
C
A few more details
C.1 Nobel Prizes
Success in science is, strictly speaking, measured only in ells of time: Democritus’ and Leucippus’
idea of elementary particles, even after two and a half millennia, serves successfully as a guiding
thought and Leitmotif, and Newton’s and Leibniz’s calculus still forms the basis of the mathemati-
cal formulation of the laws of Nature. The fact that more than a third of twentieth century Nobel
Prizes were awarded to discoveries relating to the physics of elementary particles and fundamen-
tal physics is probably foreordained by the selection effect: in a field where one knows less, the
probability of discovering something fundamentally new is higher. Nevertheless, I hope that this,
perhaps even pompous, review of major successes in the past century will serve as a convenient
reminder.

Table C.1 Nobel Prizes awarded for discoveries and contributions in fundamental physics

Year Awardee Award for [paraphrase; T.H.]

1901 Wilhelm C. Röntgen discovery of the remarkable rays subsequently named after
him, also known as X-rays

1903 A. Henri Becquerel ( 1
2 ) discovery of spontaneous radioactivity

Pierre Curie, Marie
Curie, née Sklodowska

their joint researches on radiation phenomena

1906 Joseph J. Thomson investigations on the conduction of electricity by gases
[i.e., discovery of the electron; T.H.]

1918 Max K. E. L. Planck advancement of physics by his discovery of energy quanta
[quantization of electromagnetic radiation emission; T.H.]

1921 Albert Einstein discovery of the law of the photoelectric effect
[not the discovery that electromagnetic radiation exists in quanta –
photons; T.H.]

1922 Niels H. D. Bohr investigation of the structure of atoms and of the radiation
emanating from them
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Year Awardee Award for [paraphrase; T.H.]

1923 Robert A. Millikan work on the elementary charge of electricity and on the
photoelectric effect

1925 James Franck,
Gustav L. Hertz

discovery of the laws governing the impact of an
electron upon an atom [confirming the quantization of
atomic states; T.H.]

1927 Arthur H. Compton discovery of the effect named after him
Charles T. R. Wilson method of making the paths of electrically charged

particles visible by condensation of vapor [invention of
the cloud chamber; T.H.]

1929 Prince Louis-Victor
P. R. de Broglie

discovery of the wave nature of electrons [and not the
universal wave–particle duality; T.H.]

1932 Werner K. Heisenberg creation of quantum mechanics
1933 Erwin Schrödinger,

Paul A. M. Dirac
discovery of new productive forms of atomic theory

1935 James Chadwick discovery of the neutron
1936 Victor F. Hess discovery of cosmic radiation

Carl D. Anderson discovery of the positron
1939 Ernest O. Lawrence invention and development of the cyclotron
1945 Wolfgang Pauli discovery of the exclusion principle
1949 Hideki Yukawa prediction of the existence of mesons
1950 Cecil F. Powell development of the photographic method of studying

nuclear processes and his discoveries regarding mesons
made with this method

1954 Max Born statistical interpretation of the wave-function
Walther W. G Bothe the coincidence method

1955 Willis E. Lamb discoveries concerning the fine structure of the hydrogen
spectrum

Polykarp Kusch precision determination of the magnetic moment of the
electron

1957 Chen-Ning Yang,
Tsung-Dao Lee

penetrating investigation of the so-called parity
laws [i.e., of C-, P- and CP-violation; T.H.]

1958 Pavel A. Cherenkov,
Il’ja M. Frank,
Igor Ye. Tamm

discovery and the interpretation of the Cherenkov effect

1959 Emilio G. Segrè,
Owen Chamberlain

discovery of the antiproton

1960 Donald A. Glaser invention of the bubble chamber
1963 Eugene P. Wigner ( 1

2 ) discovery and application of fundamental symmetry
principles [ 1

2 : Maria Goeppert-Meyer and J. Hans D. Jensen,
nuclear shell structure; T.H.]

1965 Shin-Ichiro Tomonaga,
Julian Schwinger,
Richard P. Feynman

fundamental work in quantum electrodynamics,
with deep-ploughing consequences for the physics of
elementary particles [renormalization in QED; Freeman
Dyson showed the equivalence of the methods of Tomonaga,
Schwinger and Feynman; T.H.]

