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The motion of glaciers over their bedrock or drops of fluid along a solid surface can
become unstable when these substrates are lubricated. Previous studies modelled such
systems as coupled gravity currents (GCs), consisting of one fluid that lubricates the flow
of another fluid, and having two propagating fronts. When both fluids are Newtonian and
discharged at constant flux, global similarity solutions were found. However, when the top
fluid is strain-rate softening, experiments have shown that each fluid front evolved with
a different exponent. Here, we explore theoretically and numerically such lubricated GCs
consisting of axisymmetric spreading of a power-law fluid on top of a Newtonian fluid,
where each fluid volume grows in time like tα . We find that the structure imposed by
the non-Newtonian flow precludes general self-similarity, unlike purely Newtonian GCs.
Consequently, we identify outstripping solutions in which the inner fluid front outstrips
the outer fluid front. Despite the absence of a general global similarity solution, we find
similarity solutions in several asymptotic limits. These include the purely Newtonian limit
for any α, the case of α = 5 for a general power-law fluid, asymptotic limits in the viscosity
ratio, and in the vicinity of the fluid fronts. Many of our theoretical predictions are found
to be consistent with recent laboratory experiments. Discrepancies suggest the presence of
hydrofracturing or wall slip near the fronts, and potentially, a progressive significance of
extensional stresses as front outstripping is approached.

Key words: gravity currents, complex fluids, geophysical and geological flows, interfacial flows
(free surface)

† Email address for correspondence: roiy@bgu.ac.il

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited. 949 A40-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:roiy@bgu.ac.il
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.784&domain=pdf
https://doi.org/10.1017/jfm.2022.784


A.A. Gyllenberg and R. Sayag

1. Introduction

Gravity-driven flows of one fluid over another can involve complex interactions between
the two fluids, which can lead to a rich dynamical behaviour. Such flows occur in a
wide range of natural and human-made systems, as in lava flow over less viscous lava
(Balmforth et al. 2000; Griffiths 2000), spreading of the lithosphere over the mid-mantle
boundary (Lister & Kerr 1989; Dauck et al. 2019), ice flow over an ocean (Kivelson
et al. 2000; DeConto & Pollard 2016) and over bedrock consisting of sediments and water
(Fowler 1987; Stokes et al. 2007), flows in permeable rocks (Woods & Mason 2000),
liquid drops deforming over lubricated surfaces (Daniel et al. 2017), and droplets motion
on liquid-infused surfaces (Keiser et al. 2017).

The flow of gravity currents (GCs) in circular geometry has been studied with a range of
boundary conditions. In the absence of a lubricating layer, a common boundary condition
along the base of a sole GC is no-slip. Such GCs of Newtonian fluids that are discharged
at a rate proportional to tα , where t is time and α is a non-negative scalar, admit similarity
solutions in which the front evolves proportionally to t(3α+1)/8 (Huppert 1982). Similar
axisymmetric GCs of power-law fluids having exponent n, where n = 1 represents a
Newtonian fluid and n > 1 represents a strain-rate softening fluid, also admit similarity
solutions in which the front propagation is proportional to t[α(2n+1)+1]/(5n+3) (Sayag &
Worster 2013).

On the other extreme, the presence of a lower fluid layer can significantly reduce friction
at the base of the top fluid, resulting in extensionally dominated GCs. This is the case,
for example, for ice shelves, which deform over the relatively inviscid oceans with weak
friction along their interface. The late-time front evolution of such axisymmetric GCs of
Newtonian fluids is proportional to t and is believed to be stable (Pegler & Worster 2012).
However, when the top fluid is strain-rate softening, an initially axisymmetric front can
become unstable and develop fingering patterns consisting of tongues separated by rifts
(Sayag & Worster 2019).

In the more general case, friction along the base of GCs can vary spatiotemporally, as
their stress field evolves. For example, the interface of an ice sheet with its underlying
bedrock can consist of distributed melt water and sediments (e.g. Vogel et al. 2005).
Subglacial sediments are believed to deform viscoplastically (Iverson, Hooyer & Baker
1998; Tulaczyk, Kamb & Engelhardt 2000; Kamb 2001; Joughin, MacAyeal & Tulaczyk
2004; Schoof 2004), and when saturated with water, the ice basal friction may be
affected significantly by a complex subglacial hydrological network that can evolve in
time (e.g. Nanni et al. 2021). Consequently, subglacial lubrication can collectively impose
non-uniform and time-dependent friction along the ice base, and evolve spatiotemporally
under the stresses imposed by the ice layer (Fowler 1981; Schoof & Hewitt 2013). This
coupled ice–subglacial-water system may become unstable either over hard beds (Walder
1982; Creyts & Schoof 2009) or over sediment beds (Kyrke-Smith & Fowler 2014;
Kasmalkar, Mantelli & Suckale 2019), and may contribute to the formation of complex
flow patterns, such as ice streams and ice surges (Fowler 1987; Fowler & Johnson 1995;
Stokes et al. 2007; Sayag & Tziperman 2009; Kyrke-Smith, Katz & Fowler 2013). Such
lubricated flows with spatiotemporally evolving friction were also modelled as two coupled
GCs of Newtonian fluids spreading axisymmetrically one on top of the other (Kowal
& Worster 2015). The early stage of these flows follows a similarity solution, in which
the fronts of the two fluids evolve like t1/2, as in non-lubricated (no-slip) GCs (Huppert
1982), but they can have a radially non-monotonic thickness. Furthermore, laboratory
experiments were found to be consistent with the similarity solutions after an initial
transient state, but became unstable at a later stage, developing fingering patterns (Kowal
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t/tL = 1 t/tL = 1.13 t/tL = 1.33

t/tL = 1.85 t/tL = 2.64 t/tL = 3.57

Figure 1. Snapshots from a laboratory experiment (Kumar et al. 2021) of a lubricated GC that consists of a
strain-rate softening fluid (yellow) lubricated by a sugar solution (blue, appears green). The marked time at
each snapshot is relative to the discharge initiation time tL of the lubricating fluid.

& Worster 2015). It has been suggested that such instabilities appear when the jump in
hydrostatic pressure gradient across the lubrication front is negative (Kowal & Worster
2019a,b).

Despite the wide range of natural lubricated GCs that involve non-Newtonian fluids,
the radial flow of a non-Newtonian fluid over a lubricated layer of Newtonian fluid has
just recently been explored experimentally (Kumar et al. 2021). Motivated by glacier
flow over lubricated bedrock, the experimental set-up consisted of a GC of a strain-rate
softening fluid (xanthan gum solution) that has a power-law viscous deformation similar
to ice (Glen 1952), and a lubricating GC of a less viscous Newtonian fluid (diluted
sugar solution). The pattern of both fluids in those constant flux (α = 1) experiments
remained axisymmetric throughout the flow (figure 1), in contrast to the fingering patterns
that emerged in the purely Newtonian experiments (Kowal & Worster 2015), as long as
the flux ratio of the lubricating fluid to the non-Newtonian fluid was lower than ∼0.06.
The fronts of the two fluids appeared to have a power-law time evolution with different
exponents. In particular, the front of the top non-Newtonian fluid evolved with the same
exponent (2n + 2)/(5n + 3) as a non-lubricated power-law fluid (Sayag & Worster 2013),
whereas the front of the Newtonian lubricating fluid evolved with an exponent 1/2,
similar to a Newtonian non-lubricated GC (Huppert 1982). Despite the similarity of the
exponents with non-lubricated GCs, the fronts of those lubricated GCs evolved faster due
to larger intercepts. In addition, in contrast with the monotonically declining thickness of
non-lubricated GCs, the thickness of the lubricated, non-Newtonian fluid was found to be
nearly uniform in the lubricated part of the flow, while that of the lubricating fluid was
non-monotonic with localized spikes.

Following up the experimental study of Kumar et al. (2021), here we develop a theory
for lubricated axisymmetric GCs of power-law fluids, and explore its major consequences.
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Figure 2. Diagram illustrating a GC of Newtonian fluid (blue) lubricating a GC of a power-law fluid (yellow).
Exact solutions are singular at the origin, apart from the illustrated constant volume case α = 0.

Specifically, we develop a mathematical model for axisymmetric flow of a viscous GC
of a power-law fluid lubricated by a Newtonian GC, considering a general input flux of
the form tα , and show that in the general case, the flow has no global similarity solution
of the first kind (§ 2). We then describe the numerical solver (§ 3), investigate several
special cases that have similarity solutions (§ 4), and explore the possibility that the inner
lubricating front outstrip the outer front (§ 5). Finally, we investigate the case of constant
flux discharge (§ 6), compare our theoretical predictions with the laboratory experiments
of Kumar et al. (2021) (§ 7), and discuss caveats and implications (§ 8).

