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Abstract

Let G ⊆ G̃ be two quasisplit connected reductive groups over a local field of
characteristic zero and having the same derived group. Although the existence
of L-packets is still conjectural in general, it is believed that the L-packets of G
should be the restriction of those of G̃. Motivated by this, we hope to construct the
L-packets of G̃ from those of G. The primary example in our mind is when G = Sp(2n),
whose L-packets have been determined by Arthur [The endoscopic classification of
representations: orthogonal and symplectic groups, Colloquium Publications, vol. 61
(American Mathematical Society, Providence, RI, 2013)], and G̃ = GSp(2n). As a first
step, we need to consider some well-known conjectural properties of L-packets. In this
paper, we show how they can be deduced from the conjectural endoscopy theory. As
an application, we obtain some structural information about L-packets of G̃ from those
of G.
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On a lifting problem of L-packets

1. Some standard notation

Suppose that F is a field; we denote its algebraic closure by F̄ . Let G be a reductive algebraic
group over F and θ be an F -automorphism of G. We denote the identity component of G by G0.
If G is connected, we denote the derived group of G by Gder and the adjoint group of G by Gad.
Let Gsc be the simply connected cover of Gder. If Ĝ is the complex reductive group dual to G, we
write Ĝder, Ĝad for the derived group and adjoint group of Ĝ, respectively, and Ĝsc is the simply
connected cover of Ĝder. We denote the centre of G by ZG or Z(G). If G is abelian, let Gθ be
the θ-invariant subgroup of G, and Gθ be the θ-coinvariant group of G, i.e., Gθ = G/(θ − 1)G.
For a finite group S, we denote its set of linear characters by S∗.

2. Introduction

Let F be a local field of characteristic zero and G be a quasisplit connected reductive group
over F . The local Langlands conjecture asserts that the set Π(G(F )) of isomorphism classes
of irreducible smooth representations of G(F ) can be parametrized by the set Φ(G) of local
Langlands parameters. This parametrization is usually not a bijection. In fact, it is conjectured
that each parameter φ ∈ Φ(G) is associated with a finite set Πφ of isomorphism classes of
irreducible smooth representations of G(F ), and they give a disjoint decomposition of

Π(G(F )) =
⊔

φ∈Φ(G)

Πφ. (2.1)

Such finite sets are called L-packets. This parametrization is based on the belief that there should
be certain arithmetic invariants (e.g., L-factors) defined on both the representation side and the
parameter side so that one could match them. From this point of view, one can think that
the L-packet Πφ attached to some φ ∈ Φ(G) consists of all irreducible smooth representations of
G(F ) whose arithmetic invariants match those of φ. However, it can be very difficult to define
these arithmetic invariants on the representation side in general. On the other hand, there are
some elementary properties that one would require this parametrization to always satisfy. These
properties are usually given under the name ‘desiderata’ (see [Bor79, GGP12]). In this paper,
we will mainly concern the following three desiderata.

– Desideratum 1: central character
The first desideratum asserts that all irreducible smooth representations in Πφ have the
same central character; it can be constructed from φ. To see this construction, we need
to give the definition of local Langlands parameters. Let Γ = Gal(F̄ /F ) be the absolute
Galois group, WF be the Weil group and Ĝ be the complex reductive group dual to G. The
Langlands dual group is LG = Ĝ oWF , where the action of WF factors through Γ. We
define the local Langlands group to be

LF :=

{
WF , F is archimedean,

WF × SL(2,C), F is nonarchimedean.

Then a Langlands parameter φ is a Ĝ-conjugacy class of admissible homomorphisms from
LF to LG (see [Bor79]). In particular, it respects the projections on WF from both LF and
LG. We take a torus Z defined over F , containing the centre ZG of G. For example, Z can
be a maximal torus of G. Let G̃ = (G × Z)/ZG, where ZG is included diagonally, and let
D = Z/ZG. Then we have an exact sequence

1 // G // G̃ // D // 1. (2.2)
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On the dual side, we have

1 // D̂ // ̂̃G // Ĝ // 1.

This induces a map from Φ(G̃) to Φ(G). It follows from a result of Labesse [Lab85,
Theorem 8.1] that this map is surjective. Therefore, we can lift any φ ∈ Φ(G) to some
φ̃ ∈ Φ(G̃). Note that Z

G̃
= Z is a torus, so, dual to

1 // Z
G̃

// G̃ // Gad
// 1,

we have

1 // Ĝsc
// ̂̃G // Ẑ

G̃
// 1.

So, by composing with
̂̃
G → Ẑ

G̃
, φ̃ gives rise to an element aφ̃ ∈ H1(WF , ẐG̃). Then,

by the local Langlands correspondence for tori, aφ̃ corresponds to a quasicharacter χφ̃ of
Z
G̃

(F ). After we take restriction to ZG(F ), we get a quasicharacter χφ of ZG(F ). To see
that this construction is independent of the torus Z, we need to know two things. First,
if there is another torus Z1 ⊇ Z, let G̃1 = (G × Z1)/ZG and φ̃1 ∈ Φ(G̃1) be a lift of φ̃;
then χφ̃1

|Z
G̃

= χφ̃. Secondly, if there are two tori Z1 and Z2 both containing ZG, then there
exists a third torus Z3 containing both Z1 and Z2. The first thing follows easily from some
commutative diagrams. For the second one, we can simply take Z3 = (Z1 × Z2)/ZG.

– Desideratum 2: Gad(F )-conjugate action
The second desideratum is more involved, and in particular it requires a different point
of view towards L-packets. Roughly speaking, there are two steps in constructing the
L-packets. The first one constructs the L-packets for the set Πtemp(G(F )) of isomorphism
classes of irreducible tempered representations, and then the other L-packets (nontempered)
can be constructed from the tempered ones by using the theory of Langlands’ quotient.
Therefore, it suffices to know the tempered L-packets. The same is also true for the
Langlands parametrization (2.1). That is to say, it is enough to know the parametrization
of the tempered L-packets, which should correspond to the ‘bounded parameters’, namely
the images of the Weil group part have compact closure. From the point of view of harmonic
analysis, irreducible smooth representations are characterized by their ‘characters’, which
are G(F )-conjugate invariant locally integrable functions over G(F ) and smooth over the
open dense subset of strongly regular semisimple elements Greg(F ). A virtual character
Θ (i.e., a finite linear combination of characters) is called stable if it is G(F̄ )-conjugate
invariant over Greg(F ), namely Θ(γ) = Θ(γ′) for any γ, γ′ ∈ Greg(F ) such that γ = g−1γ′g
for some g ∈ G(F̄ ). It is conjectured that the tempered L-packets are the minimal subsets
of irreducible tempered representations, within which some linear combination of the
characters is stable (cf. [Sha90, Conjecture 9.2]). Therefore, the conjugate action by Gad(F )
on Π(G(F )) permutes the elements in each tempered L-packet. Moreover, there is an explicit
conjectural formula for describing this action, which will be the second desideratum. To state
the formula, we need to introduce a parametrization for elements inside tempered L-packets,
which will be called endoscopic parametrization.
Let us denote the set of bounded Langlands parameters by Φbdd(G). For φ ∈ Φbdd(G), we
choose a representative φ : LF →

LG and define

Sφ = Cent(Imφ, Ĝ),
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i.e., the centralizer of the image of φ in Ĝ. Let S0
φ be the identity component of Sφ and

Z(Ĝ)Γ be the Γ-invariant elements in the centre Z(Ĝ) of Ĝ. Then we also define Aφ = Sφ/S
0
φ

and Sφ = Sφ/S
0
φZ(Ĝ)Γ. There is an exact sequence

1 // Zφ // Aφ // Sφ // 1,

where Zφ = Z(Ĝ)Γ/Z(Ĝ)Γ ∩ S0
φ. If φg = Int(g) ◦ φ for g ∈ Ĝ, there is an isomorphism

Sφ → Sφg unique up to Sφ-conjugation. This means that one cannot define a group ‘Sφ’
independent of the choice of representatives φ, but rather one can define the conjugacy
classes in ‘Sφ’.
We define a Whittaker datum to be a pair (B,Λ), where B is a Borel subgroup of G and Λ
is a nondegenerate character on the unipotent radical N(F ) of B(F ). All Whittaker data
can be constructed as follows. We fix an F -splitting (B, T, {Xα}) of G and a nontrivial
additive character ψF : F → C×; then we define

Λ

(
exp

(∑
α

nαXα

))
= ψF

(∑
α

nα

)
,

which extends uniquely to a character of N(F ).

Conjecture 2.1. We fix a Whittaker datum (B,Λ) for G, and suppose that φ ∈ Φbdd(G).

(i) There is a unique (B,Λ)-generic representation in Πφ.

(ii) There is a canonical pairing between Πφ and Sφ, which induces an inclusion from Πφ to

the set Ŝφ of characters of irreducible representations of Sφ,

Πφ
// Ŝφ,

π � // 〈·, π〉φ,

such that it sends the (B,Λ)-generic representation to the trivial character. This becomes a
bijection when F is nonarchimedean. Moreover, if φg = Int(g) ◦ φ for g ∈ Ĝ, then

〈gxg−1, π〉φg = 〈x, π〉φ

for π ∈ Πφ and x ∈ Sφ.

Since Ŝφ are functions on conjugacy classes of Sφ, the parametrization of elements inside
Πφ can be actually stated independently of the choice of representative φ in the conjecture.
Nevertheless, we would like to work with the group Sφ rather than its conjugacy classes, so
throughout this paper we will always fix a representative φ. Let Irr(Sφ) be the set of isomorphism
classes of irreducible representations of Sφ. If ρ ∈ Irr(Sφ), we will denote the corresponding
representation in Πφ by π(ρ). We call a parameter φ ∈ Φbdd(G) simple if Sφ = 1. For simple
parameters, it follows from this conjecture that their corresponding packets are singletons.
Finally, we want to point out that part (i) of the conjecture is often referred to as the generic
packet conjecture, and the pairing in part (ii) comes from the conjectural endoscopic character
identity (see Conjecture 3.10), while its ‘canonicity’ depends on the choice of Whittaker datum.

Let S∗φ be the group of linear characters of Sφ. Then the explicit formula for describing the

action of Gad(F ) on Πφ can be stated in the following conjecture.
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Conjecture 2.2. There exists a homomorphism

Gad(F ) // S∗φ,

g // ηg

such that
〈·, πg〉φ = ηg〈·, π〉φ.

The statement of this conjecture was first given in Gan et al. [GGP12, § 9, item (3)],
where they constructed the homomorphism Gad(F ) → S∗φ . There are three ingredients in that

construction.
* (Tate local duality): there exists a perfect pairing

H1(F,ZG/Z
0
G)×H1(F, π1(Ĝder)) → C×.

* There is a coboundary map Aφ → H1(F, π1(Ĝder)).

* There is a homomorphism Gad(F ) → H1(F,ZG/Z
0
G).

Clearly, this gives a homomorphism Gad(F ) → A∗φ, and in fact one will see that the image is in

S∗φ (see § 3.6).

– Desideratum 3: twist by automorphism and quasicharacter
Let θ be an F -automorphism of G preserving an F -splitting of G; then θ acts on Π(G(F ))

by acting on G(F ). Let θ̂ be the dual automorphism of θ on Ĝ; it gives a semidirect product

Ĝo < θ̂ >. Then θ also acts on Φ(G) through the action of θ̂ on Ĝ. Let a be an element in
H1(WF , Z(Ĝ)), and a act on Φ(G) by twisting on Z(Ĝ). One can associate a quasicharacter
ω of G(F ) with a (see (3.1)). This desideratum asserts: for φ ∈ Φbdd(G),

Πφθ = Πθ
φ and Πφ⊗a = Πφ ⊗ ω.

In fact, one can refine this desideratum by making more precise the action of θ and ω on
the elements in Πφ. Namely, if π ∈ Πφ, then

〈x, πθ〉φθ = 〈θ̂−1xθ̂, π〉φ (2.3)

for x ∈ Sφθ , and

〈x, π ⊗ ω〉φ⊗a = 〈x, π〉φ (2.4)

for x ∈ Sφ = Sφ⊗a, where a is a 1-cocycle of WF in Z(Ĝ) representing a.
The refined desideratum has the following consequence. For φ ∈ Φbdd(G), suppose that
φθ = φ ⊗ a, i.e., there exists g ∈ Ĝ such that (φθ)g = φ ⊗ a; then, by (2.3) and (2.4), we
have for x ∈ Sφθ

〈θ̂−1xθ̂, π〉φ = 〈x, πθ〉φθ = 〈gxg−1, πθ〉(φθ)g

= 〈gxg−1, πθ〉φ⊗a = 〈gxg−1, πθ ⊗ ω−1〉φ.

By setting s = g o θ̂, we have shown the following statement.

Conjecture 2.3. Suppose that φ ∈ Φbdd(G) and φθ = φ⊗ a. Let s ∈ Ĝo θ̂ satisfy φs = φ⊗ a;
then

〈sxs−1, πθ ⊗ ω−1〉φ = 〈x, π〉φ
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for any π ∈ Πφ and x ∈ Sφ. In other words,

π(ρs)θ ∼= π(ρ)⊗ ω

for any ρ ∈ Irr(Sφ).

The first goal of this paper is to suggest a strategy towards proving the above three desiderata

about L-packets. To do so, we need to assume (2.1), Conjecture 2.1 (together with its generalized

form: Conjecture 2.5) and also the (twisted) endoscopic character identities (see Conjecture 3.10),

which will be described in § 3. Since these conjectures can be viewed as part of the conjectural

endoscopy theory, we would like to call the collection of these assumptions the endoscopic

hypothesis. For the first desideratum, we will prove the following result under this hypothesis.

Proposition 2.4. The desideratum about central characters of L-packets holds as long as it

holds for simple parameters.

For the second desideratum, i.e., Conjecture 2.2, we will prove a stronger result. The setup

that we are going to work in is as follows. Let G ⊆ G̃ be two quasisplit connected reductive

groups over F such that Gder = G̃der. Then G̃/G is a torus, and we denote it by D. There is an

exact sequence

1 // G // G̃
λ // D // 1. (2.5)

Let Σ be a finite abelian group of F -automorphisms of G̃ preserving a fixed F -splitting of G̃;

we assume that λ is Σ-invariant. This implies that Σ also acts on G. Let G̃Σ = G̃ o Σ and

GΣ = GoΣ. Since Σ induces dual automorphisms on
̂̃
G and Ĝ, we denote them by Σ̂ and definễ

G
Σ

=
̂̃
Go Σ̂ and ĜΣ = Ĝo Σ̂.

Before we can state our result, we need to extend Conjecture 2.1 to the nonconnected group

GΣ. Suppose that φ ∈ Φbdd(G); we define SΣ
φ , AΣ

φ and SΣ
φ as before simply by taking ĜΣ in place

of Ĝ; they are all equipped with a natural map to Σ̂. Let Sθφ, Aθφ and Sθφ be the preimages of

θ̂ ∈ Σ̂ in SΣ
φ , AΣ

φ and SΣ
φ , respectively. Note that these are not θ̂-invariant elements in Sφ, Aφ and

Sφ. Since the image in Σ̂ is the same for SΣ
φ , AΣ

φ and SΣ
φ , we denote it by Σ̂φ. Let ΠΣ

φ be the set

of all irreducible smooth representations of GΣ(F ), whose restriction to G(F ) has intersections

with Πφ.

A Whittaker datum (B,Λ) is called Σ-stable if Σ preserves B and Λ is Σ-invariant. In

particular, if we fix a Σ-stable F -splitting of G (i.e., Σ preserves B and {Xα}) and a nontrivial

additive character ψF of F , then the associated Whittaker datum is Σ-stable. We call a

representation πΣ ∈ ΠΣ
φ (B,Λ)-generic if πΣ|G is (B,Λ)-generic and the corresponding Whittaker

functional is invariant under πΣ(θ) for all θ ∈ Σ.

Conjecture 2.5. We fix a Σ-stable Whittaker datum (B,Λ) for G, and suppose that φ ∈
Φbdd(G).

(i) There is a unique (B,Λ)-generic representation in ΠΣ
φ .
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(ii) There is a canonical pairing between ΠΣ
φ and SΣ

φ , which induces an inclusion from ΠΣ
φ to

the characters Ŝφ
Σ

of irreducible representations of SΣ
φ ,

ΠΣ
φ

// Ŝφ
Σ
,

πΣ � // 〈·, πΣ〉φ,

such that it sends the (B,Λ)-generic representation to the trivial character. This becomes a
bijection when F is nonarchimedean. Moreover, if Σ′ is a subgroup of Σ, then we have the
following relation:

〈·, πΣ〉φ|SΣ′
φ

=
∑

πΣ′∈ΠΣ′
φ

m(πΣ, πΣ′)〈·, πΣ′〉φ, (2.6)

where m(πΣ, πΣ′) is the multiplicity of πΣ′ in πΣ|GΣ′ .

Under the endoscopic hypothesis, we are able to prove the following result.

Theorem 2.6. There exists a homomorphism

G̃(F ) // (SΣ
φ )∗ ,

g // εg

such that
〈·, (πΣ)g〉φ = εg〈·, πΣ〉φ.

For the third desideratum, we will prove the following result under the endoscopic hypothesis.

Proposition 2.7. The refined desideratum about L-packets under twist by automorphism and
quasicharacter holds if it holds for simple parameters.

Returning to the setup in (2.5), there is a conjectural relation between the L-packets for
G and G̃. That is to say, if φ̃ ∈ Φ(G̃) maps to φ ∈ Φ(G), then the L-packet Πφ should be the

restriction of Πφ̃. The restriction multi-map Π(G̃(F )) → Π(G(F )) is surjective, in the sense

that for any π ∈ Π(G(F )), there exists π̃ ∈ Π(G̃(F )), whose restriction to G(F ) contains π (see
Corollary 6.3). Therefore, it is easy to construct the L-packets of G from those of G̃. The other
direction is more subtle, because for any π ∈ Π(G(F )), the preimage π̃ ∈ Π(G̃(F )) is usually
not unique and they differ from each other by a twist of quasicharacters of G̃(F ). So, our second
goal in this paper is to make an attempt to address this problem in most generality. To be more
precise, we want to establish the endoscopic hypothesis (i.e., (2.1) and Conjectures 2.5 and 3.10)
for G̃ by assuming it for G and the twisted endoscopic groups of G. When G is a quasisplit
symplectic group or special even orthogonal group, and G̃ is the corresponding similitude group,
this has been essentially achieved in [Xu15].

