ON A CONJECTURE OF LITTLEWOOD IN

DIOPHANTINE APPROXIIAATIONS

S. Krass

A conjecture of Littlewood states that for arbitrary
$\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, n \geq 2$, and any $\varepsilon>0$ there exist
$m_{0} \neq 0, m_{1}, \ldots, m_{n}$ so that $\left|m_{0} \prod_{i=1}^{n}\left(m_{0} x_{i}-m_{i}\right)\right|<\varepsilon . \quad$ In this
paper we show this conjecture holds for all $\underline{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right)$
such that $1, \xi, \ldots, \xi_{n}$ is a rational basis of a real algebraic number field of degree $n+1$.

1. Introduction

In a paper by Cassels and Swinnerton-Dyer in 1955, [2] they show that if $1, \alpha_{1}, \alpha_{2}$ is a basis (over Q) of a real cubic number field, then, for any $\varepsilon>0$, there exist integers $m_{0} \neq 0, m_{1}, m_{2}$ such that

$$
\left|m_{0}\left(m_{0} \alpha_{1}-m_{1}\right)\left(m_{0} \alpha_{2}-m_{2}\right)\right|<\varepsilon
$$

This result reinforces (but of course does not prove) for $n=2$ a conjecture by Littlewood that for arbitrary $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, $n \geq 2$, and any $\varepsilon>0$ there exists $\underline{m}=\left(m_{0}, m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n+1}$ with $m_{0} \neq 0$ such that

Received 26 March 1985,

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ 2.00+0.00$.

$$
\left|m_{0} \prod_{i=1}^{n}\left(m_{0} x_{i}-m_{i}\right)\right|<\varepsilon
$$

In this paper we extend the Cassels, Swinnerton-Dyer result from $n=2$ to all $n \geq 2$. That is to say if $\underline{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right)$ with 1 , ξ_{1}, \ldots, ξ_{n} a basis of F, a real number field of degree $n+1$, then, for any $\varepsilon>0$, there exists $\underline{m} \in \mathbb{Z}^{n+1}, m_{0} \neq 0$ such that

$$
\left|m_{0} \prod_{i=1}^{n}\left(m_{0} \xi_{i}-m_{i}\right)\right|<\varepsilon
$$

If M is a full \mathbb{Z}-module in $F, G(M)$ denotes the coefficient ring of M. Namely

$$
\mathcal{R}(M)=\{\alpha \in F: \alpha M \subseteq M\}
$$

We will first need to prove the following lemma concerning units. in $\operatorname{R}(M)$ which may be of independent interest.

LEMMA. M is a full \mathbb{Z}-module in F a real (algebraic) number field of degree $n+1$ and $R(M)$ the coefficient ring of M For all $\alpha=\alpha_{[0]} \in F, \alpha_{[j]}, j=0, \ldots, n$ denote the conjugates of α ordered so that $\alpha_{[j]} \in \mathbb{R}, j=0, \ldots, n-2 s, \quad \alpha_{[j]}=\bar{\alpha}_{[s+j]} \in \mathbb{C}, \jmath=n-2 s+1, \ldots, n-s$ where s is the number of pairs of complex conjugates. Then there exists an infinite sequence $\Gamma=\left(\gamma_{k} \in R(M), k=1,2, \ldots\right)$ with each γ_{k} a unit in $R(M)$ such that

$$
\begin{equation*}
\left.\lim _{k \rightarrow \infty} \gamma_{k[j]} / \gamma_{k[n-s]}=1, j=1, \ldots, n-s-1 \text { (with } \gamma_{k[j]}=\left(\gamma_{k}\right)_{[j]}\right) \tag{i}
\end{equation*}
$$

(ii) $\lim _{k \rightarrow \infty} \gamma_{k}=\infty$.

2. Proof of Lemma

By a theorem of Dirichlet the (multiplicative) group of units in $\boldsymbol{R}(M)$ is generated by n-s independent units, [1, p. 112]. Let $B_{i}, i=1, \ldots, n-s$ be $n-s$ independent units in $R(M)$. For $\varepsilon>0$ it is clear that the system of inequalities

$$
\begin{equation*}
\left|\sum_{i=1}^{n-s} x_{i} \log \right| \beta_{i[j]} / \beta_{i[n-s]}| |<\varepsilon, j=1, \ldots, n-s-1 \tag{2.1}
\end{equation*}
$$

