Representing \mathbf{N}-semigroups

John C. Higgins

Abstract

An N-semigroup is a commutative, cancellative, archimedean semigroup with no idempotent element. This paper obtains a representation of finitely generated N-semigroups as the subdirect product of an abelian group and a subsemigroup of the additive positive integers.

1. Introduction

The term N-semigroup was first used by Petrich in [3] to name a commutative, cancellative, nonpotent, archimedean semigroup. T. Tamura [5] characterized N-semigroups as the direct product of the nonnegative integers and an abelian group G, with the operation:

$$
(n, g) \cdot(m, h)=(n+m+I(g, h), g h),
$$

where n, m are nonnegative integers and $g, h \in G . I(g, h)$ is a non-negative integer-valued function, (called an index function), defined on $G \times G$ and satisfying the following four conditions for all $g, h, k \in G$:
(i) $I(g, h)=I(h, g)$,
(ii) $I(g, h)+I(g h, k)=I(g, h k)+I(h, k)$,
(iii) for any $g \in G$ there is a positive integer m, depending on g, such that $I\left(g^{m}, g\right)>0$,
(iv) $I(e, e)=1$, where e is the identity of G.

In [3] Petrich obtained a characterization of N-semigroups with two generators in terms of pairs of non-negative integers with a certain operation.

[^0]In this paper, a representation of finitely generated N-semigroups in terms of a subdirect product of a finite abelian group and a subsemigroup of the additive positive integers is given. This representation is essentially different from that obtained by Tamura in [5]. A mapping is introduced from a finitely generated N-semigroup S into the additive positive integers, called an $\underline{\underline{I}}$ function, which mapping is a homomorphism.

I have been informed that Mr Sasaki has obtained an as yet unpublished result which extends my main representation theorem to power joined N-semigroup. The results of this paper constitute a portion of my dissertation for the Ph.D. degree in mathematics from the University of California at Davis under the direction of Professor T. Tamura. I would also like to express my most sincere appreciation to the referee of this paper for his many valuable suggestions.

2. Preliminaries

In what follows S will stand for an N-semigroup. For $a \in S$ we define a relation on S, called τ_{α}, by:
if $x, y \in S$ then $x \sim_{a} y$ iff $x=a^{n} y$ or $y=a^{m} x$ or $y=x$, (m, n are positive integers).
(Note: it is convenient to define $x=a^{0} x$ where we use the convention that a^{0} is the empty symbol.) It is shown in [5] that \sim_{a} is a congruence on S and that S_{a}^{*}, the homomorphic image of S under the homomorphism implied by \sim_{a}, is an abelian group. $S^{*}{ }_{a}$ is called the structure group of S with respect to a. We may also use a to obtain a partial ordering of S, called $<_{\alpha}$, and defined by:
for $x, y \in S, x<_{a} y$ iff $y=a^{n} x, \quad(n$ a positive integer). It is also shown in [5] that ${ }_{\alpha}$ on S satisfies the ascending chain condition and that every congruence class of S under $\tilde{\sim}_{a}$ contains one and only one element maximal with respect to the ${ }^{<}{ }_{a}$ ordering. This allows us to associate in a rather natural way the elements of $S^{*}{ }_{a}$ with
the elements of S which are maximal in the ${ }^{c_{a}}$ ordering. Elements maximal in the $<_{a}$ ordering, hereafter called $<_{\alpha}$-maximal elements, are said to be prime to $a ; a$ is called the standard element for determining $S^{*}{ }_{a}$.

We denote by (x) the congruence class of S under \sim_{a} which has x as its maximal element. We then define:

$$
I((x),(y))=n, \text { where } x y=a^{n_{z}} \text { and } z \text { is prime to } a
$$

It is shown in [5] that the function $I((x)$, (y) thus defined on the a-maximal elements of S, and thus by extension on the elements of S_{a}^{*}, satisfies properties (i) through (iv) of the Introduction and is an index function. Thus, we may represent S as outlined in the Introduction, where the group G is S_{a}^{*} and the index function is $\left.I(x),(y)\right)$.

The following Lemma is essential.
LEMMA 2.1 If an N-semigroup S is finitely generated then every structure group of S, S_{a}^{*}, has finite order.