Throughout this paper, except for § 6, we will take the endoscopic hypothesis as our working
assumption. In § 3, we will describe the conjectural endoscopy theory. In particular, we will
introduce Conjecture 3.10, which is part of the endoscopic hypothesis. We will prove Theorem 2.6,
and deduce Conjecture 2.2 as a special case. In § 4, we will prove Proposition 2.4. In § 5, we will
prove Proposition 2.7, and this implies Conjecture 2.3 for nonsimple parameters.
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In § 6, we consider the problem of lifting L-packets from G to G̃, where G and G̃ are in
the setup of (2.5). So, we will only assume the endoscopic hypothesis for G and its twisted
endoscopic groups; in particular, we cannot assume Conjecture 2.3 for G̃. In § 6.1, we will
study the restriction multi-map Π(G̃(F )) → Π(G(F )). In §§ 6.2 and 6.3, we will discuss some

special cases of Conjecture 2.3 for G̃, and from there we will obtain some structural information
about the L-packets of G̃. In § 6.4, we will formulate a conjecture about the L-packets of G̃
(see Conjecture 6.18). Finally, in § 6.5, we will take G to be a symplectic group or special even
orthogonal group, and we will review various results of Arthur in [Art13], which essentially prove
the endoscopic hypothesis for G. We will also take G̃ to be the corresponding similitude group,
and apply the previous discussion in § 6 to this case. So, the results we obtain in §§ 6.2 and 6.3
will become unconditional in this case. Moreover, we will restate Conjecture 6.18 as a theorem
in this case; the proof of this theorem is included in [Xu15].

3. Endoscopy theory

3.1 Twisted endoscopic datum
Let F be a local field of characteristic zero and G be a quasisplit reductive group over F . We
have an isomorphism

H1(WF , Z(Ĝ)) −→ Hom(G(F ),C×) (3.1)

defined by Langlands (see Appendix A). Let θ be an automorphism of G and ω be a
quasicharacter of G(F ). A twisted endoscopic datum for (G, θ, ω) is a quadruple (H,H, s, ξ),
where H is a quasisplit reductive group over F and H is a split extension of WF by Ĥ,

1 // Ĥ // H //WF
// 1,

such that the conjugate action of WF on Ĥ falls into the same outer classes of automorphisms
as for LH. Note that H may not be isomorphic to LH. Inside the quadruple, s is a semisimple
element in Ĝo θ̂, ξ is an L-embedding of H to LG (i.e., it respects the projections on WF from
both H and LG) and they satisfy the following conditions:

– Int(s) ◦ ξ = a · ξ for a 1-cocycle a of WF in Z(Ĝ) mapped to ω by (3.1);
– Ĥ ∼= Cent(s, Ĝ)0 through ξ.

We call H a twisted endoscopic group of G. Two twisted endoscopic data (H,H, s, ξ) and (H ′,
H′, s′, ξ′) are called isomorphic if there exists an element g ∈ Ĝ such that gξ(H)g−1 = ξ′(H′) and
gsg−1 ∈ s′Z(Ĝ). We denote by E(Gθ, ω) the set of isomorphism classes of twisted endoscopic data
for (G, θ, ω). For abbreviation, we will use the twisted endoscopic group to denote the twisted
endoscopic datum if there is no confusion.

Let G ⊆ G̃ be two quasisplit connected reductive groups over F such that Gder = G̃der; we
denote G̃/G by D. We have

1 // G // G̃
λ // D // 1.

We assume that θ is an automorphism of G̃ and λ is θ-invariant. Then we have the following
proposition relating the twisted endoscopic data between G and G̃.

Proposition 3.1. There is a one to one correspondence between E(Gθ, ωG) and⊔
ω
G̃
|G=ωG

E(G̃θ, ω
G̃

).
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Proof. Suppose that [(H,H, s, ξ)] ∈ E(Gθ, ωG); then ξ(Ĥ) = Cent(s, Ĝ)0. Under the projection
LG̃ −→ LG, the preimage of Cent(s, Ĝ) is {g ∈ ̂̃G : s̃gs̃−1g−1 ∈ D̂}, where s̃ is a preimage of s

in
̂̃
Go θ̂. We claim that

{g ∈ ̂̃G : s̃gs̃−1g−1 ∈ D̂}0 = {g ∈ ̂̃G : s̃gs̃−1g−1 = 1}0.

To see this, we can consider the homomorphism defined by

{g ∈ ̂̃G : s̃gs̃−1g−1 ∈ D̂} // D̂ ⊆ LG̃ ,

g � // s̃gs̃−1g−1.

(3.2)

Its composition with A : LG̃ −→ L((Zθ
G̃

)0) is trivial. Note that A induces an isogeny

(Z(
̂̃
G)θ̂)0

→ (̂Zθ
G̃

)0.

Since λ is θ-invariant, D̂ included as a subgroup of
̂̃
G is fixed by θ̂. Therefore, D̂ ⊆ (Z(

̂̃
G)θ̂)0, and

we get that KerA|
D̂

is finite. This means that the homomorphism (3.2) must have finite image,

so our claim becomes obvious. Since D̂ ⊆ Cent(s̃,
̂̃
G)0, we can now conclude that Cent(s̃,

̂̃
G)0 is

the preimage of ξ(Ĥ). Let us denote Cent(s̃,
̂̃
G)0 by

̂̃
H.

When θ = id and s ∈ Z(Ĝ), we have Ĝ = Cent(s, Ĝ) and hence
̂̃
G = {g ∈ ̂̃G : s̃gs̃−1g−1 ∈ D̂}.

Since
̂̃
G is connected, it follows from the above argument that

̂̃
G = {g ∈ ̂̃G : s̃gs̃−1g−1 = 1}0.

Hence,
̂̃
G = {g ∈ ̂̃G : s̃gs̃−1g−1 = 1}, which means that s̃ ∈ Z(

̂̃
G). This shows that the preimage

of Z(Ĝ) is Z(
̂̃
G), i.e., there is an exact sequence

1 // D̂ // Z(
̂̃
G) // Z(Ĝ) // 1.

Returning to the general situation, we can choose a splitting c : WF → H, so that the

composition φ : WF
c // H ξ // LG is admissible. Then we can lift φ to φ̃ : WF →

LG̃, which

induces a Galois action on
̂̃
H and hence determines a quasisplit reductive group H̃. We define

H̃ to be the product
̂̃
H · Im φ̃. Note that φ̃ gives a splitting of

1 // ̂̃H // H̃ //WF
// 1,

and we have a natural embedding ξ̃ : H̃→
LG̃, which is the identity on

̂̃
H. The map

w 7→ s̃ξ̃(φ̃(w))s̃−1ξ̃(φ̃(w))−1, w ∈WF

defines an element a ∈ H1(WF , Z(
̂̃
G)). If a is associated with a quasicharacter ω

G̃
of G̃(F ),

then [(H̃, H̃, s̃, ξ̃)] ∈ E(G̃θ, ω
G̃

). It is not hard to show that if we change (H,H, s, ξ) within its

isomorphism class or the splitting c or the lifting φ̃, this lifted endoscopic datum (H̃, H̃, s̃, ξ̃) is

uniquely determined up to isomorphism. Here we need to use the fact that the preimage of Z(Ĝ)

is Z(
̂̃
G).
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Finally, we have a commutative diagram

H1(WF , Z(
̂̃
G))

��

// Hom(G̃(F ),C×)

��
H1(WF , Z(Ĝ)) // Hom(G(F ),C×)

which shows that ω
G̃
|G = ωG. So, we get a well-defined map from E(Gθ, ωG) to⊔

ω
G̃
|G=ωG

E(G̃θ, ω
G̃

).

The other direction is more straightforward, namely one can simply take the quotient by D̂ on
the dual side. 2

Remark 3.2. Following the proof, there is an exact sequence

1 // D̂ // ̂̃H // Ĥ // 1 ,

whose dual is

1 // H // H̃
λH // D // 1 .

This suggests that the twisted endoscopic groups H̃ and H also have the same derived group.

3.2 Relation with Langlands parameter

We follow the setup in the introduction. Suppose that φ ∈ Φ(G) and φ̃ ∈ Φ(G̃) is a lift of φ.

Let LF act on D̂,
̂̃
G

Σ

and ĜΣ by conjugation through φ. We denote the corresponding group

cohomology by H∗φ(LF , ·). Note that H0
φ(LF , D̂) = D̂Γ, H0

φ(LF , Ĝ
Σ) = SΣ

φ , H0
φ(LF ,

̂̃
G

Σ

) = SΣ
φ̃

and H1
φ(LF , D̂) = H1(WF , D̂). The short exact sequence

1 // D̂ // ̂̃GΣ
// ĜΣ // 1

induces a long exact sequence

1 // D̂Γ // SΣ
φ̃

// SΣ
φ

δ // H1(WF , D̂)

and hence

1 // SΣ
φ̃
/D̂Γ ι // SΣ

φ
δ // H1(WF , D̂). (3.3)

To describe δ, we can write

SΣ
φ = {s̃ ∈ ̂̃GΣ

: s̃φ̃(u)s̃−1φ̃(u)−1 ∈ D̂, for all u ∈ LF }/D̂.

Then δ(s) : u 7−→ s̃φ̃(u)s̃−1φ̃(u)−1, where s̃ is a preimage of s in
̂̃
G

Σ

, and δ(s) factors through
WF . We have the following fact about δ.
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Lemma 3.3. The image of δ consists of a ∈ H1(WF , D̂) such that

φ̃θ = φ̃⊗ a

for some θ ∈ Σ, and in particular it is finite.

Proof. By the definition of δ, we have s̃φ̃(u)s̃−1 = δ(s)(u) · φ̃(u), where s̃ ∈ ̂̃GΣ

is a preimage of s.

Denote by θ̂s the image of s in Σ̂. Then this means that φ̃θs = φ̃⊗ δ(s). Conversely, if φ̃θ = φ̃⊗a

for some a ∈ H1(WF , D̂) and θ ∈ Σ, then there exists g ∈ ̂̃G such that

(g o θ̂)φ̃(u)(g o θ̂)−1 = a(u)φ̃(u)

for a 1-cocycle a representing a. Then it is clear that s̃ := go θ̂ ∈ ̂̃GΣ

maps to an element s ∈ SΣ
φ

and a = δ(s).
To see that the image of δ is finite, we consider δ(s) and let θ = θs. The restriction of

A : LG̃ −→ L((Zθ
G̃

)0)

to D̂ induces a homomorphism

B : H1(WF , D̂) → H1(WF , (̂Zθ
G̃

)0).

We claim that δ(s) lies in the kernel of B. To show the claim, recall that

δ(s) : u 7−→ s̃φ̃(u)s̃−1φ̃(u)−1.

We can write s̃ = g o θ̂ and φ̃(u) = ho wu, where g, h ∈ ̂̃G and wu ∈WF . Then

s̃φ̃(u)s̃−1φ̃(u)−1 := gθ̂(h) · wu(g−1)h−1.

Since

A(θ̂(h)) = A(h),

we have

A(s̃φ̃(u)s̃−1φ̃(u)−1) = A(g)A(h) · wu(A(g−1))A(h−1) = A(g) · wu(A(g)−1).

This proves the claim. Now the exact sequence

1 // KerA|
D̂

// D̂
A|
D̂ // (̂Zθ

G̃
)0

induces the following exact sequence:

1 // H1(WF ,KerA|
D̂

) // H1(WF , D̂)
B // H1(WF , (̂Zθ

G̃
)0) .

Since F is a local field and KerA|
D̂

is finite, it is not hard to see that H1(WF ,KerA|
D̂

) is finite.
Then it follows from the exact sequence that the kernel of B is also finite and hence Im δ is
finite. 2
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We would like to modify (3.3) to have SΣ
φ and SΣ

φ̃
in the sequence. To do so, we need to know

the kernel and image of δ restricted on Z(Ĝ)Γ. Therefore, we take

1 // D̂ // Z(
̂̃
G) // Z(Ĝ) // 1,

which induces an exact sequence

1 // D̂Γ // Z(
̂̃
G)Γ // Z(Ĝ)Γ δ // H1(WF , D̂) // H1(WF , Z(

̂̃
G)).

So, Ker δ|
Z(Ĝ)Γ = Z(

̂̃
G)Γ/D̂Γ. Let H̄1(WF , D̂) := H1(WF , D̂)/δ(Z(Ĝ)Γ); we define S̄Σ

φ =

SΣ
φ /Z(Ĝ)Γ and S̄Σ

φ̃
= SΣ

φ̃
/Z(

̂̃
G)Γ. By taking the quotient of (3.3) by Z(Ĝ)Γ, we get

1 // S̄Σ
φ̃

ι // S̄Σ
φ

δ̄ // H̄1(WF , D̂) . (3.4)

Since Im δ is finite, we have (S̄Σ
φ̃

)0 = (S̄Σ
φ )0. After taking the quotient of (3.4) by the identity

component, we get

1 // SΣ
φ̃

ι // SΣ
φ

δ̄ // H̄1(WF , D̂) . (3.5)

The local Langlands correspondence for tori gives us an isomorphism

H1(WF , D̂) ∼= Hom(D(F ),C×).

By pulling back quasicharacters of D(F ) to G̃(F ), we get a homomorphism

H1(WF , D̂) → Hom(G̃(F )/G(F ),C×),

which is surjective. Note that δ(Z(Ĝ)Γ) is trivial in H1(WF , Z(
̂̃
G)), so it induces the trivial

character on G̃(F ). Since (3.1) is an isomorphism, we then have an isomorphism

r : H̄1(WF , D̂) → Hom(G̃(F )/G(F ),C×).

We denote the composition r ◦ δ̄ by α. Therefore, we have the following exact sequence:

1 // SΣ
φ̃

ι // SΣ
φ

α // Hom(G̃(F )/G(F ),C×). (3.6)

Lemma 3.4. The image α(Sφ) is contained in Hom(G̃(F )/Z
G̃

(F )G(F ),C×).

Proof. It follows from the proof of Lemma 3.3 that the image δ(Sφ) is in the kernel of H1(WF ,

D̂) → H1(WF , Ẑ0
G̃

). So, α(Sφ) is contained in Hom(G̃(F )/Z0
G̃

(F )G(F ),C×). When Z
G̃

= Z0
G̃

,
this is what we want.

Suppose that Z
G̃

is not connected; we can take an F -torus Z containing Z
G̃

, and let G̃′ =

(G̃×Z)/Z
G̃

. Then Z
G̃′ = Z is connected. Let φ̃′ ∈ Φ(G̃′) be a lift of φ̃; then we have the following
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commutative diagram:

1 //

��

Sφ̃′

��

ι′ // Sφ
α′ // Hom(G̃′(F )/G(F ),C×)

��

1 // Sφ̃
ι // Sφ

α // Hom(G̃(F )/G(F ),C×)

Since the image of α′ is trivial on Z
G̃′(F ), the image of α is trivial on Z

G̃
(F ). This finishes the

proof. 2

Suppose that θ ∈ Σ for any semisimple element s ∈ S̄θφ, let Ĥ = Cent(s, Ĝ)0 and H = Ĥ ·Imφ;

then H is embedded identically in LG. The conjugate action of LF on Ĥ through φ determines

a Galois action on Ĥ and hence determines a quasisplit reductive group H. Therefore, φ factors

through H for [(H,H, s, ξ)] ∈ E(Gθ), where ξ is the identity embedding. For any lift φ̃ of φ, the

restriction φ̃|WF
lifts (H,H, s, ξ) to a twisted endoscopic datum [(H̃, H̃, s̃, ξ̃)] ∈ E(G̃θ, ω) for some

quasicharacter ω of G̃(F )/G(F ) (cf. the proof of Proposition 3.1). By construction, we know that

φ̃ factors through H̃. If we take a different lift φ̃
′
of φ, it is easy to see that φ̃

′
also factors through

H̃. All of these can be summarized in the diagram below.

LF //

��

H̃ ξ̃ //

��

LG̃

��
H ξ // LG

Then we have the following simple fact.

Lemma 3.5. α(s) = ω.

Proof. By definition, δ(s)(w) = s̃φ̃(w)s̃−1φ̃(w)−1 for any w ∈WF , and s̃ is a preimage of s in
̂̃
G

Σ

.

Since φ̃ factors through H̃ and
̂̃
H commutes with s̃, we have s̃φ̃(w)s̃−1φ̃(w)−1 = s̃ξ̃(w)s̃−1ξ̃(w)−1,

and this means that α(s) = ω. 2

3.3 Endoscopic transfer
Returning to the setup in § 3.1, the reason that endoscopic data are so important is because
there is a transfer map from C∞c (G(F )) to C∞c (H(F )) if H = LH. If H 6= LH, we have to take
an extension H1 of H by an induced torus Z1 (called z-extension)

1 // Z1
// H1

// H // 1,

so that the dual homomorphism Ĥ → Ĥ1 can be extended to an L-embedding ξH1 : H→
LH1.

We call (H1, ξH1) a z-pair for H. By choosing a section c : WF → H, we get a quasicharacter χ1

on Z1 from

WF
c // H

ξH1 // LH1
// LZ1.

It is easy to see that χ1 is independent of the choice of section c. So, the transfer map will
be from C∞c (G(F )) to C∞c (H1(F ), χ1), which is the space of χ−1

1 -equivariant smooth functions
on H1(F ) with compact support modulo Z1.
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To define this transfer map, we need to introduce the space of twisted (stable) orbital
integrals. Let ωG be a quasicharacter of G(F ) and δ be a strongly θ-regular θ-semisimple
element of G(F ), namely Int(δ) ◦ θ is semisimple and the θ-twisted centralizer Gθδ(F ) (i.e.,
Int(δ)◦θ-invariant elements in G(F )) of δ is abelian. We assume that ωG is trivial on Gθδ(F ). We
fix Haar measures on G(F ) and Gθδ(F ); they induce a G(F )-invariant measure on Gθδ(F )\G(F ).
Then we can form the (θ, ωG)-twisted orbital integral of f ∈ C∞c (G(F )) over δ as

Oθ,ωGG (f, δ) :=

∫
Gθδ(F )\G(F )

ωG(g)f(g−1δθ(g)) dg.

