the required
distance initially. (Bell, 2004, p. 67)

Question: Does the string in Bell’s rocket thought experiment break?
Why, or why not?

Take a couple of minutes to think about this question before proceeding. As
Bell explains, the answer to the question is this:

If [the rope] is just long enough to span the required distance initially, then
as the rockets speed up, it will become too short, because of its need to Fitz-
gerald contract, and must finally break. It must break when, at a sufficiently
high velocity, the artificial prevention of the natural contraction imposes
intolerable stress.

Is it really so? This old problem came up for discussion once in the CERN
canteen. A distinguished experimental physicist refused to accept that the
thread would break, and regarded my assertion, that indeed it would, as a
personal misinterpretation of special relativity. We decided to appeal to the
CERN Theory Division for arbitration, and made a (not very systematic)
canvas [sic] of opinion in it. There emerged a clear consensus that the thread
would not break! (Bell, 2004, pp. 67–8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
30

05
99

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009300599


80 Philosophy of Physics

Figure 19 The Bell rocket set-up

So, the string breaks, as illustrated also in Figure 19 (based upon that by
Maudlin (2012)). But let us think about the different explanations for why the
string breaks which might be offered from different frames of reference:

• From the point of view of the control tower A, the breakage happens as a
result of length contraction of the string.

• From the point of view of the first rocket B, the breakage happens as the
second rocket moves progressively further away (due to the relativity of
simultaneity – draw a spacetime diagram!).

• From the point of view of the second rocket C, the breakage happens as the
first rocket lags further behind (due to the relativity of simultaneity – draw a
spacetime diagram!).

All of these points should make sense (though I will return shortly to the
question of whether frame-relative explanations in general are legitimate). So
why so much confusion in the CERN theory division about whether the string
would snap? The Bell rocket scenario is peculiar, in the following sense. If one
were to begin with two rockets stationary with respect to one another and boost
to a uniformly accelerating frame in special relativity (a ‘Rindler frame’), one
would find that the rockets do not have the same accelerations in this frame,
at any given time. This difference in accelerations would mean the rockets
move closer to one another as they accelerate, thereby implementing the length
contraction effects. This does not happen in the Bell rocket scenario – so the
rest frame of A is not a Rindler frame. This difference is illustrated in Figure
20 (based upon Weiss (2017)): the first represents the Bell rocket set-up; the
second represents two rockets in a Rindler frame. Clearly, these two physical
set-ups are different!
In other words, the point is this: many presented with this puzzle assume

that, as the rockets accelerate, the rocket-string-rocket system length contracts
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Figure 20 Left: The Bell rocket scenario, tilted simultaneity surfaces
superimposed. Right: Two rockets in a Rindler frame

(from the point of view of the control tower A), so the string does not snap.
However, by stipulation, in the Bell rocket scenario, the rockets maintain at
all times equal spatial distance between them, in A’s frame. This means the
rockets exert an ever-greater force on the string, ultimately meaning the latter
will snap. In Bell’s scenario, the string connecting the rockets is weak: it breaks
under only a small applied force and is unable to keep the rockets together. If,
however, the string were infinitely strong, then it would contract as the rockets
accelerate, thereby pulling the rockets together: theywould form aRindler pair.
Having settled what can be so confusing about the Bell rocket example, let

us return to our three frame-dependent accounts of why the string breaks in
Bell’s original scenario. Maudlin repudiates such explanations:

The surface contradiction between these three accounts of why the thread
breaks illustrates that frame-dependent narrations of events in Relativity can
be misleading. There is one set of events, governed by laws that are indiffer-
ent to which coordinate system might be used to describe a situation. In each
frame-dependent account, the interatomic forces in the thread play a role in
determining exactly when the thread breaks. But how that role is described
in a particular reference frame depends critically on which frame is chosen.
(Maudlin, 2012, p. 120)

Question: What, exactly, is misleading about frame-dependent
accounts of special relativistic phenomena?

