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The main theorem of this -paper is a little involved (though the proof is
straightforward using a well-known idea) but the immediate corollaries are
interesting. For example, take a complex normed vector space 4 which is
also a normed algebra with identity under each of two multiplications * and o.
Then these multiplications coincide if and only if there exists « such that
laeb|| £allaxb] for a, bin A. This is a condition for the two Arens
multiplications on the second dual of a Banach algebra to be identical. By
taking * to be the multiplication of a Banach algebra and - to be its opposite,
we obtain the condition for commutativity given in (3). Other applications
are concerned with conditions under which a bilinear mapping between two
algebras is a homomorphism, when an element lies in the centre of an algebra,
and a one-dimensional subspace of an algebra is a right ideal. An example
shows that the theorem is false for algebras over the real field, but Theorem 2
gives the parallel result in this case.

Let A be a normed algebra, and M a normed vector space over the same
scalar field. We shall call M a normed module over A if M is a left module
over A for which the mapping (a, m)—»>am of Ax M into M is continuous. In
that case, we can find a constant k so that ||am || S klla| || m]|, for ae A,
me M. Suppose 4 has a bounded approximate identity {e;: 1€ A}. We shall
call M a unitary module over A if lim; e;m = m, for me M; this condition is
independent of the choice of approximate identity. As the method used in the
proof of the following theorem is known—it is a direct generalization of argu-
ments used in (2) and (3) for example—we shall only outline the proof.

Theorem 1. Let A be a complex normed algebra, with bounded approximate
identity {e,: A€ A}, let M be a unitary normed module over A, and let X be a
complex normed vector space. If h is a bilinear and continuous mapping of
AX M into X, then h(a, m) = lim, h(e,, am), for ac A, me M, if and only if
there is a constant o such that || a,m)|| £ ol am | forae A, me M.

Proof. The necessity of the condition is clear. Suppose that the condition
is satisfied. Since h extends by continuity to a mapping involving the com-
pletions of the spaces concerned, we lose no generality in assuming that all
three spaces are complete. If 4 does not have an identity, denote by A, the
algebra A with an identity adjoined. Define h,: A,x M—X by the equation
h(e, m) = lim, h(e;, m) and linearity; the existence of the limit is guaranteed
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by the condition on / and the fact that M is unitary. From this construction
it is clear that we may assume that 4 has an identity element e, and prove
that A(a, m) = h(e, am).
For any complex number z, any a € 4, and any m € M we have
Il A(exp (—za), exp (za)m)|| < « || exp (—za) exp (za)m || < ak || m .
Thus, by Liouville’s Theorem, the power series

) © (_z)n ZzP "
~——~ = h(a", a’*m) = h(exp (—za), exp (za)m)
n=0p=0 n! p!

is constant. The coefficient of z is therefore zero, i.e.
h(e, am)— h(a, m) = 0.
Corollary 1. Let A be a complex normed vector space which is a normed
algebra with bounded approximate identity {e,: A€ A} for each of two multi-

plications * and o. These multiplications coincide if and only if there exists o so
that |aocb | S alla*b]| fora, be A.
Proof. Take X = M = A where A has multiplication %, and put
h(a,b) = aob.

Corollary 2. ((2), (3)). A complex normed algebra A with bounded approxi-
mate identity is commutative if and only if there exists o. so that || ba || £ a | ab ||
Jor a, be A. This holds in particular if || a | £ ap(a) for a € A (where p denotes
spectral radius).

Proof. The first result is immediate from Corollary 1 on taking * to be
the multiplication of 4 and o its opposite. If the second inequality holds, then
fora,be A,

I ba || < ap(ba) = ap(ab) = o | ab |
Corollary 3. ((1)). Let f be a linear functional on a complex normed algebra

A with bounded approximate identity so that for some a, |f(a)l < ap(a) for
a € A (where p is the spectral radius). Then f(ba) = f(ab) for a, b € A.

Proof. Take h(a, b) = f(ba). The argument of Corollary 2 shows that
| h(a, b)| < a || ab || so that Theorem 1 applies.

