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Abstract

For fixed integers k and m, with k § m s 2, there are only finitely many runs of m consecutive
integers with no prime factor exceeding k. We obtain lower bounds for the last such run. Let
g (k, m) be its smallest member. For 2 § m S 5 it is shown that g (fc, m) >kc u*°*~ * holds for all
sufficiently large k, where c is a constant depending only on m. We also obtain a number of lower
bounds with explicit ranges of validity. A typical result of this type is that g (k, 3) > /c3 holds just if
fcg41.

1. Introduction

For integers /cgmg2, le tg( / t ,m) denote the least integer such that any m
consecutive integers greater than g(k,m) include a multiple of some prime
exceeding k. In particular g (k, 2) and g (k, 2) + 1 are the largest consecutive
integers with no prime factor greater than k. (For example, it is simple to show
that g (3,2) = 8.)

The function g was introduced by Ecklund and Eggleton (1972), following
the work of Erdo's (1955) and Lehmer (1964, 1965). Recent numerical results
have been reported by Ecklund, Eggleton and Self ridge (1973), and others are
forthcoming.

The existence of g(k, 2) follows from a theorem of St0rmer (1897).
Existence of g(k,m) for k^m^l follows, since g(k,m + \)<g(k,m) is
immediate from the definition of g. Because of this monotonicity, m = 2 is the
most important case to study. Ecklund and Eggleton (1972) report that Erdos
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2 R. B. Eggleton and J. L. Selfridge [2]

suggested that perhaps g (k, 2) ~ exp Vfc, but we seem to be far from proving or
disproving this. An upper bound is given by the results of Lehmer (1964), which
imply that

(1)

for some positive constant c. The lower bound

(2) g(k,2)>k2 just if k g5

was proved by Ecklund and Eggleton (1972) by slightly sharpening an argument
of Erdos.

In this paper we shall establish several lower bounds for g(k,m) with
m =2,3,4,5. The idea of using neighbours to a perfect power, which we
employ in Section 2 is due to A. Schinzel and was communicated to us by P.
Erdos. Next we employ solutions to the Prouhet-Tarry-Escott problem, in
Section 3, and finally combine both methods in numerical work discussed in
Section 4.

2. Neighbours of a perfect power

Sets of consecutive integers with no relatively large prime factors can be
constructed by making use of the factorization

(3) z " - I = FI *-(*)>

where $>d is the cyclotomic polynomial whose roots are the primitive dth roots
of unity, and the product is taken over all positive divisors d of n. The degree
of <$>d is <f> (d), where <f> is Euler's totient function. If z0 is any complex number
on the unit circle, | z - z0| S | z \ + 1 so

(4) | < M z ) | s ( | z | + i ) * w > .

We are now ready to prove

THEOREM 1. For any positive integer n, and 2 g m § 5,

(5) g(k,m)>k"

for all sufficiently large integers k.

PROOF. By (3) we have

d|2r

and
(2r-2)(2r+2) = 4(22'-2-l) = 4 \\ <Dd (2).

d | 2 2d|2r-2
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Hence (4) shows that none of the five consecutive integers 2r - 2 , 2r - 1, 2r,
2 r + l , 2' + 2 has a prime factor greater than 36, where 5 =

max{4>(2r),</>(2r-2)}.
Now we choose r so that S/r is small. For any positive integer n, the

divergence of the product 11(1 — 1/p), taken over all primes, ensures that there
exist positive integers Po and P, which are squarefree and coprime, and have
enough prime factors to satisfy

(6) n fi - - ) < T - . /=o, i.
*,£ \ p) An

By the Chinese Remainder Theorem there are infinitely many positive integers
r such that simultaneously r = 0 (mod Po) and r = 1 (mod P.). For any such r,
(6) implies

(7) -

and

(f> (2r — 2) <f> ( 2 r — 2)

Thus 5 < r/2n by (7) and (8), so for any k satisfying 3r S k2" < 3r+p°p- and all
sufficiently large r, we have g (k, 5) S g (3s, 5) a 2r - 2 > 3(r+p°p')/2 > it". Thus the
case m = 5 of (5) holds for all sufficiently large k. The cases m =2,3,4 follow
immediately.

