# THE PARSEC-SCALE NUCLEUS AND JETS OF HYDRA A

GREGORY B. TAYLOR NRAO P.O. Box 0, Socorro, NM 87801

## 1. Introduction

Sensitive, high-resolution VLBA observations of the nuclear region of Hydra A are presented at 1.3, 5 and 15 GHz. Hydra A (3C218) is an outstanding example of a high-luminosity FRI radio galaxy embedded within a cooling flow cluster. VLA observations by Taylor & Perley (1993) have demonstrated extremely high (>5000 radians  $m^{-2}$ ) Faraday rotation measures (RMs) and a striking RM and depolarization asymmetry between the northern and southern radio lobes. In view of this asymmetry on the kpc-scale Hydra A appears remarkably symmetric on the pc-scale in the radio continuum. Hydra A is also unusual in that the 21 cm atomic Hydrogen line is seen in absorption against the nucleus.

### 2. Observations

The observations were carried out using the 10 element VLBA of the NRAO<sup>1</sup> on 1995 March 17-18. Both right and left circular polarizations were recorded using 2 bit sampling across a total bandwidth of 8 MHz. The VLBA correlator produced 512 frequency channels in each 4 second integration. The total integration time was  $\sim$ 2.5 hours at each frequency. Amplitude calibration for each antenna was derived from measurements of the antenna gain and system temperature during each run. In addition, the strong calibrator DA193 (0552+398) was observed to refine the amplitude calibration. All editing, imaging, deconvolution, and self-calibration were performed using DIFMAP (Shepherd *et. al*, 1995).

<sup>1</sup>The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation

<sup>133</sup> 

R. Ekers et al. (eds.), Extragalactic Radio Sources, 133–135. © 1996 IAU. Printed in the Netherlands.

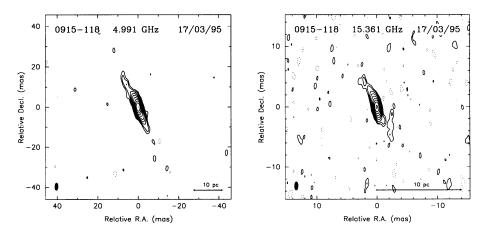



Figure 1. a. The nucleus of Hydra A at 5 GHz. Contours are drawn at -0.3, 0.3, 0.6, 1.2, 2.4, 4.8, 9.6, 19.2, 38, 77, and 154 mJy/beam where the beamsize is  $3.66 \times 1.53$  mas in p.a.  $-3^{\circ}$ . b. The nucleus of Hydra A at 15 GHz. Contours are at -0.5, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128 mJy/beam where the beamsize is  $1.38 \times 0.58$  mas in p.a.  $-1^{\circ}$ .

### 3. Results and Discussion

Fig. 1a shows the 5 GHz VLBA image of the nucleus of Hydra A at  $\sim 2$  mas resolution. The jet is straight along a position angle of 30° and symmetric about the core with a jet-to-counterjet ratio of 1.12. The northern side, being slightly stronger, is denoted the "jet" side, and the weaker southern jet the "counterjet" side. The jet-to-counterjet ratios are taken from the integrated flux ratios after removal of the core component. Fig. 1b shows the 15 GHz VLBA image at a resolution of  $\sim 1$  mas. The inner jet shown in this image is oriented along a position angle of 23°, and gradually curves to match the orientation angle of 30° seen at 5 GHz. The jet-to-counterjet ratio at 15 GHz is 1.15.

Hydra A is only the second FRI source, the first being 3C338 (Feretti *et. al*, 1993), discovered to have symmetric emission on the pc-scale. If all jets start out relativistic and the jet-to-counterjet ratios are ascribed purely to Doppler beaming effects, then such low jet-to-counterjet ratios are expected only for sources very close to the plane of the sky. Observations of the large-scale RM asymmetries in Hydra A predict an inclination angle of  $48^{\circ}$ (Taylor & Perley, 1993). While this discrepancy can be explained by a large bend between the inner jet and the lobes, this seems unlikely. On the kpc scale, the jet-to-counterjet ratio at 5 GHz is 1.9.

HI was first detected in absorption towards the nucleus of Hydra A by G. Taylor in 1991. Dwarakanath *et. al* (1995) made higher resolution VLA observations confirming this result, and suggested that the HI gas is distributed in a disk within the central few kpc of the galaxy. Here I

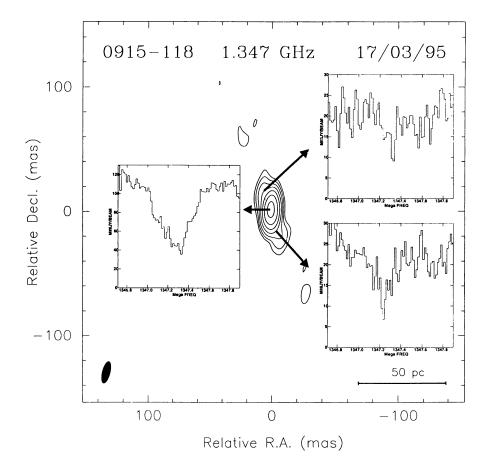



Figure 2. HI absorption against the nucleus of Hydra A. Contours are at -1, 1, 2, 4, 8, 16, 32, and 64 mJy/beam with a beam size of  $18 \times 6$  mas in p.a.  $-14^{\circ}$ . The total velocity spanned by the inset figures is 250 km s<sup>-1</sup> with a spectral resolution of 3.5 km s<sup>-1</sup>.

present spatially resolved HI absorption detected against the core and jets of Hydra A (Fig. 2). The two spectra from the northern and southern jet are separated by 23 mas (17 pc), and show absorption peaks shifted by 20 km s<sup>-1</sup>. The absorption to both the north and south is also considerably more narrow ( $\sim$ 35 km s<sup>-1</sup>) than towards the core ( $\sim$ 80 km s<sup>-1</sup>). These observations support the presence of a disk with a thickness of  $\sim$ 20 pc.

#### References

Dwarakanath, K.S., Owen, F.N., & van Gorkom, J.H. (1995) ApJL, 442, pp. L1-L4
Shepherd, M.C., Pearson, T.J., & Taylor, G.B. (1995) BAAS, 27, pp. 903-907
Taylor, G.B., & Perley, R.A. (1993) ApJ, 416, pp. 554-562
Feretti, L., Comoretto, G., Giovannini, G., Venturi, T., & Wehrle, A.E. (1993) ApJ, 408, pp. 446-451