1968 Luis W. Alvarez discovery of a large number of resonance states
(hadrons)
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Year Awardee Award for [paraphrase; T.H.]

1969 Murray Gell-Mann classification of elementary particles and their interactions
1976 Burton Richter,

Samuel Chao-Chung Ting
discovery of a heavy elementary particle of a new kind

1979 Sheldon L. Glashow,
Abdus Salam,
Steven Weinberg

theory of the unified weak and electromagnetic interaction
between elementary particles, including, inter alia, the
prediction of the weak neutral current

1980 James W. Cronin,
Val L. Fitch

discovery of violations of fundamental symmetry principles
in the decay of neutral K-mesons [CP-violation; T.H.]

1982 Kenneth Wilson theory for critical phenomena in connection with phase
transitions
[this theory contains the approach to renormalization that is built
into the foundations of contemporary field theory; T.H.]

1984 Carlo Rubia,
Simon van der Meer

decisive contributions to the large project that led to the
discovery of the field particles W and Z, communicators of
the weak interaction

1988 Leon M. Lederman,
Melvin Schwartz,
Jack Steinberger

neutrino beam method and the demonstration of νe �= νμ

1990 Jerome I. Friedman,
Henry W. Kendall,
Richard E. Taylor

pioneering investigations concerning deep inelastic scattering
of electrons on protons and bound neutrons, of essential
importance for the development of the quark model

1992 Georges Charpak invention and development of particle detectors, in particular
the multiwire proportional chamber

1995 Martin L. Perl discovery of the tau lepton
Frederick Reines detection of the neutrino [already in 1956 – 39 years earlier!

C. Cowan died in 1974, and was not awarded; T.H.]
1999 Gerardus ’t Hooft,

Martinus Veltman
elucidating the quantum structure of electroweak
interactions in physics [renormalization in models with Higgs
fields; T.H.]

2002 Raymond Davis Jr.,
Masatoshi Koshiba;
Riccardo Giacconi

pioneering contributions in astrophysics: detection of cosmic
neutrinos and the solar neutrino problem (the Homestake
Experiment) pioneering contributions in astrophysics: cosmic
X-rays

2004 David J. Gross,
H. David Politzer,
Frank Wilczek

discovery of asymptotic freedom in the theory of the strong
interaction

2006 John C. Mather,
George D. Smoot

discovery of the blackbody form and anisotropy of the cosmic
microwave background radiation

2008 Yoichiro Nambu ( 1
2 ) discovery of the mechanism of spontaneous broken symmetry

in subatomic physics
Makoto Kobayashi,
Toshihide Maskawa

discovery of the origin of the broken symmetry that predicts
the existence of at least three families of quarks in Nature

2011 Saul Perlmutter ( 1
2 ),

Brian P. Schmidt,
Adam G. Riess

discovery of the accelerating expansion of the universe
through observations of distant supernovae
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It is worth noting that several physicists with very important contributions to fundamental
physics were awarded for their contributions in other areas, instead of their main discoveries: For
example, Ernest Rutherford was awarded the 1908 prize in chemistry, while his work on classifying
radioactivity, identifying α-particles as helium ions, establishment of the exponential decay law
and its use as a clock, and – most importantly – the discovery of the atomic nuclei were not so
awarded. Similarly, Enrico Fermi was awarded in 1938 for “demonstrations of the existence of
new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear
reactions brought about by slow neutrons,” while his theoretical model of β-decay and his other
contributions to fundamental physics remained not so awarded; Vitaly L. Ginzburg was awarded in
2003, together with Alexei A. Abrikosov and Anthony J. Legett, “for pioneering contributions to the
theory of superconductors and superfluids,” but not for the groundbreaking work with Lev Landau
on spontaneous magnetization, which eventually led to the general idea of spontaneous symmetry
breaking and the so-called Higgs mechanism [☞ Section 7.1]. Bohr’s principle of complementarity,
Pauli’s prediction of the neutrino, and even Einstein’s theory of relativity, among others, remained
similarly un-awarded by the Nobel committee. After all, Nobel Prizes are also a testament to the
socio-political milieu. Finally, it is important to keep in mind the defined limitations: “In no case
may a [Nobel] prize amount be divided between more than three persons.” Also, “a [Nobel] Prize
cannot be awarded posthumously, unless death has occurred after the announcement of the Nobel
Prize” [517].