2. Mathematical model

Consider a power-law fluid having viscosity μ and density ρ that spreads axisymmetrically
under its own weight over a horizontal rigid surface. Simultaneously, a lubricating film
of Newtonian immiscible fluid of viscosity μ� and density ρ� spreads axisymmetrically
over the substrate and below the power-law fluid (figure 2). Both fluids are discharged at
the origin of a cylindrical coordinate system in which r is the radial coordinate and z is
the vertical coordinate. The upper and lower fluid fronts are denoted by rN(t) and rL(t)
respectively, and the corresponding fluid thicknesses are denoted by H(r, t) − h(r, t) and
h(r, t), respectively, where t is the time variable. Beginning the discharge of the lubricating
fluid at a time delay tL, with respect to the upper fluid, creates two regions in the flow: an
inner, lubricated region (r � rL) in which the power-law fluid flows at a finite velocity
along the interface with the lubricating fluid, and an outer, non-lubricated region (rL <

r � rN) in which the power-law fluid meets the substrate and has zero velocity along it.
We assume that the radial extent of the flow is much greater than its thickness

in both fluid layers, and that the flow is primarily radial. Together with the no-slip
boundary condition along the substrate, this implies that the flow is shear-dominated in the
non-lubricated region and in the lower fluid layer in the lubricated region. We also assume
that the flow in the upper fluid layer in the lubricated region is shear-dominated due to
back pressure applied by the non-lubricated layer downstream, which inhibits the growth
of extensional stresses. We elaborate further on this assumption in § 8. Consequently,
we apply the lubrication approximation in each fluid layer i, with a dominant strain rate
∂ui/∂z, where ui(r, z, t) is the radial velocity component. Therefore, the axisymmetric
Cauchy equations for each fluid layer, simplified for flows of low Reynolds numbers and
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lubrication approximations, are

∂pi

∂r
= ∂

∂z

(
μi

∂ui

∂z

)
, (2.1a)

∂pi

∂z
= −ρig, (2.1b)

1
r

∂(rui)

∂r
+ ∂wi

∂z
= 0, (2.1c)

to leading order, where wi is the vertical velocity component, pi is the pressure field, and
g is the gravitational acceleration. The pressure is determined hydrostatically in (2.1b)
because we assume a large Bond number, implying that the effects of surface tension
are negligible compared to gravity. Since (2.1) satisfy the lubrication approximation, this
model does not describe accurately the problem at early times, before the fluid radial
extent is sufficiently greater than its thickness. We estimate the instant when lubrication
approximation is first satisfied in § 7, where we compare the theoretical predictions with
the experimental data.

The viscosity of the power-law fluid is determined by

μ = k
(

1
2 E : E

)1/2(1/n−1)

, (2.2)

where E is the strain-rate tensor, k is the consistency coefficient, and n is the power-law
exponent, which determines the fluid’s response to stress. Specifically, n = 1 represents a
Newtonian fluid with dynamical viscosity k, with n > 1 a shear-thinning fluid, and n < 1
a shear-thickening fluid. In the lubrication limit, E : E ≈ (∂u/∂z)2 to leading order, so the
viscosity of the power-law fluid simplifies to

μ = k
∣∣∣∣12 ∂u

∂z

∣∣∣∣
1/n−1

. (2.3)

We assume that the total volumes of the power-law fluid and the Newtonian fluid evolve
following a power law in time given by

2π

∫ rN

0
(H − h)r dr = Qtα, (2.4a)

and for t > tL,

2π

∫ rL

0
hr dr = Q� (t − tL)α , (2.4b)

where α is a constant exponent, and Q and Q� are constant coefficients representing, for
instance, the discharge flux of each fluid when α = 1.

2.1. The non-lubricated region
In the non-lubricated region, the power-law fluid meets the substrate, and the lubricating
fluid is absent. Integrating (2.1b), the pressure distribution is

p(z, r, t) = p0 + ρg(H(r, t) − z), (2.5)

where p0 is the ambient pressure over the top free surface of the power-law fluid.
Integration of the radial force balance (2.1a) across the depth of the fluid layer, together
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with no-slip boundary conditions along the substrate and no stress along the free surface

u(z = 0) = 0, μ
∂u
∂z

(z = H) = 0, (2.6a,b)

gives the radial velocity field

u(z, r, t) = 21−n
(ρg

k

)n ∂H
∂r

∣∣∣∣∂H
∂r

∣∣∣∣
n−1 1

1 + n

[
(H − z)n+1 − Hn+1

]
. (2.7)

Similar integration of the continuity equation (2.1c), accounting for a free surface at the
upper boundary z = H(r, t), and assuming no normal flow through the substrate, gives the
Reynolds equation

∂H
∂t

+ 1
r

∂(rq)

∂r
= 0, (2.8)

which should satisfy the boundary conditions

H(r = rN) = 0 and q(r = rN) = 0, (2.9a,b)

where the local flux q is determined using (2.7) to give

q =
∫ H

0
u dz = −21−n

(ρg
k

)n ∂H
∂r

∣∣∣∣∂H
∂r

∣∣∣∣
n−1 1

n + 2
Hn+2. (2.10)

2.2. The lubricated region
As in the non-lubricated region and assuming continuity of pressure at the fluid–fluid
interface z = h, the pressure in the lubricated region is determined hydrostatically by

p(z) = p0 + ρg(H − z), where h � z � H, (2.11a)

p�(z) = p0 + ρg(H − h) + ρ�g(h − z), where 0 � z � h. (2.11b)

The radial force balances simplify to

k
21/n−1

∂

∂z

(
∂u
∂z

∣∣∣∣∂u
∂z

∣∣∣∣
1/n−1

)
= ∂p

∂r
, where h � z � H, (2.12a)

μ�

∂2u�

∂z2 = ∂p�

∂r
, where 0 � z � h, (2.12b)

together with the boundary conditions

u� = 0, where z = 0, (2.13a)

u� = u, k
∣∣∣∣12 ∂u

∂z

∣∣∣∣
1/n−1

∂u
∂z

= μ�

∂u�

∂z
, where z = h, (2.13b)

∂u
∂z

= 0, where z = H, (2.13c)

which represent, respectively, no-slip along the solid substrate, continuous flow velocity
and shear stress at the fluid–fluid interface, and no shear stress along the free surface of
the power-law fluid. Integrating the radial force balance (2.12) across the thickness of each
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fluid layer, and using the boundary conditions (2.13), we get the radial velocity fields in
each fluid layer:

u(z, r, t) = 21−n
(ρg

k

)n 1
1 + n

∂H
∂r

∣∣∣∣∂H
∂r

∣∣∣∣
n−1 [

(H − z)1+n − (H − h)1+n
]

− ρg
μ�

[
∂H
∂r

(
Hh − h2

2

)
+ h2

2
ρ� − ρ

ρ

∂h
∂r

]
, (2.14a)

u�(z, r, t) = −ρg
μ�

[
∂H
∂r

(
Hz − z2

2

)
+ 1

2
ρ� − ρ

ρ

∂h
∂r

(
2hz − z2

)]
. (2.14b)

The Reynolds equations corresponding to each fluid layer have forms similar to those of
the non-lubricated region,

∂h
∂t

+ 1
r

∂(rq�)

∂r
= 0, (2.15a)

∂(H − h)

∂t
+ 1

r
∂(rq)

∂r
= 0, (2.15b)

and should satisfy the boundary conditions

h = 0, q� = 0 at r = rL, (2.16a)

and

q+ = q−, H+ = H− at r = rL, (2.16b)

where (2.16b) signifies flux and height continuity across rL. The local fluxes result from
integrating (2.14) to get

q =
∫ H

h
u dz = −21−n

(ρg
k

)n ∂H
∂r

∣∣∣∣∂H
∂r

∣∣∣∣
n−1 1

n + 2
(H − h)n+2

− (H − h)
hρg
μ�

[
∂H
∂r

(H − h) + h
2

(
∂H
∂r

+ ρ� − ρ

ρ

∂h
∂r

)]
, (2.17a)

q� =
∫ h

0
u� dz = −h2

2
ρg
μ�

[
∂H
∂r

(H − h) + 2h
3

(
∂H
∂r

+ ρ� − ρ

ρ

∂h
∂r

)]
.

(2.17b)

We note that without a lubricant, this set of partial differential equations (PDEs) is reduced
to that of the non-lubricated region, which is consistent with the non-lubricated power-law
GC model (Sayag & Worster 2013), and particularly with the Newtonian non-lubricated
GC when n = 1 (Huppert 1982). In addition, the full PDE set for the Newtonian case
(n = 1) and constant source fluxes (α = 1) is consistent with the model for Newtonian
lubricated GCs (Kowal & Worster 2015).
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2.3. Dimensionless equations
We non-dimensionalize equations (2.4), (2.8)–(2.10) and (2.15)–(2.17) with the following
time, length and height scales:

t ≡ T t̂, (2.18a)

r ≡
((ρg

k

)n
Q2n+1T α(1+2n)+1

)1/(5n+3)

r̂, (2.18b)

(H, h) ≡
((ρg

k

)−2n
Q1+nT α(1+n)−2

)1/(5n+3)

(Ĥ, ĥ), (2.18c)

where hats denote dimensionless quantities. The resulting dimensionless model, dropping
hats, in the non-lubricated region rL � r � rN is

∂H
∂t

+ 1
r

∂(rq)

∂r
= 0, (2.19)

where

q = −N
∂H
∂r

∣∣∣∣∂H
∂r

∣∣∣∣
n−1

Hn+2, N = 21−n

n + 2
, (2.20a,b)

and in the lubricated region 0 � r � rL it is

∂h
∂t

+ 1
r

∂(rq�)

∂r
= 0, (2.21a)

∂(H − h)

∂t
+ 1

r
∂(rq)

∂r
= 0, (2.21b)

where

q = −N
∂H
∂r

∣∣∣∣∂H
∂r

∣∣∣∣
n−1

(H − h)2+n

− M h(H − h)

[
∂H
∂r

(H − h) +
(

∂H
∂r

+ D
∂h
∂r

)
h
2

]
, (2.22a)

q� = −M
h2

2

[
∂H
∂r

(H − h) + 2h
3

(
∂H
∂r

+ D
∂h
∂r

)]
, (2.22b)

and where the boundary conditions are

q = 0, H = 0 at r = rN, (2.23a)

q� = 0, h = 0, q+ = q−, H+ = H− at r = rL, (2.23b)

lim
r→0

(2πrq) = αtα−1, and for t > tL lim
r→0

(2πrq�) = αQ (t − tL)α−1 , (2.23c)

and the total instantaneous volumes of the power-law and Newtonian fluids are

2π

∫ rN

0
(H − h)r dr = tα, (2.24a)

and for t > tL

2π

∫ rL

0
hr dr = (t − tL)α , (2.24b)
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respectively. The resulting dimensionless quantities

Q ≡ Q�

Q
, D ≡ ρ� − ρ

ρ
, n, α,

M ≡ μ

μ�

= ρg
μ�

(
k
ρg

)8n/(5n+3) (T 5−α

Q

)(n−1)/(5n+3)

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.25a–e)

represent respectively the discharge flux ratio, the relative density difference of the
lubricating and power-law fluids, the power-law fluid exponent, the volume growth
exponent, and the dynamic viscosity ratio.