9.4 Assessing Frame-Dependent Effects
Up to this point, we have witnessed frame-dependent effects such as time
dilation and length contraction and seen arguments to the effect that these
phenomena are ‘merely perspectival’ or conventional. We have also seen, in
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the context of the Bell rocket scenario, that one can find in the literature dif-
ferent attitudes towards the legitimacy of frame-dependent explanations. This
means are two questions are in play:

1. Are frame-dependent explanations of physical phenomena legitimate?
2. Are frame-dependent effects – for example, length contraction and time

dilation – ‘physical’?

As we have seen, Maudlin disavows frame-dependent explanations (of, e.g.,
the Bell rocket result), for different explanatory accounts will be offered in
different frames. But what exactly is wrong with availing oneself of such
explanations? Why does a lack of univocity imply illegitimacy? Maudlin
instead prefers coordinate-independent, geometrical explanations (‘geomet-
rical’ in the sense that they make direct appeal to spacetime geometry), as is
evident in passages such as the following:

At first I followed standard presentations, making extensive use of coordin-
ates and coordinate transformations. Bit by bit, class after class, reference
to coordinates dropped away, leaving the fundamental geometry open to
inspection. (Maudlin, 2012, p. ix)

Note, in particular, that in this passage Maudlin is:

1. Committing to a geometrical understanding of special relativity.
2. Disavowing frame-dependent explanations.

The thought is that only invariant structures – for example, the structure of
Minkowski spacetime in special relativity – should feature in genuine explan-
ations. Whatever one makes of this, it is clearly going to be anathema to, for
example, Brown, for whom such invariant spacetime structures are just a codifi-
cation of the symmetry properties of the dynamical equations governingmatter,
written in coordinate bases (Section 7).
Let us turn now to the second question: are frame-dependent effects ‘phys-

ical’? To make progress in answering this question, let me say provisionally
that a phenomenon associated with a coordinate transformation is physical just
in case that transformation relates physically distinct states of affairs. So:

• Global Galilean boosts are physical in Newtonian spacetime.
• Global Galilean boosts are not physical in Galilean spacetime.
• Global Lorentz boosts are not physical in Minkowski spacetime. (Recall:
Minkowski spacetime has no standard of rest.)

• Local Galilean boosts are physical in Galilean spacetime. (Consider Gali-
leo’s ship.)
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• Local Lorentz boosts are physical in Minkowski spacetime. (Consider a
constant-velocity-transformation version of Bell’s rockets – this is what
Maudlin calls ‘physical length contraction’.)

The moral is this. The physicality of a coordinate effect (by the preceding
definition of ‘physicality’) is crucially dependent upon

(a) the amount of spacetime structure presupposed, and
(b) whether the associated coordinate transformations are applied globally

(i.e., to the whole universe) or locally (i.e., to subsystems of the universe).

Local transformations can effect genuine physical change, even if the particu-
lar mode of description of that change is frame-dependent (recall again Bell’s
rockets).

9.5 Fragmentalism
Within the metaphysics literature, there is a stronger view than that articulated
at the end of the previous subsection, to the effect that all frame-dependent
effects can (in principle) be regarded as physically real. This view is known
as ‘fragmentalism’ and was first articulated by Fine (2005) in the context of
the philosophy of time. According to this view, ‘the world is inherently per-
spectival’, and ‘the overall collection of facts, “über reality”, includes pairs of
mutually incompatible facts’ (Lipman, 2020, p. 23). So, on this view in the
context of special relativity, the totality of facts about the universe includes
frame-dependent facts about (e.g.) lengths of rods and periods of clocks, which
are mutually inconsistent.
It is important to be clear on the fragmentalist’s commitments. As Lipman

writes,

The importance is that of marking a metaphysical realism about those variant
matters. The relevant question is whether realism or antirealism is true about
the frame-relative facts, that is, whether consideration of the special theory
of relativity removes all frame-relative facts from one’s metaphysical con-
ception of reality: the Minkowskian answers yes, the fragmentalist answers
no. (Lipman, 2020, p. 31)

That is, the fragmentalist does not deny the existence of coordinate-
independent facts to do with (say) Minkowski spacetime; they simply admit
further, frame-dependent facts into their ontology. I will leave it to the reader
to decide what to make of fragmentalism in the context of special relativity;52

here, however, are two questions the fragmentalist must address:

52 For my own take, see Read (2022).
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Question: How to make sense of a ‘disunified reality’, according to
which ‘the totality of facts is incoherent’?