C.2 Some numerical values and useful formulae
While following the narrative in this book, numerical values of various constants are mostly
unnecessary, but it is useful to have an idea about the relative numerical values of the vari-
ous results, so that the Reader is expected to work through the derivations and complete the
skipped steps, as well as to complete the exercises. Tables C.2, C.3 and C.4 should help in this
endeavor.

When including electromagnetic phenomena in a study, note that the electric charge (divided
by the natural constant

√
4πε0) may be measured in purely “mechanical” units, as shown in

equations (1.12). However, it is frequently useful to extend the unit system based on the mea-
surement of the physical quantities of mass, length and time (M, L, T) by adding, minimally, the
measurement of electric charge, C, and then consistently retaining all factors of

√
4πε0. Owing

to the identity c2 = 1/ε0μ0, the constant μ0 may always be expressed as μ0 = 1/ε0c2. How-
ever, in order to emphasize the electro-magnetic duality, Table C.4 on p. 527 retains both ε0 and
μ0 = 1/ε0c2 = 4π× 10−7 kg m/C2.

Table C.2 Natural constants and some useful characteristic values

h̄ 1.054 572× 10−34 J s 6.582 119× 10−16 eV s

c 299, 792, 458 m/s

ε0 8.854 187 817× 10−12 C2 s2

kg m2

e 1.602 176× 10−19 C

GN 6.674 2× 10−11 m3

kg s2 6.708 7× 10−39 h̄ c5

GeV2

NA 6.022 141 5× 1023/mol

kB 1.380 650 5× 10−23 J/K 8.617 343× 10−5 eV/K

θw (28.74 ± 0.01)◦ (“weak” mixing angle, θw)

δ13 (1.20 ± 0.08)◦ (the CKM matrix phase, δ13)

MP 2.176 45× 10−8 kg 1.220 90× 1019 GeV/c2

me 9.109 382× 10−31 kg 0.510 999 MeV/c2

mμ 1.883 531× 10−28 kg 105.658 MeV/c2

mτ 3.167 772× 10−27 kg 1.776 99 GeV/c2

mp 1.672 621× 10−27 kg 938.272 MeV/c2

mn 1.674 927× 10−27 kg 939.566 MeV/c2

mW 1.433 3× 10−25 kg 80.403 GeV/c2

mZ 1.625 57× 10−25 kg 91.187 6 GeV/c2

mH 2.244× 10−25 kg 125.9 GeV/c2
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Table C.3 Some useful abbreviations and numerical values

αe
e2

4πε0 h̄ c = g2
e

4π
1

137.035 999 fine structure constant

re
e2

4πε0me c2 2.817 940 325 × 10−15 m classical electron radius

Ry me e4

2(4πε0)2 h̄2 = αe
2 mec2 13.605 692 2 eV Rydberg, H-atom ion. energy

λ̄e
h̄

me c = re
αe

3.861 592 678 × 10−13 m Compton electron wavelength

μB
eh̄

2me
5.788 381 804 × 10−11 MeV/T Bohr magneton

a0
4πε0 h̄2

mee2 = h̄
αeme c = re

α2
e

5.291 772 108 × 10−11 m Bohr radius

Other electromagnetic units (farad, tesla, volt, ampere, etc.) are expressed in terms of N,
m, s, C. The unit C and the constants ε0 and μ0 may be eliminated by using the relation c =
1/

√
ε0μ0, and by redefining the electric charge q → q/

√
4πε0, which then is expressed in purely

“mechanical” units. In general, note that precisely three base units are required in any system of
units, and it is merely a tradition to choose units of mass, length and time.