The scale for the non-Newtonian fluid viscosity is based on the leading-order viscosity
(2.3) and the spatial scales in (2.18). Specifically, we evaluate the characteristic scale for
the strain rate ∂u/∂z in (2.3) using (2.7) to get [∂u/∂z] ∝ (ρg/k)nH2n/Rn. Substituting the
scales (2.18b,c) in the strain rate, we find that the characteristic viscosity scale is [μ] ∼
ρg(k/ρg)8n/(5n+3)(T 5−α/Q)(n−1)/(5n+3), which depends on the time scale T . That time
scale, which also enters the viscosity ratio M (see (2.25e)), is scaled out of the equations
in the two special cases n = 1 and α = 5. Therefore, in the late-time limit (t/tL � 1), the
system no longer depends on the time scale tL, and admits a global similarity solution
of the first kind in these two special cases. For any other values of n and α, including
the constant flux case (α = 1), such global similarity solutions do not exist. Nevertheless,
as we show in § 4, we find several additional asymptotic limits in which part of the flow
evolves in a self-similar manner.

In the general case n /= 1 and α /= 5, there are enough relations to determine the time
scale T (see (2.18)) independently of the height and radial scales. Specifically, requiring
that the scales of the two contributions to the flux in the top fluid layer (2.22a) balance
leads to the relation M (T ) = N that can be solved for the time scale T , which upon
substitution in (2.18) leads to independent radial scale R and thickness scale H, given by

T (1−n)(α−5) = Qn−1
(
N

μ�

ρg

)5n+3 (ρg
k

)8n
, (2.26a)

R(1−n)(α−5) = Q2(n−1)

(
N

μ�

ρg

)α+1+2αn (ρg
k

)n(3α+1)

, (2.26b)

H(1−n)(α−5) = Qn−1
(
N

μ�

ρg

)α−2+αn (ρg
k

)2n(α−1)

. (2.26c)

Therefore, in the more general case (n /= 1 and α /= 5), which does not admit global
similarity solution of the first kind, the above may represent the time, radius and thickness
scales. The time scale T can also be set by the lubricating fluid discharge time tL, as we
do when comparing the theoretical predictions to the experimental measurements in § 7.

3. Numerical solutions

We solve the dimensionless model (2.19)–(2.25a–e) numerically explicitly using the
Matlab PDEPE solver, with an open-ended, non-uniform and time-dependent adaptive
spatial mesh, and using the dimensional tL as the time scale T , so that t̂L = 1. We find
that lower spatial resolution can be used in most of the domain if the mesh is spaced
logarithmically, and is denser around the fluid fronts, where the fluid heights drop sharply
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Figure 3. (a) Mesh density and (b) a solution at time t/tL = 100, showing the lubricated fluid (thick) and
the lubricating fluid (thin) for n = 1, α = 1, M = 1, Q = 0.2 and D = 0.1. Front positions (red circles) are
determined where each fluid thickness drops below 10−6. Substrate is not pre-wetted ahead of the intrusion,
and each fluid thickness ahead of its front diminishes rapidly to zero.

and the slopes ∂H/∂r and ∂h/∂r become singular. Therefore, we use a non-uniform spatial
mesh that consists of two Gaussian distributions centred at the fronts rN and rL, and
uniform distributions between the origin and rL, the two fronts, and beyond rN (figure 3).
The instantaneous front positions rN(t) and rL(t) are determined where H(r, t) � 10−6

and h(r, t) � 10−6, respectively. Since the fronts evolve, we divide the simulation time
into a set of intervals, and over each interval, we solve the PDE system and then adapt
the spatial mesh. The mesh adaptation is done by predicting the front positions in the next
time interval using the recent solution and the front evolution equations

ṙN(t) = lim
r→rN

q
H

and ṙL(t) = lim
r→rL

q�

h
. (3.1a,b)

This technique allows us to keep higher mesh density centred at the front positions, where
variations in the fields are larger, and lower density elsewhere, where variations are milder.

We validated our numerical solver using several known asymptotic solutions. In the limit
Q = 0 (no lubricating fluid), our model converges to a GC that propagates under a no-slip
condition along the substrate, which has a similarity solution rN(t) ∝ t[α(2n+1)+1]/(5n+3)

(Huppert 1982; Sayag & Worster 2013). We find that our numerical solutions for the
fluid heights and for the leading front are consistent with those theoretical predictions
(Appendix A). In particular, the discrepancy between the predicted and computed
exponents is less than 5 × 10−3 and can be minimized further with a higher spatial
resolution. In the limit n = 1 and α = 1, our model converges to a purely Newtonian
lubricated GC released at constant flux, which has a similarity solution rL, rN ∝ t1/2

(Kowal & Worster 2015). We find that our numerical solutions are consistent with both
the front and thickness predictions for a wide range of M and Q values (Appendix A).
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4. Similarity solutions

The model described by (2.19)–(2.25) admits similarity solutions in several special cases.
Specifically, global similarity solutions exist when the top fluid is also Newtonian (n = 1),
or when the mass-discharge exponent is α = 5. In addition, part of the flow evolves in
a self-similar manner in the asymptotic limits of the viscosity ratio M . Finally, for any
parameter combination, the solutions in the vicinity of each front evolve in a self-similar
manner.

4.1. The similarity solution for Newtonian fluids (n = 1)
When the top fluid is Newtonian (n = 1), the viscosity ratio M is independent of T ,
and the resulting purely Newtonian coupled flow admits a global similarity solution. This
case, restricted to a constant flux (α = 1), has been explored thoroughly (Kowal & Worster
2015). For the general case of α � 0, the PDE set can be reduced to an ordinary differential
equation set with similarity variable

η = r
t(3α+1)/8

(ρg
k

Q3
)−1/8

, (4.1)

and a solution of the form

(H, h) = t(α−1)/4
(

Q
k
ρg

)1/4

(F, f ) , (4.2a)

where F and f are dimensionless functions of η. Therefore, the fronts of both the lubricated
and lubricating fluids evolve like

(rN, rL) = (ηN, ηL) t(3α+1)/8
(

Q3 ρg
k

)1/8
, (4.2b)

where ηN ≡ η(r = rN) and ηL ≡ η(r = rL) are numerical coefficients of order 1. These
solutions have structure identical to that of the classical solution for Newtonian GCs
(Huppert 1982). Upon substitution, the Reynolds equations (2.8) and (2.15) become, for
the non-lubricated region (ηL � η � ηN),(

α − 1
4

)
F −

(
3α + 1

8

)
ηF′ = 1

3η
(ηF′F3)′, (4.3)

where prime denotes a derivative with respect to η, and for the lubricated region (0 � η �
ηL), (

α − 1
4

)
(F − f ) −

(
3α + 1

8

)
η
(
F′ − f ′)+ 1

η
(ηq)′ = 0, (4.4a)

(
α − 1

4

)
f −

(
3α + 1

8

)
ηf ′ + 1

η
(ηq�)

′ = 0, (4.4b)

where

q = −1
3 F′(F − f )3 − M f (F − f )[F′(F − f ) + 1

2 f (D f ′ + F′)], (4.5a)

q� = −M f 2[ 1
2 F′(F − f ) + 1

3 f (D f ′ + F′)]. (4.5b)
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Figure 4. (a) The numerical solutions for the evolution of the dimensionless fronts for α = 1, 2, 3, 4, 5, n = 1
and for α = 5, n = 1.25 (coloured lines and dashed lines) for Q = 0.2, D = 0.1 and M = 100. Regression
to the late-time solutions (t/tL > 10) to power-law evolution along one decade of time (dash, black) results in
exponents (values in colour) consistent with the global similarity for the n = 1 cases (t(3α+1)/8, (4.2b)) and
with the α = 5 cases (t2, (4.8b)). The inset shows the computed intercepts ηN(	), ηL(�) versus α. (b) The
normalized thicknesses H/t, h/t along the normalized radius r/t2 at selected dimensionless time t/tL when
α = 5 and n = 1. This shows the relatively rapid convergence of the numerical solution to an asymptotic
similarity solution (4.8), where the front positions at the late-time instant t/tL = 97.9 are ηN ≈ 0.621,
ηL ≈ 0.473, correspondingly with the computed values in the inset of (a).

The corresponding boundary conditions (2.23) become

F = 0, q = 0 at η = ηN, (4.6a)

f = 0, q� = 0, F+ = F−, q+ = q− at η = ηL, (4.6b)

lim
η→0

2πηq = α, lim
η→0

2πηq� = αQ, (4.6c)

where the last condition implies convergence to a similarity solution a long time after the
initiation of the fluid discharge, t � tL.