We also form the (θ, ωG)-twisted stable orbital integral over δ as

SOθ,ωGG (f, δ) :=
∑

{δ′}θ
G(F )

∼st{δ}θG(F )

Oθ,ωGG (f, δ′),

where the sum is over θ-twisted conjugacy classes {δ′}θG(F ) in the θ-twisted stable conjugacy

class of δ (i.e., δ′ = g−1δθ(g) for some g ∈ G(F̄ )), and the Haar measure on Gθδ′(F ) is translated
from that on Gθδ(F ) by conjugation. Let I(Gθ,ωG) (SI(Gθ,ωG)) be the space of (θ, ωG)-twisted
(stable) orbital integrals of C∞c (G(F )) over the set Gθreg(F ) of strongly θ-regular θ-semisimple
elements of G(F ); then by definition we have projections

C∞c (G) // // I(Gθ,ωG) // // SI(Gθ,ωG).

Suppose that [(H,H, s, ξ)] ∈ E(Gθ, ωG); we fix a z-pair (H1, ξH1) for H. We assume that θ
preserves an F -splitting of G; then there is a map from the semisimple H1(F̄ )-conjugacy classes
of H1(F̄ ) to the θ-twisted semisimple G(F̄ )-conjugacy classes of G(F̄ ). By our assumption on θ,
this map is defined over F . We call a strongly regular semisimple element γ1 ∈ H1(F̄ ) strongly
G-regular if its associated H1(F̄ )-conjugacy class maps to a θ-twisted strongly regular semisimple
G(F̄ )-conjugacy class of G(F̄ ). We denote the set of strongly G-regular semisimple elements of
H1(F ) by H1,G-reg(F ). The transfer factor defined in [KS99] is a function

∆G,H1(· , ·) : H1,G-reg(F )×Gθreg(F ) → C,

which is nonzero only when γ1 ∈ H1,G-reg(F ) is a norm of δ ∈ Gθreg(F ), i.e., the H1(F̄ )-conjugacy

class of γ1 maps to the θ-twisted G(F̄ )-conjugacy class of δ. Note that if δ ∈ Gθreg(F ) has a norm

γ1 ∈H1,G-reg(F ), then ωG is trivial on Gθδ(F ) (see [KS99, Lemma 4.4.C]). In this paper we always
normalize the transfer factor with respect to a fixed θ-stable Whittaker datum (B,Λ) for G. The
transfer factor has the following basic properties (see [KS99]).

– ∆G,H1(· , ·) is invariant over a stable conjugacy class in the first variable.
– There is a canonical inclusion (ZG)θ ↪→ ZH , so that we get a homomorphism

ZG → (ZG)θ ↪→ ZH . (3.7)

Let C be the fiber product of ZG and ZH1 over ZH . Then there exists a quasicharacter χC
of C(F ) such that

∆G,H1(z1γ1, zδ) = χ−1
C (z1, z)∆G,H1(γ1, δ), z1 ∈ ZH1(F ), z ∈ ZG(F ),

where z1 and z have the same image on ZH(F ), and the restriction of χC to Z1(F ) is χ1.
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– For g ∈ G(F ), ∆G,H1(γ1, g
−1δθ(g)) = ωG(g)∆G,H1(γ1, δ).

The transfer map is a correspondence from f ∈ C∞c (G(F )) to fH1 ∈ C∞c (H1(F ), χ1) such
that

SOH1(fH1 , γ1) =
∑

{δ′}θ
G(F )

∼st{δ}θG(F )

∆G,H1(γ1, δ
′)Oθ,ωGG (f, δ′), (3.8)

where the sum is over θ-twisted conjugacy classes {δ′}θG(F ) in the θ-twisted stable conjugacy
class of δ. The existence of such a correspondence has been conjectured by Langlands, Shelstad
and Kottwitz. In the real case, this is now a theorem of Shelstad [She12]. In the p-adic case,
Waldspurger [Wal95, Wal97, Wal06, Wal08] reduced it to the fundamental lemma for Lie algebras
over the function field, and Ngô [Ngô10] proved the fundamental lemma in this form.

This transfer map can also be defined for equivariant functions. To be more precise, let ZF
be a closed subgroup of ZG(F ) such that ZF → ZH(F ) through (3.7) is injective. In particular,
the preimage of ZF in ZH1(F ) forms a closed subgroup of C(F ); we denote it by C1,F . We fix
a quasicharacter χ on ZF ; it pulls back to a quasicharacter on C1,F . Denote the restriction of
χC on C1,F by χC1 ; then we claim that there is a correspondence from the space C∞c (G(F ), χ)
of χ−1-equivariant functions to the space C∞c (H1(F ), χχC1) of (χχC1)−1-equivariant functions
characterized by (3.8). This correspondence can be constructed as follows. There is a surjection
from C∞c (G(F )) to C∞c (G(F ), χ) defined by

f 7→ f̄ =

∫
ZF

f(zg)χ(z) dz.

Similarly, we have a surjection from C∞c (H1(F ), χ1) to C∞c (H1(F ), χχC1) defined by

f 7→ f̄ =

∫
Z1(F )\C1,F

f(zg)χχC1(z) dz.

Then it suffices to check the commutativity of the following diagram.

C∞c (G(F )) //

��

C∞c (H1(F ), χ1)

��
C∞c (G(F ), χ) // C∞c (H1(F ), χχC1)

Suppose that f ∈ C∞c (G(F )) and γ1 is a norm of δ,

Oθ,ωGG (f̄ , δ) =

∫
ZF

Oθ,ωGG (f, zδ)χ(z) dz.

So, ∑
{δ′}θ

G(F )
∼st{δ}θG(F )

∆G,H1(γ1, δ
′)Oθ,ωGG (f̄ , δ′)

=
∑

{δ′}θ
G(F )

∼st{δ}θG(F )

∆G,H1(γ1, δ
′)

∫
ZF

Oθ,ωGG (f, zδ′)χ(z) dz

=

∫
ZF

χ(z)
∑

{δ′}θ
G(F )

∼st{δ}θG(F )

∆G,H1(γ1, δ
′)Oθ,ωGG (f, zδ′) dz
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=

∫
ZF

χ(z)
∑

{δ′}θ
G(F )

∼st{δ}θG(F )

χC(z1, z)∆G,H1(z1γ1, zδ
′)Oθ,ωGG (f, zδ′) dz

=

∫
ZF

χ(z)χC(z1, z)SOH1(fH1 , z1γ1) dz

=

∫
Z1(F )\C1,F

χχC1(z1)SOH1(fH1 , z1γ1) dz.

Hence, f̄ corresponds to the image of fH1 in C∞c (H1(F ), χχC1).
Let G ⊆ G̃ be two quasisplit connected reductive groups over F such that Gder = G̃der

and G̃/G = D. Suppose that [(H,H, s, ξ)] ∈ E(Gθ, ωG); let [(H̃, H̃, s̃, ξ̃)] ∈ E(G̃θ, ω
G̃

) be the

corresponding lift. We also fix a z-pair (H̃1, ξ̃H̃1
) for H̃ with a z-extension

1 // Z1
// H̃1

// H̃ // 1.

Let H1 be the preimage of H in H̃1; then we get a z-extension for H

1 // Z1
// H1

// H // 1.

Note that H̃1/H1 = D, so on the dual side ξ̃
H̃1

gives rise to an L-embedding ξH1 : H →
LH1

by taking the quotient of D̂. We fix a θ-stable Whittaker datum for G̃, which determines that
for G. Then the relation of the transfer factors ∆

G̃,H̃1
and ∆G,H1 can be stated in the following

lemma.

Lemma 3.6. Suppose that δ is a strongly θ-regular θ-semisimple element in G(F ) ⊆ G̃(F ) and
γ1 is a strongly G-regular semisimple element in H1(F ) ⊆ H̃1(F ). Then one has

∆
G̃,H̃1

(γ1, δ) = ∆G,H1(γ1, δ).

Proof. Suppose that the θ-stable Whittaker datum for G̃ is constructed with respect to a θ-stable
F -splitting (B̃, T̃, {Xα}) of G̃, and a nontrivial additive character ψF of F . This also determines
a θ-stable F -splitting (B,T, {Xα}) of G. Then the unnormalized transfer factor can be defined
as a product

∆0(γ1, δ) = ∆I(γ1, δ)∆II(γ1, δ)∆III(γ1, δ)∆IV(γ1, δ).

It depends on the θ-stable F -splitting that we have fixed. First, we would like to compare the
unnormalized transfer factors for (G̃, H̃1) and (G,H1) term by term. To set things up, let T̃H1 be
the centralizer of γ1 in H̃1 and let TH1 = T̃H1 ∩H1. Let T̃H (respectively TH) be the projection
of T̃H1 (respectively TH1) on H̃ (respectively H). We fix an admissible embedding T̃H −→ T̃θ;
this gives an admissible embedding TH −→ Tθ by restriction. Since the root system R(G̃, T̃ )
is isomorphic to R(G,T ) and the isomorphism is equivariant under the Galois action, one can
assign the same a-data and χ-data [LS87] to them. They induce a-data and χ-data for Rres(G̃, T̃ )
(respectively Rres(G,T )), which are roots in R(G̃, T̃ ) (respectively R(G,T )) restricted to (T̃ θ)0

(respectively (T θ)0).

Let 〈· , ·〉 denote the Tate–Nakayama pairing between H1(F, T θsc) and π0((T̂ θsc)
Γ); then the

first term in the unnormalized transfer factor is defined by

∆I,(G,H1)(γ1, δ) = 〈λaα(T θsc), sT,θ〉,
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where λaα(T θsc) is defined by using the a-data and the θ-stable F -splitting, and sT,θ is the

projection of the semisimple element s ∈ Ĝ o θ̂ in the endoscopic datum (H,H, s, ξ) onto

(T̂ad)
θ̂

= T̂ θsc. Because G̃sc = Gsc and we choose the a-data and the θ-stable F -splitting for

G̃ and G in a consistent way, λaα(T θsc) = λaα(T̃ θsc). Moreover, s̃ and s have the same image in

T̂ θsc; hence,
∆I,(G,H1)(γ1, δ) = ∆

I,(G̃,H̃1)
(γ1, δ).

For the second term, we adopt Waldspurger’s modification here (see [KS12]). It is defined by
the a-data and χ-data, and again because we choose them for G̃ and G in a consistent way, the
second term will be the same for (G̃, H̃1) and (G,H1). Before discussing the third term, let us
consider the fourth term first. The fourth term is defined by

∆IV,(G,H1)(γ1, δ) =
DGθ(δ)

DH1(γ1)
,

where

DGθ(δ) = |det(Ad(δ) ◦ θ − 1)Lie(G)/Lie (Cent((Gθδ)0,G)|
1/2
F ,

DH1(γ1) = |det(Ad(γ1)− 1)Lie(H1)/Lie(TH1
)|

1/2
F .

And, it is easy to see that D
G̃θ

(δ) = DGθ(δ) and D
H̃1

(γ1) = DH1(γ1); therefore, the fourth term

is also the same for (G̃, H̃1) and (G,H1).
We are now left with the third term ∆III,(G,H1); it is given by a pairing of hypercohomology

groups H1(F, Tsc
1−θ1 // T1 ) and H1(WF , T̂1

1−θ̂1 // T̂ad ), where T1 is the fiber product of T and

TH1 over Tθ ∼= TH , and θ1 is a lift of θ on T1 which fixes Z1 ⊆ T1. Similarly, we can define T̃1,
and the inclusion T1 → T̃1 induces maps on hypercohomology groups

ϕ : H1(F, Tsc
1−θ1 // T1) −→ H1(F, T̃sc

1−θ1 // T̃1),

ϕ∗ : H1(WF ,
̂̃
T 1

1−θ̂1 // ̂̃T ad) −→ H1(WF , T̂1
1−θ̂1 // T̂ad).

It is an easy exercise to check that they are adjoint to each other with respect to the Tate–
Nakayama pairing on hypercohomology groups, i.e.,

〈ϕ(V),A〉 = 〈V, ϕ∗(A)〉,

where V ∈ H1(F, Tsc
1−θ1 // T1 ) and A ∈ H1(WF ,

̂̃
T 1

1−θ̂1 // ̂̃T ad ). It follows from the definition

in [KS99] that there exist V0 ∈ H1(F, Tsc
1−θ1 // T1 ) and A0 ∈ H1(WF ,

̂̃
T 1

1−θ̂1 // ̂̃T ad ) such that

∆
III,(G̃,H̃1)

(γ1, δ) = 〈ϕ(V0),A0〉,
∆III,(G,H1)(γ1, δ) = 〈V0, ϕ

∗(A0)〉.

Hence, ∆
III,(G̃,H̃1)

(γ1, δ) = ∆III,(G,H1)(γ1, δ).

Up to now, we have shown the equality for the unnormalized transfer factors. To define the
normalizing factor, we need to choose an F -splitting (B̃H , T̃H , {XαH}) of H̃; it determines an

F -splitting (BH ,TH , {XαH}) of H. Let V
G̃

be the representation of Γ on X∗(T̃)θ ⊗ C and V
H̃
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be the representation of Γ on X∗(T̃H) ⊗ C. Let Ṽ = V
G̃
− V

H̃
; then the normalizing factor for

(G̃, H̃1) is given by the local ε-factor

εL(Ṽ , ψF ) = εL(V
G̃
, ψF )/εL(V

H̃
, ψF )

(see [Tat79, § 3.6]). Similarly, we can define VG, VH and V = VG−VH . Then it is enough to show
that εL(Ṽ , ψF ) = εL(V, ψF ). Note

εL(Ṽ , ψF )/ε(V, ψF ) = εL(V
G̃
, ψF )/εL(VG, ψF ) · εL(VH , ψF )/εL(V

H̃
, ψF ).

By the following exact sequences:

1 // T // T̃ // D // 1,

1 // TH // T̃H // D // 1,

we have

1 // VD // V
G̃

// VG // 1,

1 // VD // V
H̃

// VH // 1,

where VD = X∗(D)⊗ C is θ-invariant. Therefore,

εL(V
G̃
, ψF )/εL(VG, ψF ) = εL(V

H̃
, ψF )/εL(VH , ψF ) = εL(VD, ψF ).

This finishes the proof. 2

Following the notation in this lemma, note that G(F ) is θ-twisted conjugate invariant under
G̃(F ), so we have the following corollary.

Corollary 3.7. Suppose that δ is a strongly θ-regular θ-semisimple element in G(F ) and γ1 is
a strongly G-regular semisimple element in H1(F ). Then one has

∆G,H1(γ1, g
−1δθ(g)) = ω

G̃
(g)∆G,H1(γ1, δ).

Proof. From the previous lemma, we know that

∆G,H1(γ1, δ) = ∆
G̃,H̃1

(γ1, δ) and ∆
G̃,H̃1

(γ1, g
−1δθ(g)) = ∆G,H1(γ1, g

−1δθ(g)).

It follows from the property of the transfer factor that

∆
G̃,H̃1

(γ1, g
−1δθ(g)) = ω

G̃
(g)∆

G̃,H̃1
(γ1, δ).

Then the corollary is clear. 2

Remark 3.8. An equivalent way of stating this corollary is as follows. Let f ∈ C∞c (G(F ) o θ);
we can view it as in C∞c (G(F )) by sending g to g o θ, and define its transfer as before. For
g ∈ G̃(F ), h ∈ G(F )o θ, we denote fg(h) = f(ghg−1). Then this corollary says that

(fg)H1 = ω
G̃

(g)fH1 . (3.9)
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Let Z̃F be a closed subgroup of Z
G̃

(F ) such that Z̃F → (Z
G̃

)θ(F ) is injective andD(F )/λ(Z̃F )

is finite (this is possible because we assume that λ is θ-invariant). Let ZF = Z̃F ∩ G(F ). We
choose Haar measures on Z̃F and ZF such that the measure on ZF \G(F ) is the restriction of
that on Z̃F \G̃(F ). We fix a quasicharacter χ̃ of Z̃F and denote its restriction to ZF by χ. Note
that Z̃FG(F )\G̃(F ) is finite, so we get an inclusion map

C∞c (G(F ), χ) �
� // C∞c (G̃(F ), χ̃),

f � // f̃ ,

(3.10)

where f̃ is the extension of f by zero outside Z̃FG(F ). We can identify C∞c (G(F ), χ) with its
image in C∞c (G̃(F ), χ̃). Because Z̃FG(F ) is θ-twisted conjugate invariant under G̃(F ), the map
(3.10) induces a map from I(Gθ,ωG , χ) to I(G̃θ,ωG̃ , χ̃), where ω

G̃
|G = ωG. Moreover, Z̃FG(F̄ )

is θ-twisted conjugate invariant under G̃(F̄ ), so it also induces a map from SI(Gθ,ωG , χ) to
SI(G̃θ,ωG̃ , χ̃).

Let ω
G̃

be a quasicharacter of G̃(F ) and ωG = ω
G̃
|G. Let δ be a strongly θ-regular θ-semisimple

element of G(F )⊆ G̃(F ) such that ω
G̃

is trivial on the θ-twisted centralizer G̃θδ(F ) of δ. We choose

Haar measures on G̃θδ(F ) and Gθδ(F ) such that the measure on Gθδ(F )\G(F ) is the restriction of

that on G̃θδ(F )\G̃(F ). Then

O
θ,ω

G̃

G̃
(f̃ , δ) =

∑
{δ′}θ

G(F )
∼
G̃(F )

{δ}θ
G(F )

Oθ,ωGG (f, δ′)ω
G̃

(g),

where the sum is over θ-twisted G(F )-conjugacy classes {δ′}θG(F ) in the θ-twisted G̃(F )-conjugacy

classes {δ}θ
G̃(F )

with δ′ = g−1δg for g ∈ G̃(F ), and the Haar measure on Gθδ′(F ) is translated

from that on Gθδ by conjugation.

Suppose that [(H̃, H̃, s̃, ξ̃)] ∈ E(G̃θ, ω
G̃

) and [(H,H, s, ξ)] ∈ E(Gθ, ωG) correspond to each

other according to Proposition 3.1. We also fix a z-pair (H̃1, ξ̃H̃1
) for H̃, which induces a z-pair

(H1, ξH1) for H. Let C̃1,F be the preimage of Z̃F in Z
H̃1

(F ) and C1,F be the preimage of ZF in
ZH1(F ). Then

C1,F ↪→ C̃1,F
λ1−→ D(F )

with λ1(C̃1,F ) = λ(Z̃F ). It is easy to check that the restriction of χ
C̃

to C(F ) is χC . Note that

χ̃ and χ pull back to quasicharacters of C̃1,F and C1,F , respectively. So, let χ̃′ = χ̃χ
C̃1

and

χ′ = χχC1 ; then we have an inclusion map analogous to (3.10)

C∞c (H1(F ), χ′) �
� // C∞c (H̃1(F ), χ̃′),

f � // f̃ .

