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The Poisson process X(t, ω),1} (ωEi?, Oi£t<™), as is well-known, is a
temporally and spatially homogeneous Markoff process satisfying

(1) X(0, ω) = 0 and X(t, ω) = integer^0 for every ωGi?,

(2) Pr{X(t9 ω)^X(tr

9 ω)^k}=±1

{^-~P^e-Mt-t') for t>f,
I 1

where k is a non-negative integer and λ is a positive constant. In this note
we consider the random variable Lm((o) which denotes the length of ^-interval
such that X(t, ω) = m (m = 0,1, 2, . . . ) and some of other properties concern-
ing them.

§ 1. The known results on Lm.
Definition. We define Lm((i>), the function of m and ω, as follows,

Lm((θ) = tm+i((ύ) — tm(ω),

ivhere

tm(ω) = Min {τ\ X(τ, ω) = m}.

This tm(ω) exists almost certainly by the right continuity property of Poisson
process, and furthermore it is clear that tm(ω) is measurable. Thus Lm(ω) be-
comes a non-negative random variable.

THEOREM 1. Z,o, Ll9 . . . ,Lm, . . . are mutually independent random vari-
ables with a common distribution function F(l),
ivhere

-e~u if
(3) - i Λ

otherwise.
Furthermore
(4) E(Lm) = - ί -

λ
(5) V(Lm) = | 2 m = 0,1,2, . . .

This theorem was already suggested by P. Levy [2]S ) and a rigorous proof was

Received March 19, 1953.
1} ω denotes the probability parameter.
2> E(. . .) and V(. . .) denote the mean and the variance respectively.
3> Numbers in brackets refer to the bibliography at the end of this note.
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given by T. Nishida [1]. From this theorem we can easily conclude the follow-

ing corollaries.

COROLLARY 1. The characteristic function ΨL(Z) of Lm, and therefore that

of F, ts j ^ .

COROLLARY 2. The probability Lm^K^h) under the assumption Lm^h is

e~Mi-t0) an(ι jf$ conditionaι expectation is -τ--f/o.

§ 2. The definitions and the behaviours of Mn and mn

Definition. Let Mn be defined by

Mn(ω) = max {Lo(ω), Lι(ω), . . . ,£«.i(ω)}.

Mn(ω) is monotone non-decreasing with respect to n for every ω. The

probability law of M«(ω) is easily obtained as follows:

(6) PriMn<x) (=Pr{Mn£x))

^Pr{Lo<x, Li<x, . . . ,Ln-ι<x)

= Pr{Lo<x}Pr{Lι<x}. . .Pr{Ln-ι<x}

(as Lm is mutually independent)

= (l-e-λx)n.

THEOREM 2. E(Mn) = OOog n).

Proof. We have

E(Mn) = nλCxe~λx(l - e'λx)n'ιdx
Jo

Jo

1 p
~ ~ λ MJo

where ε is arbitrary small such that 1 — e~y~y when Oϋy ύ'e. The second term

is o(log n) when n-* oo, and

-rfv = log *

= O(log n).

Hence we can conclude E(Mn) = 0(log n).

THEOREM 3. λMj log n converges in law to the random variable Y which

takes the value 1 with probability 1.

Proof. We have

(7) Pr{λMj log n<x} = (1-1/nx)n-*\ \ ή

£

10 if
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as n tends to oo.

More precisely we may prove

THEOREM 4. If 0 < a < 1, then

(3) Pr{lim inf λMJcc log n^l) = 1.

In order to prove the theorem above we need the following lemma.

LEMMA. The series

is convergent when 0 < α < l .

Proof of the Lemma. It is sufficient to prove un.'vn-^0 (w-> oo), where

K ^ U - I / W " ) " , vn = l/n2.

Let
f(x)=x\l-l/xa)x.

Then
log /(*) = 2 log * + x log (1 - 1/ΛΓ")

_ (21og*)/*+ logd-l/*")
1/*"

_ 2((l-log*V«*>+α*"- ι/(l-*" ) /„ s

Here

Hence log/(is:) -> — oo and therefore /(#) -*0 when x-* oo. Thus un/vn-*0 when
il-> oo.

Proof of Theorem 4. We have, by (6) and by the Lemma above,

Therefore, by the Borel-Cantelli's Lemma,

where

On the other hand

j log w
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(9) lim inf Ec

n^\ω\ lim inf Mn(ω)/^- log n

This shows that (8) is valid.

Definition. Let mn(o)) be defined by

m»(ω) = Min{Z,0(ω), Li(ω), . . . ,Ln-

nin(cύ) is monotone non-increasing with respect to n for every

The law of mn is calculated in the same way as Mn-

(10) Pr{mn>x) (=
x, Lι>x, . . . ,Ln-ι>x)

and hence

THEOREM 5. If β>l, then

(11)

Proof. We have

in ^ β log n/λ n) = l/rf and Σ w ? < oo.