A refinement of this argument allows us to replace n by a slowly increasing
function of k, as follows. Let (sn)nS, and (an)nBi be sequences of positive
integers in which sn is the product of the first n primes and 2"" < pn+, < 2a-+1,
where pn+l is the (n + l)st prime. If r = 2"sn, with 0 S j 3 ^ a n , the two
consecutive integers T - 1 and 2r have no prime factors greater than 3*(r>. For
any k satisfying 3*(r)S k < 3*<2" we have g(lfc,2) g 2r - 1. Now n i S n (1 - l/pf) ~
e'Vlogp.!, where y is Euler's constant. Thus g (k,2) > kc logp" for some positive
constant c and all sufficiently large n. (For example, our argument would hold
with c = 1/2.) Finally, log sn ~ pn leads to the result: g (it, 2) > fcc l°»to«to«* for all
sufficiently large /c. Evidently the argument extends to the cases m = 3,4,5 so
we have

THEOREM 2. For all sufficiently large integers k, and 2 § m g 5 ,

(9) g(/c,w)>A:<:l08lO8lo8t,

where c is a positive constant depending only on m.

The neighbours of a perfect power will be used again in §4 to derive some
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lower bounds with explicit ranges of validity. Incidentally, it should be noted
that the proofs of Theorems 1 and 2 are effective: numerical bounds on k can
be determined, and for any appropriate set of parameters (including k) a
corresponding m -tuple can be constructed.

3. Prouhet-Tarry-Escott solutions

We now give another construction for sets of consecutive integers with no
relatively large prime factors, based on solutions of the Prouhet-Tarry-Escott
problem. This is the problem of determining a nontrivial integer sequence
(flj)?"i, for some n g 2 (called the order) such that

(10) S a i = E f l " ^ f o r r = l , 2 , - - - , n - l .

Without loss of generality we may also require that IIT= t a, < FIT-i an+i. Hardy and
Wright (1960) report that (10) has solutions at least for n g 10. Because of the
relatively incomplete state of knowledge concerning Prouhet-Tarry-Escott
solutions, we cannot determine the asymptotic order of the lower bound which
our construction implies. However, the theoretical interest of the construction
remains, and in §4 it will be seen to be useful also for deriving certain lower
bounds with explicit ranges of validity.

Let A, B be polynomials whose roots are a solution to (10):

A(x) = f\(x-a,)
and

Then B(x)- A(x)= d, where d = UUian+i - Fir-ia*.There are infinitely many
integers t > ju, such that A (t), B{t) are positive multiples of d, and then
A (t)/d, B(t)ld are consecutive positive integers with no prime factor larger
than t - A, where A = min{flj: l g i S 2 n } and n = max {a,: 1 g i §2n}. Thus
g (k, 2) g A (t)ld, provided k g t - A.

Let v = max{d — /u, + A, a}, where a is the greatest difference between
consecutive members of {a,: 1 S= / S2n} when arranged in increasing order of
magnitude. The construction described above leads to an effective proof of

THEOREM 3. Suppose the Prouhet-Tarry-Escott problem has a solution of
order n. If the parameters of the solution are d, A, ft, v, then

(11) g(k,2)>k"(ld,

for all sufficiently large integers k, where £ = 1 + l/(/i, — A + v).
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PROOF. Take a solution (a,)2", to (10), with parameters d, A, /u,, v. Suppose 5
is any set of /x - A + v consecutive integers, none of which has a prime factor
greater than k. Let S, = {t - a{: i g i S 2n}. There are v district choices of t
such that 5, C 5. Now \S\ = fi — \ + v s? d, by definition of v, so 5 contains at
least one multiple of d. Since v ^ a, every member of S belongs to some set
S, C 5, so there is a f0 such that S,o C S and S,o contains a multiple of d.

For any t g / i - A + v, the smallest member of 5 can be taken to be
g (k, \x. - A + v). With to chosen appropriately, the consecutive integers A (to)ld,
B(to)ld justify the conclusion that

(12) g(k,2) g A (to)ld > g (fc, fx - A + „)"/</.

Ecklund and Eggleton (1972) effectively show that for any e > 0,

logg(k,m)> exp (— - e) logk

for all sufficiently large k. Hence g (k,m)> k l+"m holds for all sufficiently large
k, and now the theorem follows from (12).

The method just used can also be applied to establish a lower bound on
g(k, 3). Let (fli)'=i be a nontrivial sequence of integers such that

(13) a, + a2 = ay + a, = a 5 + a6

and

(14) a,a2 + a-,ab = 2a,a4.

