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Introduction. Let K be a commutative ring, A a K-algebra, and B a
K-subalgebra of A. The object of this paper is to prove some results on
higher derivations (in the sense of Jacobson [4]) of B into A. In §1 we
introduce a notion of equivalence among higher derivations. With this
notion of equivalence, we prove in §2 (Theorem 1) that the equivalence
classes of higher K-derivations of B into A are in one-one correspondence
with the isomorphism classes of certain filtered B & xA°-modules, where A°
denotes the opposite algebra of A. In §3 we give a cohomological
criterion for the extendability of a higher derivation of a commutative
ring to a crossed product. We use this result in § 4 to show (Theorem 2)
that if A is central simple over K and B is semi-simple, then any higher
derivation of B into A which maps K into K can be extended to a higher
derivation of A. This result is a generalization of a theorem of Jacobson-
Hochschild ([2], Theorem 6) on extendability of derivations.

§1 Generalities on higher derivations.

Let B be a subring of a ring A. We recall that a higher derivation of
rank n of B into A is a sequence of additive maps 6= (dy=1,dy ** +, dy)
of B into A such that

di(bb’) = 23 ds(b)d;-4(b'),

o<y

bo'eB, 0<i<n. If A is an algebra over a commutative ring K and
B a K-subalgebra of A, then & is called a Aigher K-derivation if the maps
d; are K-linear, i.e. if the maps d; vanish on K for i >1. The following
statement is easily checked:

(1' 1) If (do = Ldu M '9dn—-19 dn) and (do =1, du b '9dn—19d:1)
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are higher derivations of B into A, then d, — d; is a derivation.

For any ring 4, let T,(4) be the ring A[X]/(X"*'). We shall denote
the image of X in T,(4) by 2. Let % :T,(4)—>4 be the ring epimorphism
defined by 7, (2, + 2,2 + - « -+ 2,2")=2,.  Since ker7, is nilpotent, 1+ker7,
is a subgroup of the group of units of T,(4). We shall denote this
subgroup by U,(4).

With A and B as above, if 6 : B—>A is a higher derivation, then the
map a, : B—>T,(A) given by a,(b) =0<%ndl(b)x" is a section of 9, on B, i.e.,
a; is a ring homomorphism such that 7,0 «; = identity. Conversely, let «
be a section of 7, on B. If () = 3! d,/(b)x’, then (d,=1,d, -+, d,) is

0<i<n
a higher derivation of B into A.

If 4,8/ : B—~>A are two higher derivations, we say that they are
equivalent, if there exists an element u € U,(A) such that «; =int #oa,,
where int # denotes the inner automorphism of T,(A) given by «. Clearly,
this is an equivalence relation. More explicitly, § and & are equivalent if
and only if there exist elements u,=1,u4,, + * +,u, € A such that

23 usdi—;(b) = 23 di-i(b)uy, ()
0<7<1i 0<j<1t

for beB and 0<i<n. A higher derivation is called inner if it is
equivalent to the higher derivation (d,=1,d;,---,d,), where d;,=0 for
i>1.

§2. Higher derivations and filtered modules

Let K be a commutative ring, A a K-algebra, and B a K-subalgebra
of A. For any positive integer n, we denote by A(n), the graded

B® xA°-module 1 A,, where A, is the B® xA°-module A. Let ¢

o<isn

denote the element 1 of A,. Let § denote the graded endomorphism of
degree —1 of A(n) defined by 4,(¢,) =¢,, for i >0, and §,=0.

We consider the class & of triples (M, ¢,0), where M is a B® zA°-
module with a filtration OcMc M, c---cM,=M, 6 a BR xA°-
endomorphism of degree —1 of M and ¢ : E°(M)—A(n) an isomorphism
of graded B® xA°-modules, where E°(M) denotes the associated graded
module of M, such that the diagram
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is commutative. With the natural filtration on  A(n), the triple
(A(n)y 15w, 0) is clearly a member of . We define a morphism (M, ¢,0) —>
(M',¢',6") in & tobeamap of filtered B® A°-modules M — M’ which is
compatible with ¢,¢’ and 6,6’.

Thus & becomes a category. Clearly, every morphism in & is an
isomorphism.