The next lemma shows that these inclusion maps are compatible with twisted endoscopic
transfers.

Lemma 3.9. Suppose that f ∈ C∞c (G(F ), χ); then the (θ, ω
G̃

)-twisted endoscopic transfer of the

extension f̃ of f is equal to the extension of the (θ, ωG)-twisted endoscopic transfer fH1 of f as
elements in SI(H̃1, χ̃

′), i.e.,

f̃ H̃1 = (̃fH1).
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Proof. Let us assume that δ is a strongly θ-regular θ-semisimple element in G(F ) ⊆ G̃(F ) and

γ1 is a strongly G-regular semisimple element in H1(F ) ⊆ H̃1(F ), and γ1 is a norm of δ. By the

definition of twisted endoscopic transfer,

SO
H̃1

(f̃ H̃1 , γ1) =
∑

{δ′}θ
G̃(F )

∼st{δ}θ
G̃(F )

∆
G̃,H̃1

(γ1, δ
′)O

θ,ω
G̃

G̃
(f̃ , δ′),

where the sum is over θ-twisted G̃(F )-conjugacy classes {δ′}θ
G̃(F )

in the θ-twisted stable conjugacy

class of δ. Meanwhile,

O
θ,ω

G̃

G̃
(f̃ , δ′) =

∑
{δ′′}θ

G(F )
∼
G̃(F )

{δ′}θ
G(F )

Oθ,ωGG (f, δ′′)ω
G̃

(g),

where the sum is over θ-twistedG(F )-conjugacy classes {δ′′}θG(F ) in the θ-twisted G̃(F )-conjugacy

class {δ′}θ
G̃(F )

, and δ′′ = g−1δ′θ(g) for g ∈ G̃(F ). By the property of twisted transfer factor, one

has

∆
G̃,H̃1

(γ1, g
−1δ′θ(g)) = ∆

G̃,H̃1
(γ1, δ

′)ω
G̃

(g).

Therefore,

SO
H̃1

(f̃ H̃1 , γ1) =
∑

{δ′}θ
G̃(F )

∼st{δ}θ
G̃(F )

∆
G̃,H̃1

(γ1, δ
′)

( ∑
{δ′′}θ

G(F )
∼
G̃(F )

{δ′}θ
G(F )

Oθ,ωGG (f, δ′′)ω
G̃

(g)

)

=
∑

{δ′′}θ
G(F )

∼st{δ}θG(F )

∆
G̃,H̃1

(γ1, δ
′′)Oθ,ωGG (f, δ′′).

On the other hand,

SO
H̃1

(f̃H1 , γ1) = SOH1(fH1 , γ1) =
∑

{δ′′}θ
G(F )

∼st{δ}θG(F )

∆G,H1(γ1, δ
′′)Oθ,ωGG (f, δ′′).

It follows from Lemma 3.6 that

∆
G̃,H̃1

(γ1, δ
′′) = ∆G,H1(γ1, δ

′′),

where δ′′ is in the θ-twisted stable G(F )-conjugacy class of δ. So, we have shown that

SO
H̃1

(f̃ H̃1 , γ1) = SO
H̃1

(f̃H1 , γ1) (3.11)

for γ1 ∈ H1(F ) being a norm.

If γ1 is not a norm, it follows from the property of the transfer factor that both sides of (3.11)

are zero. By the equivariance property, we can extend (3.11) to C̃1,FH1(F ). It is also easy to see

that SO
H̃1

(f̃H1 , γ1) 6= 0 only when γ1 ∈ C̃1,FH1(F ). Finally, one can show that SO
H̃1

(f̃ H̃1 , γ1) 6= 0

only when γ1 ∈ C̃1,FH1(F ) by using the condition on the support of f̃ . This finishes the proof. 2
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3.4 Character identity
Let π be an irreducible smooth representation of G(F ) and χπ be the central character of π. Let
CF be a closed subgroup of ZG(F ), and ζ = χπ|ZF . Suppose that πθ ∼= π⊗ ωG, let Aπ(θ, ωG) be

an intertwining operator between π⊗ωG and πθ (this is uniquely determined up to a scalar); we
then define the (θ, ωG)-twisted character of π to be the distribution

fGθ(π, ωG) := trace

∫
CF \G(F )

f(g)π(g) dg ◦Aπ(θ, ωG) (3.12)

for f ∈ C∞c (G(F ), ζ). In particular, we can define the distribution for f ∈ C∞c (G(F )) by taking
CF to be trivial. By results of Harish-Chandra [Har63, Har99] in the nontwisted case and Bouaziz
[Bou87], Lemaire [Lem13] and Clozel [Clo87] in the twisted case, there exists a locally integrable

function ΘGθ,ωG
π on G(F ) such that for x ∈ Gθreg(F ), g ∈ G(F ),

ΘGθ,ωG
π (g−1xθ(g)) = ωG(g)ΘGθ,ωG

π (x)

and

fGθ(π, ωG) =

∫
CF \G(F )

f(g)ΘGθ,ωG
π (g) dg.

By the twisted Weyl integration formula (cf. [Lem13, § 7.3] and [Mez13, § 5.4.1]), one can show
that this character defines a linear functional on I(Gθ,ωG , χ). A linear functional on I(Gθ,ωG , χ)
is called stable if it factors through SI(Gθ,ωG , χ). This notion of stability is equivalent to the one
we gave in the introduction.

We assume that θ preserves an F -splitting of G. For φ ∈ Φ(G), suppose that φ factors

through H for a twisted endoscopic datum [(H,H, s, ξ)] ∈ E(Gθ); let us write φ = ξ ◦φH. Clearly,

sZ(Ĝ) ∩ Sθφ 6= ∅; we denote its image in S̄θφ again by s. Let us fix a z-pair (H1, ξH1) for H and

define φ
H1

= ξH1 ◦ φH. We say that (H1, φH1
) corresponds to (φ, s) for s ∈ S̄θφ. It is easy to see

that for any semisimple s ∈ S̄θφ, such a pair (H1, φH1
) always exists (see § 3.2). For abbreviation,

we write (H1, φH1
) → (φ, s). We always assume that the Haar measure is preserved for any

admissible embedding TH
'−→ Tθ for a maximal torus TH ⊆ H and a θ-stable maximal torus

T ⊆ G.
Now we can state the conjectural twisted endoscopic character identity.

Conjecture 3.10. Suppose that φ ∈ Φbdd(G).

(i)

f(φ) :=
∑
π∈Πφ

〈1, π〉φfG(π), f ∈ C∞c (G(F )) (3.13)

is stable.

(ii) Suppose that s is a semisimple element in S̄θφ, and (H1, φH1
) → (φ, s). Then

fH1(φ
H1

) =
∑
π∈Πφ
π∼=πθ

〈x, π+〉φfGθ(π) (3.14)

for f ∈ C∞c (G(F )), where x is the image of s in Sθφ, and π+ is an extension of π to G+(F ) :=

G(F )× 〈θ〉 with π+(θ) = Aπ(θ).
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Remark 3.11. In the statement of this conjecture, the character 〈·, π〉φ is given in Conjecture 2.1

and 〈·, π+〉φ is given in Conjecture 2.5, where one takes Σ = 〈θ〉, GΣ = G+ and πΣ = π+.

In the setup of this conjecture, we can let

Θφ,x =
∑
π∈Πφ

〈x, π+〉φΘGθ

π

and

Θφ
H1

=
∑

π∈ΠφH1

〈1, π〉φ
H1

ΘH1
π .

Then, by expanding (3.14) using the twisted Weyl integration formula, we get

Θφ,x(δ) =
∑
γ1→δ

DH1(γ1)2

DGθ(δ)
2

∆G,H1(γ1, δ)Θφ
H1

(γ1),

where the sum is over stable conjugacy classes of norms γ1 ∈ H1,G-reg(F ) of δ ∈ Gθreg(F ).
Let ZF be a closed subgroup of ZG(F ) such that ZF → ZH(F ) through (3.7) is injective. If

the elements in ΠφH1
all have the same central character, let us denote its restriction to C1,F

by χ′. Then, for z ∈ ZF and z1 in its preimage in C1,F , we have

Θφ,x(zδ) =
∑
γ1→δ

DH1(z1γ1)2

DGθ(zδ)
2

∆G,H1(z1γ1, zδ)Θφ
H1

(z1γ1)

=
∑
γ1→δ

χC1(z1)−1DH1(γ1)2

DGθ(δ)
2

∆G,H1(γ1, δ)χ
′(z1)Θφ

H1
(γ1)

= χC1(z1)−1χ′(z1)Θφ,x(δ).

Note that χ−1
C1
χ′ is trivial on Z1(F ) and hence descends to a quasicharacter on ZF , which

we denote by χ. By the linear independence of twisted characters of irreducible smooth

representations, one must have

ΘGθ

π (zg) = χ(z)ΘGθ

π (g)

for z ∈ ZF and π ∈ Πφ. In particular, we can let θ = id and ZF = ZG(F ). Then the central

character of elements in Πφ is χ. This suggests that if we want to show for any φ ∈ Φbdd(G)

that the elements in Πφ have the same central character, we can reduce to the case of simple

parameters. Since the L-packet for a simple parameter consists of only one element, there

is nothing to show in that case. So, we have the following proposition as a consequence of

Conjecture 3.10.

Proposition 3.12. Suppose that φ ∈ Φbdd(G); then the elements in Πφ all have the same central

character.

This proposition can be extended to all L-packets by the theory of Langlands quotient.
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3.5 Proof of Theorem 2.6

Let G ⊆ G̃ be two quasisplit connected reductive groups over F such that Gder = G̃der; we denote
G̃/G by D. We have

1 // G // G̃
λ // D // 1.

We assume that θ is an automorphism of G̃ preserving an F -splitting of G̃, and λ is θ-invariant.
Let G+ = Go 〈θ〉.

Lemma 3.13. Suppose that φ ∈ Φbdd(G) and π ∈ Πφ; then

〈x, (π+)g〉φ = ωx(g)〈x, π+〉φ (3.15)

for any g ∈ G̃(F ) and x ∈ Sθφ, where ωx = α(x) and π+ is an irreducible representation of G+(F )

containing π in its restriction.

Proof. Let π = π(ρ) for ρ ∈ Irr(Sφ). If π � πθ, then ρx � ρ for x ∈ Sθφ (cf. Lemma 5.1 and

Conjecture 2.3). Therefore, 〈x, π+〉φ = 0 for x ∈ Sθφ and hence (3.15) is clear. Now we will only

concern the case π ∼= πθ. Suppose that s ∈ S̄θφ and (H1, φH1
) → (φ, s); then, by (3.14), we have

fH1(φ
H1

) =
∑
π∈Πφ
π∼=πθ

〈x, π+〉φfGθ(π)

for f ∈ C∞c (G(F )), where x is the image of s in Sθφ. We can also reformulate this identity by

taking f ∈ C∞c (G(F ) o θ) and view it as in C∞c (G(F )) by sending g to g o θ, so that we can
define its transfer as before. The resulting identity is

fH1(φ
H1

) =
∑
π∈Πφ

〈x, π+〉φfG+(π+).

For g ∈ G̃(F ), h ∈ G(F ) o θ, we denote fg(h) = f(ghg−1). Then, by Lemma 3.5 and (3.9), we
have

(fg)H1 = ωx(g)fH1

and hence
(fg)H1(φ

H1
) = ωx(g)fH1(φ

H1
).

Using the character identity to expand each side, we get∑
π∈Πφ

〈x, π+〉φfgG+(π+) =
∑
π∈Πφ

ωx(g)〈x, π+〉φfG+(π+). (3.16)

The left-hand side of (3.16) is equal to∑
π∈Πφ

〈x, π+〉φfG+((π+)g
−1

) =
∑
π∈Πφ

〈x, (π+)g〉φfG+(π+), (3.17)

where we substitute π+ for (π+)g
−1

. Compared with the right-hand side of (3.16), this may
possibly change the extension of π by some twist of characters of G+(F )/G(F ). Nevertheless,
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the right-hand side of (3.16) is independent of the extensions, so we can certainly choose the
same extension as the right-hand side of (3.17). So, after these changes, we get∑

π∈Πφ

〈x, (π+)g〉φfG+(π+) =
∑
π∈Πφ

ωx(g)〈x, π+〉φfG+(π+)

and hence
〈x, (π+)g〉φ = ωx(g)〈x, π+〉φ

by the linear independence of twisted characters. 2

Now we are going to prove Theorem 2.6. For φ ∈ Φbdd(G), recall that there is a
homomorphism

α : SΣ
φ → Hom(G̃(F )/G(F ),C×),

so we can define the homomorphism G̃(F ) → (SΣ
φ )∗ in the theorem by letting εg(x) = α(x)(g) =

ωx(g). Fix π ∈ Πφ and x ∈ SΣ
φ , we denote the image of x in Σ̂ by θ̂; then x ∈ Sθφ. Let Σ′ = 〈θ〉

and πΣ′ = π+; it follows from Lemma 3.13 that for any g ∈ G̃(F ),

〈x, (πΣ′)g〉φ = εg(x)〈x, πΣ′〉φ.

On the other hand, we have from (2.6)

〈·, πΣ〉φ|SΣ′
φ

=
∑

πΣ′∈ΠΣ′
φ

m(πΣ, πΣ′)〈·, πΣ′〉φ.

Since m((πΣ)g, (πΣ′)g) = m(πΣ, πΣ′),

〈x, (πΣ)g〉φ =
∑

πΣ′∈ΠΣ′
φ

m((πΣ)g, (πΣ′)g)〈x, (πΣ′)g〉φ

=
∑

πΣ′∈ΠΣ′
φ

m(πΣ, πΣ′)εg(x)〈x, πΣ′〉φ

= εg(x)〈x, πΣ〉φ.

As we vary π ∈ Πφ and x ∈ SΣ
φ , this equality still holds. Therefore, we have proved the theorem.

3.6 Proof of Conjecture 2.2
In this section, we want to show that Conjecture 2.2 is a special case of Theorem 2.6. The
main step is to clarify the three ingredients in defining the homomorphism Gad(F ) → S∗φ in

the statement of the conjecture. First, we need to recall the construction of z-extension. It is a
consequence of the following more general construction.

Proposition 3.14. Suppose that F is a field of characteristic zero and G and G′ are reductive
groups over F . If G′ is semisimple and there is a covering G′ → Gder, then there exists a central
extension of G

1 // Z // G̃′ // G // 1

such that:
– G̃′der = G′;

– the projection G̃′der → Gder coincides with G′ → Gder;
– Z is an induced torus; in particular, H1(F,Z) = 1.
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Remark 3.15. When G′ = Gsc, G̃
′ is the usual z-extension of G. For the proof of this proposition,

we refer the reader to [MS82, Proposition 3.1] and [Lan79].

Now we want to construct the Tate local duality for nonabelian reductive groups. Let F be

a local field of characteristic zero and G be a connected reductive group over F . Let G′ = G/Z0
G;

then ZG′ = ZG/Z
0
G. We apply Proposition 3.14 to the natural projection G′ → Gad, and we get

an extension G̃′ of Gad

1 // Z // G̃′ // Gad
// 1

such that G̃′der = G′ and H1(F,Z) = 1. Moreover, Z = Z
G̃′ ; we denote G̃′/G′ by D. Consider

the exact sequence

1 // G′ // G̃′
λ // D // 1.

The restriction to the centres gives

1 // ZG′ // Z
G̃′

λ // D // 1

and it induces the following exact sequence:

Z
G̃′(F )

λ // D(F ) // H1(F,ZG′) // H1(F,Z
G̃′) = 1.

Therefore,

H1(F,ZG′) = D(F )/Im(Z
G̃′(F )

λ−→ D(F )).

On the other hand, one considers the following diagram.

1

��

D̂

�� ��

1 // Ĝsc
//

��

̂̃
G′

��

// Ẑ
G̃′

// 1

Ĝ′

��
1

Note that π1(Ĝ′) = Ĝsc ∩ D̂ and Ĝ′ ∼= Ĝder, so we get a short exact sequence

1 // π1(Ĝder) // D̂ // Ẑ
G̃′

// 1.

This induces the following exact sequence:

π0(ẐΓ

G̃′
) // H1(F, π1(Ĝder)) // H1(F, D̂) // H1(F, Ẑ

G̃′).
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By the Tate–Nakayama duality for tori (see [Kot84, § 3.3, equation (3.3.1)]), we have π0(ẐΓ
G̃′

)∗ =

H1(F,Z
G̃′) = 1 and hence π0(ẐΓ

G̃′
) = 1. Therefore,

H1(F, π1(Ĝder)) = Ker(H1(F, D̂) → H1(F, Ẑ
G̃′)).

It also follows from the Tate–Nakayama duality for tori that H1(F, D̂) (respectively H1(F,

Ẑ
G̃′)) is canonically isomorphic to the group of continuous characters of finite orders on D(F )

(respectively Z
G̃′(F )) (see [Kot84, § 3,3, equation (3.3.2)]). Since Im(Z

G̃′(F )
λ−→ D(F )) has finite

index in D(F ), Ker(H1(F, D̂) →H1(F, Ẑ
G̃′)) is isomorphic to characters of D(F ) that are trivial

on Im(Z
G̃′(F )

λ−→ D(F )), and this is exactly the dual of D(F )/Im(Z
G̃′(F )

λ−→ D(F )). Hence, we
get a perfect pairing

H1(F,ZG′)×H1(F, π1(Ĝder)) → C×. (3.18)

The fact that this pairing is independent of the choice of extension with respect to G′ → Gad is
because of the following proposition.

Proposition 3.16. (i) If there is another extension

1 // Z1
// G̃′1

// Gad
// 1

dominating the original extension, i.e., there is a surjection G̃′1 → G̃′ such that the following
diagram commutes:

1 // Z1

��

// G̃′1
//

��

Gad
// 1

1 // Z // G̃′ // Gad
// 1

then the pairing (3.18) obtained from this extension is the same as the original one.

(ii) If there are two extensions

1 // Zi // G̃′i
// Gad

// 1 (i = 1, 2),

then one can find a third extension which dominates both of them.