For α = 1, the model converges to that of Kowal & Worster (2015), and the similarity
solutions that we predict for general α are consistent with our full numerical solution
(figures 4 and 5).

4.2. The similarity solution for mass-discharge exponent α = 5
When the top fluid is non-Newtonian, n /= 1, the viscosity ratio M becomes independent
of the time scale T for a discharge exponent α = 5, and the resulting flow also admits a
similarity solution with similarity variable

η = r
t2

[
Q2n+1

(ρg
k

)n]−1/(5n+3)

, (4.7)

and a solution of the form

(H, h) = t

[
Q1+n

(
k
ρg

)2n
]1/(5n+3)

(F, f ), (4.8a)
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Figure 5. The asymptotic solutions in the vicinity of the fronts F(η), f (η) (see (4.18a,b), (4.21)) given by
the non-lubricated GC similarity solutions (blue dotted lines), compared with the full numerical solutions
of lubricated GCs (solid lines) for M = 100, Q = 0.1, D = 1, α = 1 and n = 0.5, 1, 2 at t/tL ≈ 20. The
positions of the fronts predicted by the non-lubricated GC solutions are cyan 
 (ηN ) and cyan ♦ (ηL), but to
have the shapes of the two solutions more clearly compared, we translated the asymptotic solutions so that their
fronts coincide with those of the lubricated GC solution (�, ◦, � markers). Each inset zooms into the region
near the lubricating fluid front marked by a rectangle.

where F and f are dimensionless functions of η. Therefore, the fronts of both the lubricated
and lubricating fluids evolve like

(rN, rL) = (ηN, ηL) t2
[
Q2n+1

(ρg
k

)n]1/(5n+3)

, (4.8b)

where ηN and ηL are numerical coefficients of order 1. Upon substitution, the Reynolds
equations (2.8) and (2.15) become, for the non-lubricated region (ηL � η � ηN)

F − 2F′η = N
1
η
(ηF′ ∣∣F′∣∣n−1 Fn+2)′, (4.9)

and for the lubricated region (0 � η � ηL)

(F − f ) − 2(F′ − f ′)η + 1
η

(ηq)′ = 0, (4.10a)

f − 2f ′η + 1
η

(ηq�)
′ = 0, (4.10b)
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where

q = −N F′ ∣∣F′∣∣n−1
(F − f )n+2 − M f (F − f )

[
F′(F − f ) + 1

2 f (D f ′ + F′)
]
, (4.11a)

q� = −M f 2
[

1
2 F′(F − f ) + 1

3 f (F′ + D f ′)
]
. (4.11b)

The corresponding boundary conditions (2.23) become

F = 0, q = 0 at η = ηN, (4.12a)

f = 0, q� = 0, F+ = F−, q+ = q− at η = ηL, (4.12b)

lim
η→0

2πηq = 5, lim
η→0

2πηq� = 5Q. (4.12c)

Figure 4 shows the numerical solution of the full PDE set for α = 5 for varying
power-law exponent values. We find that the numerical solutions are consistent with
the predicted similarity solution (4.8). This consistency validates further the numerical
simulation for the combination of lubricated GCs with lubricated power-law fluid.

We note that a similarity solution at α = 5 arises also in other GCs with radial
symmetry, but of different settings. We elaborate on this aspect in § 8.

4.3. Similarity solutions for the asymptotic limits in M : the upper fluid solid and
liquid limits

In the general case of α /= 5 and n /= 1, our model does not admit global similarity
solutions of the first kind. However, a similarity solution arises in part of the flow domain
in each of the asymptotic limits of the viscosity ratio, in which the upper fluid layer is either
relatively more viscous (M � 1, the ‘solid’ limit) or relatively less viscous (M  1, the
‘liquid’ limit) compared with the lower fluid layer.

4.3.1. The top layer solid limit, M � 1
The limit M � 1 represents the case where the top fluid is much more viscous than the
lubricating fluid. One motivation to study this limit is the geophysical setting of ice sheets
creeping over less viscous lubricated beds. In this case, the leading-order scaling of the
power-law fluid local flux in the lubricated region (2.22a) is

q ≈ −M h(H − h)

[
∂H
∂r

(H − h) +
(

∂H
∂r

+ D
∂h
∂r

)
h
2

]
, (4.13)

which is identical to the scaling of the Newtonian lubricating fluid flux (2.22b). In such
a case, the three scales H, R and T in the lubricated region cannot be determined
independently despite the fact that the upper fluid is a power-law fluid. Therefore, both
fluids in the lubricated region have a similarity solution in which the dimensionless front
in the lubricated region evolves with an n-independent exponent

rL = ηLt(3α+1)/8, (4.14)

where the intercept ηL may depend on the system dimensionless numbers. The exponent
in (4.14) is consistent with the predictions made for the special cases discussed above.
Specifically, for n = 1 it is (3α + 1)/8 as we predict in (4.2b), and for α = 5 it is 2
independently of n as we predict in (4.8b). This similarity solution does not reveal the
evolution of the fluid front rN in the non-lubricated region, which depends on the fluid
exponent n.
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4.3.2. The top layer ‘liquid’ limit, M  1
The second asymptotic limit, M  1, in which the top fluid is much less viscous than the
underlying fluid, also admits a similarity solution, but of a different subset of the model.
In this case, the leading-order scaling of the power-law fluid local flux in the lubricated
region (2.22a) is

q ≈ −N
∂H
∂r

∣∣∣∣∂H
∂r

∣∣∣∣
n−1

(H − h)2+n, (4.15)

which is identical to the scaling of the power-law fluid in the non-lubricated region
(2.20a,b). Therefore, the evolution of the power-law fluid in the entire domain converges
when h  H to the similarity solution of a non-lubricated power-law GC, in which case
the upper fluid front evolves with an n-dependent exponent

rN = ηN N 1/(5n+3) t(α(2n+1)+1)/(5n+3) (4.16)

(Sayag & Worster 2013), where the intercept ηN may depend on the system dimensionless
numbers. This similarity solution does not hold for the underlying fluid layer since the
local flux of the Newtonian underlying fluid sets a different scaling. Therefore, it does not
predict the evolution of the underlying fluid front rL. For H − h > 1, the coupling between
the upper fluid layer and the lower one grows stronger the more shear-thinning the fluid is
(n → ∞), as the exponent in (4.15) grows like n. Therefore, (4.16) is expected to be less
accurate the more shear-thinning the upper fluid is when H − h > 1, and more accurate
when H − h < 1.

4.4. Asymptotic solutions in the vicinity of the fluid fronts
The thicknesses of the two fluid layers in the vicinity of the fronts also have self-similar
forms in the absence of a global similarity solution. These self-similar forms arise because
the dynamics in the vicinity of both fronts is dominated by the same dynamics that governs
non-lubricated GCs, which are known to have self-similar solutions for any α and n
(Huppert 1982; Sayag & Worster 2013).

The dominance of a non-lubricated GC dynamics is naturally expected in the vicinity
of the front rN , which is the edge of the non-lubricated region in the flow. In this case, we
expect consistency of the fluid thickness with Sayag & Worster (2013), which implies a
similarity solution of the form

r = η t(α(2n+1)+1)/(5n+3), (4.17a)

H = t(α(n+1)−2)/(5n+3) F
(

η

ηN

)
, (4.17b)

for the model described by (2.19) and (2.20a,b). Therefore, the asymptotic solution for the
function F near the front ηN in the similarity space is (Sayag & Worster 2013)

F =
[

Nηn+1
N

(
1 − η

ηN

)n]1/(2n+1)

, N =
(

1
N

α(2n + 1) + 1
5n + 3

)1/n 2n + 1
n

. (4.18a,b)

Near the front rL, the dominance of non-lubricated GC dynamics is also valid, but requires
a more careful supporting argument. Specifically, we assert that the free surface slope
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∂H/∂r is finite at rL, whereas the slope of the lubricating fluid is singular. Therefore,
provided that the density difference is non zero, the leading-order flux q� (2.22b) becomes

q� = −MD

3
h3 ∂h

∂r
. (4.19)

Consequently, the model (2.21a) for the lubricating fluid near rL is decoupled from H, and
describes a modified non-lubricated GC of a Newtonian fluid (Huppert 1982). In this case,
the thickness h has a similarity solution of the form

r = η(t − tL)(3α+1)/8, (4.20a)

h = (t − tL)(α−1)/4 f
(

η

ηL

)
. (4.20b)

Therefore, the asymptotic solution for the function f near the front ηL in the similarity
space is (Huppert 1982)

f =
[

9(3α + 1)

8
η2

L
MD

(
1 − η

ηL

)]1/3

. (4.21)

Plugging the similarity solutions for the power-law fluid (4.17a) and for the Newtonian
fluid (4.20a) into the dimensionless form of the global mass conservation equations (2.24),
we get

2π

∫ ηN

0
(F − f )η dη = 1, (4.22a)

2π

∫ ηL

0
f η dη = Q, (4.22b)

in the late-time limit t/tL � 1, where we note that the time exponents in the first equation
vanish even though the exponents in the non-Newtonian case have n dependence. Plugging
the similarity solutions for F and f and solving, we obtain the closed-form solutions for
the intercepts of the fronts:

ηN =
[

2π

1 + Q

(2n + 1)2

(5n + 2)(3n + 1)
Nn/(2n+1)

]−(2n+1)/(5n+3)

, (4.23a)

ηL =
[

2π

Q

9
28

(
9(3α + 1)

8MD

)1/3
]−3/8

. (4.23b)

