N. YamauchiNagoya Math. J.Vol. 83 (1981), 107-121

ON ALGEBRA WITH UNIVERSAL FINITE MODULE OF DIFFERENTIALS

NORIO YAMAUCHI

Let k be a field and A a noetherian k-algebra. In this note, we shall study the universal finite module of differentials of A over k, which is denoted by $D_k(A)$. When the characteristic of k is zero, detailed results have been obtained by Scheja and Storch [8]. So we shall treat the positive characteristic case. In § 1, we shall study differential modules of a local ring over subfields. We obtain a criterion of regularity (Theorem (1.14)). In § 2, we shall study the formal fibres and regular locus of A with $D_k(A)$. Our main result is Theorem (2.1) which shows that, if $D_k(A)$ exists, then A is a universally catenary G-ring under a certain assumption. In the local case, this is a generalization of Matsumura's theorem ([5] Theorem 15), where regularity of A is assumed.

Throughout this note, rings are commutative with unit element. We freely use the notation and the terminology in [2].

§ 0. Preliminaries

First we summarize generalities of universal finite module of differentials. For the detail, see [8].

Let A be a ring and M an A-module. We say that M is a prefinite A-module if the following condition is satisfied:

For any non-zero element m of M, there is a finite A-module N and an A-linear map $f: M \to N$ such that $f(m) \neq 0$.

M is a prefinite A-module if and only if it is a submodule of a direct product of finite A-modules.

For an A-module M, we put $K = \{m \in M | \text{ for any finite A-module N}$ and any A-linear map $f: M \to N$, $f(m) = 0\}$ and $\overline{M} = M/K$. Let $p: M \to \overline{M}$ be the natural surjection.

Received June 29, 1979. Revised October 30, 1979. Proposition (0.1). Let the notation be as above. Then:

- (1) \overline{M} is a prefinite A-module.
- (2) If N is a prefinite A-module, then there is a natural isomorphism of A-modules: $\operatorname{Hom}_{A}(M,N) \simeq \operatorname{Hom}_{A}(\overline{M},N)$.
- (3) If $f: M \to N$ is a homomorphism of A-modules, then there is a unique A-linear map $\overline{f}: \overline{M} \to \overline{N}$ such that $p' \circ f = \overline{f} \circ p$ where p' is the natural surjection $N \to \overline{N}$. Thus $M \mapsto \overline{M}$ is a covariant functor from the category of A-modules into the category of prefinite A-modules.
- *Proof.* Let N be an arbitrary prefinite A-module and let $f: M \to N$ be an A-homomorphism. Then it is easy to see that $\ker(f) \supset K$. The assertions follow from this fact.
- Let k be a ring and k be a k-algebra. Let k be an k-module and k-module of k-derivation. k-derivation. k-algebra. Let k-be an k-module and k-module of differentials of k-over k if the following conditions are satisfied (cf. [8]):
 - (1) D is a prefinite (resp. finite) A-module and D = AdA,
- (2) for any prefinite (resp. finite) A-module M and k-derivation $\delta: A \to M$ there is a unique A-linear map $f: D \to M$ such that $\delta = f \circ d$. (i.e. $\operatorname{Der}_k(A, M) \simeq \operatorname{Hom}_A(D, M)$.)

Proposition (0.2). Let k be a ring and A a k-algebra. Then:

- (1) The universal prefinite module of differentials of A over k exists and is unique up to isomorphism.
- (2) The universal finite module of differentials of A over k exists if and only if the universal prefinite module of differentials of A over k is a finite A-module.
- *Proof.* (1) Let $\Omega_{A/k}$ be the usual module of differentials and put $D = \overline{\Omega_{A/k}}$. Then D is the universal prefinite module of differentials by (0.1).
- (2) The "if" part is obvious by the definition, while the "only if" part is easy since any prefinite module can be embedded into a direct product of finite modules. (cf. [8] (1.1).)

We denote by $D_k(A)$ the universal finite module of differentials of A over k. The canonical derivation $d: A \to D_k(A)$ is called the universal finite k-derivation of A.

PROPOSITION (0.3). Let k be a ring and A a noetherian k-algebra with $D_k(A)$. Then:

- (1) If m is a maximal ideal of A, $D_k(A_m)$ exists and $D_k(A_m) \simeq D_k(A)_m$
- (2) If A is a local ring, $D_k(\hat{A})$ exists and $D_k(\hat{A}) \simeq D_k(A) \otimes_A \hat{A}$ where \hat{A} denotes the completion of A.

Proof. See [8] (1.8) and (1.6).

PROPOSITION (0.4). Let k, A and B be noetherian rings and $k \xrightarrow{f} A$ $\xrightarrow{g} B \text{ be homomorphisms of rings. Then:}$

- (1) If $D_k(B)$ exists, so does $D_A(B)$.
- (2) Assume that any prefinite B-module is also a prefinite A-module. Then, when $D_k(A)$ and $D_k(B)$ exist, there is an exact sequence of natural homomorphisms of B-modules:

$$(*) D_k(A) \otimes_A B \to D_k(B) \to D_A(B) \to 0.$$

(3) If $D_k(A)$ exists and g is surjective, then $D_k(B)$ exists and we have the following exact sequence of B-modules where $I = \ker(g)$:

$$(**) I/I^2 \to D_k(A) \otimes_A B \to D_k(B) \to 0.$$

Proof. (1) Trivial by (0.2).

(2) Let M be an arbitrary finite B-module. Then we have the following exact sequence of natual homomorphisms:

$$0 \to \operatorname{Der}_{A}(B, M) \to \operatorname{Der}_{k}(B, M) \to \operatorname{Der}_{k}(A, M)$$
.

By definition,

$$\operatorname{Der}_{A}(B,M) \simeq \operatorname{Hom}_{B}(D_{A}(B),M)$$
 and $\operatorname{Der}_{k}(B,M) \simeq \operatorname{Hom}_{B}(D_{k}(B),M)$.

Since M is a prefinite A-module by the assumption, $\operatorname{Der}_k(A, M) \simeq \operatorname{Hom}_A(D_k(A), M) \simeq \operatorname{Hom}_B(D_k(A) \otimes_A B, M)$. Therefore the sequence

$$0 \to \operatorname{Hom}_{B}(D_{A}(B), M) \to \operatorname{Hom}_{B}(D_{k}(B), M) \to \operatorname{Hom}_{B}(D_{k}(A) \otimes_{A} B, M)$$

is exact. Thus (*) is exact.