has infinitely many (integer) solutions $\underline{x}=\underline{v}=\left(v_{1}, \ldots, v_{n-s}\right) \in \mathbb{Z}^{n-s}$. Let $\varepsilon_{k}>0, k=1,2, \ldots$ with $\lim _{k \rightarrow 0} \varepsilon_{k}=0$ and let
$v_{k}=\left(v_{k 1}, \ldots, v_{k, n-s}\right) \in \mathbb{Z}^{n-s}$ be an integer solution of (2.1) for
$\varepsilon=\varepsilon_{k}, k=1,2, \ldots$ Then writing

$$
\begin{equation*}
\psi_{k}=\prod_{i=1}^{n-s}{ }_{B_{i}}^{v_{k i}}, \quad k=1,2,3, \ldots \tag{2.2}
\end{equation*}
$$

we have by construction

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|\psi_{k[j]} / \psi_{k[n-s]}\right|=1, j=1, \ldots, n-s-1 \tag{2.3}
\end{equation*}
$$

Now we will write for all k (with $e(x)=e^{\sqrt{-1} 2 \pi x}$)

$$
\psi_{k[j]}=\left|\psi_{k[j]}\right| e\left(\theta_{k j}\right),-\frac{1}{2}<\theta_{k j} \leq \frac{1}{2}, j=0, \ldots, n .
$$

Since $\psi_{k[j]} \in \mathbb{R}, j=0, \ldots, n-2 s$, replacing β_{i} by $\beta_{i}^{2}, i=1, \ldots, n$, if necessary, we may assume without loss of generality.

$$
\begin{equation*}
\theta_{k j}=0, \quad j=0, \ldots, n-2 s \tag{2.4}
\end{equation*}
$$

Now the infinite set of "amplitude" vectors

$$
\theta=\left\{\theta_{k}=\left(\theta_{k, n-2 s+1}, \ldots, \theta_{k, n-s}\right): k=1,2, \ldots\right\}
$$

must contain at least one limit point $\phi=\left(\phi_{n-2 s+1}, \ldots, \phi_{n-s}\right)$, say, with $-\frac{1}{2} \leq \phi_{j} \leq \frac{1}{2}, j=n-2 s+1, \ldots, n-s$.
If $\phi=0$, then $\gamma_{k}=\psi_{k}$ satisfies (i) of the lemma. So we suppose $\phi \neq 0$. We may then choose an infinite subsequence of the ψ_{k}

$$
\rho_{p}=\psi_{k_{p}}, p=1,2, \ldots
$$

such that

$$
\lim _{p \rightarrow \infty} \rho_{p[j]} /\left|\rho_{p[j]}\right|=e\left(\phi_{j}\right), \quad j=n-2 s+1, \ldots, n-s
$$

Finally we put

$$
\gamma_{k}=\rho_{k+1} / \rho_{k}
$$

Writing $\gamma_{k[j]}=\left|\gamma_{k[j]}\right| e\left(\phi_{k j}\right)$ it is clear that

$$
\lim _{k \rightarrow \infty} \phi_{k j}=0, \quad j=n-2 s+1, \ldots, n-s
$$

Of course $\phi_{k j}=0, j=0, \ldots, n-2 s$ by (2.4).
Then we only need observe that, for $j=1, \ldots, n-s-1$,
$\left|\gamma_{k[j]} / \gamma_{k[n-s]}\right|=\left|\rho_{k+1,[j]} / \rho_{k+1,[n-s]}\right|\left|\rho_{k[j]} / \rho_{k[n-s]}\right| \rightarrow 1$, as $k \rightarrow \infty$ to see that $\gamma_{\mathcal{K}}, k=1,2, \ldots$ satisfies (i) of the lemma.

Now the (homogeneous) simultaneous equation system

$$
\begin{equation*}
\sum_{i=0}^{n-s} x_{i} \log \left|\beta_{i[j]} / \beta_{i[n-s]}\right|=0, j=1, \ldots, n-s-1 \tag{2.5}
\end{equation*}
$$

has at least one of the $(n-s-1) \times(n-s-1)$ submatrices of its coefficient matrix non-singular (since the regulator is non zero). So the solution set of (2.5) is the line, L, where

$$
L=\left\{\lambda \underline{y}: \epsilon \mathbb{R}, \text { and } \underline{y} \neq \underline{0}, \underline{y} \in \mathbb{R}^{n-s}\right. \text { is a solution of (2.5) \}. }
$$

The set

$$
\left\{v_{k} \in \mathbb{Z}^{n-s}: r_{k}=\prod_{i=1}^{n-s} \beta_{i}^{v_{k i}}, k=1,2, \ldots\right\}
$$

is a subset of solutions $\underline{x} \in \mathbb{Z}^{n-s}$ satisfying (2.1) and the elements are lattice points lying "near" the line L.