The asymptotic solutions (4.18a,b) and (4.21) that we obtain based on the asymptotic
limit in which the two layers are decoupled appear to provide a precise prediction for
the fluid thicknesses of the lubricated GC in the vicinity of the fronts when using the
numerically calculated values for ηL, ηN of the lubricated GC (figure 5). The values for
ηL and ηN in (4.23), based on the non-lubricated GC solution, provide a rough estimate
for those of the lubricated GC. Discrepancies between the two seem to decline the more
shear-thickening (n < 1) and the less lubricated the upper layer (M  1) is (figure 6a).
These discrepancies could be due to differences in the predicted thickness structure near
the fluid fronts. Specifically, the more shear-thinning the fluid, the sharper the fluid
front region, as implied by the thickness structure F ∼ (1 − η/ηN)n/(2n+1) (see (4.18a,b)).
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Figure 6. (a) The coefficients ηN , ηL of the lubricated GC solutions compared with those of the asymptotic
solution near the fronts given by the non-lubricated GC similarity solutions, where Q = 0.2, D = 0.1, α = 1,
10−2 � M � 104, and n = 10, 1, 0.5. The ηN of the asymptotic solutions (solid lines) are independent of M
and diminish with n, whereas those of the lubricated GC (solid markers at corresponding colours) are nearly
equal in the liquid limit (M  1) and grow monotonically with M . The corresponding ηL of the asymptotic
solution (dashed cyan line) are independent of n, unlike those of the lubricated GC solution (hollow markers),
but both grow monotonically with M . Vertical grid lines mark the threshold viscosity ratio Mc based on the
non-lubricated GC solutions. (b) The difference �η ≡ ηN − ηL of the lubricated and non-lubricated values
in (a).

Consequently, the more shear-thinning the fluid, the more the predicted thickness F in
the lubricated region overestimates the numerical solution (compare figures 5a,c), and
by global mass conservation (see (4.22)), the smaller the predicted ηN compared to the
numerical value.

5. Front outstripping

In the absence of global similarity solutions, the fronts propagate at different rates,
implying that under certain conditions, the inner lubricating front rL may outstrip the outer
front rN . We identify two outstripping mechanisms, one driven by the solution intercepts
at early time, and the other by the exponents at late time.

5.1. Intercept outstripping
When the lubricating fluid emerges, t − tL � 0, the growth of its front is dominated by the
intercept ηL, whereas the contribution of the power-law growth (t − tL)βL is relatively
small. Therefore, the outstripping of rN(t) by rL(t) can occur faster the larger ηL is
compared to ηN . The intercept difference �η ≡ ηN − ηL predicted by the asymptotic,
non-lubricated GC solution (4.23) diminishes with M and becomes negative when M
grows beyond a threshold value that we denote by Mc (figure 6b). This implies that across
that threshold in the viscosity ratio, ηL > ηN and the lubricating front can outstrip the
upper fluid front. The threshold viscosity ratio Mc is found by setting �η = 0 and solving
for M , to get

Mc ≡
(

2π

Q

9
28

)3 (9(3α + 1)

8D

)[
1 + Q

2π

(5n + 2)(3n + 1)

(2n + 1)2 N−n/(2n+1)

]8(2n+1)/(5n+3)

.

(5.1)

949 A40-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.784


A.A. Gyllenberg and R. Sayag

Therefore, in the purely Newtonian case, the threshold viscosity ratio is

Mc(n = 1) = 1
D

(
1 + 1

Q

)3

, (5.2)

which is independent of α. In the case of constant flux α = 1, the threshold is

Mc(α = 1) =
(

2π

Q

9
28

)3 9
2D

[
1 + Q

2π

(5n + 2)(3n + 1)

(2n + 1)2 N−n/(2n+1)

]8(2n+1)/(5n+3)

.

(5.3)

This behaviour, which is reasoned based on the asymptotic, non-lubricated GC solution,
is consistent with the trend of the full lubricated GC solution (figure 6b). We note that
we do not explicitly observe an outstripping of the outer front by the inner one since the
simulation involves the constraint rL < rN .

5.2. Exponent outstripping
Another mechanism of outstripping can arise due to the different time exponents of the
two fronts. This difference can be evaluated by the similarity solutions in the vicinity of
the fronts. Specifically, denoting the front exponents by βN ≡ [α(1 + 2n) + 1]/(5n + 3)

(see (4.17a)) and βL ≡ (3α + 1)/8 (see (4.20a)), we have

�β ≡ βL − βN = (5 − α)(n − 1)

8(5n + 3)
. (5.4)

When the flow has a global similarity solution (α = 5 or n = 1), the exponents of the two
fluid fronts are identical, �β = 0, implying that asymptotically in time, the gap between
the two fronts evolves with the same exponent, and the ratio of their positions rL/rN is
constant. When n /= 1 and α /= 5, there is no global similarity solution, implying that
βL /=βN and that the fronts ratio evolves proportionally to t�β . Consequently, the gap
between the fronts closes down in time, and front outstripping occurs when �β > 0, which
is when α < 5 and n > 1, or when α > 5 and n < 1 (figure 7). When Δβ < 0, intercept
outstripping does not occur through exponent outstripping, but can still occur through
intercept outstripping at early time (t/tL � 1) when M > Mc.

6. Solutions for constant flux discharge α = 1

The case of constant flux (α = 1) was explored theoretically in several asymptotic limits,
including the case of no lubrication (Huppert 1982; Sayag & Worster 2013) and the case
where both fluids are Newtonian (Kowal & Worster 2015). These cases are useful to
validate our general solutions in several asymptotic limits and to elucidate the impact of
lubrication when the upper fluid is non-Newtonian.

When the upper fluid is Newtonian (n = 1), the flow is self-similar and can be
classified into four different flow regimes in the M –Q state space (Kowal & Worster
2015), in which the radial distribution of the fluid thickness and the evolution of the
fronts have unique qualitative characteristics (figures 8 and 9). When the upper fluid is
non-Newtonian (n /= 1), no global similarity solution arises for a constant flux discharge
(§ 2.3). Nevertheless, we find numerically that the characteristic distributions of the fluid
thickness in each of the four regimes are preserved qualitatively (figure 9). Moreover, the
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Figure 7. The exponent difference �β as a function of the fluid discharge exponent α and the viscosity
exponent n. Dark lines are the �β = 0 contours, where global similarity solutions exist. When �β > 0 (hot
colours), the lubricating fluid front rL outstrips the non-Newtonian fluid front rN .

thickness of the lubricating fluid in the non-Newtonian case varies very weakly from that
in the purely Newtonian case, and the fronts rL in both cases appear to follow a similar
evolution pattern (figure 9). In contrast, the propagation rate of the front rN varies strongly
with the non-Newtonian properties of the upper fluid, becoming faster than the purely
Newtonian case for shear-thickening fluids, and slower than the purely Newtonian case for
shear-thinning fluids (figure 9). This pattern in all of the four regimes can be rationalized
physically through a dimension-based argument: the radial velocity at constant flux [u] ∼
Q/(2πRH) combined with the thickness scale [H] ∼ (Qμ�/ρg)1/4 (see (2.26c)) implies
that the dominant strain rate [∂u/∂z] ∼ Q/(2πRH2) ∼ (ρgQ/μ�)

1/2/(2πR) declines
radially. Consequently, a shear-thinning fluid (n > 1) becomes increasingly more viscous
with radius than a shear-thickening fluid, leading to its relatively slower propagation.

The slower front speed of a shear-thinning fluid compared to a Newtonian fluid implies
that outstripping by the front of the Newtonian lubricating fluid may occur after some
time (§ 5). We investigate this more carefully by considering the evolution of the two
fronts within a range of viscosity ratios 10−2 � M � 104, a range of fluid exponent n =
10, 1, 0.5, and for fixed flux ratio Q = 0.2, density ratio D = 0.1, and α = 1. Even though
no global similarity solution of the first kind exists when n /= 1, we find that each front has
a power-law evolution in time of the form

rN(t) ≈ cNtβN , rL(t) ≈ cL(t − 1)βL . (6.1a,b)

We compute the intercepts cN, cL and the exponents βN, βL through regression to the
numerical solution (figures 10, 11 and 12). In the upper fluid ‘liquid’ limit, M  1, we
find that the numerical solution for the front of the upper fluid evolves consistently with
(4.16), in which βN = (2 + 2n)/(5n + 3) and cN = ηNN 1/(5n+3). For example, when
M = 0.01, the computed exponents βN for n = 0.5, 1, 10 differ from the corresponding
theoretical values 6/11, 1/2, 22/53 by less than 2 % (figures 10a, 11a). The larger
discrepancy among those is for the shear-thinning fluid, which is expected due to the
stronger coupling in this case between the upper and the lower fluid layers, as mentioned in
§ 4.3.2. The corresponding intercept cN differs by less than 5 % from the theoretical values
(figure 11d). The exponent βL is ≈1/2 for n = 1, larger than 1/2 for a shear-thinning
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Figure 8. The M –Q state map for α = 1, n = 1 and D = 1 is divided into four characteristic flow regimes,
I–IV. The dashed curves mark the critical viscosity ratios Mc(Q, n) from (5.3), beyond which we expect the
front of the lubricating fluid to outstrip the front of the top fluid. The characteristic solution of the M –Q states
marked by diamonds are shown in figure 9.
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Figure 9. Characteristic solutions of each of the four states in the different regimes marked by diamonds in
figure 8 for a range of power-law exponents (yellow n = 2, black n = 1, and red n = 0.5), at constant flux (α =
1), showing the position of the free surface of the lubricated power-law fluid (solid lines), and the lubricating
Newtonian fluid (dashed lines), at constant dimensionless time t = 20, and D = 1.
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Figure 10. The non-dimensional front positions rN (thick solid lines) and rL (thin solid lines) for power-law
fluid exponents, n = 10, 1, 0.5, and for α = 1, Q = 0.2 and D = 0.1. (a) Here, M = 0.01. Shown for
reference are the theoretical prediction for rN(t) (4.16) in the M  1 limit (green dashed), and the prediction
for the purely Newtonian solution (blue dashed). (b) Here, M = 104 > Mc(n). Shown for reference are curves
with exponent 1/2 (blue dashed), corresponding to the purely Newtonian solution. The exponents of each
front are βN = 0.4962 ± 0.0006, 0.5 ± 0.001, 0.523 ± 0.003 and βL = 0.4984 ± 0.0001, 0.4998 ± 0.0003,
0.526 ± 0.002 for n = 10, 1, 0.5, respectively.

fluid (by 10 % for n = 10), and smaller than 1/2 for shear-thickening fluid (by 1.2 %
for n = 1/2) (figures 10b, 11b). The corresponding intercept cL has small variation with
n, being in the range 0.17 � cL � 0.21, which is much smaller than the intercept in
Newtonian non-lubricated GCs, ηL(1/3)1/8 ≈ 0.62 (figure 11e).