Alternatively, as practiced in fundamental physics, one chooses a unit of speed (c), a unit of
the Hamilton action or angular momentum (h̄) and a unit of the gravitational force per product of
the gravitating masses times the square of the distance between them (GN). In addition to adopting
this choice, the first two of these units are not even written in high energy particle physics prac-
tice, which is often phrased by stating (somewhat confusingly) that “h̄ = 1 = c.” Every physical
quantity is now expressible in terms (and units) of, say, energy – which is convenient in particle
physics, since energy is in most cases the measured and controlled quantity [☞ Table 1.2 on p. 25];
Table C.5 could be helpful in this.

This practice is in fact no different than if one chose to adhere to a limited version of the
SI system of units where (1) all distances are expressed in meters and all masses in kilograms,
(2) no derivative units are ever used, and (3) one agrees to not even write the powers of ‘m’ and
‘kg.’ Every physical quantity would then be expressed in terms of time, and measured in units of
suitable powers of seconds. In this system, length, mass and volume-specific mass (density) would
have no written dimensions, speed and linear momentum would be measured in s−1 alike, while
s−2 would be the appropriate (written) unit for acceleration, force and energy.

The ultimately natural (and parsimonious) unit system is then the one attributed to Planck,
in which the natural constants c, h̄ and GN are implied but never written. This results, for example,

Table C.4 Comparative listing of primary (mechanical) SI units, minimally extended by the unit of
electric charge, coulomb (C), and the dimensions of some oft-used electromagnetic quantities

ε0 �E, Fμν Φ, Aμ ρe �je μ0 �B �A ρm �jm

Primary
SI units

s2 C2

kg m3
kg m
s2 C

kg m2

s2 C
C

m3
C

s m2
kg m
C2

kg
s C

kg m
s C

C
s2 m

C
s3

SI units
(kg→N s2/m)

C2

N m2
N
C

N m
C

C
m3

C
s m2

N s2

C2
N s
m C

N s
C

C
s2 m

C
s3

Dimensions
T2 C2

M L3
M L
T2 C

M L2

T2 C
C
L3

C
T L2

M L
C2

M
T C

M L
T C

C
T2 L

C
T3
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Table C.5 Dimensions of some oft-used physical quantities, in the general Mx LyTz format (first row),
and the power-of-energy (particle physics) convention where h̄ and c are implied and unwritten units
(second row); e.g., [L ] = 4 means [L ] = MeV4 up to powers of h̄ and c

Basic units In Lagrangian densities Feynman calculus

c h̄ GN L a φ Aμ Fμν Jμ (Ψ Ψ) (u u) M Γ σ

L
T

ML2

T
L3

MT2
M

L2T
M1/2

T1/2

ML2

T2
ML
T2

M
T2

T
L4

ML
T

—
1
T

L2

0 0 2 4 1 1 2 3 3 1 0 1 −2
a Relativistic Lagrangian densities L are normalized so that [

∫
d4x L ] = [h̄ ], with x0 = ct and

[d4x] = [L4]. Similarly, [
∫

d4x Ψmc2Ψ] = [h̄ ], and Feynman calculus uses u ∝
√

h̄ c3
∫

dt e−iωtΨ(x); see
also equation (5.53).

Table C.6 Natural (Planck) units and their SI equivalent value

Name Expression SI equivalent Practical equivalent

Length �P =
√

h̄GN
c3 1.616 25×10−35 m

Mass MP =
√

h̄ c
GN

2.176 44×10−8 kg 1.220 86×1019 GeV/c2

Time tP =
√

h̄GN
c5 5.391 24×10−44 s

Chargea qP =
√

4πε0 h̄ c 1.875 55×10−18 C e
√
αe ≈ 11.706 2 e

Temperature TP = 1
kB

MPc2 1.416 79×1032 K

aαe ≈ 1/137.035 999 679 in low-energy scattering experiments, but grows to about 1/127 near
∼200 GeV energies [☞ Section 5.3.3].

in the units for physical quantities that are listed in Table C.6 on p. 528, and the Reader is invited to
compute many more along the lines of the computations practiced in Section 1.2. Notice, however,
that once all physical quantities are expressed in units of h̄, c, GN – which are not written explicitly –
all physical quantities appear to have no (written) dimensions/units! Note that the Boltzmann
constant kB = 1.38× 10−23 J/K is clearly simply a unit conversion factor, from temperature to
energy, and need be written only if one wishes to emphasize the statistical nature of a certain
quoted energy (temperature).