Thus, by the Borel-Cantellfs Lemma,

Pr{lim sup Fn) = 0,

where

On the other hand

lim sup FnB{ω; lim sup Λ mn(ω)lβ n~ι log /i ̂  1}.

Thus we obtain (11).

§ 3. Asymptoric properties of Z«
Let Zn(ω) be defined by

Zn(co) = (Lo(ω) + Zi(ω) H- . . . -f-L«_i(ω))/Λf«(ω).

Remembering

Pr{Lo = Mn) = P H I * = Mn) = . . . = Pr{Ln-x = ΛΛ.} = l/n,"

we see that Zn has the first and the second (absolute) moments:

<-»-lple-»

(12; h\Zn) = \ dXi n [ \ . . . \ •"•- — x
v o W() •/ o X\.

X l β J β 2 . . . £ " d ! X 2 . . . ί / j C n 1

4> See e.g. D. A. Darling [3].
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*~n-l ple->

(13) E(Zl) =

The characteristic function ψz,,(z) of Zn satisfies

(14) φtΛ(*) = E(e"(Lo + U + . . . + Ln-χ)!Mn)

~nλn\ dxύ\ . . . \ eίZ ' *i~
J 0 \«J(i J o

Xn

\ x
o ^J J

5* .

(as Li, L2, . . . , Irn-i are mutually independent)

ί
Λ / Λi2-λΛΓi -i v n-l

<»>

o V tz — λx I

Jz-\X

(n~2)λneiz[
\ fir Ct / Λ & I

(W-AΛ:)2

v«-3

Jo

0

,/z-λ* i xn-2

o V tZ - >

- 2 { ( f e - ,
A Λiz — λxf

The differentiations in (15) and (16) are possible since Zn has the first and the
second moments.

THEOREM 6. Zn has the first and second absolute moments. And if n is
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sufficiently large, the mean and the standard deviation of Zn are both of order
n! log n.

Proof. The first half of the theorem is proved above. Thus

dz

V ΛX I

Here
<fzn(0) - 1 ,

o

- n(n - 1)4 V ^ d - e'λx)n'2dx - W(Λ - l u Γ β ^ d - e'λx)n'ιdx
J ^

The last term of (19), In = Γw(w - l)^"VλΛr(l-^"λ*)Λ"1rfΛΓ, is of order /ι/log Λ.
Jo

It is proved as follows. We have

Let Λ be sufficiently small such that e " ' ^ l —ί when 0<t<a, and let /ί be
sufficiently large such that log (1 -e"1) ^-e't when t> K. Then

Jo -logd-β-')" Λ " Jo ^TόgT

i r ^ dv=
n log Λ J o 1 — log y/\o% n J

r dv=o^—JL— \
log Λ J o 1 — log y/\o% n J \ n log n r

since

lim \ ±. ,/v _ \ lim ? ^/v = \ β-^//v - i

»*» Jo 1-log.y/iogtt y~)o π->- 1-logv/logw ^ Jo

 y

On the other hand, we have

d ^ _ i
' ~* n\ognnlogn Jo 1-logjy/logw '"nlognii 1-logjy/logw
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i - , l e~ydy = —fi (V : - e'"").
logn

Hence

where 0<l/ - k>g(l-έΓβ) *£Csϋl/- log (1 -έf*) <

Therefore

and thus

/* = O(«/log

This proves

Similarly we have

e

;

_ "ί^.Zlll f VVX*(1 - e- w )"- 2 {ήV u - 2(1 -e-
λ Jo

= O(n/log n) + n(n - Din - 2)/\ e'z λx{l - g"λ*)n"8έ
J o

- 2 w(w - Din -

- nKn - 1

Since

n(n - 1 ) ( Λ - 2);f ^ 3 Λ λ ' ( l - e~/X)n"2dx = 2,

we obtain
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E(Zl) = O(»/log n) + 2 n(n - \?\-(VVd - e'Xx)n'ιdx
λ Jo

-2n(n-

Thus we have

(19) V(Zn)=E(Z%) - (E(Zn))2

= O(n/log n) + ! «L

- 2 n(n -
o

» - 1 ) f f %-
Jo

since, by the Schwarz's inequality,

= rΓχe
nλ Jo

Similarly as in the proof of (18), we obtain

(20) jrtϊLzJίL Γ ^ ( l - e~XxTΛdx = OinVdog n)2).
A Jo Λ

There exists a large number M such that

(21) J . _ ( i _β-*)«-«< e _ ( i -e-**)- 1

whenever Λ:>M. This fact implies that /„ = 2n{n- i Λ Λ"V2λA:(l - e~Xx)"'2dx
Jo

is, when n-* oo, negligible in the formula (19).

Therefore E(Zl) and F(Z«) are of order nV(\ogn)\
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