The proof of part (i) is straightforward and we leave it to the reader. The proof of part (ii)
can be found in [Kot82, Lemma 1.1].

Since H1(F,Z
G̃′) = 1, Gad(F ) = G̃′(F )/Z

G̃′(F ) and

Gad(F ) = G̃′(F )/Z
G̃′(F )

λ // D(F )/Im(Z
G̃′(F )

λ−→ D(F )) = H1(F,ZG′)

defines the homomorphism Gad(F ) → H1(F,ZG′) in the introduction. Just like the Tate local
duality pairing, one can show that this homomorphism is independent of the choice of extension
with respect to G′ → Gad.

Finally, if φ ∈ Φbdd(G), we have defined a homomorphism δ : Sφ → H1(WF , D̂) (see (3.3)).

By Lemma 3.3, the image of δ is finite. So, δ factors through Aφ and the image lies in H1(F, D̂).

Moreover, we claim that the image of δ lies in Ker(H1(F, D̂) → H1(F, Ẑ
G̃′)). In fact, this follows
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from the proof of Lemma 3.3. For the convenience of the reader, we repeat that argument here.

For s ∈ Sφ, let s̃ be a preimage of s in
̂̃
G′. Recall that

δ(s) : u 7→ s̃φ̃(u)s̃−1φ̃(u)−1 = s̃σu(s̃−1) · σu(s̃)φ̃(u)s̃−1φ̃(u)−1︸ ︷︷ ︸
∈Ĝsc

for u ∈ LF and σu is the image of u in Γ. Note that the decomposition of δ(s)(u) factors through Γ.
Then our claim follows from the following diagram:

H1(F, D̂)

�� &&

H1(F, Ĝsc) // H1(F,
̂̃
G′)) // H1(F, Ẑ

G̃′)

So, we obtain a homomorphism δ : Aφ → H1(F, π1(Ĝder)).
From the construction above, we obtain a homomorphism Gad(F ) → A∗φ, which sends g to ηg.

It is easy to check that

ηg(s) = α(x)(g̃)

for s ∈ Aφ with image x ∈ Sφ, and g̃ ∈ G̃′(F ) with image g ∈ Gad(F ). As a consequence, ηg ∈ S∗φ
and Conjecture 2.2 follows from Theorem 2.6 immediately.

4. Central character

For φ ∈ Φ(G), one can associate a character χφ of ZG(F ) as in the introduction. By
Proposition 3.12, we see that the central characters of elements in Πφ are the same. So, we
can talk about the central character of an L-packet, and we would like to show that it is equal to
χφ. By the construction of χφ and also nontempered L-packets, we see that it suffices to prove
this for φ ∈ Φbdd(G). Note that if φ is simple, Πφ contains only one element and we would like
to assume that the central character of Πφ is χφ. Then it is enough to check how χφ and the
central character of representations change with respect to the endoscopic transfer.

Lemma 4.1. Let φ ∈ Φbdd(G) and s ∈ S̄φ. Suppose that, for any (H1, φH1
) → (φ, s), the central

character of ΠφH1
is χφH1

; then the central character of Πφ is χφ.

Proof. First, we want to reduce to the case H = LH. To do so, we can simply take a z-extension
of G

1 // Z1
// G1

// G // 1

and denote the image of φ in Φbdd(G1) by φ1. Note that (G1)der = Gsc; then, by a result of
Langlands (see [Lan79, Proposition 1]), φ

1
factors through an endoscopic datum (H1,

LH1, s, ξ1).

This gives a natural embedding ξH1 : H→
LH1 and a z-extension

1 // Z1
// H1

// H // 1.

Therefore, (H1, ξH1) is a z-pair for H. By our assumption, χφH1
is the central character of ΠφH1

.
If we can show that χφ1 is the central character of Πφ1 , then the same is true for χφ.
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From now on, we assume that H = LH and we take H1 = H. By the definition of χφ, we

need to take a torus Z containing the centre ZG of G and form G̃ = (G×Z)/ZG. Then H can be
lifted to a twisted endoscopic group H̃ of G̃. Let φ̃

H
be a lift of φ

H
; it gives a lift φ̃ of φ. Then

χφH = χφ̃H |ZH and χφ = χφ̃|ZG . Note that χφ̃ = χ
ξ̃
· (χφ̃H |ZG̃), where χ

ξ̃
is dual to

WF

ξ̃|WF−−−→ LG̃ →
LZ

G̃
.

On the other hand, the central character of Πφ only differs from the restriction of that of
ΠφH to ZG by χ−1

C . This follows from our proof of Proposition 3.12 by taking C = C1 = ZG.
Since χC = χ

C̃
|ZG , it is enough to show that χ

ξ̃
= χ−1

C̃
. To give the definition of χ

C̃
, we need

to fix Γ-splittings (B̃
H̃
, T̃
H̃
, {Xα

H̃
}) and (B̃, T̃ , {Xα}) for both

̂̃
H and

̂̃
G. By taking a certain̂̃

G-conjugate of ξ̃, we can assume that ξ̃(T̃
H̃

) = T̃ and B̃
H̃
⊆ B̃. We also choose a maximal torus

T̃
H̃

of H̃ defined over F , and choose an admissible embedding T̃
H̃

→ T̃ together with χ-data on

R(G̃, T̃ ). The admissible embedding identifies LT̃
H̃

with LT̃ , and transports χ-data from R(G̃, T̃ )

to R(H̃, T̃
H̃

). The χ-data give embeddings ξ
T̃
H̃

: LT̃
H̃

→
LH̃ and ξ

T̃
: LT̃ →

LG̃. Then there exists

a 1-cocycle a
T̃

of WF in
̂̃T with transported Galois action from T̃ such that

ξ̃ ◦ ξ
T̃
H̃

= a
T̃
· ξ
T̃
, (4.1)

and χ−1

C̃
is dual to

WF

a
T̃−→ ̂̃T →

LG̃ →
LZ

G̃
.

By the constructions of ξ
T̃
H̃

and ξ
T̃

(see [LS87, § 2.5]), one can see that ξ
T̃
H̃

(WF ) ⊆ ̂̃
Hder oWF

and ξ
T̃

(WF ) ⊆ ̂̃Gder oWF , so if we restrict both sides of (4.1) to WF and compose them with
LG̃ →

LZ
G̃

, we get an equality for the duals of χ
ξ̃

and χ−1

C̃
. Therefore, χ

ξ̃
= χ−1

C̃
. 2

It is clear that this lemma implies Proposition 2.4.

5. Twist by automorphism and quasicharacter

Let θ be an automorphism of G preserving an F -splitting. Let a be an element in H1(WF ,
Z(Ĝ)), which is associated with a quasicharacter ω of G(F ). In this section, we want to prove
Proposition 2.7.

Lemma 5.1. Suppose that φ ∈ Φbdd(G) is not simple; then Πφθ = Πθ
φ. Moreover,

〈x, πθ〉φθ = 〈θ̂−1xθ̂, π〉φ

for any π ∈ Πφ and x ∈ Sφθ .

Proof. For s ∈ S̄φ, we assume that (H1, φH1
) → (φ, s) with respect to (H,H, s, ξ) and the

z-pair (H1, ξH1). Then we have (H1, φH1
) → (φθ, θ̂sθ̂−1) with respect to (H,H, θ̂sθ̂−1, ξθ) and

the same z-pair (H1, ξH1). To make a distinction, we denote the transfer factor with respect to

(H,H, θ̂sθ̂−1, ξθ) by ∆G,H′1
, and the transfer by fH

′
1 for f ∈ C∞c (G(F )). Note that fH

′
1 is defined

on H1(F ).
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If f ∈ C∞c (G(F )), we can choose the transfers so that they satisfy

(fθ)H
′
1 = fH1 . (5.1)

To see this, let γ1 be a semisimple strongly G-regular element of H1(F ) and let TH1 be the
centralizer of γ1. Let TH be the projection of TH1 on H and γ ∈ H(F ) be the image of γ1. We fix
an admissible embedding TH → T with respect to (H,H, s, ξ) and denote the image of γ by δ.

Then the admissible embedding of TH with respect to (H,H, θ̂sθ̂−1, ξθ) becomes the composition
of

TH → T
θ−1

−−→ θ−1(T ).

This is because the endoscopic embedding ξ changes to ξθ. Note that γ maps to θ−1(δ) under
this admissible embedding. Then

SOH1((fθ)H
′
1 , γ1) =

∑
{δ′}G(F )∼st{δ}G(F )

∆G,H′1
(γ1, θ

−1(δ′))OG(fθ, θ−1(δ′))

=
∑

{δ′}G(F )∼st{δ}G(F )

∆G,H′1
(γ1, θ

−1(δ′))OG(f, δ′).

By the definition of transfer factors, one can check that

∆G,H′1
(γ1, θ

−1(δ′)) = ∆G,H1(γ1, δ
′),

so we have
SOH1((fθ)H

′
1 , γ1) = SOH1(fH1 , γ1).

It follows from (5.1) that
fH1(φ

H1
) = (fθ)H

′
1(φ

H1
).

Now we can expand both sides by the endoscopic character identities:

fH1(φ
H1

) =
∑
π∈Πφ

〈x, π〉φfG(π)

and

(fθ)H
′
1(φ

H1
) =

∑
π∈Π

φθ

〈θ̂xθ̂−1, π〉φθf
θ
G(π)

=
∑
π∈Π

φθ

〈θ̂xθ̂−1, π〉φθfG(πθ
−1

),

where x is the image of s in Sφ. By linear independence of characters, for any π′ ∈ Πφθ , there

exists π ∈ Πφ such that πθ ∼= π′. This shows that Πθ
φ = Πφθ . Moreover,

〈x, π〉φ = 〈θ̂xθ̂−1, π′〉φθ = 〈θ̂xθ̂−1, πθ〉φθ .

Let x′ = θ̂xθ̂−1 ∈ Sφθ ; then we get 〈θ̂−1x′θ̂, π〉φ = 〈x′, πθ〉φθ . 2

Lemma 5.2. Suppose that φ ∈ Φbdd(G) is not simple; then Πφ⊗a = Πφ ⊗ ω. Moreover,

〈x, π ⊗ ω〉φ⊗a = 〈x, π〉φ

for any π ∈ Πφ and x ∈ Sφ = Sφ⊗a, where a is a 1-cocycle of WF in Z(Ĝ) representing a.
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Proof. For s ∈ S̄φ, we assume that (H1, φH1
) → (φ, s) with respect to (H,H, s, ξ) and the z-pair

(H1, ξH1). Then we have (H ′1, φH1
) → (φ ⊗ a, s) with respect to (H,H, s, ξ ⊗ a) and the same

z-pair (H1, ξH1). To make a distinction, we denote the transfer factor with respect to (H,H,
s, ξ ⊗ a) by ∆G,H′1

, and the transfer by fH
′
1 for f ∈ C∞c (G(F )). Note that fH

′
1 is defined on

H1(F ).
If f ∈ C∞c (G(F )), one can choose the transfers so that they satisfy

(f ⊗ ω−1)H
′
1 = fH1 . (5.2)

To see this, let γ1 be a semisimple strongly G-regular element of H1(F ) and let TH1 be the
centralizer of γ1. Let TH be the projection of TH1 on H and γ ∈ H(F ) be the image of γ1. We
fix an admissible embedding TH → T with respect to (H,H, s, ξ) and denote the image of γ by
δ. Then the admissible embedding of TH with respect to (H,H, s, ξ ⊗ a) is the same. We have

SOH1((f ⊗ ω−1)H
′
1 , γ1) =

∑
{δ′}G(F )∼st{δ}G(F )

∆G,H′1
(γ1, δ

′)OG(f ⊗ ω−1, δ′)

=
∑

{δ′}G(F )∼st{δ}G(F )

∆G,H′1
(γ1, δ

′)ω−1(δ′)OG(f, δ′).

Moreover, we have

∆G,H′(γ, δ
′) = ω(δ′)∆G,H(γ, δ′).

In fact, this difference between transfer factors only comes from ∆III or more precisely ∆2 (see
[LS87, § 3.5] for its definition). Therefore,

SOH1((f ⊗ ω−1)H
′
1 , γ1) = SOH1(fH1 , γ1).

It follows from (5.2) that

fH1(φ
H1

) = (f ⊗ ω−1)H
′
1(φ

H1
).

Now we can expand both sides by the endoscopic character identities:

fH1(φ
H1

) =
∑
π∈Πφ

〈x, π〉φfG(π)

and

(f ⊗ ω−1)H
′
1(φ

H1
) =

∑
π∈Πφ⊗a

〈x, π〉φ⊗a(f ⊗ ω−1)G(π)

=
∑

π∈Πφ⊗a

〈x, π〉φ⊗afG(π ⊗ ω−1),

where x is the image of s in Sφ = Sφ⊗a. By linear independence of characters, for any π′ ∈ Πφ⊗a,

there exists π ∈ Πφ such that π′ ⊗ ω−1 ∼= π. This implies that Πφ⊗a = Πφ ⊗ ω. Furthermore,

〈x, π ⊗ ω〉φ⊗a = 〈x, π′〉φ⊗a = 〈x, π〉φ.

This finishes the proof. 2

1829

https://doi.org/10.1112/S0010437X16007545 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007545


B. Xu

6. Lifting L-packet

Let G ⊆ G̃ be two quasisplit connected reductive groups over F such that Gder = G̃der; we denote
G̃/G by D. Suppose that φ̃ ∈ Φbdd(G̃) and φ is the image of φ̃ under Φbdd(G̃) → Φbdd(G); then
it is conjectured that Πφ̃|G = Πφ. The problem we want to study is to what extent one can

understand the L-packet of G̃ from that of G. Therefore, we will only assume the endoscopic
hypothesis (i.e., (2.1) and Conjectures 2.5 and 3.10) for G and all its twisted endoscopic groups.
To be more precise, this will be our working assumption in §§ 6.2–6.4. It follows that the previous
results that we have proved about the desiderata of L-packets are valid for G.

6.1 Representation-theoretic preparation

We start by investigating the restriction multi-map Π(G̃(F )) → Π(G(F )). Similar discussions of
this restriction multi-map can also be found in [LL79], [HS12] and [GK82].

Lemma 6.1. If π̃ is an irreducible smooth representation of G̃(F ), then the restriction of π̃ to
G(F ) is a direct sum of finitely many irreducible smooth representations.

Proof. Since π̃ has a central character χπ̃, it is enough to show that the restriction of π̃ to
Z
G̃

(F )G(F ) is a direct sum of finitely many irreducible smooth representations. Note that

|D(F ) : λ(Z
G̃

(F ))| is finite, so the index |G̃(F ) : Z
G̃

(F )G(F )| = |λ(G̃(F )) : λ(Z
G̃

(F ))| < |D(F ) :
λ(Z

G̃
(F ))| is also finite. Then this lemma follows from the following algebraic result. 2

Lemma 6.2. Let G and H be two groups such that H is a normal subgroup of G and G/H is
finite.

(i) If π̃ is an irreducible representation of G, then the restriction of π̃ to H is a direct sum
of finitely many irreducible representations.

(ii) If π is an irreducible representation of H, then there exists an irreducible representation
π̃ of G which contains π in its restriction to H.

Proof. (i) Let g1, g2, . . . , gr be the representatives of G/H and g1 = 1. Let us assume that
the restriction of π̃ to H is reducible. We first need to show that there exists a direct sum
decomposition of the representation space V = V (π̃|H) =

⊕l
i=1 π̃(gvi)W for some proper H-

invariant subspace W and 1 6 vi 6 r. Suppose that there exists a direct sum 0 6=
⊕l

i=1 π̃(gvi)

W ( V ; then
⋂r
k=1

⊕l
i=1 π̃(gkgvi)W = 0 for it is invariant under G, but not equal to V .

Hence, we can choose {k1, k2, . . . , km} ⊆ {1, 2, . . . , r} so that W
⋂m
j=1

⊕l
i=1 π̃(gkjgvi)W = 0, but

W ′ = W
⋂m−1
j=1

⊕l
i π̃(gkjgvi)W 6= 0. Here we let W ′ = W if m = 1. Since W ′ ∩

⊕l
i=1 π̃(gkmgvi)

W = 0, W ′ +
⊕l

i=1 π̃(gkmgvi)W
′ is again a direct sum. Note that we have increased the number

of direct summands by 1. By repeating this argument, we will end up with a direct sum which is
either the whole space V or equal to

⊕r
i=1 π̃(gi)W

′′ with respect to some H-invariant subspace
0 6= W ′′ ⊆W . In the latter case, it is again equal to V for it is invariant under G.

Now we can assume that there is a direct sum decomposition of V =
⊕l

i=1 π̃(gvi)W with
respect to some W . Suppose that W is reducible; then there exists an H-invariant subspace
W ′ in W and

⊕l
i=1 π̃(gvi)W

′ 6= V . This implies that l < r. Hence, W must be irreducible
if l = r. In case l < r, we can apply the argument in the previous paragraph and find that
W ′′ in W ′, so that V =

⊕m
i=1 π̃(gvi)W

′′ and m > l. If W ′′ is reducible, we can repeat this
argument until either we get an irreducible subrepresentation in which case the proof is done,
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or we decompose V into a direct sum of r subspaces. In the latter case, it is clear now that
each subspace has to be irreducible. Therefore, π̃ can be decomposed into a finite direct sum of
irreducible H-representations. Moreover, it is easy to see that the direct summands run over all
the isomorphism classes of G-conjugates of any irreducible representation π contained in π̃|H .

(ii) Let π̃ be any irreducible representation of G; from Frobenius reciprocity, we have

HomH( ResGH π̃, π ) ∼= HomG(π̃, IndGHπ).