Question:What does fragmentalism add to the considerations of phys-
icality and subsystem–environment decompositions introduced in this
section?

10 The Twin Paradox
From Planet of the Apes to Ender’s Game, the twin paradox is a mainstay of
twentieth-century science fiction. Qualitatively, the idea is this: consider two
identical twins at rest on Earth. One twin takes an interstellar journey before
returning to Earth while the other remains at home on Earth; on reunion, our
twins find they have aged by different amounts. So far, this is just a feature
of special relativity – the paradox is supposed to consist in the fact that, if
one considers the same situation in the rest frame of the travelling twin, then
it seems it should be the Earthbound twin who ages less (the situations are
entirely symmetrical, or so it seems). So, how to resolve this paradox?

10.1 The Clock Hypothesis
Before I discuss the twin paradox any further, I need to introduce a crucial
device in the foundations of spacetime theories: what is known as the clock
hypothesis. Suppose we have two identical clocks built from Poincaré invariant
matter fields, with one clock moving with uniform velocity with respect to the
first. Will these clocks function identically in their rest frames? Yes, by the rela-
tivity principle. Now suppose we have two identical clocks built from Poincaré
invariant matter fields, with one clock accelerating with respect to the first.Will
these clocks function identically in their rest frames? Not necessarily – for the
relativity principle holds for systems related by Poincaré transformations.
Another (more geometrical) way to make the point is this. Given two clocks

A and B, if B moves at uniform velocity with respect to A, then if A correctly
reads off the Minkowski spacetime interval

∫
γA

ds along its worldline γA, then
so too will B correctly read off the interval

∫
γB

ds along its worldline γB, by
the relativity principle. However, if B accelerates with respect to A, then the
fact that A correctly reads off the Minkowski spacetime interval

∫
γA

ds along
its worldline γA does not guarantee that B correctly reads off the interval

∫
γB

ds
along its worldline γB. That this is so is an additional input assumption, which
is the clock hypothesis. As Maudlin puts it, the hypothesis amounts to this:

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
30

05
99

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009300599


Special Relativity 85

The amount of time that an accurate clock shows to have elapsed between
two events is proportional to the Interval along the clock’s trajectory between
those events, or, in short, clocks measure the Interval along their trajectories.
(Maudlin, 2012, p. 76)

One should not, however, simply assume that the clock hypothesis is foun-
dationally unproblematic. In fact, to suppose any clock satisfies the clock
hypothesis is misleading, for all clocks have a breaking point. As Eddington
said nicely of an accelerating clock,

We may force it into its track by continually hitting it, but that may not be
good for its time-keeping qualities. (Eddington, 1966, p.64)

The point is this: whether a particular clock ticks in accordance with the space-
time metric is not a matter of stipulation or luck, but depends crucially on the
constitution of the clock. For any given clock, no matter how ideal its per-
formance when inertial, there will in principle be an acceleration-producing
external force, or even tidal effects inside the clock, such that the clock ‘breaks’,
in the sense of violating the clock hypothesis. Might it therefore not be more
appropriate to speak of the clock condition? (Brown & Read, 2016, §III.C).
Regardless of what one thinks of this, what is uncontroversial is that, when-

ever we have accelerating clocks, the clock hypothesis/condition must be
brought into consideration: is it satisfied or not? And what upshots does this
have for the discussion at hand? In much of this section, in order to render the
contours of philosophical discussion of the twin paradox as crisp as possible,
I will simply assume the clock hypothesis – but it is important to remember
that this principle lurks beneath the hood. I will flag it again explicitly where
relevant.