Suppose for the present $\prod_{i=1}^{n-s} B_{i}^{y} \neq 1$. Observe both $\underline{x}=\underline{y}$
and $\underline{x}=-\underline{y}$ satisfy (2.5). Hence we may choose y with $\prod_{i=1}^{n-s} \beta_{i}>1$. Then for any $J>0$ there exists \underline{v}_{k} near $\lambda \underline{y}$ for some $\lambda>J$, establishing (ii) of the lemma. So we need only show

$$
\begin{equation*}
\prod_{i=1}^{n-s} B_{i}^{y_{i}} \neq 1, \quad \text { cony } \underline{y} \neq 0, y \text { a solution to (2.5). } \tag{2.6}
\end{equation*}
$$

Suppose $\prod_{i=1}^{n-s} \beta_{i} y_{i}=1$. Then it follows easily that there exist solutions
$\underline{x}=\underline{v} \in \mathbb{Z}^{n-s}$ to (1) such that $|\theta|=\left|\prod_{i=1}^{n-s} \beta_{i}^{v i}\right| z 1$ and $\left|\theta_{[1]}\right| \approx \ldots \approx\left|\theta_{[n-s]}\right|$ where " z " denotes equality up to any arbitrarily small fixed error. But $\left|\theta_{[n-2 s+j]}\right|=\left|\theta_{[n-s+j]}\right|, j=1, \ldots, s \quad$ and $\quad 1=\prod_{j=0}^{n}\left|\theta_{[j]}\right|$, so $\prod_{i=1}^{n-s} \beta_{i}^{y_{i}}=1 \Rightarrow$ there exist irrational units θ with all conjugates arbitrarily near the unit circle. But this is impossible, see [3, p.137]. So (2.6) is established proving the lemma.

The following results follow trivially.
COROLLARY 1. The Lemma holds with (i) replaced by

$$
\lim _{k \rightarrow \infty} \gamma_{k[j]} / \gamma_{k[n]}=1, j=1, \ldots, n .
$$

COROLLARY 2. Both the Zemma and Corollary 1 hold with
(ii)
(ii')

$$
\begin{aligned}
& \text { replaced by } \\
& \lim _{k \rightarrow \infty} \gamma_{k}=0
\end{aligned}
$$

3. Theorem

Let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ so that $1, \xi$ is a basis of F a real number field of degree $n+1$. Then for any $\varepsilon>0$ there exist integers $m_{0} \neq 0, m_{1}, \ldots, m_{n}$ so that

$$
\left|m_{0} \prod_{j=1}^{n}\left(m_{0} \xi_{j}-m_{j}\right)\right|<\varepsilon
$$

Proof. Let $\xi_{0}=1$ and $\xi_{[i] j}=\left(\xi_{j}\right)_{[i]}, i, j=0, \ldots, n$ with conjugates ordered by the convention in the lemma. A is the matrix

$$
A=\left(\xi_{[i] j}: i, j=0, \ldots, n\right)
$$

It is well-known that $\operatorname{det} A \neq 0$. So we may define

$$
U=\left(u_{i j}: i, j=0, \ldots, n\right)=A^{-1}
$$

By the row conjugate structure of A we have

$$
u_{i 0} \in F \quad \text { and } \quad u_{i, j}=\left(u_{i 0}\right)[j], i, j=0, \ldots, n .
$$

Thus $u_{00}, \ldots, u_{n O}$ is a base of the full \mathbb{Z}-module

$$
M=\left\{\underline{m} \cdot \underline{u}_{0}=\sum_{i=0}^{n} m_{i} u_{i 0}: \underline{m}=\left(m_{0}, \ldots, m_{n}\right) \in \mathbb{Z}^{n+1}\right\}
$$

We have used the notation

$$
\underline{u}_{j}=\left(u_{0 j}, \ldots, u_{n j}\right)^{t}=j-t h \quad \text { column of } u, j=0, \ldots, n .
$$

By Corollary 1 there exists a sequence of units

$$
\Gamma=\left(\gamma_{k} \in R(M), k=1,2, \ldots\right) \text { such that }
$$

(3.1) $\lim _{k \rightarrow \infty} \gamma_{k[j} \jmath \gamma_{k[n]}=1, j=1, \ldots, n ;$ and $\lim _{k \rightarrow \infty} \gamma_{k}=\infty$. For convenience, noting $u_{n 0} \neq 0, u_{n 0} \in M$, we write

$$
\mid \text { Norm } u_{n 0}\left|=\left|\prod_{j=0}^{n} u_{n j}\right|=v>0\right.
$$