(3) The existence of $D_k(B)$ is obvious since $\Omega_{B/k}$ is a homomorphic image of $\Omega_{A/k}$. The exactness of (**) follows from the fact that for any finite B-module M, the following sequence is exact:

$$0 \to \operatorname{Hom}_{B}(D_{k}(B), M) \to \operatorname{Hom}_{B}(D_{k}(A) \otimes_{A} B, M) \to \operatorname{Hom}_{B}((I/I^{2}, M))$$
.

Remark. The assumption of (2) is satisfied in the following cases:

(a) A is a field. (b) g is a local homomorphism of noetherian local rings. (cf. [8] (1.3)).

PROPOSITION (0.5). Let k be a ring and A a noetherian k-algebra with $D_k(A)$. If B is

- (1) a formal power series ring over A (in a finite number of variables) or
 - (2) a finite A-algebra, then $D_k(B)$ exists.

Proof. Case (1). Put $B = A[[X_1, \cdots, X_n]]$. Let $d_{B/k} \colon B \to D$ be the universal prefinite k-derivation. Since D can be embedded into a direct product of finite B-modules and $I = (X_1, \cdots, X_n)B \subset \operatorname{rad}(B)$, D is separated in I-adic topology. Thus $D = \sum_{a \in A} Bd_{B/k}(a) + \sum_i Bd_{B/k}X_i$. Moreover D is a prefinite A-module because for any finite B-module M and for any $\nu > 0$, $M/I^{\nu}M$ is a finite A-module. Hence there is an A-linear map $f \colon D_k(A) \to D$ such that $f \circ d_{A/k} = d_{B/k} \circ \phi$ where $d_{A/k}$ is the universal finite k-derivation of A and $\phi \colon A \to B$ is the natural injection. Therefore D is generated over B by $\operatorname{Im}(f)$ and $d_{B/k}X_1, \cdots, d_{B/k}X_n$. Hence D is a finite B-module.

Case (2). Proof is similar to the case (1).

Remark. In the case (1), we have $D_k(B) \simeq (D_k(A) \otimes_A B) \oplus (\oplus_i BdX_i)$, because for any finite B-module M,

$$\operatorname{Der}_{k}(B,M) \simeq \operatorname{Der}_{k}(A,M) \oplus \operatorname{Hom}_{B}(\oplus BdX_{i},M)$$
.

We now recall some results on extension of fields which are developed in E.G.A. chapter 0_{IV} . Let $k_0 \subset k \subset K$ be fields. The kernel of the natural map $\Omega_{k/k_0} \otimes_k K \to \Omega_{K/k_0}$ is called the module of imperfection and is denoted by $\Upsilon_{K/k/k_0}$. When k_0 is the prime field, $\Upsilon_{K/k/k_0}$ is also denoted by $\Upsilon_{K/k}$. Let L be an extension of K. Then we have the following exact sequence:

$$(***) 0 \longrightarrow \Upsilon_{K/k/k_0} \otimes_K L \xrightarrow{v} \Upsilon_{L/k/k_0} \xrightarrow{u} \Upsilon_{L/K/k_0} \xrightarrow{s} \Upsilon_{L/K/k} \longrightarrow 0.$$

The module $\Upsilon_{K/k/k_0} \otimes_{\kappa} L$ will be also denoted by $\Upsilon_{K/k/k_0}^L$. Obviously the following are equivalent:

- (1) v is surjective,
- (1)' v is bijective,
- (2) u = 0,
- (3) s is injective,
- (3)' s is bijective.

We say that k is k_0 -admissible for L/K if the conditions above are

satisfied. When k_0 is the prime field, we use the word "admissible" instead of k_0 -admissible.

LEMMA (0.6) (E.G.A. (0.21.6.5)). Let $k_0 \subset k \subset k' \subset K \subset L \subset M$ be fields. Then

- (1) k' is k_0 -admissible for L/K if and only if k is k_0 -admissible for L/K and k' is k-admissible for L/K.
- (2) k is k_0 -admissible for M/K if and only if k is k_0 -admissible for M/L and L/K.

LEMMA (0.7). Let $k \subset K$ be fields and L a finitely generated extension of K. Then $\Omega_{L/K}$ and $\Upsilon_{L/K/k}$ are finite L-module, and we have

$$\operatorname{rank}_{L} \Omega_{L/K} - \operatorname{rank}_{L} \Upsilon_{L/K/k} \geq \operatorname{tr.deg}_{K} L$$
.

The equality holds if and only if k is admissible for L/K.

Proof is obvious by Cartier's equality (cf. E.G.A. (0.21.7.1)) and the exact sequence (***).

Let K be a field and $F = (k_{\alpha})_{\alpha \in I}$ a family of subfields of K. We say that F is downward directed if the following condition is satisfied:

For any $\alpha, \beta \in I$, there is some $\gamma \in I$ such that $k_{\alpha} \cap k_{\beta} \supset k_{\gamma}$.

LEMMA (0.8) (E.G.A. (0.21.8.3)). Let $k_0 \subset K$ be fields of characteristic p > 0. Let $(k_{\alpha})_{\alpha \in I}$ be a downward directed family of subfields of K containing k_0 . Then the following are equivalent:

- (a) $\bigcap_{\alpha} k_{\alpha}(K^p) = k_0(K^p)$,
- (b) if L is an extension of K with $\operatorname{rank}_L \Upsilon_{L/K/k_0} < \infty$, then there is some $\alpha \in I$ such that k_{α} is k_0 -admissible for L/K,
- (b)' for any $x \in K$, there is some $\alpha \in I$ such that k_{α} is k_0 -admissible for $K(x^{1/p})/K$,
 - (c) the canonical homomorphism $\Omega_{K/k_0} \to \lim_{\leftarrow} \Omega_{K/k_{\alpha}}$ is injective.

Remark. Let k_0 and K be as above. Let B be a p-basis of K over k_0 and $\{H_{\alpha}\}$ the family of finite subsets of B. Put $B_{\alpha} = B \setminus H_{\alpha}$ and $k_{\alpha} = k_0(K^p)(B_{\alpha})$. Then $\{k_{\alpha}\}$ is a downward directed family of cofinite subfields of K containing k_0 which satisfies the conditions of the lemma.