Then it is easy to see from part (i) of the lemma that π̃ contains π in its restriction to H if and
only if π̃ is a subrepresentation of σ = IndGHπ. So, it is enough to show that σ has an irreducible
subrepresentation. Note that σ|H =

⊕r
i=1 π

gi , so we have projections pi : V (σ) → V (πgi). If W
is a G-invariant subspace of V (σ), we are going to define a sequence of subspaces as follows. Let
W1 = W,W2 = Ker p1|W1 ,W3 = Ker p2|W2 , . . . ,Wr = Ker pr−1|Wr−1 and Wr+1 = 0. Then we have

0 = Wr+1 ⊆Wr ⊆Wr−1 ⊆ · · · ⊆W1 = W,

where Wi/Wi+1 ' πgi or 0 for 1 6 i 6 r. In particular, there exists a unique sequence of integers
r > sm > sm−1 > · · · > s1 > 1 such that

0 (Wsm (Wsm−1 ( · · · (Ws1 = W

with Wsi/Wsi+1 ' πgsi for 1 6 i 6 m − 1 and Wsm = πgm . We call m = m(W ) the length
of W . Now let us take a proper G-invariant subspace W of minimal length; then W has to be
irreducible. Otherwise, there exists another G-invariant subspace W ′ (W and, if {s1, s2, . . . , sm}
is associated with W , then W ′si/W

′
si+1
⊆ Wsi/Wsi+1 ' πgsi . From here, we see that m(W ′) 6

m(W ) and hence m(W ′) = m(W ). This means that W ′sm = Wsm and W ′si/W
′
si+1

= Wsi/Wsi+1 .
Therefore, W ′ = W . 2

As an immediate consequence of part (ii) of this lemma, we have the following corollary.

Corollary 6.3. If π is an irreducible smooth representation of G(F ), then there exists an
irreducible smooth representation π̃ of G̃(F ) which contains π in its restriction to G(F ). In
particular, the central character χπ can be extended to a character of Z

G̃
(F ).

Proof. Let Z̃F be a closed subgroup of Z
G̃

(F ) such that Z̃F∩ZG(F ) = 1 andD(F )/λ(Z̃F ) is finite.

Then we can extend π to Z̃FG(F ) through the trivial character on Z̃F . Since G̃(F )/Z̃FG(F ) is
finite, the existence of π̃ follows from Lemma 6.2 directly, and moreover its central character χπ̃
extends χπ.

The closed subgroup Z̃F can be constructed as follows. We first choose an F -subtorus C of Z0
G̃

such that Z0
G̃

= CZ0
G and C∩Z0

G is finite. It is easy to see that λ(C(F )) has finite index in D(F )

and |C(F ) ∩ ZG(F )| is finite. Next, we choose an integer m such that Z̃F := {xm : x ∈ C(F )}
has no torsion points. Then Z̃F ∩ ZG(F ) = 1 and λ(Z̃F ) also has finite index in D(F ). 2

Reviewing part (ii) of Lemma 6.2, we see that the irreducible subrepresentations of IndGHπ
give all the irreducible representations of G whose restriction to H contains π. So, it is interesting
to determine the structure of IndGHπ. This may not be easy in general, but when G/H is abelian
and the irreducible representations of H satisfy Schur’s lemma, one can actually compute the
induction very explicitly. Especially, note that if Z̃F is a closed subgroup of Z

G̃
(F ) such that
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D(F )/λ(Z̃F ) is finite, G̃(F )/Z̃FG(F ) is also abelian. So, now we are going to calculate IndGHπ
under the assumption that G/H is abelian. In fact, we can take any sequence of normal subgroups

H = H0 ⊆ H1 ⊆ · · · ⊆ Hi ⊆ · · · ⊆ Hr = G

such that Hi+1/Hi is cyclic and of prime order. Then

IndGHπ = IndGHr−1
· · · Ind

Hi+1

Hi
· · · IndH1

H π.

As we will see, for any irreducible representation σ of Hi, the induction Ind
Hi+1

Hi
σ is always

semisimple, so it is enough for us to consider the case when G/H is a cyclic group of prime order
p. Let g ∈ G be a generator of the cyclic group G/H and let us assume that πg ∼= π; then there
exists an intertwining operator A of V (π) such that for all h ∈ H, we have

A ◦ π(h) = π(ghg−1) ◦A.

So,

Ap ◦ π(h) = π(gphg−p) ◦Ap = π(gp) ◦ π(h) ◦ π(gp)−1 ◦Ap

and

(π(gp)−1 ◦Ap) ◦ π(h) = π(h) ◦ (π(gp)−1 ◦Ap).

Since π is irreducible, π(gp)−1◦Ap = cI for some constant c. After rescaling A, we can assume that
c = 1 and hence Ap = π(gp). This shows that we can extend π to an irreducible representation
π̃ of G by defining π̃(g) = A. In fact, if we change the scaling of A by a pth root of unity, we can
get another extension π̃ ⊗ ω for some character ω of G/H. Let {ωi}pi=1 be all the characters of
G/H; then it is easy to see that π̃ ⊗ ωi are distinct for all 1 6 i 6 p. Our claim is that

IndGHπ
∼=

p⊕
i=1

π̃ ⊗ ωi. (6.1)

To see this, we first get inclusions from π̃ ⊗ ωi to IndGHπ for all 1 6 i 6 p by Frobenius
reciprocity. Then this gives a G-invariant homomorphism from

⊕p
i=1 π̃ ⊗ ωi to IndGHπ. Since

π̃ ⊗ ωi are distinct, this homomorphism must be injective. Otherwise, the image of some π̃ ⊗ ωk
will be contained in the image of

⊕
i 6=k π̃⊗ωi, but that is impossible. The surjectivity will follow

from a simple argument on the lengths of representations as defined in the proof of part (ii) of
Lemma 6.2, when we restrict to H. Finally, if πg � π, then IndGHπ is irreducible because any

irreducible subrepresentation of IndGHπ contains πg
i

for 1 6 i 6 p in its restriction to H.

Next, we will give a formula for Ind
G̃(F )

Z̃FG(F )
π, where π is an irreducible smooth representation

of G(F ), which can be extended to Z̃FG(F ) through some quasicharacter χ̃ of Z̃F . Let us denote

G̃(π) = {g ∈ G̃(F ) : πg ∼= π}.

Suppose that G1
F is a maximal subgroup of G̃(F ), to which one can extend π. Note that such

G1
F may not be unique. If we denote such an extension by π1, then by (6.1) we have

Ind
G1
F

Z̃FG(F )
π ∼=

⊕
ω∈(G1

F /Z̃FG(F ))∗

π1 ⊗ ω
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and

Ind
G̃(F )

Z̃FG(F )
π ∼= Ind

G̃(F )

G1
F

Ind
G1
F

Z̃FG(F )
π ∼=

⊕
ω∈(G1

F /Z̃FG(F ))∗

Ind
G̃(F )

G1
F

(π1 ⊗ ω).

Note that Ind
G̃(F )

G1
F

(π1 ⊗ ω) is irreducible, so we can assume that π̃ ∼= Ind
G̃(F )

G1
F
π1 by making a

good choice of π1. Now we want to count the multiplicities in the decomposition of Ind
G̃(F )

Z̃FG(F )
π

above. Observe that Ind
G̃(F )

G1
F
π1 ∼= Ind

G̃(F )

G1
F

(π1 ⊗ ω) if and only if (π1)g ∼= π1 ⊗ ω for some

g ∈ G̃(F ). In fact, such g must be in G̃(π). So, we consider the homomorphism

G̃(π) // (G1
F /Z̃FG(F ))∗,

g � // ω : (π1)g ∼= π1 ⊗ ω

and the kernel is G1
F by maximality. If we denote the image of this homomorphism by c(π), then

Ind
G̃(F )

Z̃FG(F )
π ∼= |c(π)|

⊕
ω∈(G1

F /Z̃FG(F ))∗/c(π)

Ind
G̃(F )

G1
F

(π1 ⊗ ω). (6.2)

As a consequence of this formula, we have the following corollaries.

Corollary 6.4. If π is an irreducible smooth representation of G(F ), then the irreducible
smooth representation π̃ of G̃(F ), which contains π in its restriction to G(F ), is unique up to
twisting by Hom(G̃(F )/G(F ),C×).

Proof. As in Corollary 6.3, we can let Z̃F be a closed subgroup of Z
G̃

(F ) such that Z̃F ∩ZG(F )

= 1 and D(F )/λ(Z̃F ) is finite. Then, for any two irreducible smooth representations π̃1, π̃2, which
contain π in their restrictions to G(F ), one can choose ω ∈ Hom(G̃(F )/G(F ),C×) such that the
restrictions of π̃1 ⊗ ω and π̃2 to Z̃FG(F ) all contain the same representation which extends π.
By Frobenius reciprocity and (6.2), π̃1⊗ω ∼= π̃2⊗ω′ for some ω′ ∈ (G̃(F )/Z̃FG(F ))∗. Therefore,
π̃1
∼= π̃2 ⊗ ω′ω−1. 2

Corollary 6.5. If π̃ is an irreducible smooth representation of G̃(F ), then the irreducible
smooth representations π of G(F ) in the restriction of π̃ all have the same multiplicity and it is
equal to |c(π)|.

Proof. It follows from the proof of Lemma 6.2 that Res
G̃(F )
G(F )π̃ consists of isomorphism classes of

πg for g ∈ G̃(F ). By (6.2) and Frobenius reciprocity, the multiplicity of πg is |c(πg)| = |c(π)|.
This finishes the proof. 2

Lemma 6.6. Suppose that π̃ is an irreducible smooth generic representation of G̃(F ); then the
multiplicity of the irreducible smooth representation π of G(F ) in the restriction of π̃ is equal
to one.

Proof. Since π̃ is generic, there exists a generic representation π of G(F ) in the restriction of π̃.
For g ∈ G̃(π), the intertwining operator Ag : π → πg will preserve the Whittaker functional up
to a scalar. Here we are using the uniqueness of the Whittaker model. As a consequence, we can
normalize Ag for all g ∈ G̃(π) so that they all preserve the Whittaker functional. Then one can

check easily that π can be extended by these intertwining operators to G̃(π). This means that
G1
F = G̃(π) and hence |c(π)| = 1. Now this lemma will follow from Corollary 6.5. 2
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If π̃ is an irreducible smooth representation of G̃(F ), let us denote

X(π̃) = {ω ∈ (G̃(F )/Z
G̃

(F )G(F ))∗ : π̃ ⊗ ω ∼= π̃}.

We denote the multiplicity of an irreducible smooth representation π of G(F ) in the restriction
of π̃ by m(π̃, π). Next, we want to give a formula for m(π̃, π) in terms of X(π̃) and G̃(π).

Corollary 6.7. If π̃ is an irreducible smooth representation of G̃(F ) and π is contained in its
restriction to G(F ), then

m(π̃, π)2 =
|X(π̃)|

|G̃(F )/G̃(π)|
. (6.3)

Proof. It follows from Corollary 6.5 that m(π̃, π) = |c(π)|. By definition, |c(π)| = |G̃(π)/G1
F |. On

the other hand, it follows from (6.2) that X(π̃) is the preimage of c(π) under

(G̃(F )/Z
G̃

(F )G(F ))∗ −→ (G1
F /ZG̃(F )G(F ))∗.

Note that the kernel of this map is (G̃(F )/G1
F )∗, so |X(π̃)| = |c(π)| · |G̃(F )/G1

F |. Cancelling G1
F

from these two identities, we get

|c(π)|2 =
|X(π̃)|

|G̃(F )/G̃(π)|
.

This finishes the proof. 2

Remark 6.8. In the next section, we will consider the situation that both G and H as in
Lemma 6.2 are finite groups. It is not hard to see that the corollaries above can also be stated
for such pairs, and the proofs are the same.

Finally, we show that the restriction multi-map Π(G̃(F )) → Π(G(F )) preserves temperedness.

Lemma 6.9. Suppose that π̃ is an irreducible smooth unitary representation of G̃(F ); then π̃ is
an essential discrete series representation of G̃(F ) if and only if its restriction to G(F ) consists
of essential discrete series representations. The same is true of the tempered representations.

Proof. If π̃ is an essential discrete series representation, then the matrix coefficient 〈π̃(g)v, w∨〉
for v ∈ V (π̃) and w∨ ∈ V (π̃)∨ is a square integrable function modulo the centre. In particular, its
restriction to G(F ) is square integrable modulo the centre; hence, the restriction of π̃ consists of
essential discrete series representations. Conversely, we can write the matrix coefficient of π̃ as a
piecewise-defined function on the components of G̃(F )/Z

G̃
(F )G(F ), where on each component

it is defined as

〈π̃(hg)v, w∨〉 = 〈π̃(h)(π̃(g)v), w∨〉

for some fixed representatives g ∈ G̃(F ) of G̃(F )/Z
G̃

(F )G(F ) and h ∈ Z
G̃

(F )G(F ), which is a
matrix coefficient of the restriction of π̃. So, the restriction of π̃ consisting of essential discrete
series representations implies that π̃ is an essential discrete series representation. The same kind
of argument also applies to tempered representations when we replace the condition of square
integrability by L2+ε. 2
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6.2 Coarse L-packet

In this section, we want to describe the preimage of L-packets of G under Π(G̃(F )) → Π(G(F )).
To do so, we need the following hypothesis.

Hypothesis 1. Suppose that φ ∈ Φbdd(G) and let ρ ∈ Irr(Sφ) and τ ∈ Irr(Sφ̃) be in the

restriction ρ|Sφ̃ . Let π̃ be an irreducible smooth representation of G̃(F ), whose restriction to

G(F ) contains π = π(ρ); then, for any x ∈ Sφ,

τx ∼= τ ⇐⇒ π̃ ∼= π̃ ⊗ ωx.

Moreover,
X(π̃) = α(Sφ(τ)),

where Sφ(τ) = {x ∈ Sφ : τx ∼= τ}.

It is clear that this hypothesis is a consequence of Conjecture 2.3 for G̃, which is not assumed
in § 6. Since this hypothesis will be used on top of our working assumption for this section, we
will point it out whenever we assume this hypothesis. The next proposition is kind of dual to
this hypothesis.

Proposition 6.10. Suppose that φ ∈ Φbdd(G) and let ρ ∈ Irr(Sφ) and π = π(ρ). Let

X(ρ) = {ε ∈ (Sφ/Sφ̃)∗ : ρ⊗ ε ∼= ρ};

then {εg : g ∈ G̃(π)} = X(ρ), where εg(x) = ωx(g) = α(x)(g) for x ∈ Sφ.

Proof. For g ∈ G̃(π), by Lemma 3.13,

〈x, π〉φ = 〈x, πg〉φ = εg(x)〈x, π〉φ

and hence εg ∈ X(ρ). This shows that {εg : g ∈ G̃(π)} ⊆ X(ρ).

For the other direction, note that the map α : x 7→ ωx embeds Sφ/Sφ̃ into Hom(G̃(F )/

G(F ),C×) (see (3.6)), so the map g 7→ εg from G̃(F ) to (Sφ/Sφ̃)∗ is surjective. Hence, for any

ε ∈ X(ρ), we can assume that ε = εg for some g ∈ G̃(F ). Then

〈x, πg〉φ = εg(x)〈x, π〉φ = 〈x, π〉φ.

By injectivity of the map π → 〈·, π〉φ, one must have πg ∼= π, i.e., g ∈ G̃(π). 2

Corollary 6.11. Suppose that φ ∈ Φbdd(G) and let ρ ∈ Irr(Sφ) and π = π(ρ). Let

Ker(X(ρ)) = {x ∈ Sφ : ε(x) = 1 for all ε ∈ X(ρ)};

then α(Ker(X(ρ))) = (G̃(F )/G̃(π))∗.

Proof. Consider the pairing G̃(F )×Sφ → C× which sends (g, x) to εg(x) = α(x)(g). It becomes

a perfect pairing of abelian groups after taking quotients by Sφ̃ ⊆ Sφ, and U ⊆ G̃(F ), which is

annihilated by Sφ. We claim that U ⊆ G̃(π). This is because if εg = 1, then

〈x, πg〉φ = εg(x)〈x, π〉φ = 〈x, π〉φ.
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By injectivity of the map π → 〈·, π〉φ, one must have πg ∼= π, i.e., g ∈ G̃(π). By Proposition 6.10

and the Pontryagin duality applied to the perfect pairing G̃(F )/U × Sφ/Sφ̃ → C×, we have

a perfect pairing (G̃(F )/U)/(G̃(π)/U) × Ker(X(ρ))/Sφ̃ → C×. Therefore, (G̃(F )/G̃(π))∗ =

((G̃(F )/U)/(G̃(π)/U))∗ = α(Ker(X(ρ))). 2

Proposition 6.12. Suppose that φ ∈ Φbdd(G) and let ρ ∈ Irr(Sφ) and τ ∈ Irr(Sφ̃) be in the

restriction ρ|Sφ̃ with multiplicity m(ρ, τ). Let π̃ be an irreducible smooth representation of G̃(F )

whose restriction to G(F ) contains π = π(ρ). Under Hypothesis 1, we have m(π̃, π) = m(ρ, τ).

Proof. By Corollary 6.7, we have

m(π̃, π)2 =
|X(π̃)|

|G̃(F )/G̃(π)|
.

Similarly, one can show that

m(ρ, τ)2 =
|X(ρ)|
|Sφ/Sφ(τ)|

(see Remark 6.8). To relate these two expressions, we take Hypothesis 1 and apply Corollary 6.11
to the formula of m(π̃, π)2, and we get

m(π̃, π)2 =
|α(Sφ(τ))|

|α(Ker(X(ρ)))|
=

|Sφ(τ)/Sφ̃|

|Ker(X(ρ))/Sφ̃|

=
|Sφ(τ)/Sφ̃|

|(Sφ/Sφ̃)∗/X(ρ)|
=
|Sφ(τ)/Sφ̃||X(ρ)|

|(Sφ/Sφ̃)|
=

|X(ρ)|
|Sφ/Sφ(τ)|

= m(ρ, τ)2.

Hence, m(π̃, π) = m(ρ, τ). 2

This proposition suggests that m(π̃, π) = 1 if Sφ is abelian. For classical groups, it has been

shown that Sφ is always abelian (see [Art13, Mok14]). On the other hand, when G is a symplectic

group or special even orthogonal group, and G̃ is its similitude group, it has been proved that
m(π̃, π) = 1 (see [AP06, Theorem 1.4]). In fact, one can prove Hypothesis 1 under the assumption
that m(π̃, π) = m(ρ, τ) = 1.

Proposition 6.13. Suppose that φ ∈ Φbdd(G) and let ρ ∈ Irr(Sφ) and τ ∈ Irr(Sφ̃) be in the

restriction ρ|Sφ̃ . Let π̃ be an irreducible smooth representation of G̃(F ), whose restriction to

G(F ) contains π = π(ρ). If m(π̃, π) = m(ρ, τ) = 1, then, for any x ∈ Sφ,

τx ∼= τ ⇐⇒ π̃ ∼= π̃ ⊗ ωx.