Table C.7 lists a few symbols used in this book, many of which are fairly standard in formal
logic and set theory, but are not as frequently used in the physics literature. The symbols: ∝ (“pro-
portional”), ∼= (“isomorphic”), " (“equivalent”), ≈ (“approximate,” but “homomorphic” for groups
and algebras), ∼ (“asymptotic” for functions, but “of the order of” for numbers), × (Cartesian or
direct product, but “vector product” for 3-vectors and the usual product of a decimal number
and a power of ten), ⊗ (Kronecker, i.e., tensor product), � (semidirect product), ↪→ (injection),
� (surjection) and �→ (“maps/assigns to”) are probably more familiar, but are listed here for
completeness; see also the lexicon of jargon in Section B.1.

Finally, Table C.8 lists symbols that have been constructed for their specific indicated purpose
in this book, and which to the best of my knowledge do not appear elsewhere in the literature.
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Table C.7 Symbols borrowed from formal logic and set theory

Symbol Meaning of the symbol as used in this book

⊂ “subset”; e.g., “A ⊂ B” means “A is a subseta of B”
� “proper subset”; e.g., “A � B” means “A is a subseta of B and A �= B”
∪ “union”; an element belongs to A ∪ B if it belongs to A or B (inclusively)
∩ “intersection”; an element belongs to A ∩ B if it belongs to both A and B
	 “minus”; an element belongs to A	 B if it belongs to A but not to B
∈ “in” or “is an element of”; e.g., “x ∈ X” means “x is an element of X”
∅ “empty set”, i.e., the formal set that has no element at all
∀ “for all”; e.g., “∀x” means “for every x”
∃ “exists”; e.g., “∃x” means “there exists an x”
⇒ “implies”; e.g., “x ⇒ y” means “x implies y” (said of claims x, y)
⇔ “is equivalent”; e.g., “x ⇔ y” means “x is equivalent to y” (said of claims x, y)

a If B has a structure (of an algebra, a group, . . . ), A inherits this structure from B – unless noted otherwise.

Table C.8 The definition of some less frequently used or here constructed mathematical symbols

Symbol Meaning of the symbol as used in this book

:= the left-hand symbol is defined to equal the right-hand expression
=: the previously undefined right-hand symbol is defined so as to make the

equality hold for all values of the remaining symbols
:" the left-hand symbol is defined to be equivalent (by an implicit

equivalence, such as integration by parts) to the right-hand expression
\= need not be equal – in distinction to the “(certainly) not equal” symbol, �=
!= required to be equal

“· · · ”= equals, owing to (by use of) the relation/property “· · · ”
:+ semidirect sum of two algebras a :+ b, the first summand maps a : b → b;

e.g., for Lie algebras, [a, b] ∈ b, for a ∈ a and b ∈ b.
∧ antisymmetric product of two forms [☞ Digression 5.8 on p. 184]

C.3 Answers to some exercises
A successful solving of the end-of-section exercises should confirm the understanding of the mate-
rial of that section. For assistance and orientation, some partial and final results to these exercises
are listed here.

Ex. 1.2.1 and 1.2.3 Admittedly, these are trick exercises. Let a standing person’s horizontal linear
dimensions be scaled down by a factor of λh while the vertical measurements scale by λv,
and let W denote the person’s weight, A the cross-section area of the bones in the legs (femur,
tibia, fibula, etc.) and P = W

A the pressure of the person’s own weight on these bones. Then,

W ∝ λv·λ2
h, A ∝ λ2

h, P ∝ λv, (C.1)

so that the vertical pressure in the bones is, in this rough estimate, independent of the hor-
izontal scaling factor and only depends on the vertical scaling factor. Therefore, in part 1 of
this exercise, for this pressure to be about the same as in ordinary humans, λv ∼ 1 and not
λv = 40 as stated.
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This then implies that, in Lilliputians and small animals, the structure and even chemical
composition of bones may be proportionally weaker than in ordinary humans. In turn, in
animals larger than humans, bones must support greater pressures than in ordinary humans.
Since the structure and chemical composition of bones cannot vary too much, this provides
a strong limitation on the height of land-dwelling animals. Sorry: there can exist no 25-foot,
20-ton gorillas.