COROLLARY (0.9). Suppose that $(k_{\alpha})_{\alpha \in I}$ satisfies the conditions of the lemma above. Then, if L is an extension of K with $\operatorname{rank}_{L} \Upsilon_{L/K/k_{0}} < \infty$, we have $\bigcap_{\alpha} k_{\alpha}(L^{p}) = k_{0}(L^{p})$.

LEMMA (0.10) ([2] (30.E)). Let k be a field of characteristic p > 0 and $(k_{\alpha})_{\alpha \in I}$ a downward directed family of subfields of k. Put $k_0 = \bigcap_{\alpha} k_{\alpha}$. Then we have $\bigcap_{\alpha} k_{\alpha}((T_1, \dots, T_r)) = k_0((T_1, \dots, T_r))$.

§1. Differential modules of a local ring

Let (A, \mathfrak{m}) be a local ring containing a field k. Recall that k is called a quasi-coefficient field of A if A/\mathfrak{m} is formally etale over k (cf. [4]).

LEMMA (1.1). Let (A, m) be a local ring containing a field k. Then:

- (1) If A/m is separable over k, there is a quasi-coefficient field of A containing k. In particular A has a quasi-coefficient field,
- (2) if k is a quasi-coefficient field of A, then there is a unique coefficient field of \hat{A} containing k,
- (3) if k is a quasi-coefficient field of A and K is a coefficient field of \hat{A} containing k, then we have $\Omega_{\hat{A}/k} \simeq \Omega_{\hat{A}/K}$.
- *Proof.* (1) and (2) are proved in [4]. (3) is trivial by the following exact sequence: $0 = \Omega_{K/k} \bigotimes_{k} \hat{A} \to \Omega_{\hat{A}/k} \to \Omega_{\hat{A}/K} \to 0$.

PROPOSITION (1.2). Let $k \subset K$ be fields and let $A = K[[X_1, \dots, X_n]]$. Then the following are equivalent:

- (1) $D_k(A)$ exists,
- (2) $\operatorname{rank}_{K} \Omega_{K/k} < \infty$,
- (3) $\operatorname{ch}(k) = 0$ and $\operatorname{tr.deg}_k K < \infty$, or $\operatorname{ch}(k) = p > 0$ and $[K: K^p(k)] < \infty$. Furthermore, if $D_k(A)$ exists, it is a free A-module of rank $(n + \operatorname{rank}_K \Omega_{K/k})$.

Proof is obvious by (0.4) and (0.5).

COROLLARY (1.3). Let A be a noetherian complete local ring, K a coefficient field of A and k a subfield of K. Then $D_k(A)$ exists if and only if $\operatorname{rank}_K \Omega_{K/k} < \infty$.

PROPOSITION (1.4). Let (A, \mathfrak{m}, K) be a noetherian local ring containing a field k. Assume that

- (1) for any cofinite subfield k' of k, $D_{k'}(A)$ exists, and
- (2) rank $\Upsilon_{K/k} < \infty$.

Then there is a subfield k'_0 of k and a quasi-coefficient field K_0 of A containing k'_0 such that (1) and (2) continue to hold after replacing k by k'_0 and such that $D_{K_0}(A)$ exists.

Proof. Case (1). ch(k) = 0. Since A has a quasi-coefficient field containing k by (1.1), the assertion follows from (0.4), (1).

Case (2). ch (k) = p > 0. Let B be a p-basis of k. By the condition (2) there is a finite subset F of B such that K is separable over $k'_0 = k_0(B')$ where k_0 is the prime field and $B' = B \setminus F$. So A has a quasi-coefficient field K_0 containing k'_0 . Put $k' = k^p(k'_0) = k^p(B')$. Then $D_{k'}(A)$ exists because $[k:k'] < \infty$. Since we have $D_{k'_0}(A) = D_{k'}(A)$, the existence of $D_{K_0}(A)$ follows from (0.4), (1). If k_1 is a cofinite subfield of k'_0 then $[k^p(k'_0):k^p(k_1)] < \infty$, hence $[k:k^p(k_1)] < \infty$ and $D_{k^p(k_1)}(A) = D_{k_1}(A)$ exists.

Let A be an integral domain and M an A-module. We put $\operatorname{rank}_A M = \operatorname{rank}_{Q(A)} M \otimes_A Q(A)$, where Q(A) denotes the quotient field of A. We will investigate the rank of differential module of a local domain.

PROPOSITION (1.5). Let K be a field of characteristic p>0 and k a subfield of K such that $\operatorname{rank}_K \Omega_{K/k} < \infty$. Let $A=K[[X_1,\cdots,X_n]]$, P a prime ideal of A and R=A/P. Then there is a k-subalgebra R_0 of R such that $D_k(R) \simeq \Omega_{R/R_0}$.

Proof. By the normalization theorem, there is a k-subalgebra $R_1 = K[[T_1, \cdots, T_d]]$ of R such that R is a finite R_1 -algebra ($d = \dim R$). Put $R_0 = k(K^p)[[T_1^p, \cdots, T_d^p]]$. Then R is a finite R_0 -algebra because $\operatorname{rank}_K \Omega_{K/K} < \infty$. So Ω_{R/R_0} is a finite R-module. Let N be an arbitrary finite R-module. Since N is separated in m_R -adic topology (m_R denotes the maximal ideal of R) and $T_i \in m_R$, any derivation of R into N over k vanishes on R_0 , hence we have $\operatorname{Hom}_R(D_k(R), N) \simeq \operatorname{Der}_k(R, N) \simeq \operatorname{Hom}_R(\Omega_{R/R_0}, N)$. This shows that $D_k(R) \simeq \Omega_{R/R_0}$ by the universal mapping property of $D_k(R)$.

Remark. If $[K:k] < \infty$, we can replace R_0 by $k[[T_0^p, \dots, T_d^p]]$.