Let 6=(dy=1,dy, -+ -,d,) be a higher K-derivation of rank » of B
into A. On the free right A-module A; = > e;A4, with basis (e,), we

oi<n
define a left B-module structure by setting b(eq) = (0§<Z_e,-di-jb)a for
0<i<n, b€ B, ac A. This makes A, a B® xA°-module. We define a
filtration 0cC (4;)yC (A C- - C(4,)n=4, by taking (4,); to be the
B® gA°-submodule of A; generated by e,:--,e;. We also define a
B ® gA°-endomorphism 6#; of degree —1 of the filtered module A; by
setting 0;(e) =0 and 6@,(e) = e, for i >1. The map (4,); > A; which

sends > eja; to éa, is B® gA°-linear. This map is an isomorphism for
o<7<i
i =0 and has (A4,);-, as its kernel for ¢ >1. We thus get an isomorphism

¢5 P E°(A,) > An)

of graded B® xA°-modules. Clearly, (4;,¢,,0,) is an object of & .

Now let é=(d,=1,dy,+++,d,) and & =(d,=1,d, +--,d,) be two
equivalent higher K-derivations of B into A.  There exist elements
#o=1,uy, *+ +,u, € A satisfying the condition (+) of § 1. The isomorphism
A;— A, of right A-modules which sends e; to o<§<ie§ui_" is easily verified
to be left B-linear and actually gives an isomorphism in & of (4, ¢;,0;)
onto (A;,¢;,0,). Thus, equivalent higher K-derivations of B into A give

rise to isomorphic objects in & .

Consider now any object (M,¢,0) € &. We then have for 1<i<n,
the following commutative diagrams with exact rows:
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0——>1W,~_2——>1Wi_,——¢"—"—>/fi~,——>0

RoE b

0—‘—)Mi_l'-—)% ——-—"J—)A_ —> 0

where M, =0. Let s,:4,—>M, be a right A-linear map such that
¢no s, = identity. The map s, induces right A-linear maps s,(0<i<n)
such that 6,0s; = s;_; 08, and we have ¢,os, =identity. If s,(&)=m,;, we
have M; =mA +mA++--+mA. Since for any b € B, ¢,(bm, —m;b) =0,
it follows that bm; —m,b € M,.,. Let bm,—m,b= > md,;b. Applying

0<isn—1
Gi410°°+06,, wWe get

bm, —mb= 3 1m,-dl_jb ,

0<ssd
since 6,(m;) =my-, for 1 <j<i and 6,im) =0. Now (setting d, =1)
3V M di (DY) = b m, — m,bb
0<kTn~1
=b(b'my — myb") + (bm, — m,b)b’

= N lbmidn-ib,'"( lmidn—ib)b,

0ign—~

0an—
= 2 (X mjdi—jb)dn—ib'

N 0e<n—1 0 j<i
4+ 31 my(da-b)b .
0i<n—1

Comparing the coeflicients of m,, on both sides, we get

di(bd’) = dei(b) dy-i(b), 1<k<mun,

[ E4 X

ie. 6 =(dy=1,dy, * * *,d,) is a higher derivation of rank » of B into A.

The right A-linear map f :A,—M defined by f(e)=m; is clearly
B-linear, and is in fact an isomorphism in &.

Let now s, : A,—> M, be another right A-linear map such that ¢,o s/
= identity and let s; : A;— M, be such that 6,05, =s}_,08, for 0<i<mn.
Let sj(¢) =m}. Since ¢.(m,—m,) =0, we have m)—m, < M,,. We
thus have elements #,=1,u,, - - -, 4, € A such that

m), = My iUy o (#)n

o<in

Applying 6440+« +08,, we get
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mi = My U; o
k 0<§}<k kiU (*)k

Let o' =(d;=1,d{,-+-,d;) be the higher K-derivation corresponding to
sn. Then, for any b € B,

bmp, —mpb = X mi_.dib.
15Tk
From (x), we have,
>V my_;dib = bm;, — mpb

1<7n
= 20 bmym;— 0 mu_ud

0<in oli<n

2 ( E _mjdn—i—jb)uz—— E mn—tuzb-
oI

0in 0 g<n—12

I

Substituting for mj_, from (+),_, in the above equation, and comparing the
coefficients of m,_,, we get

2 udi_b= 31 diibu,,
oIk oIk

for 0<k<n. Thus & is equivalent to 6. It follows now that for a
given isomorphism class in %, there exists a higher K-derivation & of
B into A, unique up to equivalence, such that (4, ¢,,0;) belongs to that
class.

Thus we have the following

Tueorem 1. Let A be a K-algebra, B a K-subalgebra, and let & denote the
category of triples (M,¢,0) constructed above. The map 6/(A; ¢y,0;) of the set
of higher K-derivations 6 : B—A into obj & induces a bijection of the set of
equivalence classes of these higher derivations onto the set of isomorphism classes of
obj . Under this bijection, the equivalence class of inner higher derivations
corresponds to the tsomorphism class of (A(n),1 Ay g).

§3. Extension of higher derivations to crossed products.