Proof. Let b_{1}, \ldots, b_{n} be a generating set for S. For any $a \in S$ we have:

$$
a=b_{1}^{k_{1}} \cdot \cdots b_{n}^{k_{n}}
$$

In [3] p. 149 it is shown that for any pair of elements of a finitely generated N-semigroup, say $x, y \in S$ there are positive integers m, p such that $x^{m}=y^{p}$. (Note: a semigroup satisfying such property is called power joined.) Thus for any b_{i} we have m_{i} and p_{i} such that $a^{m_{i}}=b^{p_{i}}$. Thus, $c=b_{1}^{j_{1}} \ldots b_{n}^{j_{n}}$ could be prime to a only if $j_{i}<p_{i}$ for $i=1,2, \ldots, n$. Clearly the number of such c is finite.

Using Lemma 2.1 we may now define a mapping I from S to the positive integers by:

$$
\text { for } a \in S, \quad \underline{\underline{I}}(a)=\left|S_{a}^{*}\right|
$$

where $\left|S_{a}^{*}\right|$ denotes the order of the group S_{a}^{*}. We then obtain:
LEMMA 2.2 Let a finitely generated S be represented by some structure group S_{a}^{*} and $i t s$ associated $\underline{\underline{I}}$-function. Then, for $x \in S$, where $x=(n, g)$ in terms of this representation,

$$
\underline{\underline{I}}(x)=n\left|S_{a}^{*}\right|+\underline{\underline{I}}((0, g))
$$

Proof. If $y=(m, h)$ in terms of this representation and $m<n$ then y is prime to x since $y=(n, g) \cdot\left(m, h^{\prime}\right)=\left(n+m^{\prime}+I\left(g, h^{\prime}\right), g h^{\prime}\right)$ but $I\left(g, h^{\prime}\right) \geqq 0$ and $n+m^{\prime}+I\left(g, h^{\prime}\right) \leqq m$ is clearly impossible for $n, m^{\prime} \geqq 0$ and $m<n$. There are $n\left|S_{a}^{*}\right|$ elements of this type. If $y=(n, h)$ then $y=(n, g) \cdot\left(m^{\prime}, g^{\prime}\right)$ if and only if $n+m^{\prime}+I\left(g, g^{\prime}\right)=n$, which implies $m^{\prime}=I\left(g, g^{\prime}\right)=0$, and $g g^{\prime}=h$. Thus $y=(n, h)$ is prime to x if and only if $I\left(g, g^{-1} h\right)>0$. But, if $I\left(g, g^{-1} h\right)>0$ then $(0, h) \neq(0, g)$,
$\left(0, g^{-1} h\right)=\left(I\left(g, g^{-1} h\right), h\right)$ and $(0, h)$ is prime to $(0, g)$. This shows that the number of $y=(n, h)$ prime to x is at least as great as $\underline{\underline{I}}((0, g))$. But if $(0, h)$ is not prime to $(0, g)$ then $y=(n, h)$ is not prime to x and the number of such y is exactly $\underline{I}(0, g)$.

For finitely generated $S, x \in S$ is called a normal standard element if $\underline{\underline{I}}(x)$ is minimal.

3. Subsemigroups of the additive positive integers

In this section J represents the additive positive integers. Clearly J is an N-semigroup. Portions of the following may be found in [4] and [7].

LEMMA 3.1 Let L be the subsemigroup of J generated by the integers $\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}, j>1$. If all the a_{i} have no common divisor then L contains all integers greater than some fixed positive integer k.

Proof. (I am indebted to the referee for the following proof.) Let $k=2 a_{1} a_{2} \ldots a_{j}$. Since $\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}$ has no common divisor, for $b>k$ we may find integers $x_{1}, x_{2}, \ldots, x_{j}$ such that
$x_{1} a_{1}+\ldots+x_{j} a_{j}=b$. We may now find integers q_{i} and r_{i} such that
$x_{i}=q_{i} a_{1} \ldots a_{i-1} a_{i+1} \cdots a_{i}+r_{i}$ where $0<r_{i} \leqq a_{1} \ldots a_{i-1} a_{i+1} \cdots a_{j}$
$(i=2,3, \ldots, j)$. Now put $y_{1}=x_{1}+\left(q_{2}+\ldots+q_{j}\right) a_{2} a_{3} \ldots a_{j}, y_{i}=r_{i}$, $(i=2,3, \ldots, j)$. We now have $b=y_{1} a_{1}+y_{2} a_{2}+\ldots+y_{j} a_{j}$. We have chosen $y_{i}>0$ for $i=2,3, \ldots, j$. But since $y_{2} a_{2}+\ldots+y_{j} a_{j}=r_{2} a_{2}+\ldots+r_{j} a_{j} \leqq a_{1} a_{2} \ldots a_{j}<b$, clearly $r_{1}>0$.