COROLLARY (1.6). Let
$$M=Q(R)$$
 and $M_0=Q(R_0)$. Then we have
$$\operatorname{rank}_R D_k(R)=\operatorname{rank}_M \Omega_{M/M_0} \ .$$

COROLLARY (1.7). Put $M_1 = Q(R_1)$. Then the following are equivalent:

- (1) M_0 is admissible for M/M_1 ,
- (2) $\operatorname{rank}_R D_k(R) = \dim R + \operatorname{rank}_K \Omega_{K/k}$

Proof. Let B be a p-basis of K over k. Then $B \cup \{T_1, \dots, T_d\}$ is a p-basis of R_1 over R_0 and hence we have $\operatorname{rank}_{M_1} \Omega_{M_1/M_0} = d + \operatorname{rank}_K \Omega_{K/K}$. Consider the following exact sequence:

$$0 \to \varUpsilon_{_{M/M_1/M_0}} \to \varOmega_{_{M_1/M_0}} \otimes_{_{M_1}} M \to \varOmega_{_{M/M_0}} \to \varOmega_{_{M/M_1}} \to 0.$$

Since we have $[M: M_1] < \infty$, the condition (1) is equivalent to the following by (0.7):

$$(1)' \qquad \operatorname{rank}_{M_1} \Omega_{M_1/M_0} = \operatorname{rank}_{M} \Omega_{M/M_0}.$$

Clearly (1)' is equivalent to (2) by (1.6).

The following proposition is an analogy of E.G.A. (0.21.9.8).

PROPOSITION (1.8). Let k, K and R be as in Proposition (1.5). Assume moreover that $\operatorname{rank}_{\kappa} \Upsilon_{\kappa/k} < \infty$. Then there is a cofinite subfield k' of k which satisfies the following: for any cofinite subfield k'' of k', we have

$$\operatorname{rank}_R D_{k''}(R) = \dim R + \operatorname{rank}_K \Omega_{K/k''}.$$

Proof. Let $R_1=K[[T_1,\cdots,T_d]]$ $(d=\dim R)$ be a subring of R such that R is a finite R_1 -algebra, M=Q(R) and $M_1=Q(R_1)$. Let $(k_\alpha)_{\alpha\in I}$ be a downward directed family of cofinite subfields of k with $\bigcap_\alpha k_\alpha=k^p$. Since $\operatorname{rank} \varUpsilon_{K/k}<\infty$ we have $\bigcap_\alpha k_\alpha(K^p)=K^p$ by (0.9). We put $M_\alpha=k_\alpha(K^p)((\varUpsilon_1^p,\cdots,\varUpsilon_d^p))$ for each α . Then we have by $(0.10)\bigcap_\alpha M_\alpha=K^p((\varUpsilon_1^p,\cdots,\varUpsilon_d^p))=(M_1^p)$. Since M is a finite extension of M_1 we have $\operatorname{rank} \varUpsilon_{M/M_1}<\infty$. Hence there is some $\alpha\in I$ such that M_α is admissible for M/M_1 by (0.8). Moreover if k'' is a cofinite subfield of k_α , the field $M''=k''(K^p)((\varUpsilon_1^p,\cdots,\varUpsilon_d^p))$ is also admissible for M/M_1 by (0.6), (1). This means by (1.7) that $\operatorname{rank} D_{k''}(R)=\dim R+\operatorname{rank} \varOmega_{K/k''}$. Hence we can take this k_α for k'.

LEMMA (1.9). Let A be a noetherian local domain and k a subfield. Assume that $D_k(A)$ exists and that A is analytically unramified. Then, for each $P \in \mathrm{Ass}(\hat{A})$, we have $\mathrm{rank}_A D_k(A) = \mathrm{rank}_{\hat{A}/P} D_k(\hat{A}/P)$.

Proof. By (0.4), (3), we have the following exact sequence:

$$(P/P^2) \otimes_{\hat{A}} \kappa(P) \to D_{\kappa}(\hat{A}) \otimes_{\hat{A}} \kappa(P) \to D_{k}(\hat{A}/P) \otimes_{\hat{A}/P} \kappa(P) \to 0$$
.

This shows that $D_{k}(\hat{A}) \otimes_{\hat{A}} \kappa(P) \simeq D_{k}(\hat{A}/P) \otimes_{\hat{A}/P} \kappa(P)$ because \hat{A} is reduced and so $P\hat{A}_{p} = 0$ and $\kappa(P) = \hat{A}_{p}$. Therefore we have

$$\operatorname{rank}_{A} D_{k}(A) = \operatorname{rank}_{\kappa(P)} D_{k}(\hat{A}) \otimes_{\hat{A}} \kappa(P) = \operatorname{rank}_{\hat{A}/P} D_{k}(\hat{A}/P)$$
.

Theorem (1.10). Let R be a noetherian local domain, K a quasi-coefficient field of R and k a subfield of K. Assume that

- (1) for any cofinite subfield k_1 of k, $D_{k_1}(R)$ exists,
- (2) $\operatorname{rank}_{K} \Upsilon_{K/k} < \infty$, and
- (3) R is analytically unramified.

Then there is a cofinite subfield k' of k which satisfies the following: for any cofinite subfield k'' of k', we have $\operatorname{rank}_R D_{k''}(R) = \dim R + \operatorname{rank}_K \Omega_{K/k''}$.

Proof. Let K^* be a coefficient field of \hat{R} containing K. Then, if K' is a subfield of K, we have $\Upsilon_{K/K'}^{K^*} \simeq \Upsilon_{K^*/K'}$ and $\Omega_{K/K'} \otimes_K K^* \simeq \Omega_{K^*/K'}$. In particular we have $\operatorname{rank}_{K^*} \Upsilon_{K^*/K} < \infty$. Next let k_1 be a cofinite subfield of k and $P \in \operatorname{Ass}(\hat{R})$ be such that $\dim(R/P) = \dim \hat{R} = \dim R$. Then we have $\operatorname{rank}_R D_{k_1}(R) = \operatorname{rank}_{\hat{R}/P} D_{k_1}(\hat{R}/P)$ by (1.9). Therefore we get the assertion by (1.8) with $(k, K^*, \hat{R}/P)$ for (k, K, R).

Corollary (1.11). Under the assumption of the theorem, \hat{R} is equidimensional and hence R is universally catenary.

Proof. Let $\operatorname{Ass}(\hat{R}) = \{P_1, \dots, P_r\}$. Then, by the theorem, there is a cofinite subfield k' of k such that $\operatorname{rank}_{\hat{R}/P_i} D_{k'}(\hat{R}/P_i) = \dim(\hat{R}/P_i) + \operatorname{rank}_{K} \Omega_{K/k'}$ for each i. This shows that $\dim(\hat{R}/P_i)$ is independent on i because $\operatorname{rank}_{R} D_{k'}(R) = \operatorname{rank}_{\hat{R}/P_i} D_{k'}(R/P_i)$ by (1.9). The last assertion follows from this and E.G.A. (IV. 7.1).