10.2 The Twin Paradox
Without further ado, then, let us turn to a more quantitative presentation of the
twin paradox. Consider two identical twins A and B, who are spatiotemporally
coincident on Earth at some time. Twin B decides to make an out-and-back trip
away from Earth, while Twin A stays home: see Figure 21. It is a basic feature
of special relativity that, on returning to Earth, Twin B will have aged less than
Twin A. This is easy to see by computing the proper time (which is the time read
off by a clock in the rest frame of the observer under consideration, which will
correspond to the integral of the metric interval along that observer’s worldline,
on the assumption of the clock hypothesis) along the worldline of each twin:

TA =

∫ p

o

dτA (86)
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Figure 21 The twin paradox set-up

TB =

∫ p

o

dτB

=

∫ p

o

(
1 −

(
dx

dτA

)2
−

(
dy

dτA

)2
−

(
dz

dτA

)2
) 1

2

dτA

< TA. (87)

(Here, o and p are, respectively, the departure and reunion events of the two
twins.) Note that the result of this computation is not relative to a particular
frame—it is a frame-independent fact that Twin B has aged less than Twin A
when they are reunited.53 There is a temptation to appeal to time dilation in
order to explain the twin paradox result, but (at least in the first instance) this
should be resisted: we have already seen in the previous section that whether it
is appropriate to appeal to time dilation will depend upon the frame of reference
with respect to which one is describing the physical situation under consider-
ation; moreover, there are choices of simultaneity convention which eliminate
time dilation effects. Thus – again, as stressed previously – at the very least
such accounts cannot be fundamental.
This result is certainly unexpected, but it is not yet a paradox. (Recall Quine’s

famous 1966 characterisation of a paradox: an apparently successful argument
having as its conclusion a statement or proposition that seems obviously false
or absurd.) But we can generate the paradox in the following way. We have
seen that TA > TB – and this is a frame-independent result. But if we were to
boost to B’s rest frame, the situation would look (it seems) exactly analogous.
In that case, we would surely expect TB > TA. Assuming that TA , TB, this
leads to a contradiction – and so to something more unavoidably classified as
a paradox. So, what breaks the symmetry between A and B?

53 This is a nice illustration of the sense in which drawing spacetime diagrams can bemisleading –
for B’s path looks longer on the diagram, but is in fact shorter when we do the computation.
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10.2.1 Inertial Frames

As a first response to the twin paradox, it is natural to appeal to inertial ver-
sus non-inertial frames (or, if one prefers language expunged of reference
to frames, inertial versus non-inertial trajectories). Recall that Minkowski
spacetime has the resources to distinguish straight (‘inertial’) from bent (‘accel-
erating’) trajectories. Suppose A is following an inertial trajectory relative to
Minkowski spacetime structure; then (the thought would go), B is not following
an inertial trajectory relative to the selfsame spacetime structure. Therefore, to
boost to B’s rest frame would involve moving to a non-inertial frame, in which
case, we should not expect the same laws of physics to apply. Thus, consider-
ation of the structure of Minkowski spacetime allows us to break the symmetry
between A and B and thereby resolve the paradox.
This reasoning on the basis on inertial frames is a plausible first reaction to

the paradox – although ultimately we will see that it is not problem-free. Before
I get onto that, though, we should recall from Section 1 that different authors
have very different views on the nature of inertial frames. In particular, authors
such as Brown might well be unhappy with the appeal to Minkowksi spacetime
in the discussion of inertial frames. In light of this, we should ask: what role is
Minkowski spacetime playing in the explanation? Could we excise it and just
appeal to the inertial frames as picked out by the dynamics, rather than cashed
out using geometrical notions? Indeed we can do this—here is how the account
might go.
Suppose A is following an inertial trajectory – that is, it travels with uniform