Ex. 1.2.6 The principal quantum number n becomes continuous.
Ex. 2.4.1 �y(�) = 1

2
q
m �2 B 2

0
E0

. �z = 0.
Ex. 3.2.4 T2 − T1 = (m1−m2)(1 − m1+m2

M )c2, so that T2 − T1 = m1
M (M−m1)c2 when m2 = 0.

Ex. 4.2.1 With only the orthonormal states |a〉 and |b〉 given, eigenstates must be of the form
α|a〉 + β|b〉. Then P

[
α|a〉 + β|b〉] = πP

[
α|a〉 + β|b〉], where πP is the eigenvalue, so that

πP

[
α|a〉 + β|b〉] = P

[
α|a〉 + β|b〉] =

[
α|b〉 + β|a〉]. (C.2)

Projecting with 〈a| and 〈b| yields

πP α = β, πP β = α, ⇒ π 2
P = 1, πP = ±1. (C.3)

From that,

πP = +1, |+〉 := 1√
2

(|a〉 + |b〉), P|+〉 = (+1)|+〉; (C.4)

πP = −1, |−〉 := 1√
2

(|a〉 − |b〉), P|−〉 = (−1)|−〉. (C.5)

Ex. 5.3.2 Using the relations from Digression 5.9 on p. 191, we have

∂α
∂LQED

∂(∂αAβ)
= ∂α

∂

∂(∂αAβ)

[
− 4πε0

4 (∂μAν−∂νAμ)ημρηνσ(∂ρAσ−∂σAρ)
]

= − 4πε0
4 ∂α

[
(δαβμν−δαβνμ)ημρηνσ(∂ρAσ−∂σAρ)

+ (∂μAν−∂νAμ)ημρηνσ(δ
αβ
ρσ−δαβσρ )

]
= − 4πε0

4 ∂α
[
(δαβμν−δαβνμ)(∂μAν−∂νAμ) + (∂ρAσ−∂σAρ)(δαβρσ−δαβσρ )

]
= − 4πε0

4 ∂α
[
(δαβμν−δαβνμ)Fμν + Fρσ(δαβρσ−δαβσρ )

]
= − 4πε0

4 ∂α
[

Fαβ − Fβα + Fαβ − Fβα
]

= −4πε0∂αFαβ. (C.6)

Similarly,
∂LQED

∂Aβ
=

∂

∂Aβ

[
− Ψ(x)

[
iγγγγμ

(
h̄ c∂μ − iqΨ Aμ

)−mc2
]

Ψ(x)
]

= −Ψ(x)
[
iγγγγμ

(− iqΨδ
β
μ

)]
Ψ(x) = −qΨΨ(x)γγγγβΨ(x). (C.7)

The relation (5.120f) follows upon equating these two results.
Ex. 5.4.4 Using definition mi := zi M, the property δ(ax) = δ(x)/a and that xi = x/zi yields

Wi
1 =

Q2
i

2(Mzi)
δ
( x

zi
−1

)
=

Q2
i

2M
δ
(

zi
x
zi
−zi

)
=

Q2
i

2M
δ(x−zi). (C.8)

Also, using that δ(x−1) = x2δ(x−1) yields

Wi
2 = −2mic2Q2

i
q2 x 2

i δ
( x

zi
−1

)
= −2(Mzi)c2Q2

i
q2 x 2

i zi δ(x−zi)

= −2Mc2Q2
i

q2 x2δ(x−zi). (C.9)
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Ex. 6.1.3 Write the equation ∂μFa μν = Ja ν
(c) in matrix notation, ∂μFμν = Jν(c), where we also have

equation (6.16), F′
μν = Uϕ Fμν U−1

ϕ . It then follows that

∂μF′μν = ∂m(Uϕ Fμν U−1
ϕ ) (C.10)