We now give a criterion of the regularity of a local ring with universal finite module of differentials. We use the following lemma.

LEMMA (1.12). Let (A, \mathfrak{m}) be a regular local ring and I an ideal of A. Let $\alpha: (I/I^2) \otimes_A A/\mathfrak{m} \to (\mathfrak{m}/\mathfrak{m}^2) \otimes_A A/\mathfrak{m}$ be the natural map. Then

- (1) $\operatorname{rank}_{A/\mathfrak{m}}\operatorname{Im}(\alpha) \leq \operatorname{ht} I$.
- (2) The following are equivalent:
 - (a) A/I is a regular local ring,
 - (b) α is injective,
 - (c) $\operatorname{rank}_{A/\mathfrak{m}} \operatorname{Im}(\alpha) = \operatorname{ht} I$.

Proof. Note that A/I is regular if and only if I is generated by a subset of a regular system of parameters of A. The assertions follow from this fact.

PROPOSITION (1.13). Let $k \subset K$ be fields, $A = K[[X_1, \dots, X_n]]$, I an ideal of A such that $I = \sqrt{I}$ and $P \in \operatorname{Spec}(A)$ with $P \supset I$. We put R = A/I and $\mathfrak{p} = P/I$. Assume that $D_k(R)$ exists and that we have

$$\operatorname{rank}_{R/\mathfrak{q}} D_k(R/\mathfrak{q}) = \dim(R/\mathfrak{q}) + \operatorname{rank}_K \Omega_{K/k}$$

for each $q \in Ass(R)$. Then:

(1) If $D_k(R)$, is a free R_{ν} -module, R_{ν} is a regular local ring,

(2) conversely, if R_{ν} is regular and we have

$$\operatorname{rank}_{R/\mathfrak{p}} D_{k}(R/\mathfrak{p}) = \dim (R/\mathfrak{p}) + \operatorname{rank}_{K} \Omega_{K/k},$$

then $D_k(R)_{\nu}$ is a free R_{ν} -module.

Proof. Take $Q \in \operatorname{Ass}_A(A/I)$ such that $Q \subset P$ and $\operatorname{ht} IA_p = \operatorname{ht} QA_p$ (=\text{ht } Q). Then $\mathfrak{q} = Q/I$ is a minimal prime ideal of R with $\mathfrak{p} \supset \mathfrak{q}$. Since R is reduced we have $D_k(R) \otimes_{R} \kappa(\mathfrak{q}) \simeq D_k(R/\mathfrak{q}) \otimes_{R/\mathfrak{p}} \kappa(\mathfrak{q})$. Now consider the following commutative diagram with exact rows:

Then, if $D_{\mathbf{k}}(R)_{\mathbf{p}}$ is $R_{\mathbf{p}}$ -free, we have $\mathrm{rank}_{\mathbf{r}(\mathbf{p})}D_{\mathbf{k}}(R)\otimes_{R}\mathbf{k}(\mathbf{p})=\mathrm{rank}_{\mathbf{r}(\mathbf{q})}D_{\mathbf{k}}(R)\otimes_{R}\mathbf{k}(\mathbf{p})=\mathrm{rank}_{\mathbf{r}(\mathbf{q})}D_{\mathbf{k}}(R)\otimes_{R}\mathbf{k}(\mathbf{p})=\mathrm{rank}_{\mathbf{r}(\mathbf{p})}D_{\mathbf{k}}(R)\otimes_{R}\mathbf{k}(\mathbf{p})=\mathrm{rank}_{\mathbf{r}(\mathbf{p})}D_{\mathbf{k}}(R)\otimes_{R}\mathbf{k}(\mathbf{p})=\mathrm{rank}_{\mathbf{r}(\mathbf{p})}D_{\mathbf{k}}(R)\otimes_{R}\mathbf{k}(R)\otimes_{R$

To prove (2), note that if the equality in (2) holds, then δ' is injective. Hence δ is injective if and only if i is injective. This last condition is equivalent to that R_{\flat} is regular by (1.12). Therefore if R_{\flat} is regular, we have rank $D_k(R) \otimes_{R} \kappa(\mathfrak{p}) = \dim A + \operatorname{rank} \Omega_{K/k} - \operatorname{ht} IA_{\mathfrak{p}}$. On the other hand we have rank $D_k(R) \otimes \kappa(\mathfrak{p}) \geq \operatorname{rank} D_k(R)_{\flat} \geq \dim A + \operatorname{rank} \Omega_{K/k} - \operatorname{ht} IA_{\mathfrak{p}}$, where the first inequality is obvious and the second follows from the exact sequence: $(I/I^2) \otimes_{R} R_{\flat} \to D_k(A) \otimes_{A} R_{\flat} \to D_k(R)_{\flat} \to 0$ and the regularity of R_{\flat} . Hence we have rank $D_k(R)_{\flat} \otimes_{R_{\flat}} \kappa(\mathfrak{p}) = \operatorname{rank} D_k(R)_{\flat}$ and this shows that $D_k(R)_{\flat}$ is a free R_{\flat} -module.

The following theorem is a corollary of the proposition above.

THEOREM (1.14). Let R be a noetherian local domain containing a field k and $\mathfrak{p} \in \operatorname{Spec}(R)$. Assume that

- (1) R has a quasi-coefficient field K containing k,
- (2) R is analytically unramified,
- (3) for any cofinite subfield k' of k, $D_{k'}(R)$ exists, and
- (4) $\operatorname{rank}_R D_k(R) = \dim R + \operatorname{rank}_K \Omega_{K/k}$.

Then, if $D_k(R)_{p}$ is a free R_{p} -module, R_{p} is a regular local ring.