Moreover,

X(π̃) = α(Sφ(τ)),

where Sφ(τ) = {x ∈ Sφ : τx ∼= τ}.
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Proof. If m(π̃, π) = m(ρ, τ) = 1, then X(π̃) = (G̃(F )/G̃(π))∗ and X(ρ) = (Sφ/Sφ(τ))∗. It follows
that Ker(X(ρ)) = Sφ(τ). By Corollary 6.11, X(π̃) = α(Ker(X(ρ))) = α(Sφ(τ)). This implies the
direction ‘⇒’. For the other direction, one can always choose x0 ∈ Sφ(τ) such that ωx = ωx0 ,

which implies that xx−1
0 ∈ Sφ̃. Hence, x ∈ Sφ(τ). 2

For φ ∈ Φbdd(G), we assume that the central character of Πφ is χφ. Let us fix a character χ̃φ of

Z
G̃

(F ) such that χ̃φ|ZG(F ) = χφ. Then we define Π̃φ,χ̃φ to be the subset of Π(G̃(F )) with central

character χ̃φ, whose restriction to G(F ) is contained in Πφ. Let X = Hom(G̃(F )/Z
G̃

(F )G(F ),

C×); then X acts on Π̃φ,χ̃φ by twisting. We call Π̃φ,χ̃φ a coarse L-packet for G̃; its structure is
described in the following proposition.

Proposition 6.14. Suppose that φ ∈ Φbdd(G) and χ̃φ is chosen as above. We assume
Hypothesis 1.

(i) If ρ ∈ Irr(Sφ), then the G̃(F )-conjugate orbit of π(ρ) has size |α(Ker(X(ρ)))|.
(ii) There is a pairing (not necessarily unique)

π̃ −→ 〈·, π̃〉φ (6.4)

from Π̃φ,χ̃φ to Ŝφ̃ such that:

(a)
〈·, π̃ ⊗ ωx〉φ = 〈x(·)x−1, π̃〉φ

for x ∈ Sφ;

(b)

〈·, π〉φ|Sφ̃ = m(π̃, π)
∑

x∈Sφ/Sφ(τ)

〈·, π̃ ⊗ ωx〉φ

for any π ∈ Πφ in the restriction of π̃.

Moreover, it sends the generic representation to the trivial character of Sφ̃.

Proof. Suppose that π ∈ Πφ; then the orbit of π under the conjugate action of G̃(F ) has

size |G̃(F )/G̃(π)|. By Corollary 6.11, we know that α(Ker(X(ρ))) = (G̃(F )/G̃(π))∗. Hence,
|(G̃(F )/G̃(π))| = |(G̃(F )/G̃(π))∗| = |α(Ker(X(ρ)))|.

For the second part, we can choose any π(ρ) in the restriction of π̃ ∈ Π̃φ,χ̃φ and choose any
irreducible subrepresentation τ in ρ|Sφ̃ . We also fix a set of representatives {ωi} in X of X/α(Sφ).

We assign τ to all π̃ ⊗ ωi and extend to π̃ ⊗ ω for any ω ∈ X by letting

〈·, π̃ ⊗ ωx〉φ := 〈x(·)x−1, π̃〉φ (6.5)

for x ∈ Sφ. This is well defined because of Hypothesis 1. By this construction, it is clear that (a)
is satisfied. Moreover, this definition is independent of choice of π(ρ). To see this, let us replace
π(ρ) by π(ρ)g for g ∈ G̃(F ); by Lemma 3.13, we have

〈·, πg〉φ|Sφ̃ = ωx(g)〈·, π〉φ|Sφ̃ = 〈·, π〉φ|Sφ̃ .

Then (b) follows from (a) and Proposition 6.12. Finally, if π̃ is generic, there exists a generic
representation π in its restriction, i.e., 〈·, π〉φ = 1. It is easy to see that 〈·, π̃〉φ = 1 by our
construction. 2
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6.3 Compatibility with θ-twist

Before we give the refinement of Π̃φ,χ̃φ , we want to show how the pairing in Proposition 6.14
can also be made to satisfy a special case of Conjecture 2.3. First, we would like to generalize
Hypothesis 1 to the θ-twisted case.

Hypothesis 2. Suppose that φ ∈ Φbdd(G) and let ρ ∈ Irr(Sφ) and τ ∈ Irr(Sφ̃) be in the

restriction ρ|Sφ̃ . Let π̃ be an irreducible smooth representation of G̃(F ) whose restriction to

G(F ) contains π(ρ); then, for any x ∈ Sθφ,

τx ∼= τ ⇐⇒ π̃θ ∼= π̃ ⊗ ωx.

Remark 6.15. (i) Fix τ0 ∈ Irr(Sφ̃); we can construct one to one correspondences between

{τy0 : y ∈ Sφ} and {π̃(τ0) ⊗ ωy : y ∈ Sφ} through (6.5), where π̃(τ0) ∈ Π̃φ,χ̃φ . If we fix such a

correspondence, and suppose that Sθφ acts on {τy0 : y ∈ Sφ}, then it follows from this hypothesis

that
π̃(τx)θ ∼= π̃(τ)⊗ ωx

for any τ ∈ {τy0 : y ∈ Sφ} and x ∈ Sθφ. More generally, if τ ′0 := τx0
0 /∈ {τy0 : y ∈ Sφ} for some

x0 ∈ Sθφ, then, by taking π̃(τ ′0) such that π̃(τ ′0)θ ∼= π̃(τ0) ⊗ ωx0 , we can obtain a one to one

correspondence between {(τ ′0)y : y ∈ Sφ} and {π̃(τ ′0) ⊗ ωy : y ∈ Sφ} again through (6.5). Note

that π̃(τ ′0) ∈ Π̃φ,χ̃φ (see Remark 6.17). In this way, one can construct a pairing from Π̃φ,χ̃φ to
Irr(Sφ̃) as in Proposition 6.14, which further satisfies

π̃(τx)θ ∼= π̃(τ)⊗ ωx

for any τ ∈ Irr(Sφ̃) and x ∈ Sθφ.

(ii) For ρ ∈ Irr(Sφ) and τ ∈ Irr(Sφ̃) being in the restriction ρ|Sφ̃ , it is easy to see for x ∈ Sθφ
that τx ∼= τ implies that ρx ∼= ρ ⊗ ε for some ε ∈ (Sφ/Sφ̃)∗. By the proof of Proposition 6.10,

there exists h ∈ G̃(F ) such that ε = εh. Since X(ρ) = {εg : g ∈ G̃(π(ρ))}; then h is uniquely

determined modulo G̃(π(ρ)). It follows that

π(ρ)θ
−1 ∼= π(ρx) ∼= π(ρ⊗ ε) ∼= π(ρ)h,

so π(ρ)θh ∼= π(ρ), where θh = hoθ. In the special case ρx ∼= ρ, we can prove the hypothesis under
Hypothesis 1.

Proposition 6.16. Suppose that φ ∈ Φbdd(G) and let ρ ∈ Irr(Sφ) and τ ∈ Irr(Sφ̃) be in the

restriction ρ|Sφ̃ . Let π̃ be an irreducible smooth representation of G̃(F ) whose restriction to

G(F ) contains π = π(ρ). We assume Hypothesis 1 and ρx ∼= ρ for x ∈ Sθφ; then, for any x ∈ Sθφ,

τx ∼= τ ⇐⇒ π̃θ ∼= π̃ ⊗ ωx.

Proof. Since π(ρ)θ ∼= π(ρx
−1

) for x ∈ Sθφ, then by our assumption π ∼= πθ. This means that we

have x0 ∈ Sθφ such that 〈x0, π
+〉φ 6= 0; in particular, τx0 ∼= τ . By (3.15),

〈x0, (π
+)g〉φ = ωx0(g)〈x0, π

+〉φ.
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Take g ∈ G̃(π); we get

〈x0, (π
+)g〉φfG+(π+) = ωx0(g)〈x0, π

+〉φfG+(π+) = ωx0(g)〈x0, (π
+)g〉φfG+((π+)g)

for f ∈ C∞c (G(F )o θ). Hence,

fG+((π+)g) = ωx0(g)−1fG+(π+). (6.6)

Let G1
F be a maximal subgroup of G̃(F ), to which one can extend π. Then we take the

extension π1 of π such that π̃ ∼= Ind
G̃(F )

G1
F
π1. Since π1(g) intertwines between π and πg, and π+(θ)

intertwines between π and πθ, it follows from (6.6) that

π1(θgθ−1) = ωx0(g) · π+(θ)π1(g)π+(θ)−1.

This means that (π1)θ ∼= π1 ⊗ (ωx0 |G1
F

) and hence π̃θ ∼= π̃ ⊗ ωx0 .

Now suppose that τx ∼= τ for some x ∈ Sθφ; then xx−1
0 ∈ Sφ(τ). From Hypothesis 1, we have

π̃ ∼= π̃ ⊗ ωxx−1
0

; then π̃θ ∼= π̃ ⊗ ωx0
∼= π̃ ⊗ ωx. Conversely, if π̃θ ∼= π̃ ⊗ ωx for some x ∈ Sθφ, then

π̃ ⊗ ωx ∼= π̃ ⊗ ωx0 . It follows again from Hypothesis 1 that xx−1
0 ∈ Sφ(τ) and hence τx ∼= τ . 2

Remark 6.17. Let τ0 ∈ Irr(Sφ̃) and ρ0 ∈ Irr(Sφ) be both trivial. Then it is clear that ρx0
∼= ρ0

for x ∈ Sθφ and m(ρ0, τ0) = 1. Let π̃ be an irreducible smooth representation of G̃(F ) whose

restriction to G(F ) contains π = π(ρ0). Note that π = π(ρ0) is generic, so, by Lemma 6.6,

we have m(π̃, π) = 1. It follows from Proposition 6.13 that Hypothesis 1 is satisfied for such

π and π̃. Therefore, the assumptions of this proposition are all satisfied in this case, and we

have π̃θ ∼= π̃ ⊗ ωx for any x ∈ Sθφ. Suppose that π̃ ∈ Π̃φ,χ̃φ , i.e., π̃ has central character χ̃φ (see

Proposition 6.14); then this implies that χ̃θφ = χ̃φ · ωx|Z
G̃

(F ) for any x ∈ Sθφ.

6.4 Conjectural refinement

The refinement of L-packets of G̃ should be a section of a certain choice of the pairing Π̃φ,χ̃φ → Ŝφ̃
given in Proposition 6.14, for which we make the following conjecture.

Conjecture 6.18. Suppose that φ ∈ Φbdd(G) and χ̃φ is a character of Z
G̃

(F ) whose restriction

to ZG(F ) is χφ. Let χ̃ = χ̃φ|Z̃F . Then one can construct a pairing of Π̃φ,χ̃φ → Ŝφ̃ as in

Proposition 6.14 and a section Πφ̃, which satisfies the following properties.

(i)

Π̃φ,χ̃φ =
⊔

ω∈X/α(Sφ)

Πφ̃ ⊗ ω.

(ii) For f̃ ∈ C∞c (G̃(F ), χ̃), the distribution

f̃(φ̃) :=
∑
π̃∈Πφ̃

〈1, π̃〉φf̃G̃(π̃)

is stable.
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(iii) Suppose that s is a semisimple element in S̄φ̃ and (H1, φH1
) → (φ, s). Suppose that Πφ̃H1

exists and it satisfies (i) and (ii). Then we can choose some twist of Πφ̃H1
by Hom(H̃1(F )/H1(F ),

C×), which is still denoted the same, such that

f̃ H̃1(φ̃
H1

) =
∑
π̃∈Πφ̃

〈x, π̃〉φf̃G̃(π̃), f̃ ∈ C∞c (G̃(F ), χ̃), (6.7)

where x is the image of s in Sφ̃.

(iv) Suppose that s is a semisimple element in S̄θφ and (H1, φH1
) → (φ, s). Let x be the image

of s in Sθφ and ω = α(x). Suppose that Πφ̃H1
exists and it satisfies (i) and (ii). Then, for any

τ ∈ Irr(Sφ̃) such that τx ∼= τ , and any extension τ1 of τ to the group generated by Sφ̃ and x, one

can associate it with an intertwining operator Aπ̃(τ)(θ, ω) : π̃(τ)⊗ω → π̃(τ)θ such that for some

twist of Πφ̃H1
by Hom(H̃1(F )/H1(F ),C×), which is still denoted the same, we have

f̃ H̃1(φ̃
H1

) =
∑

τ∈Irr(Sφ̃)

τx∼=τ

trace(τ1(x)) · f̃
G̃θ

(π̃(τ), ω), f̃ ∈ C∞c (G̃(F ), χ̃). (6.8)

It is clear that (6.8) generalizes (6.7). In the setup of this conjecture, for x ∈ Sθφ and τ ∈ Irr(Sφ̃)

such that τx ∼= τ , let π be an irreducible constituent in π̃(τ)|G; then πθh ∼= π, where x determines
h ∈ G̃(F )/G̃(π) as in Remark 6.15(ii). We fix a representative of h in G̃(F ); then π̃(h) ◦Aπ̃(τ)(θ,

ω) induces an intertwining operator AI(π)(θh) : I(π) → I(π)θh by restricting to the π-isotypic
component I(π) in π̃(τ)|G. So,

(f̃ |
Z̃FG(F )·h)

G̃θ
(π̃(τ), ω) =

∑
π∈π̃(τ)|G

fGθh (I(π)), (6.9)

where f ∈ C∞c (G(F ), χ) is obtained by letting f(g) = f̃(gh) and fGθh (I(π)) is the twisted

character of I(π) generalizing (3.12). We would like to restrict (6.8) to f̃ ∈ C∞c (G̃(F ), χ̃)
supported on Z̃FG(F ) · h. To write down the formula, we make the following conjecture.

Conjecture 6.19. In the setup of Conjecture 6.18, let τ ′ = τy, τ ′1 = τy1 for y ∈ Sφ and suppose

that τ ′1 is associated with Aπ̃(τ ′)(θ, ω) : π̃(τ ′)⊗ω → π̃(τ ′)θ. If we identify the representation space
of π̃(τ ′) and π̃(τ) such that π̃(τ ′) = π̃(τ)⊗ ωy, then Aπ̃(τ ′)(θ, ω) = Aπ̃(τ)(θ, ω).

As a result, we have

f̃ H̃1(φ̃
H1

) =
∑
π∈Πφ
π∼=πθh

( ∑
y∈Sφ/Sφ(τ)

trace(τy1 (x)) · ωy(h)

)
fGθh (I(π)), (6.10)

where A(θh) is normalized according to τ1 and f̃ is supported on Z̃FG(F ) · h. We should point
out that when θh = id, AI(π)(id) is not necessarily trivial, although the notation for the twisted
character then becomes the same as that for the ordinary one. Moreover, it is implied by this
formula that if fGθh (I(π)) is not zero, then the sum∑

y∈Sφ/Sφ(τ)

trace(τy1 (x)) · ωy(h)
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must be well defined, i.e., for any y′ ∈ Sφ(τ),

trace(τy1 (x)) · ωy(h) = trace(τyy
′

1 (x)) · ωyy′(h).

Finally, we want to point out that (6.10) generalizes the formula (3.14) to the case where the
automorphism of the group need not preserve an F -splitting.

6.5 Classical groups
The endoscopic hypothesis (see (2.1) and Conjectures 2.5 and 3.10) has been proven under slight
modifications for quasisplit classical groups (cf. [Art13, Mok14]). In this section, we will look into
the case of symplectic groups and special even orthogonal groups. So, from now on, G will always
be a split symplectic group or a quasisplit special even orthogonal group, where the outer twist
comes from the conjugation by the full orthogonal group. Let G̃ be the corresponding similitude
group. There is an exact sequence

1 // G // G̃
λ // Gm // 1, (6.11)

where λ is called the similitude character. We fix an automorphism θ0 of G preserving an F -
splitting. When G is symplectic, we require θ0 to be trivial. When G is special even orthogonal,
we require θ0 to be the unique nontrivial outer automorphism induced from the conjugation of
the full orthogonal group. Clearly, θ2

0 = 1, θ0 extends to G̃ by acting trivially on Z
G̃

and λ is

θ0-invariant. Let Σ0 = 〈θ0〉. Note that Σ0 acts on Π(G(F )) and its dual Σ̂0 acts on Φ(G). So, we
denote the set of Σ0-orbits in Π(G(F )) by Π̄(G(F )) and the set of Σ0-orbits in Φ(G) by Φ̄(G).
Similarly, we can define Π̄temp(G(F )), Φ̄bdd(G) and analogues of these sets for G̃. Now we will
recall the conjectures in the introduction by stating them as theorems in the case of symplectic
groups and special even orthogonal groups.

Theorem 6.20 [Art13, Theorem 1.5.1]. There is a canonical way to associate any [φ] ∈ Φ̄(G)
with a finite subset Π̄φ of Π̄(G(F )) such that

Π̄(G(F )) =
⊔

[φ]∈Φ̄(G)

Π̄φ

and

Π̄temp(G(F )) =
⊔

[φ]∈Φ̄bdd(G)

Π̄φ.

Theorem 6.21 [Art13, Theorem 1.5.1 and Proposition 8.3.2]. We fix a Σ0-stable Whittaker
datum (B,Λ) for G, and suppose that [φ] ∈ Φ̄bdd(G).

(i) There is a Σ0-orbit of (B,Λ)-generic representations in Π̄φ.

(ii) There is a canonical pairing between Π̄φ and Sφ, which induces an inclusion from Π̄φ to

the characters Ŝφ,

Π̄φ
// Ŝφ,

[π] � // 〈·, π〉φ,

such that it sends the (B,Λ)-generic representation to the trivial character. This becomes a
bijection when F is nonarchimedean.
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Remark 6.22. When F is archimedean, it follows from [Kos78] that the Σ0-orbit of (B,Λ)-generic

representations in Π̄φ is unique. When F is nonarchimedean, one can deduce the uniqueness of

the generic representation using the results from [JS03], [JS04], [Liu11] and [JL14] (see [Art13,

Remark in 8.3]).

For [φ] ∈ Φ̄bdd(G), we can define ΠΣ0
φ to be the set of all isomorphism classes of irreducible

smooth representations of GΣ0(F ) whose restrictions to G(F ) belong to Π̄φ. Note that SΣ0
φ is

always abelian in the current case (see [Art13, § 1.4]).