Without loss of generality, we may require a,a2 < a,at < a5a6. These three
products are in arithmetic progression, by (14); let d be the common difference.
Let P,(x) = (x-al)(x-a2), P2(x) = (x - a,)(x - a4) . and P3(x) =
(x - a5)(jc - a6). There are infinitely many integers t such that P,(t)/d, P2(t)/d,
Pi{t)ld are consecutive positive integers, with no prime factor greater than
t - A, where A = min {a,: 1 ^ i § 6}. Hence g (k, 3) S P, (t)/d for k a t - A.

For any integers r, s, the sequence (ft.-)f-i also satisfies (13) and (14), where
bi = rat + s. Thus b, + b2 = 0 can be required, so the problem of solving (13) and
(14) is equivalent to the problem of finding three squares b], b\, b2

5 which are in
arithmetic progression. Dickson (1920) discusses this old problem; the solution
which was known to Jordanus Nemorarius was published in 1496. The general
solution with b, > b, > b5 > 0 is given by

b, = 4u + v + w, b3 = 2M + v + w, b5= v - w,

where u, v, w are positive integers such that v > w and vw = 2M2. The smallest
solution corresponds to 72,52,12. By taking r = 2, s = 7, the corresponding
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solution to (13) and (14) leads to P,(x) = x(x + 7), P2(x) = (x + \)(x + 6),
P 3 (X) = ( X + 3 ) ( J C + 4 ) . As in (12), this gives g(k,3) >g(fc,9)2/6 provided fc is
large enough. Hence we have an effective proof of

THEOREM 4. For all sufficiently large integers k,

(15) g(fc,3)>^20'9.

This construction does not extend to give a lower bound on g(k,m) with m g 4 ,
for as Dickson (1920) reports Fermat knew, there do not exist four squares in
arithmetic progression. However, such a lower bound (for mS3) could be
given if we had a nontrivial integer sequence (a,)!"-" such that

2 a ' = S a )n + , f o r j = 1,2, • • • ,tn - 1 a n d r = 1,2, • • •, n - 1,

a n d

(17) f l «<j-i)n+i + F I «(j + Dn+i = 2 f l ajn+i f o r / = 1,2, • • - , » ! - 2 .
i = i i -1 i = i

We do not know whether such sequences exist; probably they do not.

4. Bounds with explicit ranges of validity

In this section we shall present numerical bounds for several inequalities in
which the g function exceeds some integral power of its first argument. The
inequality (2) is an example of this type. The methods of proof are essentially
adaptations of those used in §2 and §3; they are adequately illustrated in the
proof of

THEOREM 5. The inequality

(18) g(k,3)>k>

holds just if fc g 41.

PROOF. First we use cyclotomic polynomials to consider neighbours of a
30th power. By (3), all cyclotomic polynomials which are factors of zm - 1 are
of degree 8 or less, except for <J>6o(z). But note the identity

(19) <D60(2) = P2(2)

where
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Thus when 2z is a square, <$>m(z) has a so-called Aurifeuillian factorization [cf.
Cunningham and Woodall (1925)] as a difference of two squares, in which case
each factor has leading term z8. Indeed, if z = 2t2 the three consecutive
integers z 3 0 - 1 , z30, z 3 0 + l can have no prime factor greater than P{2t2) +
2tQ(2t2), which can be shown to be less than 365t16 when 1 ^ 3 . For
365f ' 6 S/c<365(f+ 1)16 and t g 3, it follows that g(k,3) g g (365 f 16,3) g
2 M f« ' - i>365 3 ( f+ l)48>fc3. Thus (18) holds for k g q,, where q,=
11630 180 251 is the largest prime factor of 186 0- 1.

To show that (18) holds for smaller k, we now consider some specific
factorizations of z" — 1, z", z" + 1, either with z small, or with n = 6. The
largest prime factor of 221O-1 is q2 = 1 564 921, so the three consecutive
integers 2 ' 0 5 - 1, 2'05, 2'05 + 1 show that (18) holds for q2Sk<235. Since q, < 2",
it follows that (18) holds for k g q2. Similarly, since the largest prime factors of
3 7 8 - l , 107312— 1, 6 9 5 ' 2 - l , 123O-1 are respectively <j3 = 797 161, qA = 383419,
^5 = 241 513, <?„ = 35 671, and q2<3", q,<\0732, q,<6952, q,<\25, it follows
that (18) holds for k g q6.