Proof. Let q be a prime ideal of \hat{R} lying over \mathfrak{p} . Then $D_k(\hat{R})_{\mathfrak{q}} =$

 $D_k(R)_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} \hat{R}_{\mathfrak{q}}$ is a free $\hat{R}_{\mathfrak{q}}$ -module. Let K^* be a coefficient field of \hat{R} containing K. \hat{R} is equidimensional by (1.11). So, for each $\mathfrak{q}_i \in \mathrm{Ass}\,(\hat{R})$, we have $\mathrm{rank}_{\hat{R}/\mathfrak{q}_i} D_k(\hat{R}/\mathfrak{q}_i) = \mathrm{rank}_R D_k(R) = \dim R + \mathrm{rank}_K \Omega_{K/k} = \dim (\hat{R}/\mathfrak{q}_i) + \mathrm{rank}_{K^*} \Omega_{K^*/k}$ by (1.9). Hence $\hat{R}_{\mathfrak{q}}$ is regular by (1,13). Since $\hat{R}_{\mathfrak{q}}$ is faithfully flat over $R_{\mathfrak{p}}$, $R_{\mathfrak{p}}$ is regular.

EXAMPLES. Let k be a field and R a noetherian k-algebra with $D_k(R)$. When ch(k) = 0, Scheja and Storch proved the following (cf. [8]):

let $\mathfrak p$ be a prime ideal of R, then $R_{\mathfrak p}$ is regular if and only if $D_k(R)_{\mathfrak p}$ is a free $R_{\mathfrak p}$ -module.

When ch(k) = p > 0, the following examples (1) and (2) show that the above result must be modified as in (1.14).

- (1) Put $R = k[X]/(X^p)$. Then R is an artinian local ring and is not regular. On the other hand $D_k(R)$ exists and is a free R-module of rank 1. For the unique prime ideal m_R of R, we have $\operatorname{rank}_{R/m_R} D_k(R/m_R) = 0$.
- (2) Put A = k[[X, Y]] and suppose $k \neq k^p$. If $a \in k k^p$ then $aX^p + Y^p$ is an irreducible element of A. Put $R = A/(aX^p + Y^p)$. Then $D_k(R)$ is a free R-module of rank 2. The ring R is a local domain of dimension 1 and is not regular.
- (3) Assume moreover that $[k:k^p] = \infty$. Let $A = k^p[[T]][k]$. Take $u \in k[[T]] A$ and put $a = u^p$. Then $R = A[X]/(X^p a)$ is a local domain of dimension 1. $\hat{R} = \hat{A}[X]/(X u)^p$ is not reduced. It is easy to see that for any cofinite subfield k' of k containing k^p , $D_{k'}(R)$ exists and $D_{k'}(R) = (\Omega_{k/k'} \otimes_k R) \oplus RdT \oplus RdX$. Hence we have $\operatorname{rank}_R D_{k'}(R) = \operatorname{rank}_k \Omega_{k/k'} + 2$. Thus the assumption (4) of Theorem (1.14) is essential.

§2. Formal fibres and regular loci

Theorem (2.1). Let k be a field of characteristic p > 0 and let A be a noetherian k-algebra. Assume that

- (1) A is a locally Nagata ring,
- (2) for any cofinite subfield k' of k, $D_{k'}(A)$ exists, and
- (3) for any maximal ideal m of A, we have $\operatorname{rank}_{\kappa(m)} \Upsilon_{\kappa(m)/k} < \infty$. Then A is a universally catenary G-ring.

Proof. Note that A is universally catenary if and only if for any maximal ideal \mathfrak{m} of A and any prime ideal \mathfrak{p} contained in \mathfrak{m} , $A_{\mathfrak{m}}/\mathfrak{p}A_{\mathfrak{m}}$ is universally catenary. Hence we can assume by (0.3) and (0.4) that A is a local domain. Moreover we can assume that k is contained in a quasi-

coefficient field of A by the conditions (2), (3) and Proposition (1.4). The local ring A is analytically unramified by (1) (cf. [2] Theorem 70). Hence A is universally catenary by (1.11)). To prove that A is a G-ring, we can again localize at a maximal ideal and assume that A is a local ring with maximal ideal \mathfrak{m} . Then we have the following lemma.

LEMMA (2.2) ([2]. (33. E)). Let R be a noetherian local ring. Then R is a G-ring if and only if, for any finite integral R-algebra S and for any prime ideal Q of \hat{S} such that $Q \cap S = (0)$, \hat{S}_Q is a regular local ring.

Let B be a finite integral A-algebra and Q a prime ideal of \hat{B} such that $Q \cap B = (0)$. Let \mathfrak{n}^* be a maximal ideal of \hat{B} containing Q and put $\mathfrak{n} = \mathfrak{n}^* \cap B$. Then \mathfrak{n} is a maximal ideal of B and we have $\hat{B}_{\mathfrak{n}^*} = (B_{\mathfrak{n}})^*$. Since B is a finite A-algebra, B and k satisfies (1), (2) and (3). So replacing A by $B_{\mathfrak{n}}$, we have only to prove that when A is a local domain, \hat{A}_Q is a regular local ring whenever Q is a prime ideal of \hat{A} with $Q \cap A = (0)$. Again we can assume that k is contained in a quasi-coefficient field of A. Then by (1.10), there is a cofinite subfield k' of k such that $\operatorname{rank}_A D_{k'}(A) = \dim A + \operatorname{rank}_{\mathfrak{a}(\mathfrak{m})} \mathcal{Q}_{\mathfrak{a}(\mathfrak{m})/k'}$. Since \hat{A} is reduced and $D_{k'}(\hat{A})_Q = D_{k'}(A) \otimes_A Q(A) \otimes_{Q(A)} \hat{A}_Q$ is a free \hat{A}_Q -module, \hat{A}_Q is a regular local ring by (1.13), (1.9) and (1.11).

THEOREM (2.3). In addition to the assumption in (2.1), assume that k is a perfect field. Then A is an excellent ring.