Corollary 4. Let A and B be complex normed algebras with identities (e and
f). Suppose that T is a continuous linear mapping of A into B for which T(e) = f.
Then T is a homomorphism if and only if there exists a for which

I T(@T(@) < ol ad | fora,a eA.

Proof. In Theorem 1take M = 4 and X = B, and put i(a, a’) = T(a)T(a’).

Corollary 5. Let M,, M, be two unitary normed modules over a normed
algebra A with bounded approximate identity {e,: A€ A}. Then a continuous
linear mapping T: M,— M, is A-linear (T(am) = aT(m) for ac A, me M,) if
and only if there is a constant a such that || aT(m)|| £ a || am || forae A,me M,.
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Proof. In Theorem 1 take M = M, X = M,, and put h(a, m) = aT(m).
Then aT(m) = h(a, m) = lim, e;T(am) = T(am).

Corollary 6. Let A be a complex normed algebra, with identity e. Let f be
a continuous linear functional on A with f(e) £ 0. Suppose that a€ A is such
that || f(x)ay || < a || xy || for x, ye A. Then the subspace {za: ze C} is a right
ideal of A.

Proof. Take M = X = A, and put A(x, y) = f(x)ay. The theorem gives
f(e)axy = f(x)ay; put y = e and we have f(e)ax = f(x)a.

Corollary 7. Let A be a normed algebra with bounded approximate identity
{es: A€ A}. An element a of A is in the centre of A if and only if there exists
asothat | xay || < a | xy | for x, y € A.

Proof. In Theorem 1, take M = X = A, and put A(x, y) = xay for x, y € A.
The theorem says that xay = lim, e;axy = axy. Finally,

xa = lim, xae, = lim, axe, = ax.

Theorem 1, and more especially Corollary 1, fails if complex spaces are
replaced by real spaces. For example, it is easy to provide R* with two multi-
plications * and o~ having the same identity and satisfying [ a*b || = || ac b |
for a, be R*. We may take * to be the usual quaternion multiplication on R*,
and o to be the multiplication derived from quaternion multiplication by regard-
ing each element (w, x, y, z) of R* as the quaternion w+yi+xj+2zk. Then we
have |[a*b| = |al|b]l = llacb| for a, be R* and also (1,0, 0, 0) is an
identity for both muitiplications. The following result appears to be the best
analogue of Theorem 1 for the real case.

Theorem 2. Let A, M and X be as in Theorem 1, except that they are real,
instead of complex, vector spaces. If h is a bilinear and continuous mapping of
AxM into X then h(a, m) = lim, h(e;, am) for ac A, me M, if and only if
there exists o so that

| (@, m)—h(a’, m)|| £ a | am—a'm' || fora,a’ € A, and m, m' e M.

Proof. Let A;, M., and X be the complexifications of 4, M, and X,

respectively. Define h¢: A% Mo— X, by the equation

h(a, a’), (m, m")) = (h(a, m)—h(a’, m"), h(a, m')Y+h(a’, m)).
Then A, is clearly complex-bilinear and continuous with

| he((a, a), (m, mY)|| = al|(a, a’}(m, m")|.
(It is clear that M becomes a module over A,.) Theorem 1 says that
he((a, @), (m, m") = lim; h((e;, 0), (a, a’)(m, m")).
Puta’ = m' = 0. Then
(h(a’ m)’ 0) = llm}. (h(e}., am)9 h(a’ 0)+h(0a am))9

that is #(a, m) = lim, h(e,, am).
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Corollaries similar to those for Theorem 1 can obviously be given. We offer
an application to involutions; since these are usually conjugate linear, Theorem
1 will not apply.

Corollary 8. Let a—a* be a conjugate linear (i.e. (la+ ub)* = la*+ jib*
Jor a,be A, A, yue C) mapping of a complex normed algebra A with identity e
into itself. Suppose e* = e. Then (ab)* = b*a* if and only if there exists o
such that

| b*a*—a*c* | < a|ab—cd|
fora, b, c,de A.

Proof. Consider 4 as an algebra over the real field, and take A(a, b) = b*a*.

We would like to thank Professor Bonsall and the referee for suggesting
some of these corollaries.
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