velocity in the inertial frames, as picked out by the dynamics (in one way or
another – see Section 1). Then B is not following an inertial trajectory, for
B accelerates with respect to A. Therefore, to boost to B’s rest frame would
involve moving to a non-inertial frame, in which case, we should not expect the
same laws of physics to apply. Thus (again, the thought might go) consideration
of the inertial frames allows us to break the symmetry between A and B and
thereby resolve the paradox.
My point here is really a simple one: one can appeal to inertial frames in

order to attempt to account for the twin paradox time differential, on both a
‘geometrical’ and ‘dynamical’ understanding of inertial frames. Fair enough –
but is the account actually any good to begin with? One should be careful about
making too much of the inertial/non-inertial distinction, for one can formulate
twin paradoxes with

(i) equal accelerations, or
(ii) no accelerations at all!
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Figure 22 A version of the twin paradox in which both twins have identical
acceleration profiles

Let me begin with the first case (here, I will draw on Maudlin’s very elegant
discussion of the twin paradox (2012, p. 82)). One can envisage a case where
Twin A undertakes a ‘mini-journey’, but with the same acceleration profile,
as per Figure 22. In this case, neither Twin A nor Twin B find themselves in
inertial frames – nevertheless, on recombination, Twin B has still aged less than
Twin A. Thus it seems it cannot be non-inertial motion alone which accounts
for this result. On this issue, Maudlin writes the following:

Both Rindler and Feynman point out that acceleration is objective in Rela-
tivity, just as it is in Newtonian absolute space and time and in Galilean
space-time. This is true but irrelevant: the issue is how long the world-lines
are, not how bent. (Maudlin, 2012, p. 83)

Let us turn to the second potential problem for inertial frame-based attempts
to explain the twin paradox: the cases in which one has no accelerations at all.
There are two such cases. The first involves not twin but triplets, A (the stay-at-
home triplet), B (whose clock is initially synchronised with that of A, and who
travels away from Earth with constant velocity), and C (who travels towards
Earth with constant velocity, and who synchronises their clock with that of B
on passing the latter). In this case, the time displayed by C’s clock will still
be less than that displayed by A’s clock on recombination. Moreover, here, all
three triplets are moving inertially – so can one really appeal to inertial versus
non-inertial motion to account for this result?

Question: How physical is this case, given that (presumably) some
energy/momentum must be exchanged between Twin B and Twin C?

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
30

05
99

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009300599


Special Relativity 89

Figure 23 The twin paradox on a cylinder

The second ‘no acceleration’ case is particularly intriguing. Imagine our
twins A and B find themselves on a spacetime of cylindrical topology, as per
Figure 23.54 In this case, Twin A stays home as before, whereas Twin B travels
with constant velocity around the cylinder before rejoining Twin A on Earth.
Again in this case, on recombination, Twin B will have aged less than Twin A.
Since both twins are (it seems) moving inertially in this case, it would again
seem one cannot appeal to the distinction between inertial and non-inertial
motion in order to account for the time discrepancy between the clock readings
of the twins.
In neither of these cases is there a straightforward way of appealing to the

inertial/non-inertial distinction in order to account for the twin paradox time
differential. That said, in the latter (i.e., the cylindrical spacetime case), per-
haps there is still a difference between A and B – for only A’s worldline is
aligned with the principal axis of the cylinder. In this case, at least, there is a
preferred frame, allowing us to account for the cylindrical twin paradox time
differential.

Exercise: Assess this response to the case of the cylindrical twin
paradox.

What lessons should we take from these cases? Taken together, they suggest
the twin paradox result cannot be accounted for solely in terms of the accel-

54 Compare Weeks (2001, p. 587). For more on twin paradoxes in spacetimes of different
topologies, see Luminet (2011).
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erations of the twins. So, at this point – as we have seen in the quote from
Maudlin – exploring other possible explanations is apposite.