Proof. We have only to prove that A is J-2, i.e., that for any finite A-algebra A', $\operatorname{Reg}(A')$ is an open subset of $\operatorname{Spec}(A')$. To prove this, it is sufficient to show the following (cf. [2] (32. A) Lemma 1): $\operatorname{Reg}(A'/\mathfrak{p})$ contains a non-empty open subset of $\operatorname{Spec}(A'/\mathfrak{p})$ for each $\mathfrak{p} \in \operatorname{Spec}(A')$. Since A'/\mathfrak{p} satisfies the same condition as A, the problem is reduced to showing that when A is an integral domain $\operatorname{Reg}(A)$ contains a non-empty open subset of $\operatorname{Spec}(A)$. First we prove that the following equality holds for each maximal ideal \mathfrak{m} of A: (*) rank $D_k(A_{\mathfrak{m}}) = \dim A_{\mathfrak{m}} + \operatorname{rank} \Omega_{\mathfrak{e}(\mathfrak{m})/k}$. In fact $A_{\mathfrak{m}}$ is analytically unramified because it is a Nagata ring. Furthermore since k is perfect, $A_{\mathfrak{m}}$ has a quasi-coefficient field containing k by (1.1), (1), and $k = k^{\mathfrak{p}}$. Hence we get the equality by (1.10). Now we prove the set $U = \{\mathfrak{p} \in \operatorname{Spec}(A) | D_k(A)_{\mathfrak{p}} \text{ is a free } A_{\mathfrak{p}}\text{-module}\}$ is contained in $\operatorname{Reg}(A)$. Let $\mathfrak{p} \in U$. Take a maximal ideal \mathfrak{m} containing \mathfrak{p} . Then $D_k(A)_{\mathfrak{p}} = (D_k(A) \otimes_A A_{\mathfrak{m}})_{\mathfrak{p}} = D_k(A_{\mathfrak{m}})_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ -module and (*) holds for \mathfrak{m} .

Hence $A_{\mathfrak{p}} = (A_{\mathfrak{m}})_{\mathfrak{p}}$ is regular by (1.14).

Lastly we will prove Matsumura's theorem ([5] Theorem 15) in a slightly different way. Let R be a regular ring and P a prime ideal of height r. Matsumura defined the following condition (cf. [5]):

(WJ) There are some derivations $d_1, \dots, d_r \in \text{Der}(R)$ and some elements $f_1, \dots, f_r \in P$ such that $\det(d_i f_j) \notin P$.

LEMMA (2.4) ([5] Theorem 14). Let A be a regular ring. Then A is excellent if the following is satisfied:

For any $n \ge 0$ and for any $P \in \operatorname{Spec}(A[X_1, \dots, X_n])$ such that A[X]/P is a finite A-algebra, (WJ) holds at P.

Theorem (2.5) (Matsumura). Let A be a regular ring containing a field k of characteristic p > 0. Assume that

- (1) A is a locally Nagata ring,
- (2) for any cofinite subfield k' of k, $D_{k'}(A)$ exists, and
- (3) for any maximal ideal m of A, we have $\operatorname{rank}_{\mathfrak{x}(\mathfrak{m})} \Upsilon_{\mathfrak{x}(\mathfrak{m})/k} < \infty$. Then A is an excellent ring.

Proof. Put $A_n = A[X_1, \dots, X_n]$. Let $P \in \text{Spec}(A_n)$ such that $B = A_n/P$ is a finite A-algebra. We prove that (WJ) holds at P. Let $\mathfrak n$ be a maximal ideal of A_n containing P and put $\mathfrak{m}=\mathfrak{n}\cap A$. Then \mathfrak{m} is a maximal ideal of A since B is a finite A-algebra. Replacing A by A_m and A_n by $(A_n)_m$, we can assume that A is a regular local ring. Let B be a p-basis of kand let $\{F_{\alpha}\}_{\alpha\in I}$ be the family of finite subsets of **B**. Put $k_{\alpha}=k^{p}(B_{\alpha})$ and $k'_{\alpha}=k_{0}(B_{\alpha})$ where k_{0} is the prime field and $B_{\alpha}=B\backslash F_{\alpha}$. Then $(k_{\alpha})_{\alpha\in I}$ (resp. $(k'_{\alpha})_{\alpha \in I}$) is a downward directed family of cofinite subfields of k (resp. $k_0(B)$) with $\bigcap_{\alpha} k_{\alpha} = k^p$ (resp. $\bigcap_{\alpha} k'_{\alpha} = (k_0(B))^p$). Note that $D_{k_{\alpha}}(A)$ exists for each α by (2) and that $D_{k_{\alpha}}(A) = D_{k'_{\alpha}}(A)$. Moreover $D_{k_{\alpha}}(B)$ exists and $D_{k_{\alpha}}(B) = D_{k'_{\alpha}}(B)$. There is some $\alpha \in I$ such that $\kappa(\mathfrak{m})$ is separable over k'_{α} by (3), and hence A has a quasi-coefficient field K_{A} containing k'_{α} . Replacing k by k'_{α} , we can assume that $k \subset K_{A}$. Similarly we can assume that k is contained in a quasi-coefficient field of B_n because $[\kappa(n):\kappa(m)]$ $<\infty$ and hence we have $\mathrm{rank}_{\kappa(n)}\varUpsilon_{\kappa(n)/k}<\infty$. Since $\mathrm{rank}_{\kappa(n)}\varUpsilon_{\kappa(n)/\kappa(m)}<\infty$ there is some $\beta \in I$ such that k_{β} is admissible for $\kappa(n)/\kappa(m)$ by (0.8) and Consider the following exact sequence:

$$0 \to \varUpsilon_{\mathfrak{s}(\mathfrak{n})/\mathfrak{s}(\mathfrak{m})/k\beta} \to \varOmega_{\mathfrak{s}(\mathfrak{m})/k\beta} \otimes_{\mathfrak{s}(\mathfrak{m})} \kappa(\mathfrak{n}) \to \varOmega_{\mathfrak{s}(\mathfrak{n})/k\beta} \to \varOmega_{\mathfrak{s}(\mathfrak{n})/\mathfrak{s}(\mathfrak{m})} \to 0 \ .$$

We have $\operatorname{rank}_{{}_{\mathbf{r}(\mathfrak{m})}}\varOmega_{{}_{\mathbf{r}(\mathfrak{m})/k_{\beta}}}<\infty$ and $\operatorname{rank}_{{}_{\mathbf{r}(\mathfrak{n})}}\varOmega_{{}_{\mathbf{r}(\mathfrak{n})/k_{\beta}}}<\infty$ because $D_{k_{\beta}'}(A)$ and