Clearly $\gamma_{k} u_{n 0} \in M$, with \mid Norm $\gamma_{k} u_{n 0} \mid=0, \quad$ all $\gamma_{k} \in \Gamma$.
Let

$$
\mathbb{Z}(\Gamma)=\left\{\underline{m}=\underline{m}_{k} \in \mathbb{Z}^{n+1}: \underline{m}_{k} \cdot \underline{u}_{0}=\gamma_{k} u_{n 0}, \gamma_{k} \in \Gamma\right\}
$$

By (3.1) and this definition
(3.2') $\left\{\begin{array}{l}\lim _{k \rightarrow \infty} \underline{m}_{k} \cdot \underline{u}_{j} / \underline{m}_{k} \cdot \underline{u}_{n}=u_{n j} / u_{n n}, j=1 \ldots, n \\ \lim _{k \rightarrow \infty}\left|\underline{m}_{k} \cdot \underline{u}_{0}\right|=\infty .\end{array}\right.$

Thus for any $\varepsilon>0$ and $K>1$ we have for all sufficiently large k
(3.2') $\left\{\begin{array}{l}\underline{m}_{k} \cdot u_{j} / \underline{m}_{k} \cdot \underline{u}_{n}-u_{n j} / u_{n n}=\varepsilon_{k j},\left|\varepsilon_{k j}\right|<\varepsilon, j=1, \ldots, n \\ \left|\underline{m}_{k} \cdot \underline{u}_{0}\right|>K\end{array}\right.$

Since $\quad v=\left|\prod_{j=0}^{n} \underline{m}_{k} \cdot \underline{u}_{j}\right|=\left|\underline{m}_{k} \cdot \underline{u}_{0}\right|\left|\underline{m}_{k} \cdot \underline{u}_{m}\right|^{n} \prod_{j=1}^{n-1}\left|\underline{m}_{k} \cdot \underline{u}_{j} / \underline{m}_{k} \cdot \underline{u}_{k}\right|$
it follows from (3.2') for all $\underline{m}_{k} \in \mathbb{Z}(\Gamma)$ with k sufficiently large
$u>k\left|\prod_{j=1}^{n-1} \frac{1}{2} u_{n j} / u_{n n}\right|\left|\underline{m}_{k} \cdot u_{n}\right|^{n}$.

So $\underline{m}_{k} \cdot \underline{u}_{n}=O\left(K^{-1 / n}\right)$ and then by (3.2')
(3.3) $\underline{m}_{k} \cdot \underline{u}_{j}=O\left(K^{-1 / n}\right), j=1, \ldots, n, \underline{m}_{k} \in \mathbb{Z}(\Gamma)$ (sufficiently large) k.

We note, and it is easily shown, that there are only finitely many $\underline{m} \in \mathbb{Z}(\Gamma)$ with $m_{0}=0$. So without loss of generality we suppose

$$
\begin{equation*}
\underline{m} \in \mathbb{Z}(\Gamma) \Rightarrow m_{0}>0 \tag{3.4}
\end{equation*}
$$

as (3.2) holds if we replace \underline{m}_{k} by $-\underline{m}_{k}$.
Now suppose $\lim _{k \rightarrow \infty} \underline{m}_{k} \cdot \underline{u}_{0} / m_{k O}=0$. Then writing

$$
\underline{w}_{k}=\left(w_{k 0}, \ldots, w_{k n}\right), \quad w_{k j}=m_{k} \underline{u}_{j} / m_{k 0}, j=0, \ldots, n
$$

we have by this assumption together with (3.3) and (3.4)

$$
\underline{0} \neq \lim _{k \rightarrow \infty} \underline{m}_{k} / m_{k 0}=\lim _{k \rightarrow \infty} \underline{w}_{k} U^{-1}=0
$$

By this contradiction we have shown there exists $w>0$ so that
(3.5) $\left|\underline{m}_{k} \cdot \underline{u}_{0} / m_{k O}\right|>\omega, \underline{m}_{k} \in \mathbb{Z}(\Gamma)$, all (sufficiently Zarge) k.

$$
\begin{array}{r}
u=\left|\underline{m}_{k} \cdot \underline{u}_{0} / m_{k 0}\right|\left|m_{k 0}^{1 / n} \underline{m}_{k} \cdot \underline{u}_{n}\right| \prod_{j=1}^{n-1}\left|\underline{m}_{k} \cdot \underline{u}_{j} / \underline{m}_{k} \cdot \underline{u}_{n}\right| \cdot \\
\Rightarrow u>w\left|\prod_{j=1}^{n-1} \frac{1}{2} u_{n j} / u_{n n}\right|\left|m_{k 0}^{1 / n} \frac{m_{k}}{} \cdot \underline{u}_{n}\right|^{n} .
\end{array}
$$