In the upper fluid ‘solid’ limit, M � 1, we find that the front of the lubricating fluid
evolves consistently with (4.14), in which βL → 1/2 is n-independent, and the solution for
βN also tends to 1/2 (figures 10b, 11a,b). We note again that when M > Mc, the results
of the simulation are questionable, as theoretically we expect front outstripping, which
our simulation is not built to resolve. For intermediate M values we find that the front
exponent βN varies weakly with M initially (M � 10), remaining close to the M  1
asymptotic values (figure 11a), and the intercept cN grows with M and varies weakly
with n (figure 11d). The exponent of the lubricating front βL grows with M over 1/2 for
shear-thickening fluids and less than 1/2 for shear-thinning fluids (figure 11b), whereas
the intercept cL grows monotonically with M for all n values while varying very weakly
with n (figure 11e).

Throughout the range 10−2 � M � 104, we find that �β < 0 for shear-thickening
fluids, �β > 0 for shear-thinning fluids, and �β = 0 ± 0.0008 for Newtonian fluids
(figure 11c), consistently with our predictions using the similarity solutions near the front
(§ 5.2). This implies that in the long-time limit, the front rL outstrips rN when the upper
fluid is shear-thinning, independently of M , while no exponent outstripping is expected
when the upper fluid is shear-thickening. Simultaneously, the intercept difference cN − cL

is positive throughout the range of M but approaches zero in the vicinity of M = 103 ≈
Mc(n) (figure 11f ). This may reflect the approach to an intercept-driven outstripping
(cN − cL < 0) across the critical viscosity ratio M > Mc(n). The classification of the
α = 1 simulations to the two outstripping mechanisms is presented in figure 12.
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Figure 11. The fitted exponents and intercepts to numerical solutions of the fronts rN , rL for varying M ,
n = 10, 1, 0.5, α = 1, Q = 0.2 and D = 0.1. Vertical grid lines (dotted) mark the intercept-driven outstripping
threshold Mc(n). (a) The exponent βN , with the predicted asymptotic (M  1) exponents (2n + 2)/(5n + 3)

(see (4.16); horizontal gridlines) corresponding by colour to the specific n. (b) The exponent βL, with the
predicted exponent for n = 1 (horizontal gridline; Kowal & Worster 2015). (c) The exponent difference βN −
βL, with horizontal gridlines representing the threshold for outstripping. (d) The intercept cN , with the predicted
asymptotic (M  1) intercepts (horizontal gridlines) ηNN 1/(5n+3) (see (4.16)) corresponding by colour to
the specific n values. (e) The intercept cL, with the asymptotic intercept of a Newtonian non-lubricated GC
(horizontal gridline) ηL(1/3)1/8 (Huppert 1982). (f ) The intercept difference cN − cL, with the threshold for
intercept outstripping (horizontal gridlines). Vertical gridlines (grey) in (d–f ) mark the regime thresholds (see
figure 8).

7. Comparison with experimental evidence for α = 1 and n > 1

The theory that we have developed can be validated with the recent laboratory experiments
of lubricated GCs (Kumar et al. 2021). The experiments consisted of a strain-rate softening
fluid (xanthan gum solution, n > 1) that was lubricated by a denser Newtonian fluid
(sugar solution). Both fluids were released at constant flux (α = 1) over a glass plane,
which had surface conditions very close to no-slip, as validated through non-lubricated
GC experiments and theory (Sayag & Worster 2013; Kumar et al. 2021).

The results obtained from fifteen lubricated GC experiments (table 1) that lasted over
10 tL in some cases, and with flux ratio Q � 0.06, have shown that both fronts were highly
axisymmetric, implying that compliance with our assumptions of axisymmetric flow
should be valid. As we noted earlier, our theory has utilized the lubrication approximation,
implying that it is valid as long as the thickness-to-radius aspect ratio is sufficiently
small. We can estimate the instant when the flows satisfy the lubrication approximation
by requiring the ratio r/h � 10 for each fluid. We assume that the instantaneous fluid
volume in each layer is distributed in a disc of radius ri, where i represents the upper or
lower fluid, of thickness hi = Qitα/πr2

i . This implies that the lubrication approximation is
valid as soon as rN(t)3/t � 10Q/π for the top fluid and rL(t)3/(t − tL) � 10Q�/π for the
lubricating fluid, where rN, rL were measured experimentally.
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Figure 12. The M –n state map for α = 1, Q = 0.2 and D = 0.1, showing the numerical simulations
presented in figure 11 (markers). The region in cyan bounded by the curve Mc(n) is where intercept outstripping
occurs. The region in grey bounded by n = 1 is where exponent outstripping occurs.

Experiment Q M c (%/w)

1 0.0574 7661 1
2 0.0283 6936 1
3 0.04697 6006 1
4 0.0223 4671 2
5 0.0218 42 717 2
6 0.0222 5023 2
7 0.0222 23 639 2
8 0.0223 10 412 2
9 0.022 17 036 2
10 0.022 17 323 2
11 0.0333 24 661 2
12 0.03 23 017 2
13 0.0217 41 528 2
14 0.0218 43 483 2
15 0.0541 24 343 2

Table 1. The lubricated GC experiments (Kumar et al. 2021, table 1c) were performed at constant flux (α = 1),
with power-law fluids having two different polymer concentrations (third column), corresponding to one fluid
(c = 1 %) with exponent n = 6.14 and reduced density ratio D = 0.156, and a second fluid (c = 2 %) with
exponent n = 7.14 and reduced density ratio D = 0.152.

7.1. Propagation of the fronts
Experimentally, it was found that the two fronts evolved faster than those of non-lubricated
GCs of the corresponding fluids. Nevertheless, each front had a power-law time evolution
with a similar exponent as non-lubricated GCs of the corresponding fluids. In particular,
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Figure 13. Comparison of the theoretical predictions of the fronts rN evolution (coloured lines) with the
experimental measurements (markers) (Kumar et al. 2021, and table 1). (a,c) Comparison with the 1 % polymer
concentration (experiments 1–3) in logarithmic and linear scales, respectively. In (a), the fronts are normalized
with the similarity solution of non-lubricated GCs of power-law fluids (Sayag & Worster 2013), and the front
solution of such a current is shown for reference (grey dashed line). (b,d) Same as (a,c) but for experiments
4–15 of the 2 % polymer concentration. Inset in (b) zooms into the late-time regime (unscaled values) to present
more clearly the experimental versus numerical results.

the front rN evolved with exponent (2n + 2)/(5n + 3) ≈ 0.42 before the lubrication fluid
was introduced (t � tL), and then with a larger exponent approximately 0.46 ± 0.02. At
t � 5tL, the exponents appeared to diminish and recover the early-time value. At the same
time, the front rL evolved consistently with exponent 1/2 (Kumar et al. 2021).

To compare our theoretical predictions to the experimental measurements, we compute
numerical solutions to each of the 15 experiments described in Kumar et al. (2021) based
on the measured quantities Q, M (T ), D and n (table 1), where the time scale T was set
as tL and without fitting any parameter (figures 13 and 14). The viscosity ratio in each of
these experiments was in the range 1  M < Mc, implying that the experiments were all
in the exponent outstripping regime (§ 5.2), as well as in the solid-limit regime (§ 4.3.1),
which predicts lubrication-front evolution like rL ∝ t1/2.

Comparing the time exponents, we find that the numerical solutions and the theoretical
predictions are consistent to leading order with those measured experimentally for both
rN (figures 13a,b) and rL (figures 14a,b). Specifically, during t � tL, the solutions to the
front rN evolve with the non-lubricated GC exponent (2n + 2)/(5n + 3) ≈ 0.42. After
the initiation of lubrication during t � tL, solutions to the front rN evolve with a larger
exponent, consistent with the experimental measurement (figures 13a,b). Such larger
exponents than the non-lubricated GC value are consistent with our earlier result in
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Figure 14. Comparison of the theoretical predictions of the fronts rL evolution (coloured lines) with the
experimental measurements (markers) (Kumar et al. 2021, and table 1). (a,c) Comparison with the 1 % polymer
concentration (experiments 1–3) in logarithmic and linear scales, respectively. In (a), the fronts are normalized
with the similarity solution of a Newtonian lubricated GC (Kowal & Worster 2015), and the front solution of
such a current is shown for reference (grey dashed line), with fitted coefficient 0.27. (b,d) Same as (a,b), but
for experiments 4–15 of the 2 % polymer concentration.

figure 11(a) for M values close to Mc. These higher exponents persist also at t � 5tL
and do not appear to diminish as argued for some of the experimental measurements
(figure 13b, inset). We believe that the experimental measurements do not extend long
enough to confidently determine inconsistency between the numerical calculation and
the experiments during the late-time evolution. The solutions to the front rL evolve
with exponent 1/2, consistently with the experimental measurements (figures 14a,b).
In spite of this consistency, the experimental fronts advance faster than the predicted
ones (figures 13c,d and 14c,d), which implies that the intercepts that were predicted
numerically are lower than those that were measured experimentally. This discrepancy is
larger in experiments with higher polymer concentration (figures 13d and 14d). Therefore,
additional physical processes that contribute to a faster front propagation are not accounted
for by our theoretical model. We elaborate on potential important mechanisms in § 8.