Let L be a commutative ring and let §: L +L be a higher derivation
of rank xn. Let L* denote the group of units of L. We then have a
homomorphism §* : L* - U,(L) of groups, defined by

H) = 3 adast, 1€ L*.

01

Now, let G be a finite group of automorphisms of L. Let G operate
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on T,(L) by setting s3}22" =X s(x)x', s€G,1,€L. Clearly U,L) is
stable under the action of G. If & is a higher G-derivation (i.e., if dos
=sod; for all s€ G and 0<i<#n), then ¢ is a G-homomorphism. Thus
5* induces a homomorphism  H2($*) : HAG,L*) » H¥G,U,(L)). Let f:
G X G— L* be a 2-cocycle. We recall that the crossed product (L,G, f) is
defined to be the free left L-module with a basis (e,),.s together with a
multiplication given by (2e,)(ze,) = 2s(n)f(s,t)esss 2,z €L, s,t € G.

ProrosITION 1. A higher G-derivation 6 : L — L can be extended to a higher
derivation of the crossed product A = (L,G,f) if H*6*)(f) =0, where f denotes
the class of f. Conversely, if L is an integral domain and & admits of an
extension to A, then H*5*)(f)=0.

Progf. Let H%3*)(f) =0. This means that there exists a map & : G —
U,.(L) such that
3*f(s, t)h(st) = h(s)sh(t), s, teG.
Let h(s) =X hi(s)x*. We define additive maps d; : A—> A by setting

die) = 3 dDhi-fs)es, 1€ L, 5EG.

It is straightforward to check that (d,=1,d,, - - -,d,) is a higher derivation
of A which extends 4.

Suppose now that L is an integral domain and that §=(d,
=1,d,, + - +,d;) is an extension of & to A. We first show that for any
i(0<:<mn), we have d,(e,) = h,(s)e, for some map h, :G—L. For, let
this be assumed proved for 0 < j<i and let d,(e,) =tEEGh,~(s, Be, ; hi(s,t) e L.

For any 2 L, we have

d—i(esz) = E A (Ji—jes)(dj'z)

0 <t
=2 (ks t)e)d+ 20 (his(s)es)d(2) .
{eG 1<

On the other hand,

d.(es2) = d(s(e;) = K;Q d;s(A)d;-je,

= 23 d;s(Dh-i(s)es + s(2) 23 hils, t)e, .
1<t teG

Comparing the coefficients of ¢, for ¢+ s, we get
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hi(s, t)t(2) = hy(s, t)s(2),

for all 2€ L. Since ¢#(1)+ s(2) for some 2, it follows that h(s,¢) =0 for
s+ t. Thus we have functions #; :G—L such that d,(e,) = h(s)e,,
o<i<n.

Now

d-i(esez) = 0<;2<i (d-jes)(‘ii-jet)

= 23 hy(s)sh;_(t)f(s, t)es: .
0<y<id
On the other hand

d-i(esec) = ‘iz(f(s, t)es:)
= > dif(s, t)h;-j(st)es, .
05Ki

Thus, we have, for every i,
o<;<i djf(s, t)hi_j(st) = 0§<i hj(s)shi_j(t) .

If h:G->U,L) is defined by h(s) = 3 h(s)z’, then the above equations

0in
can be written as

*f(s, t)h(st) = h(s)sh(t),
which shows that H2(*)(f) =0.

CoroLLARY. If H¥G,L) =0, then any higher G-derivation of L can be ex-
tended to any crossed product of G and L.

The above corollary is an immediate consequence of the above proposition
and the following

Lemva. If HYG,L) =0, then H¥G,U,(L) =0 for every n.

Proof. We define a G-homomorphism L —U,(L) by mapping 2 into
1+ az™. This is an isomorphism for » =1 and so H*G,U,(L)) =0. For
n>1 we have an exact sequence of G-modules

0>L—->U(LY>U,_(LY—>1,

where the map U,(L)—>U,_,(L) sends > 22° to > a2'. We then

0i<n 0<i<n~1
have an exact sequence
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H*G, L) > H¥G,U,(L)) > H¥G,U,-4(L)) .
It follows by induction on » that H*G,U,(L)) =0.

§4. Higher derivations and central simple algebras
The aim of this section is to establish the following

THEOREM 2. Let A be a finite dimensional central simple K-algebra and
let B be a semi-simple subalgebra of A.  Then any higher derivation of B into
A, which maps K into itself, can be extended to a higher derivation of A.

Before proving the theorem, we prove a few lemmas.

Lemvma 1.  Let A be a ring, B a subring of A, and let 5,0’ : B—>A be
two equivalent higher derivations of rank n. If & admits of an extension to A then
8" can also be extended to A such that these extensions are equivalent.