So by the above result and the first part of (3.2) there exists $J>0$ so that
(3.6) $\left|m_{k O}^{1 / n} \underline{m}_{k} \cdot \underline{u}_{j}\right|<J, j=1, \ldots, n, m_{k} \in \mathbb{Z}(\Gamma)$, (sufficiently large) k. We now define an $n \times n$ submatrix of $U=A^{-1}$ by

$$
U_{*}=\left(u_{i j}: i, j=1, \ldots, n\right)
$$

We note (and it is easily shown) that

$$
\begin{equation*}
\operatorname{det} U_{*}=\operatorname{det} U \neq 0 \tag{3.7}
\end{equation*}
$$

We define, for all $\underline{m} \in \mathbb{Z}^{n+1}$,

$$
h(\underline{m})=\left|m_{0}\right|^{1 / n}\left(m_{0} \xi_{1}-m_{1}, \ldots, m_{0} \xi_{n}-m_{n}\right)
$$

and note the identity

$$
\begin{equation*}
\underline{h}(\underline{m}) U_{*}=-\left|m_{0}\right|^{1 / n}\left(\underline{m} \cdot \underline{u}_{1}, \ldots, \underline{m} \cdot \underline{u}_{n}\right) . \tag{3.8}
\end{equation*}
$$

For $\underline{m}_{k} \in \mathbb{Z}(\Gamma)$ we write

$$
\mathfrak{\rho}_{k}=\left(\rho_{k 1}, \ldots, \rho_{k n}\right), \quad \rho_{k j}=\left|m_{k 0}\right|^{1 / n} \underline{m}_{k} \cdot \underline{u}_{j}, j=1, \ldots, n
$$

Then by (3.8)

$$
\underline{h}\left(m_{k}\right) U_{*}=-\rho_{k}=-\rho_{k n}\left(\rho_{k 1} / \rho_{k n}, \ldots, \rho_{k, n-1} / \rho_{k n}, 1\right)
$$

By (3.2')

$$
\rho_{k j} / \rho_{k n}=u_{n j} / u_{n n}+\varepsilon_{k j},\left|\varepsilon_{k j}\right|<\varepsilon, j=1, \ldots, n\left(\varepsilon_{k n}=0\right)
$$

So

$$
\underline{h}\left(m_{k}\right) U_{*}=-\left(\rho_{k n} / u_{n n}\right)\left(u_{n 1}, \ldots, u_{n n}\right)-\rho_{k n}\left(\varepsilon_{k 1}, \ldots, \varepsilon_{k n}\right)
$$

and

$$
\underline{h}\left(\underline{m}_{k}\right)=-\left(\rho_{k n} / u_{n n}\right)(0, \ldots, 0,1)-\left(\delta_{k 1}, \ldots, \delta_{k n}\right)
$$

since $\left(u_{n 1}, \ldots, u_{n n}\right)^{\prime-1}=(0, \ldots, 0,1)$ and we write

$$
\left(\delta_{k 1}, \ldots, \delta_{k n}\right)=\rho_{k n}\left(\varepsilon_{k 1}, \ldots, \varepsilon_{k n}\right) U_{*}^{-1}
$$

Finally writing $\underline{h}\left(\underline{m}_{k}\right)=\underline{h}_{k}=\left(h_{k 1}, \ldots, h_{k n}\right)$ we observe

$$
\left|\prod_{j=1}^{n} h_{k j}\right|=\left|\prod_{j=1}^{n-1} \delta_{k j}\right|\left|\rho_{k n} / u_{n n}+\delta_{k n}\right| \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

since by (3.6) $\rho_{k n} / u_{n n}=O$ (1) and by (3.2') and (3.6)

$$
\delta_{k j} \rightarrow 0, \quad j=1, \ldots, n \quad \text { as } \quad k \rightarrow \infty
$$

This completes the proof of the theorem.

References

[1] Borevich, Z.I. and Shafarevich, I.R., Number Theory, (Academic Press, 1966).
[2] Cassels, J.W.S. and Swinnerton-Dyer, H.P.F., "On the product of three homogeneous linear forms and indefinite ternary quadratic forms", Philos. Trans. Roy. Soc. London, Ser. A, 248 (1955), 73-96.
[3] Pollard, H., The theory of algebraic numbers, (The Mathematical Association of America, 1950).

School of Mathematics,
University of New South Wales,
Kensington,
N.s.w. 2033.