Theorem 6.23 (Arthur). We fix a Σ0-stable Whittaker datum (B,Λ) for G, and suppose that

[φ] ∈ Φ̄bdd(G).

(i) There is a canonical pairing between ΠΣ0
φ and SΣ0

φ , which induces an inclusion from ΠΣ0
φ

to the characters Ŝφ
Σ0

,

ΠΣ0
φ

// Ŝφ
Σ0
,

πΣ0 � // 〈·, πΣ0〉φ.

This becomes a bijection when F is nonarchimedean. Moreover, this pairing is an extension of

that in Theorem 6.21 in the sense that

〈·, πΣ0〉φ|Sφ = 〈·, π〉φ,

where π ∈ πΣ0 |G.

(ii) In case G is special even orthogonal, the following statements are equivalent:

(a) Π̄φ contains an element [π] such that πθ0 ∼= π;

(b) for any [π] ∈ Π̄φ, πθ0 ∼= π;

(c) Sθ0φ 6= ∅.

Remark 6.24. Although this theorem is not stated in [Art13], one can view it as a consequence

of Theorem 6.25. Moreover, we expect the (B,Λ)-generic representation in ΠΣ0
φ to correspond to

the trivial character of SΣ0
φ .

If H is a θ-twisted endoscopic group of G for θ ∈ Σ0, Arthur showed that H ∼= Ml×G1×G2,

where Ml is a product of general linear groups; Gi (i = 1, 2) is also a symplectic group or special

even orthogonal group. We define a group of automorphisms of H by taking the product of Σ0

on each Gi, and we denote this group again by Σ0. Then, by combining the local Langlands

correspondence for GL(n) (cf. [HT01, Hen00, Sch13]), all the previous theorems of Arthur can

be extended to H. In particular, the L-packets for H are formed by tensor products of those

of each factor. Let H̄(G) (respectively H̄(H)) be the space of Σ0-invariant smooth compactly

supported functions on G(F ) (respectively H(F )). Then the twisted endoscopic transfer sends

H̄(G) to H̄(H), and there is no need to consider z-pairs here.
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Theorem 6.25 [Art13, Theorems 2.2.1 and 2.2.4]. Suppose that [φ] ∈ Φ̄bdd(G).

(i)

f(φ) :=
∑

[π]∈Π̄φ

fG(π), f ∈ H̄(G) (6.12)

is stable.

(ii) Suppose that θ ∈ Σ0, s is a semisimple element in S̄θφ and (H,φ
H

) → (φ, s). Then

fH(φ
H

) =
∑

[π]∈Π̄φ

〈x, π+〉φfGθ(π) (6.13)

for f ∈ H̄(G), where x is the image of s in Sθφ, and π+ is an extension of π to G+(F ) := G(F )×〈θ〉
with π+(θ) = Aπ(θ). If G is special even orthogonal and Sθ0φ 6= ∅, one can replace H̄(G) by

C∞c (G(F )).

It follows from the second part of Theorem 6.23 that Π̄φ = Πφ unless G is special even

orthogonal and Sθ0φ = ∅. In the exceptional case, we have the following refined statement.

Theorem 6.26 [Art13, Theorem 8.4.1]. Suppose thatG is special even orthogonal, [φ]∈ Φ̄bdd(G)
and Sθ0φ = ∅.

(i) There exists a unique subset Πφ ⊆ ΠΣ0
φ |G up to θ0-twist such that:

–
Πθ0
φ tΠφ = ΠΣ0

φ |G,
–

f(φ) :=
∑
π∈Πφ

fG(π), f ∈ C∞c (G(F )) (6.14)

is stable.

(ii) Suppose that s is a semisimple element in S̄φ and (H,φ
H

) → (φ, s). Then there exists

ΠφH ⊆ ΠΣ0
φH
|H , which can be constructed from part (i), such that

fH(φ
H

) =
∑
π∈Πφ

〈x, π〉φfG(π) (6.15)

for f ∈ C∞c (G(F )), where x is the image of s in Sφ.

It follows from this theorem and Proposition 3.12 that the central character of Πφ is well
defined. Since Σ0 acts trivially on ZG, we can define the central character of Π̄φ to be that of
Πφ. Moreover, χφ only depends on [φ].

Proposition 6.27. For [φ] ∈ Φ̄bdd(G), the central character of Π̄φ is equal to χφ.

Proof. Let π0 be the generic representation in Π̄φ. Since ZG(F ) = Z2, it suffices to show
that χπ0(−1) = χφ(−1). Suppose that G is split; then Deligne [Del76] showed that χφ(−1) =
ε(1/2, ρstd ◦ φ, ψF ) (defined by Langlands) and Lapid [Lap04] showed that χπ0(−1) = ε(1/2,
π0, ρstd, ψF ) (defined by Shahidi). In both formulas ρstd is the standard representation of LG.
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It is now known that the local Langlands correspondence for G preserves these epsilon factors
(see [JS03, Liu11, JL14]); in particular,

ε(1/2, ρstd ◦ φ, ψF ) = ε(1/2, π0, ρstd, ψF ).

So, χπ0(−1) = χφ(−1). Suppose that G is not split; then G has to be special even orthogonal.
We can view G as an endoscopic group of the split symplectic group G+ of the same F̄ -rank,
and let [φ] map to [φ+] ∈ Φ̄bdd(G+) through the endoscopic embedding. Let π+,0 be the generic
representation in Π̄φ+ . From the proof of Lemma 4.1, we have

χφ+(−1)/χπ+,0(−1) = χφ(−1)/χπ0(−1).

Note that we have χφ+(−1) = χπ+,0(−1) from the split case. Therefore, χφ(−1) = χπ0(−1). This
finishes the proof. 2

As a consequence of these results, the results in §§ 6.2 and 6.3 are unconditional. In fact, we
could obtain stronger results, which will be summarized below.

Proposition 6.28. Suppose that [φ] ∈ Φ̄bdd(G) and [π] ∈ Π̄φ. If π̃ is an irreducible smooth

representation of G̃(F ) whose restriction to G(F ) contains π, then, for θ ∈ Σ0 and ω ∈
Hom(G̃(F )/G(F ),C×),

π̃θ ∼= π̃ ⊗ ω ⇐⇒ ω ∈ α(Sθφ).

In particular, X(π̃) = α(Sφ).

Proof. If θ = id, this follows from Proposition 6.13, and we will have X(π̃) = α(Sφ). So, we can
assume that G is special even orthogonal and θ = θ0. Note that the direction ‘⇐’ follows from
Proposition 6.16. For the other direction, we suppose that π̃θ0 ∼= π̃⊗ ω. Then πθ0 ∼= πg for some
g ∈ G̃(F ). If Sθ0φ = ∅, by Theorem 6.26, we can assume that π ∈ Πφ. Then πθ0 ∈ Πθ0

φ , πg ∈ Πφ

and we get a contradiction. So, Sθ0φ 6= ∅ and, by Theorem 6.25, πθ0 ∼= π. Let ω0 ∈ α(Sθ0φ ); we

know that π̃θ0 ∼= π̃ ⊗ ω0. Therefore, π̃ ∼= π̃ ⊗ ωω−1
0 , which means that ωω−1

0 ∈ α(Sφ). Hence,

ω ∈ α(Sθ0φ ). 2

For [φ] ∈ Φ̄bdd(G), let us fix a character χ̃φ of Z
G̃

(F ) such that χ̃φ|ZG(F ) = χφ. We define
˜̄Πφ,χ̃φ to be the subset of Π̄(G̃(F )) with central character χ̃φ, whose restriction to G(F ) is

contained in Π̄φ. Let X = Hom(G̃(F )/Z
G̃

(F )G(F ),C×).

Proposition 6.29. Suppose that [φ] ∈ Φ̄bdd(G) and χ̃φ is chosen as above.

(i) The orbits in Π̄φ under the conjugate action of G̃(F ) all have size |Sφ/Sφ̃|. If F is

nonarchimedean, there are exactly |Sφ̃| orbits.

(ii) There is a natural fibration

X/α(SΣ0
φ ) // ˜̄Πφ,χ̃φ

Res // Π̄φ/G̃(F ).

(iii) There is a unique pairing

[π̃] −→ 〈·, π̃〉φ
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from ˜̄Πφ,χ̃φ/X into Ŝφ̃, satisfying

〈x, π̃〉φ = 〈ι(x), π〉φ,

where ι : Sφ̃ ↪→ Sφ; π is in the restriction of π̃. It sends the generic representation to the trivial

character. Moreover, this map from ˜̄Πφ,χ/X to Ŝφ̃ is injective and, when F is nonarchimedean,

it is in fact a bijection.

Proof. The proof essentially follows from that of Proposition 6.14, and the uniqueness of this
pairing is due to the fact that Sφ is abelian. The last property follows from the same property

of the pairing between Π̄φ and Sφ. 2

Finally, for the conjectural refinement of ˜̄Πφ,χ̃φ , we would like to state it in the following two
theorems.

Theorem 6.30. Suppose that [φ] ∈ Φ̄bdd(G), and χ̃φ is a character of Z
G̃

(F ) whose restriction

to ZG(F ) is χφ. Let χ̃ = χ̃φ|Z̃F . Then there exists a subset Π̄φ̃ of ˜̄Πφ,χ̃φ , unique up to twisting
by X, and it is characterized by the following properties:

(i)
˜̄Πφ,χ̃φ =

⊔
ω∈X/α(SΣ0

φ )

Π̄φ̃ ⊗ ω;

(ii) for f̃ ∈ H̄(G̃, χ̃), the distribution

f̃(φ̃) :=
∑

[π̃]∈Π̄φ̃

f̃
G̃

(π̃)

is stable.

Recall that a θ-twisted endoscopic group H of G for θ ∈ Σ0 takes the form H ∼= Ml×G1×G2.
Let G̃i (i = 1, 2) be the similitude group of Gi with similitude character λi. Suppose that H̃ is
the (θ, ω)-twisted endoscopic group of G̃ lifted from H under Proposition 3.1; then (cf. [Mor11])

H̃ = {(x, g1, g2) ∈Ml × G̃1 × G̃2 : λ1(g1) = λ2(g2)},

where Ml is a product of general linear groups, and λH(x, g1, g2) := λ1(g1). For [φH ] ∈ Φ̄bdd(H),
we can assume that φH = φl × φ1 × φ2, where φl ∈ Φbdd(Ml), [φi] ∈ Φ̄bdd(Gi) (i = 1, 2).
Fix a character χ̃φH of Z

H̃
(F ), which is the restriction of some character χφl ⊗ χ̃φ1 ⊗ χ̃φ2 of

Ml×G̃1×G̃2; then, by Theorem 6.30, we can define Π̄φ̃H
to be the restriction of Πφl⊗Π̄φ̃1

⊗Π̄φ̃2
,

which is unique up to twisting by Hom(H̃(F )/Z
H̃

(F )H(F ),C×).

Theorem 6.31. Suppose that [φ] ∈ Φ̄bdd(G), and χ̃φ is a character of Z
G̃

(F ) whose restriction
to ZG(F ) is χφ. Let χ̃ = χ̃φ|Z̃F . Suppose that θ ∈ Σ0, s is a semisimple element in Sθφ and (H,

φ
H

) → (φ, s). Let x be the image of s in Sθφ, and ω = α(x). Fix a packet Π̄φ̃H
with χ̃φH |ZG̃ = χ̃φχC̃

(cf. § 3.4); then we can choose Π̄φ̃ in Theorem 6.30 such that

f̃ H̃(φ̃
H

) =
∑

[π̃]∈Π̄φ̃

f̃
G̃θ

(π̃, ω), f̃ ∈ H̄(G̃, χ̃), (6.16)
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where Aπ̃(θ, ω) is normalized in a way so that if f ∈ H̄(G,χ) is the restriction of f̃ on G(F ),
then

(f̃ |
Z̃FG(F )

)
G̃θ

(π̃, ω) =
∑
π∈π̃|G

〈x, π+〉φfGθ(π), (6.17)

where π+ is an extension of π to G+(F ) := G(F )× 〈θ〉 with π+(θ) = Aπ(θ).

Remark 6.32. (i) Theorems 6.30 and 6.31 are the main local results in [Xu15]. Their proofs

involve global methods, and the main tool is the stabilization of the twisted Arthur–Selberg

trace formula due to Mœglin and Waldspurger.

(ii) If F is archimedean, both theorems will follow from Theorem 6.25 directly. This is clear

when F = C for G̃(C) = Z
G̃

(C)G(C). When F = R, it is known by results of Harish-Chandra

(cf. [Har75, Theorem 27.1]) that if Π̄φ consists of discrete series representations of G(R), then

X(π̃) = X for any [π̃] ∈ ˜̄Πφ,χ̃φ . So, Π̄φ̃ = ˜̄Πφ,χ̃φ . Moreover, for Z̃R = Z
G̃

(R) and f̃ ∈ H̄(G̃, χ̃φ),

f̃(φ̃) =
1

|X|
∑
ω∈X

∑
[π̃]∈Π̄φ̃

f̃
G̃

(π̃ ⊗ ω) =
1

|X|
∑
ω∈X

(f̃ ⊗ ω)(φ̃) = (f̃ |Z
G̃

(R)G(R))(φ̃) = f(φ),

where f ∈ H̄(G,χφ) is the restriction of f̃ . So, the stability of Π̄φ̃ follows from that of Π̄φ. For

general tempered L-packets, they can be constructed by parabolic induction from the discrete

series L-packets of Levi subgroups of G̃. For (6.16), by a standard descent argument we can

reduce it to the case that H is elliptic (i.e., H = G1 × G2) and Π̄φH consists of discrete series

representations of H(F ). In this case, by Proposition 6.28, one can check that X(π̃) = X for

any [π̃] ∈ ˜̄Πφ,χ̃φ (cf. [Xu15, Proposition 6.9]). Let Z̃R = Z
G̃

(R); then the right-hand side of (6.16)

becomes ∑
π̃∈Π̄φ̃

f̃
G̃θ

(π̃, ω) =
∑
π̃∈Π̄φ̃

(f̃ |Z
G̃

(R)G(R))G̃θ(π̃, ω) =
∑
π∈Π̄φ

〈x, π+〉φfGθ(π).

One can also check that λH(Z
H̃

(R)) = λ(Z
G̃

(R)). As a result, under Z
G̃
↪→ Z

H̃
, we have

Z
H̃

(R)H(R) = Z
G̃

(R)H(R). So, the left-hand side of (6.16) becomes

f̃ H̃(φ̃
H

) = (f̃ H̃ |Z
H̃

(F )H(R))(φ̃H) = (f̃ H̃ |Z
G̃

(R)H(R))(φ̃H) = (f̃ |Z
G̃

(R)G(R))
H̃(φ̃

H
).

By Lemma 3.9, (f̃ |Z
G̃

(R)G(R))
H̃(φ̃

H
) = f̃H(φ̃

H
) = fH(φ

H
). Therefore, (6.16) follows from (6.13)

in this case.
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Appendix A

Let F be a local field of characteristic zero and let G be a quasisplit connected reductive group
over F . In this appendix, we would like to recall Langlands’ construction of

H1(WF , Z(Ĝ)) −→ Hom(G(F ),C×), (A.1)

and we will also show that it is an isomorphism. To define this homomorphism, we first need to
take a z-extension of G

1 // Z // G̃′ // G // 1,

where G′ := G̃′der is simply connected and H1(F,Z) = 1. Let G̃′/G′ = D; we have an exact
sequence

1 // G′ // G̃′
λ′ // D // 1.

Since Ĝ′ is adjoint, D̂ ∼= Z(
̂̃
G′) and hence H1(WF , Z(

̂̃
G′)) ∼= H1(WF , D̂) ∼= Hom(D(F ),C×) by

the local Langlands correspondence for tori. By pulling back quasicharacters of D(F ) to G̃′(F ),
we then get a homomorphism

H1(WF , Z(
̂̃
G′)) → Hom(G̃′(F ),C×). (A.2)

Next, we consider the following ΓF -equivariant exact sequence:

1 // Z(Ĝ) // Z(
̂̃
G′) // Ẑ // 1.

It induces a long exact sequence

π0(ẐΓF ) // H1(WF , Z(Ĝ)) // H1(WF , Z(
̂̃
G′)) // H1(WF , Ẑ).

By Tate–Nakayama duality, we have π0(ẐΓF ) ∼= H1(F,Z)∗ = 1. So, we get an inclusion H1(WF ,

Z(Ĝ)) ↪→ H1(WF , Z(
̂̃
G′)). On the other hand, G̃′(F )/Z(F ) ∼= G(F ), so we also have an inclusion

Hom(G(F ),C×) ↪→ Hom(G̃′(F ),C×). Then (A.1) is defined to satisfy the following commutative
diagram:

1 // H1(WF , Z(Ĝ)) //

(A.1)

��

H1(WF , Z(
̂̃
G′))

(A.2)
��

// H1(WF , Ẑ)

'
��

1 // Hom(G(F ),C×) // Hom(G̃′(F ),C×) // Hom(Z(F ),C×)

To show that (A.1) is an isomorphism, from this diagram it is enough to know that (A.2) is an
isomorphism. Since G′ is semisimple simply connected, Hom(G′(F ),C×) = 1, which implies that
(A.2) is surjective. For the injectivity, we need to show that λ′(G̃′(F )) = D(F ). We choose a
maximal torus T̃ ′ of G̃′ and let T ′ = T̃ ′ ∩G′. The short exact sequence

1 // T ′ // T̃ ′
λ′ // D // 1

induces the following exact sequence:

T̃ ′(F )
λ′ // D(F )

δT ′ // H1(F, T ′).
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By Tate–Nakayama duality, H1(F, T ′) ∼= π0(T̂ ′Γ)∗. Now let T ′ be the Levi component of a Borel
subgroup B′ of G′; we fix a Γ-splitting {B̂′, T̂ ′, {X ′α}} for Ĝ′. Then there is a Γ-equivariant
isomorphism

T̂ ′ //
∏
αC×α ,

t � // (α∨(t)),

where C×α = C×, α∨ are simple coroots of (G′, T ′), and the Γ-action on
∏
αC×α is given by

permutations on the indexing set of simple roots. Clearly, T̂ ′Γ ∼= (
∏
αC×α )Γ is connected, i.e.,

π0(T̂ ′Γ)∗ = 1. This implies that λ′(T̃ ′(F )) = D(F ) and hence λ′(G̃′(F )) = D(F ).
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