Next we apply the polynomials P, (x) = x (x +7), P2(x) = (x + l)(x +6),
P,(x) = (x + 3)(x +4), constructed in §3 from a solution of the generalized
Prouhet-Tarry-Escott problem. By choosing x so that the prime factors of x,
x + \,x + 3,x+4, x+6, x+7 are all suitably small and also x ^ 1 (mod 3), the
triple of consecutive integers P,(n)/6, / = 1,2,3 will afford an example for
which (18) holds. In particular, with x = 16533 113 the corresponding three
consecutive integers all exceed 35 7153 (so each exceeds ql) but their largest
prime factor is only q7 = 1669. Again, with x = 198912 all three integers exceed
18753 (so each exceeds q3) and qs = 257 is their largest prime factor. Similarly,
the three consecutive integers corresponding to x = 3477 exceed 1263, and
q,o = 67 is their largest prime factor.

The gap between 126 and qg can also be covered by several triples located
in this way. However, we did not find a single triple which would suffice, so we
considered triples located by evaluating the polynomials

Q , ( j c ) = ( j f - l ) ( j c + 2 ) , Q2(x) = x 2 + x - \ , Q i ( x ) = x (x + 1).

In particular, with x = 6665 all three integers exceed 3543 (so each exceeds ql)
and q9 = 113 is their largest prime factor. Since q9< 126, (18) holds for k g q,0-

A direct search for triples located the examples whose smallest members
are 302498 and 247455. The largest prime factor on the first triple is qn = 61,
and all three members exceed 673 (so exceed q3

0); the largest prime factor of
the second triple is q,2 = 53, and all its members exceed 623 (so exceed q\,). The
results of Lehmer (1965), reproduced by Ecklund and Eggleton (1972), show
g(41,3) = 212 380, so the members of the triple all exceed 593 (so exceed q]2),
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and the largest prime factor present is q,3 = 41. Thus (18) holds for k g41.
Lehmer's results for g (k, 3) with k < 41 show that (18) fails to hold in all cases,
so the proof is complete.

A similar self-contained argument is possible when the fr3 in (18) is
replaced by k2. However, it is more convenient to deduce the result as a
corollary of Theorem 5 (in conjunction with Lehmer's results):

(20) g(k,3)>k2 just if k g 13.

The corresponding inequality with k* as lower bound will now be
considered. In this case we take neighbours of a 210th power. All cyclotomic
polynomials which are factors of z420- 1 are of degree 48 or less, except for
<t>42o(z). Analogous to (19) is the identity

(21) <J>42O(z) = /? 2 ( z ) -2zS 2 ( z ) ,

where R (z) and S (z) are reciprocal polynomials (for example, z4gR(z~') =
R (z)), so are fully specified by

- z " - z 3 4 - z 3 2 + 3 z 3 1 - 2 z 2 9 - 3 z 2 8 - 2 z 2 7 - z 2 6 + 3 z 2 4 ,

S(z) = z" + z4* + z45 - z" + z39+ z38+ z 3 7 - z 3 5 -2z 3 4 + z32

Thus, when z = 2f2 there is an Aurifeuillian factorization of <l>42o(z), and the
three consecutive integers z 2 l 0 - l , z210, z 2 l 0 + l can have no prime factor
greater than R (2t2) + 2tS (2t2), which is less than 249f96. For

24 9f9 6gfc<24 9(f+ 1)96

and ( g 6 , w e have g (fc,3) g 2 2 1 V 2 0 - 1 > k4. Moreover 249696< 3 x 1089, so

(22) g(k,3)>k4 holds if fci^xlO89.

The three consecutive integers Fi(198912)/6, i = 1,2,3, used in the proof of
Theorem 5, provide an example showing that g (k, 3) > k4 holds for 257 S k S
284. This suggests that the bound k4 in (22) may actually hold for k ^ 257, and
perhaps also for smaller values of k.