= (∂μUϕ)Fμν U−1
ϕ + Uϕ(∂μFμν)U−1

ϕ + Uϕ Fμν(∂μU−1
ϕ ). (C.11)

To simplify this result, use that 1 = UϕU−1
ϕ , the derivative of which gives

0 = (∂μUϕ)U−1
ϕ + Uϕ(∂μU−1

ϕ ) ⇒ (∂μU−1
ϕ ) = −U−1

ϕ (∂μUϕ)U−1
ϕ . (C.12)

Combining, we have

∂μF′μν = (∂μUϕ)Fμν U−1
ϕ + Uϕ(∂μFμν)U−1

ϕ − Uϕ FμνU−1
ϕ (∂μUϕ)U−1

ϕ

= (∂μUϕ)U−1
ϕ (U Fμν U−1

ϕ ) + (Uϕ Jν(c)U
−1
ϕ ) − (Uϕ FμνU−1

ϕ )(∂μUϕ)U−1
ϕ

= J′ ν(c) + (∂μUϕ)U−1
ϕ F′ μν − F′ μν(∂μUϕ)U−1

ϕ

= J′ ν(c) +
[
(∂μUϕ)U−1

ϕ , F′ μν ], (C.13)

the form of which could have been guessed from relations (6.39) and (6.6c).
Ex. 7.1.2 Motivated by the form of the result to be proven, use the polar coordinates φ1 = � cos θ,

φ2 = � sin θ, where the potential density in the Lagrangian density (7.21) becomes

V = − 1
2

(mc
h̄

)2
�2 + 1

4λ�
4, (C.14)

so that the stationary values of the variable � are given by

−(mc
h̄

)2
�+ λ�3 = 0 ⇒ ∂0 = 0, �± = ± mc

h̄
√
λ

. (C.15)

It is not hard to prove that �0 = 0 is a maximum, and �+ = mc
h̄
√
λ

a minimum; the third
solution, �− = − mc

h̄
√
λ

, is unreasonable as a value for the radial polar coordinate. The desired
result follows by transforming back into Cartesian parametrization, (φ1, φ2).

Ex. 9.1.4 In the extended equality (9.14) only the last one is not evident, and follows from the fact
that

gμν gμν = 4 δ=⇒ δ(gμν gμν) = 0 ⇒ (δgμν)gμν = −gμν(δgμν). (C.16)

With no extra effort, we also have the general result:

gμν gμσ = δσν
δ=⇒ δ(gμν gμσ) = 0 ⇒ (δgμν)gμσ = −gμν(δgμσ). (C.17)

Contracting this last equality with gρν yields [☞ also Digression 9.3 on p. 329]

δgρσ = −gρν(δgμν)gμσ. (C.18)

Ex. 10.3.1 Direct computation yields

Tr
[{Qi, Q† j}] = 1

2 ∑
i
{Qi, Q† i} + 1

2 ∑
i
{Q† i, Qi}

= 1
2 ∑

i
{Qi, Qi}︸ ︷︷ ︸

≡0

+ 1
2 ∑

i
{Qi, Q† i} + 1

2 ∑
i
{Q† i, Qi} + 1

2 ∑
i
{Q† i, Q† i}︸ ︷︷ ︸

≡0
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532 A few more details

= 1
2 ∑

i
{Qi + Q† i, Qi + Q† i}] (10.32a)= 1

2 ∑
i
{Qi,Qi} = ∑

i
QiQi

= ∑
i
|Qi|2 � 0, (C.19)

where QiQi = |Qi|2 as the operators Qi are Hermitian.
Ex. 11.3.1 The Ricci tensor is

[Rmn] =

[ −2e−2k|y| [k sig2(y)−δ(y)] 0 0
0 2e−2k|y| [k sig2(y)−δ(y)] 0
0 2k[δ(y)−k sig2(y)]

]
, (C.20)

and the scalar curvature is R = 2 k[4 δ(y) − 3 k sig2(y)].
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