Proof. Let u € U,(A) be such that e, =int uoa,;. If 5 is an exten-
sion of & to A, then int #oa;: A—T,(A) is a section of 7, :T,(4)—>A on
A. This section gives the required extension of & to A.

Lemvma 2. Let A be a K-algebra and let B be a K-subalgebra of A such
that every K-derivation of B into A is inner. Let 6,6’ : B— A be higher derivations
of rank n mapping K into itself suck that /K = /K. Then 6 and & are
equivalent.

Proof. The case n =1 follows from the hypothesis that the K-deriva-
tions of B into A are inner.

Let now » >1 and assume by induction that &, = (d, =1,d,, * + *,dn,)
and 4] = gdg =1,d},++-,d}.,) are equivalent. Let wu=14+wu2x+---
+ #,_,2" € U,_,(A) be such that ay, =int u cay . Consider the element
v=14+ux+ + +u,_x*" ' €U,(A). The homomorphism intvoe; : B
—T,(A) gives a higher derivation 8”7 = (dy =1,dY, -+ +,d}/) equivalent to &
such that d¥ =d; for 0<i<n—1. Further d7/K=d,K. Thus
d)! —d;, is a K-derivation of B into A. Therefore there exists a u,€ A
such that d}/(b) — d/(b) = u,b —bu,. It is easily verified that a,, =int (1
+u2™) oay,. Thus & and & are equivalent, which proves the lemma.

Lemma 3. Let K be a field and L|K a finite separable extension. Then
any higher derivation of K into itself can be uniquely extended to a higher derivation

of L.
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Proof. Let L=K(1) and let f be the minimal polynomial of 1 so
that we have an isomorphism K[X]/(f) = L under which X goes to 2.

Let é=(d,=1,dy, -+ -,d,) be a higher derivation of K. We remark
that & can be extended to a higher derivation ¢ =(d} =1,d%, -+ +,d;) of
K[X] by prescribing arbitrary values for d{X, - - -,d;X.

Suppose, by induction, that (d, =1,dy, * + -,d,-;) has been extended to
a higher derivation (d}=1,d/,-+-,ds,) of K[X] such that the ideal
generated by f(X) is stable under each dj. Suppose further, that the
induced higher derivation (d,=1,dy,+*+,d,;) of L is unique as an
extension of (dy=1,d;,+++,d,_,).

Let g be any element of K[X]. Let (dj=1,d}, - +,d,) be the higher
derivation of K[X] for which d;X =g. It is easily seen that

aif=fr9+4q,

where f” is the usual derivative of f and ¢ is a polynomial which depends
only on d/X,---,d,-,X. Since f’(2)#0, there exists a polynomial
fi1 € K[X] such that f,/7=1 (mod f). If we choose g =— f,q, then the
ideal (f) is stable under d;, and the induced map d, :L— L satisfies
d.(3) = —q)/f(2). Thus we have a higher derivation (dy=1,dyy+++,d,)
of L which extends § and is clearly unique.

Proof of Theorem 2. We first assume that the theorem is true with
B =K and prove it for the general case. Let & be a higher derivation of
B into A which maps K into itself and let § be an extension of §/K.
The restrictions of é and §/B to K are the same. Since any K-derivation
of B into A is inner ([3], Theorem 7), it follows from lemmas 1 and 2,
that  can be extended to A.

We now prove the theorem in the case B=K. Let & be a higher
derivation of K. We first show that it is enough to extend 6 to some
central simple K-algebra A, similar to A. In fact, let § be an extension
of § to A,. If D denotes the division algebra of A,, we have A4, = M,(D)
for some integer m. Let 4, be the entrywise extension of & to M,(K).
Since 4, and §/M,(K) coincide on K and since any K-derivation of M, (K)
into A, is inner, it follows by lemmas 1 and 2, that 4, can be extended
to a higher derivation 5, of A,. Since M,(K) is stable under §,, and D
is the commutant of M,(K) in A,, D is also stable under 5,. Thus,
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5,/D is an extension of J, and this can be further extended to A, since A
is a matrix ring over D.

We can therefore assume that A is a crossed product (L, G, f) for some
Galois extension L/K, where G is the Galois group of L/K ([1], Theorem
1, p.66). By lemma 3 we have a unique extension § = (d, = 1,dy, * * *,d,)
of 6 to L. If s€G, then sis~!=(sdys'=1,sds,+--,sd,s!) is also a
higher derivation of L extending 4, so that we have sd;s'=d; for
0<i<n In other words, § is a G-derivation. Since H?*G,L)=0, it
follows from the corollary to proposition 1 of §3, that § can be extended
to A. This completes the proof of the theorem.
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