Clearly a result similar to (22) could be obtained for the bound k5. The
triple 2105 - 1, 2105, 2'05 + 1 used in the proof of Theorem 5 shows that g (k, 3) > k5

holds for 1 564921 Sk<22'.
It has been remarked by several authors that if the consecutive integers

a - 1, a, a + \ have no prime factors greater than k, then a 2 - l , a2 are
consecutive integers with the same property. Hence if g(k,3)>k" then

https://doi.org/10.1017/S1446788700013318 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013318


[9j Consecutive integers 9

g(k,2)> k2". In particular, Lehmer's results for g(k,2) can be combined with
(18) to give

(23) g(k,2)>k6 just if fcg31,

and hence

(24) g(k,2)>k* just if 19Sfcg25 or it g 29.

Similarly, with (20) we have

(25) g(k,2)>k" just if 7 S J c ^ 8 or A: g 13,

and hence

(26) g(k,2)>k* just if it S7.

We shall now derive a result for g(k, 5) which is comparable to (22). All
cyclotomic polynomials which are factors of z4 4- 1 are of degree 10 or less,
apart from 3>44(z), for which we have the identity

(27) 4>44(z)=r2(z)-2zt/2(z),

where

T(Z) = Z'° + z" - Z8 - 27 + Z" + Z5 + Z" - Z3 - 22 + Z + 1,

Thus when 2 = 2f\ 4>44(z) has an Aurifeuillian factorization, and z2 2- 1, z22+ 1
are necessarily greater than the squares of their largest prime factors if t s 2:
the largest prime factors must be less than 1024 f '9(t +2).

Again, all cyclotomic polynomials which are factors of w 2 l 0 - l are of
degree 48 or less, so if w is an integer greater than 1, w105- 1, wl05+ 1 are
necessarily greater than the squares of their largest prime factors, which must
be less than w47(w + 2).

To combine these two observations, each of the consecutive integers
2(2""'- 1), 2" - 1, 2", 2" + 1, 2(2""' + 1) exceeds the square of its largest prime
factor if (i) n = 22 (mod 44) and n = 1 (mod 105), or (ii) n = 23 (mod 44) and
n = 0 (mod 105). Thus n = 4620m +946 or n = 4620m + 3675, with m SO. In
any case, the largest prime factor present cannot exceed c.2'6"'35, where
c =65/64. Thus if c.2

2"2m+m S k < c.2
2"2m + 1680 and m g 7, we have

24«20m+946 _ J > C2 _24224m+336O > fc 2 S i m i ] a r l y j j f ^ " a - l * " g fc < c ^ " l * -

m §4, we have g(k,5)> k2. These two results mesh for m S6; moreover
c.2l43"<10432', so

(28) g(k,5)>k2 holds if k g 10432'.
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Evidently corresponding results could be established for higher powers of k
and also for g(k, 4). However, the bounds obtained by this method are
presumably far from best possible, so we content ourselves with the above
illustration of the method. Note that the quintuple 2(224- 1), 22 5- 1, 2", 2"+ 1,
2(224 + 1) shows that g (k, 5) > k2 holds for 4051 S k ^ 5792.

We shall close with some numerical information best presented in tabular
form. For any positive integer x and m g 2, let p (x, m) denote the largest prime
factor of the m consecutive integers x + i, 0 ̂  i ^ m - 1. Also let am be the
smallest positive integer such that p{am, m)<\ram. In Table 1 we give the
values of am for 2 ^ m g 8 .

TABLE 1. Smallest m -tuples satisfying g(k,m)>k2.

am

80
350
1518
5828

m

2
3
4
5

p(am,m)

5
13
31
67

28032
290783
290 783

> 500 000

m

6
7
8
9

p(am,m)

163
523
523

—

Let Km denote the smallest positive integer such that g(k,m)>k2 holds
for all k ^ Km. Then (2) and (20) imply K2 = 5, K> = 13. The examples in Table 2
suggest that K4 S 43, K5 S 101, K6 S 163 and K7 S 337. Lehmer's results imply
K4 S 43, so it seems almost certain that K4 = 43, and probable that K5 = 101. (If
K4 / 43 then K4 > 653, by Table 2.)

TABLE 2. Ranges of fc which satisfy g (k, m) > k \

p(x,m)

10878
17 574
38624
28032
44250
52 323
99 381
190990
356 207
426851

4
5
5
6
6
6
6
6
7
7

43
101
107
163
167
211
229
269
337
359

104
132
196
167
210
228
315
437
5%
653
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