7.2. Thickness evolution
The raw thickness signal of the non-Newtonian fluid that was measured experimentally
from light transmitted through the fluid layers (Kumar et al. 2021) was biased and
noisy, partially due to white noise that originated in the light detector along the entire
measurement domain. We accounted for this by offsetting the signal by the average value
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Figure 15. Comparison of the numerical solution of the top fluid thicknesses (magenta solid line) with the
experimental measurements (experiment 1 in Kumar et al. (2021) and table 1, orange solid line), at four different
instants ranging from the non-lubricated phase (a) through the lubricated phase (b–d). The experimental data
were translated so that the front rN matches with the numerical value in order to focus the comparison of the
GC shapes. The corresponding thickness solutions of non-lubricated GCs of power-law fluid (Sayag & Worster
2013) are shown for reference (blue solid line). Also shown are the corresponding numerical solutions for the
lubrication layer (cyan solid line), and the average thickness measured in the experiment, h� ≈ 0.43 (pale blue
dashed line). Vertical grid lines mark the average instantaneous positions of the experimentally measured fronts
rN (orange) and rL (green).

of the noise at the fluid-free region r > rN (figure 15). Another source of signal noise in
the lubricated domain (r < rL) represents thickness variations in the non-Newtonian fluid
due to roughness of the fluid–fluid interface. This rough structure is also evident in the
lubricating fluid colour variations throughout the lubrication fluid domain (figure 1), which
may have resulted from an interfacial instability along the fluid–fluid interface (Kumar
et al. 2021). The noise at the free surface had a small amplitude compared with the
thickness of the top fluid layer, which turned out nearly uniform in the lubricated
region. The layer of the lubricating fluid was also largely uniform with localized spikes,
and its average thickness was approximated through mass conservation to be h� =
Q�(t − tL)/ρ�πr2

L ≈ 0.43 mm (Kumar et al. 2021). These nearly uniform patterns differ
substantially from the monotonically diminishing thickness of non-lubricated GCs under
similar conditions.

To compare the thickness distribution and particularly the shape of the fronts, we
remove the difference in the front positions that was discussed separately in § 7.1, by
horizontal translation of the experimental signal so that its front rN(t) coincides with that
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computed numerically. Consequently, we find that the thickness distribution predicted by
our numerical solutions, which do not involve any fitting parameter, are highly consistent
with the experimental measurements along a wide range of instants (figure 15).

8. Discussion

The lubricated GCs that we consider involve five dimensionless parameters, Q, D , M , n
and α, associated with significant qualitative transitions in the structure of the solution, in
the relative motion of the fluid fronts and their stability, and in the thickness distribution
of the two fluids.

The fluid exponent n and the discharge exponent α have a dramatic qualitative impact
on the solutions. Specifically, similarity solutions exist only when n = 1, in which both
fluids follow a similar constitutive law, and when α = 5. In those cases, the two fronts
evolve with the same power law in time, and as a result, the ratio rN/rL is constant. In all
other cases (n /= 1, α /= 5) the fronts also appear to follow a power-law evolution, but each
with a different exponent, implying that asymptotically in time, the ratio rN/rL evolves
following a power law in time with exponent �β from (5.4). Therefore, there are solutions
where rN/rL declines in time resulting in the lubrication front outstripping the front of the
upper fluid (n > 1 and α < 5, and n < 1 and α > 5), and otherwise rN/rL grows in time
(figure 7).

The flux ratio Q can lead to the emergence of two significantly different patterns, and
may have a critical impact on the front stability. When Q < 1, the flux of the lubricating
fluid is lower than the top fluid layer. Consequently, the thickness of the lubricating layer is
significantly smaller, and the propagation of the front rL is affected by the relatively larger
pressure imposed by the thicker top layer (figures 9c and 15). The opposite occurs when
Q > 1 – the lubricating fluid is discharged at a larger flux, and its thickness is significantly
larger than the top fluid layer (figure 9b). Moreover, Q may have a crucial impact on
the stability of the axisymmetric fronts. Preliminary experimental evidence indicates that
when the flux is constant (α = 1), the top fluid layer is strain-rate softening (n = 6) and
M � 1, the initially axisymmetric fronts become unstable when Q � 0.1 and develop
fingering patterns after an initial axisymmetric spreading (Kumar et al. 2021). Similar
symmetry breaking has also been observed in the purely Newtonian case for 0.14 � Q �
0.44 (Kowal & Worster 2015).

The viscosity ratio M affects the relative motion of the fronts, and the relative thickness
of the fluid layers. At a high viscosity ratio (M � 1), the more viscous top fluid is
effectively solid-like compared with the less viscous lower fluid. Consequently, the flow
in the lubricated region is independent of the fluid exponent n, and both fluid layers in
that region follow the same similarity solution, in which the front of the lubrication fluid
rL evolves with a time exponent (3α + 1)/8, the same as a Newtonian non-lubricated
GC (4.14). In the low viscosity ratio (M  1), the top fluid is significantly more
mobile than the lower fluid layer, which does not provide an effective lubrication. In
this case, the two fluid layers in the lubricated region do not exhibit a global similarity
solution, but the top fluid layer along the whole domain does. Consequently, a self-similar
solution exist in the top fluid layer, in which the front rN evolves with a time exponent
[α(2n + 1) + 1]/(5n + 3), the same as a non-lubricated GC (see (4.16)). The impact of the
viscosity ratio on the fluid thickness distributions can be appreciated through the constant
flux case (α = 1), in which the free surface of the top fluid is substantially flatter in the
M � 1 case than in the M � 1 case (figure 9).
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Independently of the values of the dimensionless parameters, the solutions in the
vicinity of the fronts are also self-similar, with exponents consistent with those of
non-lubricated GCs of power-law fluids (Huppert 1982; Sayag & Worster 2013).
In particular, both fronts evolve with an exponent [α(2n + 1) + 1]/(5n + 3), which
simplifies to (3α + 1)/8 for the Newtonian lubricating fluid. The intercepts of the front
solutions depend on the different dimensionless numbers of the system. Together, the
exponents and the intercepts provide insights into the interaction between the two fronts.
One important consequence of that interaction is the outstripping of the upper fluid front
by the lower lubricating fluid front, which can occur either through the intercept difference
�η or through the exponent difference �β. The condition for an intercept outstripping
can be formalized in terms of the critical viscosity ratio Mc(Q,D, α, n) (see (5.2)),
so that outstripping occurs when M > Mc. Physically, this implies that when Q  1,
Mc ∝ 1/Q3 � 1 and the top fluid should be significantly more viscous than the lower
fluid for outstripping to occur, in which case the top fluid deforms substantially slower
making it easier for the lubricating fluid front to outstrip. Alternatively, when Q � 1,
for shear-thinning fluids Mc(n → ∞) ∝ Q1/5 � 1, whereas for shear-thickening fluids
Mc(n → 0) ∝ 1/Q1/3  1. When M < Mc, Δη > 0 and outstripping can be driven
only by the exponents’ difference. As discussed above, the condition for that mechanism
depends on the values of n and α (figure 7). For example, shear-thinning fluids at relatively
low discharge exponent (α < 5) become increasingly more viscous as they expand radially,
resulting in slower front velocity than the lubricating fluid front. Moreover, their thickness,
and correspondingly the pressure they apply on the lubricating fluid, is relatively larger
and contributes further to the radial spreading of the lubricating fluid. We find that
the intercept-driven outstripping can occur significantly faster and relatively closer to tL
than the exponent-driven outstripping. For example, as in the constant flux (α = 1) case,
intercept-driven outstripping occurs at roughly t/tL � 10, which is much faster than the
t/tL � 103 in the exponent-driven case (figure 10).

It is important to note that the global similarity solution that we find for a discharge
exponent α = 5 arises in additional axisymmetric GCs of different settings, which a
priori appear remotely related. This includes, for example, isothermal lava domes that
are modelled as axisymmetric GCs of viscoplastic fluids (Balmforth et al. 2000). The
structure of the similarity solution in that case is identical to the lubricating GCs that we
consider, in which the front evolves like r ∝ t2, and the fluid thickness evolves like h ∝ t,
independently of the fluid exponent n. Another system with a similarity solution at α = 5
is the axisymmetric viscous GCs flowing over a porous medium (Spannuth et al. 2009).
Such a similarity among a broad range of physical systems may not be coincidental and
could imply a more general symmetry associated with the circular geometry.