 $D_{k_{\beta}}(B_{\mathfrak{n}})$ exist. Thus we have by (0.7) $\operatorname{rank}_{\mathfrak{e}(\mathfrak{m})} \mathcal{Q}_{\mathfrak{e}(\mathfrak{m})/k_{\beta}} - \operatorname{rank}_{\mathfrak{e}(\mathfrak{n})} \mathcal{Q}_{\mathfrak{e}(\mathfrak{n})/k_{\beta}} = \operatorname{rank}_{\mathfrak{e}(\mathfrak{n})} \mathcal{Y}_{\mathfrak{e}(\mathfrak{n})/k_{\beta}} - \operatorname{rank}_{\mathfrak{e}(\mathfrak{n})} \mathcal{Y}_{\mathfrak{e}(\mathfrak{n})/k_{\beta}} = 0$. On the other hand, since $B_{\mathfrak{n}}$ is a Nagata ring and hence analytically unramified, there is some $\gamma \in I$ such that $\operatorname{rank}_{B_{\mathfrak{n}}} D_{k_{\gamma}}(B_{\mathfrak{n}}) = \dim B_{\mathfrak{n}} + \operatorname{rank}_{\mathfrak{e}(\mathfrak{n})} \mathcal{Q}_{\mathfrak{e}(\mathfrak{n})/k_{\gamma}}$ by (1.10). We can assume that $k = k_{\beta} = k_{\gamma}$. Put $D = (D_{k}(A) \otimes_{A} B) \oplus (\bigoplus_{i=1}^{n} BdX_{i})$. There are natural B-homomorphism $P/P^{2} \to \mathcal{Q}_{A_{n}/k} \otimes_{A_{n}} B = (\mathcal{Q}_{A/k} \otimes_{A} B) \oplus (\bigoplus_{i=1}^{n} BdX_{i})$ and $\mathcal{Q}_{A/k} \to D_{k}(A)$. Hence we get a B-homomorphism $\delta \colon P/P^{2} \to D$. We have also a B-homomorphism $u \colon D \to D_{k}(B)$ defined by the natural map $D_{k}(A) \otimes_{A} B \to D_{k}(B)$ and $dX_{i} \mapsto dx_{i}$ ($x_{i} = X_{i} \mod P$). Thus we get the following sequence of B-homomorphism:

$$(*) P/P^2 \xrightarrow{\delta} D \xrightarrow{u} D_k(B) \longrightarrow 0.$$

Now we prove that (*) is exact. Let M be an arbitrary finite B-module. Then M is a finite A-module. Hence $\operatorname{Hom}_B(D,M) \simeq \operatorname{Hom}_B(D_k(A) \otimes_A B, M) \oplus \operatorname{Hom}_B(\bigoplus_{i=1}^n BdX_i, M) \simeq \operatorname{Der}_k(A,M) \oplus \operatorname{Hom}_{A_n}(\bigoplus_{i=1}^n A_n dX_i, M) \simeq \operatorname{Der}_k(A_n,M)$. Thus the following sequence is exact:

$$0 \longrightarrow \operatorname{Hom}_{\scriptscriptstyle{B}}(D_{\scriptscriptstyle{k}}(B), M) \longrightarrow \operatorname{Hom}_{\scriptscriptstyle{B}}(D, M) \longrightarrow \operatorname{Hom}_{\scriptscriptstyle{B}}(P/P^{\scriptscriptstyle{2}}, M) \ .$$

Therefore (*) is exact. Tensoring (*) with $\kappa(P) = Q(B)$, we have the following exact sequence:

$$P/P^2 \otimes_B \kappa(P) \xrightarrow{\Delta} (D_k(A) \otimes_A \kappa(P)) \oplus \left(\bigoplus_{i=1}^n \kappa(P) dX_i \right) \longrightarrow D_k(B) \otimes_B \kappa(P) \longrightarrow 0.$$

Since A is a complete regular local ring, $D_k(\hat{A}) = D_k(A) \otimes_A \hat{A}$ is a free A-module of rank (dim \hat{A} + rank $\Omega_{\kappa(m)/k}$) by (1.2). Hence $D_k(A)$ is A-free by [2] (4. E) and we have rank Im (Δ) = rank $D_k(A)$ + n - rank $D_k(B)$ = dim A + rank $\Omega_{\kappa(m)/k}$ + n - (rank $\Omega_{\kappa(m)/k}$ + dim B_n) = ht P. This means that (WJ) hold at P.

COROLLARY (2.6) (cf. [5] and [9]). Let k be a field. Then the ring $k[X_1, \dots, X_m][[Y_1, \dots, Y_n]]$ is excellent.

Remark. Let k be a field and A a noetherian k-algebra with $D_k(A)$. When the characteristic of k is zero, then A is excellent (cf. [8]). When the characteristic of k is p > 0, A is not necessary excellent. For instance, the ring $A = k^p[[T]][k]$ is not excellent if $[k:k^p] = \infty$ (cf. [2] (34. B)), while $D_k(A)$ exists and is a free A-module of rank 1. (cf. also § 1, Example (3).)

REFERENCES

- [1] Marot, J., Sur les anneaux universellement japonais, C. R. Acad. Sci. Paris, 277 (1973), 1029-1031.
- [2] Matsumura, H., Commutative Algebra, Benjamin, New York, 1970.
- [3] ——, Formal power series rings over polynomial rings I, in "Number Theory, Algebraic Geometry, and Commutative Algebra" (in honor of Y. Akizuki), Kinokuniya, Tokyo, (1973), 511-520.
- [4] —, Quasi-coefficient rings of a local ring, Nagoya Math. J., 68 (1977), 123-130.
- [5] —, Noetherian rings with many derivations, in "Contributions to Algebra" (in honor of E. Kolchin), Academic Press, New York, (1977), 279-294.
- [6] Nagata, M., Local rings, Wiley, New York, 1962.
- [7] Nomura, M., Formal power series rings over polynomial rings II, in "Number Theory, Algebraic Geometry and Commutative Algebra" (in honor of Y. Akizuki), Kinokuniya, Tokyo, (1973), 521-528.
- [8] Scheja, G. and Storch, U., Differentielle Eigenschaften der Lokalisierungen analytischer Algebren, Math. Ann., 197 (1972), 137-170.
- [9] Valabrega, P., On the excellence property for power series rings over polynomial rings, J. Math. of Kyoto Univ., 15 (1975), 387-395.
- [E.G.A.] Grothendieck, A. and Dieudonne, J., Eléments de Géométrie Algébrique, Publ. Math. I.H.E.S., 1960 ff.

Shotoku-Gakuen Women's Junior College