COROLLARY 3.1.1 Every subsemigroup of J is finitely generated.
Proof. Let L be a subsemigroup of J. If all of L has no common divisor then L contains all integers greater than some integer k. Then $L \cap\{1,2, \ldots, 2 k\}$ generates L, since for $m>2 k$ we have $m=q k+r$, but $q \geqq 2$, and $m=(q-1) k+(k+r)$ but $k, k+r \in\{L \quad\{1,2, \ldots, 2 k\}\}$. The case where all L have a common divisor is easily reduced to the case above.

It is clear from the proof of Corollary 2.1.1 that there are two types of subsemigroups of J. Those which contain all integers greater than some fixed integer will be designated relatively prime semigroups.

Let K, L be subsemigroups of J. We then have:
THEOREM 3.2 A homomorphism of K into L is an isomorphism of the type: $\alpha \in K$ is mapped onto $r \cdot a \in L$ where r is a fixed rational number which depends on K and L.

Proof. From Corollary 2.1.1 both K and L are finitely generated. Let $\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}$ be the generators of K. Let
$\left\{b_{1}, b_{2}, \ldots, b_{j}\right\}$ be the images of the a_{i} in L under the homomorphism. If we apply the homomorphism to $a_{i} a_{1}=a_{1} a_{i}$ we have $a_{i} b_{1}=a_{1} b_{i}$ and $b_{i}=\left(b_{1} / a_{1}\right) a_{i}$.

Clearly, given a generating set $\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}$, not any rational number $r=q / p$ defines a homomorphism on the $\left\{\alpha_{i}\right\}$. Indeed, $\left(a_{i} q\right) / p$ must be an integer and since p, q may be chosen relatively prime p must divide a_{i}. But a mapping of this type is just a mapping:

$$
b_{i} \rightarrow n b_{i},
$$

where b_{i} is a generating element of a relatively prime subsemigroup of J. Thus, we have obtained:

THEOREM 3.3 For K, L, subsemigroups of J, if L is a homomorphic image of K then both K and L are integral multiples of some subsemigroup K^{\prime} of J, where K^{\prime} is a relatively prime subsemigroup.

THEOREM 3.4 In a subsemigroup of J the congruence v_{a} as defined in 2, is just the congruence modulo (a) as usually defined for integers.

Proof. By definition $x \tau_{a} y$ iff $y=a^{m} x$ or $x=a^{n} y$. But for subsemigroups of J this is just the condition $x \equiv y(\bmod a)$.

COROLLARY 3.4.1 In a subsemigroup of K, say L, there is a unique normal standard element. This element is the least integer in the subsemigroup.

Proof. If L is a relatively prime subsemigroup, the order of $L^{*} n$ is the number of congruence classes of L modulo (n), but L contains all integers greater than some fixed integer k and thus $\left|L_{n}^{*}\right|=n$. If L is not relatively prime, factor out the greatest common divisor of the elements of L, say j, and proceed as above. Clearly, the elements $0,1,2, \ldots, n-1$ are prime to n and also $0, j, 2 j, \ldots,(n-1) j$ and only these are prime to $n j$.

4. The I-function homomorphism

As defined in Section 2 the I-function is a mapping from any finitely generated N-semigroup into the additive positive integers. We now show:

THEOREM 4.1 Let S be a finitely generated N-semigroup. Then the I-function on S is a homomorphism from S into the additive positive integers.

Proof. Take a representation for S in terms of some structure group S_{α}^{*} and its associated I-function. Let (m, g) and (n, h) be two elements of S thus represented. From the definition of the $\underline{\underline{I}}$-function we have:

$$
\begin{align*}
& \underline{\underline{I}}((m, g)(n, h))=\underline{\underline{I}}((m+n+I(g, h), g h))= \tag{1}\\
& (m+n+I(g, h))\left|S_{a}^{*}\right|+I((0, g h)),
\end{align*}
$$

From property (ii) of I-functions and summing over S_{a}^{*} we have:

$$
\sum I(g, h)+\sum I(g h, i)=\sum I(g, h i)+\sum I(h, i),
$$

as i ranges over S_{a}^{*}.
Since S_{a}^{*} is a finite group, $h i$ ranges over all S_{a}^{*} as i does; using this fact and Lemma 2.3 we may write the above as

$$
I(g, h)\left|S_{a}^{*}\right|+I(0, g h)=\underline{\underline{I}}((0, g))+\underline{\underline{I}}((0, h))
$$