Many aspects of the theory were found consistent with experiments performed for
the dimensionless parameters D ≈ 0.15, Q < 0.06, 1  M < Mc, α = 1 and n > 1
(Kumar et al. 2021). In particular, the time evolution of both fluid fronts predicted
by the theory is generally consistent with the power law measured in the experiments.
The late-time exponents of rN in some experiments appear to decline slightly compared
to the numerical prediction, though it may be that the experimental data have not
fully converged to a late-time solution. In addition, the thickness distribution that we
predict for the top fluid layer is in good agreement with the experimental measurements.
However, some discrepancies that arise may imply that the theory is not entirely complete.
Specifically, the theoretical predictions for the intercepts do not accurately capture the
measured ones, particularly in the case of the lubricating front, which evolves faster
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than the theoretical predictions. Several potential physical mechanisms that the present
theory does not account for may explain these discrepancies. One possible mechanism
is that the lubrication front rL advances as a hydrofracture in between the substrate
and the relatively solid viscous fluid layer (Ball & Neufeld 2018), or as a shock in the
fluid–fluid interface at rL (Dauck et al. 2019). In addition, the non-uniform colouring
of the lower fluid layer (figure 1), which indicates that the thickness of the lower fluid
layer is non-monotonic, may reflect a yield stress property of the top fluid layer or an
instability of the fluid–fluid interface (Kumar et al. 2021). Furthermore, discrepancy
between the experimental measurements of rN before introducing the lubrication fluid
(t/tL < 1) and the theoretical prediction of a non-lubricated GC, particularly for the 2 %
polymer concentration (Kumar et al. 2021), may imply that the power-law constitutive
equation that we use is incomplete. Specifically, the time for the viscosity to adjust to
the evolving strain rates may be not instantaneous as we assume, but finite. In addition,
polymer entanglements may arise in higher polymer concentrations that potentially
drive wall slip at the fluid–solid interface through adhesive failure of the polymer
chains at the solid surface or through cohesive failure owing to disentanglement of
chains in the bulk from chains adsorbed at the wall (Brochard & De Gennes 1992).
The implications of these potential physical mechanisms will be addressed in future
studies.

The validity of our assumption that the flow is shear-dominated depends on both the
thickness-to-length aspect ratio ε ≡ H/R and the boundary conditions at each fluid layer.
Under the lubrication assumption ε  1, radial forces due to extensional stresses are
order ε2 smaller than those due to shear stresses. This is certainly the case for the fluid
in the non-lubricated region and for the lubricating fluid in the lubricated region, where
the no-slip conditions along the substrate lead to shear-dominated flows. In comparison,
the upper fluid layer in the lubricated region experiences less traction along its base due
to the lubricating layer beneath, which may imply that extensional stresses can become
dominant. Evaluating the extensional radial force in the top layer using our solutions, we
find that upstream from the lubricating front, it is indeed much smaller than the radial
force due to shear stress. This balance is maintained by a significant back pressure from
the non-lubricated region downstream that is dominated by shear (see also Kowal &
Worster 2015). The extensional force becomes significant near the singular fluid fronts,
where the lubrication approximation does not hold. The flow in the vicinity of the fronts
is not parallel to leading order and should, in principle, be modelled as full Stokes
flow (Huppert 1982). Nevertheless, independently of the flow details near the fronts, the
impact of the fronts on the main flow is not substantial due to the low Reynolds and
high Bond numbers (Huppert 1982). This argument is also supported by the consistency
that we demonstrate between the predicted shape of the main flow with the experimental
measurements (figure 15). Consequently, we believe that for the flow configuration
that we consider, the lubrication approximation consistently captures the leading-order
dynamics.

Front outstripping may have significant implications on the dominant dynamics, since
the elimination of the non-lubricated outer region when rN < rL could lead to the
dominance of extensional forces, particularly when M � 1 (e.g. Fowler & Larson 1978;
Bueler & Brown 2009; Mantelli, Haseloff & Schoof 2019). Our present exploration of
the route to outstripping always considers the presence of a downstream non-lubricating
layer, which keeps our assumption of dominating shear stresses consistent. Exploring
the aftermath of outstripping would require extending the present model to account for
extensional stresses.
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9. Conclusions

Lubricated gravity currents (GCs) are controlled by complex interactions between two
fluid layers. The lower, lubricating layer modifies the friction between the substrate and the
top layer, which in turn applies stresses that affect the distribution of the lubricating layer.
The resulting flow can vary dramatically from other axisymmetric GCs. Specifically, we
find that the structure imposed by the upper, non-Newtonian flow precludes self-similarity
in general, in contrast with purely Newtonian GCs of a single fluid layer (Huppert 1982)
or two coupled layers (Kowal & Worster 2015), and with GCs of shear-thinning power-law
fluids (Sayag & Worster 2013).

In spite of the absence of a general global similarity solution, we find a number
of asymptotic limits in which similarity solutions do exist. These include the purely
Newtonian limit for any mass discharge exponent α, and the case of α = 5 for a general
power-law fluid. We also find several situations that admit similarity solutions in part of
the domain. These include the asymptotic limits of the viscosity ratio, corresponding to
the top layer ‘solid’ (M � 1) and ‘liquid’ (M  1) limits, and the solution in the vicinity
of the fluid fronts.

Among the important consequences of the absence of global similarity is the potential
for front outstripping, in which the lubricating fluid front outstrips the outer fluid front.
Outstripping can emerge through two mechanisms. Exponent outstripping occurs when
(α − 5)(n − 1) > 0, which arises due to the difference in the exponents that determine
the late-time evolution of the fluid fronts. This implies front outstripping for either
shear-thinning or shear-thickening top fluids, depending on the discharge exponent α.
Intercept outstripping emerges above a critical viscosity ratio Mc(Q,D, α, n), regardless
of the fronts’ time-evolution exponents. In particular, such outstripping can emerge also
in a regime of global self-similarity, such as when n = 1 or α = 5.

In the canonical case of constant flux (α = 1), our solutions are found consistent with
laboratory experiments (Kumar et al. 2021) in predicting both the time exponents of the
front evolution and the thickness fields. Discrepancies in the front intercepts, particularly
that of the lubricating fluid front, suggest that additional physical mechanisms may
contribute to the front evolution, such as hydrofracturing or wall-slip along the substrate,
and potentially extensional stresses in the top layer that may become significant at the
approach to front outstripping. Exploration of these mechanisms will be the topic of future
studies.

As far as we know, axisymmetric patterns of lubricated GCs have not been observed in
natural settings, such as ice sheets. Nevertheless, experimental evidence suggest that such
patterns can exist in some regime of parameters (Kumar et al. 2021). Therefore, supported
by this evidence, our analysis may point to the potential existence of axisymmetric patterns
in the natural setting. We note that the same experimental set-up also shows evidence for
non-axisymmetric patterns under some conditions, which may be more common in the
natural setting, such as ice sheets, in the form of ice streams and surges. We intend to
explore those in future studies.
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Figure 16. Validation of the lubricated GC numerical solution with the theoretical prediction of non-lubricated
GC of power-law fluids (Q = 0, α = 1; Sayag & Worster 2013). Fluid height for n = 5 at non-dimensional
times t = 1, 4, 7, 10 in (a) the regular thickness–radius space, and (b) the thickness–radius space normalized
by the theoretical prediction. (c) Fluid height for n = 5, 1 and 0.8, at non-dimensional time t = 3. (d) The front
rN(t) (solid), and the theoretical prediction for n = 5, 1 and 0.8 (dashed). The inset shows regression results
to the slope (exponent) of the numerical solution for n = 1 as a function of spatial resolution in the range
200–2400 points in logarithmic spaced mesh. Error bars represent the root-mean-square deviation of the fitted
curve to the fronts.

Appendix A. Validation of the numerical code

A.1. Non-lubricated gravity currents
The model that we develop in § 2 describes in the limit Q = 0 a non-lubricated GC that
propagates under a no-slip condition along the substrate. Such a flow is similar to the flow
in the non-lubricated region, and is known to have a similarity solution (Sayag & Worster
2013)

h(r, t) ∝ t(n−1)/(5n+3), rN(t) ∝ t(2n+2)/(5n+3), (A1a,b)

for constant flux α = 1. We use this solution to validate our numerical solution in the
Q = 0 limit. Specifically, we solve the dimensionless equation set (§ 2.3) with Q = 0,
zero initial thickness H(r, 0) = 0, and logarithmically spaced spatial mesh with 1200
points. We find our solutions for the fluid height and for the leading front consistent with
the theoretical predictions (figure 16). Repeating the same computation for varying spatial
resolutions, we find that the convergence accuracy of the front exponent to the predicted
theoretical value grows with the number of spatial grid points (figure 16d, inset).
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Figure 17. Validation of the lubricated GC numerical solution with the Newtonian (n = 1) lubricated GC
(blue) with M = 10 000, Q = 0.2 and D = 0.1, showing the convergence of the normalized fronts (a) and
the lubricated fluid height at lubricating fluid front, rL (b) to the theoretically predicted constant values (black).

A.2. Newtonian lubricated gravity currents
In the limit n = 1, α = 1, our numerical model converges to the purely Newtonian
lubricated GC discharged at constant flux (Kowal & Worster 2015). Considering first
the specific case where M = 10 000, Q = 0.2 and D = 0.1, we find that both the fronts
rN, rL and the upper fluid height at the lubricant front H(rL) converge to the theoretical
values ηN, ηL and F(η), respectively (figure 17). Second, we find that our solutions for the
coefficients ηN and ηL are consistent with the theoretical predictions for a wide range of
M values (figure 11). As shown in § A.1, small discrepancies from the predicted values
are due to low spatial resolution. Finally, the solutions to the specific regime discussed in
§ 6 (figure 9) is more evidence for the consistency between our numerical results and those
of Kowal & Worster (2015, figure 13).
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