10.2.2 Geometrical and Dynamical Explanations

On the twin paradox, Maudlin writes:

The Twins ‘Paradox’ has inspired more confusion about Relativity than any
other effect. The explanation of the phenomenon, in terms of the intrinsic
geometry of Minkowski space-time and the Clock Hypothesis is exquisitely
simple: clocks measure the Interval along their world-lines, and B’s world-
line between o and q is longer than A’s. Period. There is nothing more to say.
(Maudlin, 2012, p. 79)

It is certainly true that this kind of geometrical account of the twin paradox time
differential faces no apparent counterexamples, as with the previously coun-
tenanced appeals to inertial frames. But how illuminating is it? Presumably, a
‘dynamicist’ (e.g., Brown) would find the spacetime explanation of the cylin-
drical twin paradox (and the equal-acceleration twin paradox) similarly otiose
and would say, even if it is not an (operationalised) notion of inertial frames
which accounts for the time differential, it is still facts about the matter out
of which the twins are built, more generally construed, which account for the
difference, rather than anything to do with spacetime geometry.
To summarise, the dialectic here between the ‘geometrical’ camp à laMaud-

lin and the ‘dynamical’ camp à la Brown proceeds as follows. An initial
‘geometrical’ thought might be that it is spacetime which grounds the distinc-
tion between inertial and non-inertial motion, and it is this distinction which can
be appealed to in an explanation of the twin paradox time differential. Such a
line of thought could be represented thus:

Spacetime structure

Inertial/non-inertial distinction

Twin paradox time differential

On the other hand, an initial ‘dynamical’ thought, as we have seen, would be
that this appeal to spacetime is redundant and one can appeal directly to the
inertial/non-inertial distinction (as, ultimately, given by facts about the dynam-
ics) in order to account for the twin paradox time differential. Such a line of
thought could be represented thus:
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Spacetime structure

Inertial/non-inertial distinction

Twin paradox time differential

×

In light of our problem cases, however, we have seen it is difficult to maintain
that appeal to the inertial/non-inertial distinction can account completely for
the twin paradox result. In light of this, a revised ‘geometrical’ understanding
(again, à la, e.g., Maudlin) would appear thus:

Spacetime structure

Inertial/non-inertial distinction

Twin paradox time differential

×

By contrast, a revised ‘dynamical’ thought would maintain that it is facts about
dynamics which directly explain the twin paradox time differential; appeal to
the inertial/non-inertial distinction is likewise recognised to be unnecessary
here:

Spacetime structure

Facts about dynamics Inertial/non-inertial distinction

Twin paradox time differential

×
×

Question:Which of the ‘geometrical’ or ‘dynamical’ approaches to the
twin paradox is to be preferred, and why?

10.3 Frame-Relative Accounts
There are many purported ‘explanations’ of the twin paradox which appeal to
frame-relative structures. (The situation is very similar to that of, e.g., Bell’s
rockets.) Here, I will present one of the most prominent of these, which appeals
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Figure 24 The standard twin paradox set-up, with Einstein–Poincaré
simultaneity hypersurfaces for Twin B superimposed

to simultaneity hypersurfaces in B’s rest frame.55 I will then consider (in a con-
tinuation of the discussion presented in the previous section) the more general
question of the legitimacy of these accounts.
The account of the twin paradox time differential which appeals to the rela-

tivity of simultaneity proceeds like this. Consider the (ϵ = 1/2) simultaneity
hyperplanes from the point of view of B’s rest frame. At the turnaround point,
there is a sudden swing in the hyperplanes, leading to ‘lost time’ relative to
A’s worldline. The situation would be illustrated on a spacetime diagram as in
Figure 24. The claim, then, is that it is this ‘lost time’ which accounts for the
time differential between A and B. This seems fine (at least if one is Brown –
not if one is Maudlin!), but is the account a fundamental one? Here is Brown
on this question:

Explanations of synchrony-independent phenomena in SR that rely cru-
cially on the relativity of simultaneity are not fundamental. (A common
example concerns the clock retardation effect, or ‘twins paradox’, where
it is claimed that at the point of turn-around of the travelling clock, the
hyperplanes of simultaneity suddenly change orientation and the resulting
‘lost time’ accounts for the fact that the clocks when reunited are out of
phase. It is worth bearing in mind that the clock retardation effect, like any
other synchrony-independent phenomenon in SR, is perfectly consistent with
all the non-standard transformations . . ., including those which eliminate
relativity of simultaneity.) (Brown, 2005, p. 105, emphasis in original)

55 This particular proposal was first made by von Laue in 1913 (Miller, 1981).
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I agree with Brown (who, on this front, would also agree with Maudlin). There
are indeed three reasons such accounts of the twin paradox result should be
regarded as non-fundamental:56

1. They are frame-relative.
2. They are convention-relative. (Debs & Redhead, 1996)
3. They apply only to certain versions of the paradox – for example, not to the

cylindrical case.

To repeat: Maudlin agrees such accounts are non-fundamental, but also (as we
have seen in the previous section) regards such accounts as thereby illegitim-
ate. Thus, the difference between authors such as Brown on the one hand, and
such as Maudlin on the other, vis-à-vis such frame-dependent accounts, can be
summarised thus:

Brown-style: They are legitimate but non-fundamental.
Maudlin-style: They are illegitimate and non-fundamental.

10.4 General Relativity
It is sometimes claimed that, since the twin paradox scenario involves accel-
erations, we must appeal to general relativity to explain the result (at various
stages, Einstein and Bornmade such claims: see Jammer (2006, p. 165)). Recall
that general relativity is Einstein’s theory of gravitation, completed in 1915,
according to which spacetime structure is dynamical and can vary in the pres-
ence of matter. Consideration of accelerations afforded a crucial way into the
theory for Einstein; my conjecture is that it is this role of the consideration
of accelerations – as an heuristic for the construction of general relativity –
which ultimately has led to the confused and incorrect claims that discussion
of accelerations requires recourse to general relativity – which it emphatically
does not! Any such claim indeed is confused, for:

1. Accelerations are not an essential feature of the twin paradox – as we have
seen.

2. Special relativity has the resources to distinguish accelerating from non-
accelerating trajectories. (Recall Section 5.)

56 Those who do not accept that simultaneity is conventional in special relativity – recall Sec-
tion 8 – would not accept (2). This, however, would not prevent them from accepting the
conclusion, in light of (1) and (3).
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Still, it is worth dissecting this reasoning a bit more, to see what is really wrong
with it.
Consider the fictitious force terms one obtains by writing one’s theories of

physics in non-inertial frames of reference (we have seen explicit examples of
these terms in Section 1 and Section 6). Call these terms ‘inertial effect’ terms.
Einstein (1907) had an insight – now known as ‘Einstein’s equivalence prin-
ciple’ (see Lehmkuhl, 2021) – that such inertial effect terms are to be identified
conceptually with terms representing gravitation (for further discussion here,
see Lehmkuhl (2014)).
One could appeal to Einstein’s equivalence principle to explain (accelerating

versions of) the twin paradox: the accelerating twin is subject to a gravitational
force. But – crucially! – note that this is really no better than the original (bad!)
appeal to accelerations! Moreover, this approach is also in tension with a wide-
spread methodology in the philosophy of physics: try to understand effects
which arise in a given theory in terms of that theory itself – that is, with-
out introducing notions which transcend that theory. Thus claims that one has
to appeal to general relativity in order to account for the twin paradox result
implicate one in a misunderstanding of (a) the equivalence principle, (b) the
representational and descriptive capacities of special relativity (to repeat again:
accelerations are perfectly meaningful here!), and (c) the necessity of acceler-
ations for twin paradox effects. Best, then, to avoid such appeals when one
is engaging in the philosophical and conceptual ramifications of the special
theory.
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