Substituting the above in (1) we have:

$$
\underline{\underline{I}}((m, g)(n, h))=m+n+I((0, g))+\underline{\underline{I}}((0, h))
$$

We then use Lemma 2.2 to obtain:

$$
\underline{\underline{I}}((m, g)(n, h))=\underline{\underline{I}}((m, g))+\underline{\underline{I}}((n, h))
$$

We next define what is meant by a semigroup having a greatest homomorphic image of type Γ. Let Ξ be a set of implications. Let Γ be the class of all semigroups satisfying all implications in Ξ. Then a semigroup T has a greatest homomorphic image of type Γ if:
(i) there is a homomorphism α from T onto $T_{0} \in \Gamma$,
(ii) if β is a homomorphism from T onto $T_{1} \in \Gamma$.
then there is a γ from T_{0} to T_{1} such that $\beta=\alpha \gamma$. The following is found in [6].

THEOREM 4.2 Every semigroup, T, has a greatest homomorphic image of type Γ.

A semigroup, T, is said to be power cancellative if for any $a, b \in T$, when $a^{n}=b^{n}$ then we have $a=b$. The following is found in [2].

THEOREM 4.3 Any power joined, power cancellative N-semigroup containing at least two elements can be embedded in the additive positive rationals.

We now obtain
THEOREM 4.4 Let S be a finitely generated N-semigroup. Then, there is a unique subsemigroup of the additive positive integers, K_{s}, such that K_{s} is a relatively prime subsemigroup and K_{s} is a homomorphic image of $S . K_{s}$ is isomorphic to the I-function homomorphic image of S.

Proof. The condition "power cancellative" is given by the set of implications:

$$
\text { (n) }\left\{a, b \in S, a^{n}=b^{n} \rightarrow a=b\right\} \text {. }
$$

Thus, by Theorem 4.2, S has a greatest power cancellative homomorphic image. It has been previously noted that all S are power joined and this condition is clearly preserved by homomorphisms. The property of being finitely generated is also preserved by homomorphisms. Thus S has a greatest power joined, power cancellative homomorphic image, T. This image is clearly finitely generated. From Theorem 4.3 T is isomorphic to a finitely generated subsemigroup of the additive positive rationals if T contains two or more elements. The \underline{I}-function provides a power joined, power cancellative homomorphic image of S, say K_{s}^{\prime} by Theorem 4.1. Thus, K_{s}^{\prime} is a homomorphic image of T. But K_{s}^{\prime} contains an infinite number of elements and thus T is a finitely generated subsemigroup of the additive positive rationals. Clearly any such semigroup is isomorphic to a subsemigroup of the positive integers under addition. From Theorem 3.3 we thus conclude that T and K_{s}^{\prime} are isomorphic. Also from Theorem 3.3 we may find K_{s} isomorphic to T and K_{s}^{\prime} such that K_{s} is a relatively prime subsemigroup. The uniqueness of K_{s} is guaranteed by Theorem 3.2 and 3.3.

LEMMA 4.5 Let S be a finitely generated N-semigroup. Let G be a group homomorphic image of S, under the mapping α. Then G is the homorphic image of some structure group, $S^{*}{ }_{a}$, of S.

Proof. Let the set S_{e} be the pre-image of the identity of G under α. Since S_{e} is not empty select $a \in S_{e}$. Consider the relation \tilde{v}_{a} as defined in the introduction, and the associated structure group $S^{*}{ }_{a}$. Since
$a^{n} \in S_{e}$, if for $x, y \in S$ we have $x \sim_{a} y$ then either $x=a^{n} y$ or $y=a^{m} x$ and $(x) \alpha=(y) \alpha$. Thus, if for $(x) \in S_{a}^{*}$, where x is prime to a, we define $((x)) a^{*}=(x) \alpha$, the mapping a^{*} is clearly a homomorphism from S_{a}^{*} onto G.

5. Subdirect products

We now use the results of the previous sections to obtain a new representation for finitely generated N semigroups.

DEFINITION 5.1 Let R and T be semigroups. A semigroup S is a subdirect product of $R \times T$ if and only if there exist homomorphisms α, β from S onto R and T respectively such that the pre-image of $r \in R$, in S, under α; and the pre-image of $t \in T$, in S, under β; intersect in at most one element.

THEOREM 5.2 Every finitely generated N-semigroup, S, is the subdirect product of a finite abelian group and a subsemigroup of the additive positive integers and conversely.

Proof. As a homomorphism from S to the additive positive integers use the $\underline{\underline{I}}$-mapping. Let Q be the mapping from S to $S^{*}{ }_{a}$, some structure group of S, induced by the relation τ_{a} which defines S_{a}^{*}. Schematically, this may be represented as:

We associate with \underline{I} the congruence ${ }^{\sim} \underline{I}$ which \underline{I} induces on S. Let us use S_{α}^{*} and its associated I-function to represent S. If, under this representation, (m, g) and (n, h) are two elements of S and if (m, g) and (n, h) are in the same class under n_{I} we have:

$$
m\left|S_{a}^{*}\right|+\underline{I}((0, g))=n\left|S_{a}^{*}\right|+\underline{I}((0, h))
$$

If (m, g) and (n, h) are in the same class under \sim_{a} we have, from definition of $S_{a}^{*}: g=h$. Thus $m=n$ and $(m, g)=(n, h)$.

Clearly any subdirect product of $G \times K$ where G is an abelian group and K a subsemigroup of the additive positive integers is an N-semigroup.

The following example shows that in some instances the representation outlined in Theorem 5.2 is properly a subdirect product. Let S_{a}^{*} be the cyclic group of order three with the following I-function:

	e	g	g^{2}
e	1	1	1
g	1	0	4
g^{2}	1	4	5

This N-semigroup is generated by $(0, e)$ and $(0, g)$, (i.e., $\left.\left(0, g^{2}\right)=(0, g)(0, g)=0+0+I(g, g), g^{2}=\left(0+0+0, a^{2}\right)\right)$. $\underline{\underline{I}}((0, e))=3, \underline{\underline{I}}((0, a))=5$ and the image of this N-semigroup under the I-mapping is the sub-semigroup of the additive positive integers generated by 3 and 5 . The intersection of the pre-image of 3 and pre-image of 5 is empty. We then obtain:

THEOREM 5.3 A finitely generated N-semigroup S is the direct product of a subsemigroup of the positive integers and a structure group S_{a}^{*} if, using the representation for S given by S_{a}^{*} and $i t s$ I-function, every element of the form $(0, g)$ is a normal standard element.

Proof. Consider the pre-image of any I-class, say all (m, g) such that $\underline{\underline{I}}((m, g))=n$. For $\underline{\underline{\underline{I}} \text {-mappings we have: }}$

$$
\underline{\underline{I}}((m, g))=m\left|S_{a}^{*}\right|+\underline{\underline{I}}((0, g))
$$

But $I((0, g))$ is the same for all $g \in S_{a}^{*}$. This $\underline{\underline{I}}$-class intersects the pre-image of any $h \in S_{a}^{*}$ in the element (m, h). Thus, $S=K_{s} \times S_{a}^{*}$.

The question of which other classes of N-semigroups may be represented as the direct product of an abelian group and a subsemigroup of the additive integers remains open.

References

[1] John Clayborn Higgins, Finitely generated conmutative archimedean semigroups with idempotent, doctoral dissertation, University of California at Davis, unpublished (1966).
[2] T. Tamura and R. Levin, "On locally cyclic semigroups", Proc. Japan Acad. 42 (1966), 377-379.
[3] Mario Petrich, "On the structure of a class of commutative semigroups", Czechoslovak Math. J., 14 (1964), 147-153.
[4] L. Rédei, Theorie der endlich erzeugbaren kommutativen Halbgruppen, (Physica - Verlag, Würzburg, 1963).
[5] T. Tamura, "Commutative nonpotent archimedean semigroup with cancellation law l", J. Gakugei, Tokushima Univ. 8 (1957), 5-1l.
[6] T. Tamura, "The theory of operations on binary relations", Trans. Amer. Math. Soc. 120 (1965) 343-358.
[7] T. Tamura and T. Tetsyua, "On the base of the infinite quasipower semigroup" (Japanese) Shikokie Shijo. Danwa 13 (July 1963) 295298.

Brigham Young University,
Provo,
Utah, USA

[^0]: Received 21 March 1969. Received by J. Austral. Math. Soc. 25 January 1968. Revised 5 August 1968. Communicated by G.B. Preston. 115

