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Abstract
We consider manifold-knot pairs (𝑌, 𝐾), where Y is a homology 3-sphere that bounds a homology 4-ball. We show
that the minimum genus of a PL surface Σ in a homology ball X, such that 𝜕 (𝑋,Σ) = (𝑌, 𝐾) can be arbitrarily
large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from (𝑌, 𝐾) to any knot
in 𝑆3 can be arbitrarily large. The proof relies on Heegaard Floer homology.
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1. Introduction

Every knot K in 𝑆3 bounds a piecewise-linear (PL) disk in the 4-ball, namely, by taking the cone on
the pair (𝑆3, 𝐾) (this disk in not locally flat, and throughout, we will not impose any local-flatness
conditions on our PL surfaces). Resolving a conjecture of Zeeman [12], Akbulut [1] gave an example of
a contractible 4-manifold X and a knot 𝐾 ⊂ 𝜕𝑋 , such that K does not bound a PL disk in X. However,
Akbulut’s K does bound a PL disk in a different contractible 4-manifold 𝑋 ′ with 𝜕𝑋 ′ = 𝜕𝑋 . Levine
[5] proved the stronger result that there exist manifold-knot pairs (𝑌, 𝐾), such that Y bounds a smooth,
contractible 4-manifold X and that K does not bound a PL disk in X nor in any other integer homology
ball 𝑋 ′ with 𝜕𝑋 ′ = 𝑌 . In light of Levine’s [5] result, a natural question to ask is: Given a knot K in
an integer homology 3-sphere Y, such that Y bounds an integer homology 4-ball, what’s the minimum
genus of a PL surface Σ in an integer homology ball X, such that 𝜕 (𝑋, Σ) = (𝑌, 𝐾)? We observe that
such a surface Σ always exists, since K is null-homologous and thus bounds a surface in Y, which may
be pushed slightly into any bounding 4-manifold.

Our main result is that this notion of PL genus can be arbitrarily large. Throughout, let (𝑌𝑛, 𝐾𝑛) =(
𝑆3
−1 (𝑇2𝑛,2𝑛+1)# − 𝑆3

−1(𝑇2𝑛,2𝑛+1), 𝜇2𝑛−1,−1#𝑈
)
, where 𝜇2𝑛−1,−1 denotes the (2𝑛 − 1,−1)-cable of the

meridian in 𝑆3
−1 (𝑇2𝑛,2𝑛+1) and U denotes the unknot in −𝑆3

−1 (𝑇2𝑛,2𝑛+1).
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Theorem 1.1. Any PL surface Σ in any integer homology ball X, such that 𝜕 (𝑋, Σ) = (𝑌𝑛, 𝐾𝑛) must
have genus at least 𝑛 − 1, for 𝑛 ∈ Z>0.

We prove Theorem 1.1 by reinterpreting PL surfaces in terms of cobordisms inside of homology
cobordisms. Recall that a homology cobordism from 𝑌0 to 𝑌1 is a smooth, compact 4-manifold W, such
that 𝜕𝑊 = 𝑌0 �𝑌1 and that the map 𝑖∗ : 𝐻∗(𝑌 𝑗 ;Z) → 𝐻∗(𝑊 ;Z) induced by inclusion is an isomorphism
for 𝑗 = 0, 1. Let Σ be a genus g PL surface in an integer homology ball X, such that 𝜕 (𝑋,Σ) = (𝑌𝑛, 𝐾𝑛).
Up to isotopy, we may assume that Σ is smooth, except at finitely many singular points, each of which
is modeled on the cone of a smooth knot 𝐽𝑖 in 𝑆3 (see, for example, [4, Theorem A.1]). By deleting
neighborhoods of arcs in Σ connecting the cone points, we obtain a genus g cobordism from the knot
𝐽 = 𝐽1# . . . #𝐽𝑚 to K in a homology cobordism from 𝑆3 to Y.

Let K be a knot in a homology null-bordant homology sphere Y. We consider cobordisms of pairs

(𝑊, 𝑆) : (𝑆3, 𝐽) → (𝑌, 𝐾),

such that W is a homology cobordism from 𝑆3 to Y. The cobordism distance between (𝑌, 𝐾) and (𝑆3, 𝐽)
is the minimal genus of S in any such pair (𝑊, 𝑆). By the preceding discussion, Theorem 1.1 is an
immediate consequence of the following result.
Theorem 1.2. The cobordism distance between (𝑌𝑛, 𝐾𝑛) and any knot in 𝑆3 is at least 𝑛 − 1.

We prove Theorem 1.2 using Heegaard Floer homology [8], specifically Zemke’s cobordism maps
[13]. Our obstruction relies on two key properties:
1. Consider a cobordism of pairs

(𝑊, 𝑆) : (𝑆3, 𝐽) → (𝑌𝑛, 𝐾𝑛),

where W is a homology cobordism and S has genus g. For any (𝑐1, 𝑐2) ∈ (2Z)2, such that 𝑐1+𝑐2 = −2𝑔
and 𝑐1, 𝑐2 ≤ 0, there exists a local map

𝑓𝑊 ,𝑆 : CFK(𝑆3, 𝐽) → CFK(𝑌𝑛, 𝐾𝑛)

with bigrading (𝑐1, 𝑐2). Similarly, we may consider a cobordism in the opposite direction, from
(𝑌𝑛, 𝐾𝑛) to (𝑆3, 𝐽) (see [13, Theorems 1.4 and 1.7]).

2. The Heegaard Floer homology of 𝑆3 is especially simple; namely, HF−(𝑆3) = F[𝑈]. In particular,
U acts nontrivally on any nontrivial element of HF−(𝑆3), or equivalently, HF−(𝑆3) contains no
U-torsion.

The proof of Theorem 1.2 relies on showing that CFK(𝑌𝑛, 𝐾𝑛) is sufficiently complicated so as to not
admit local maps to and from CFK(𝑆3, 𝐽) of certain bigradings (see Section 2 for more details).

For constructing our examples (𝑌𝑛, 𝐾𝑛), we rely on recent work of the last author [14], which
combines work of Hedden-Levine [3] and Truong [11] to give a description of the knot Floer complex
for (𝑝, 1)-cables of the meridian in the image of surgery along a knot in 𝑆3. Preliminaries on this filtered
mapping cone are given in Section 3 and the computation is carried out in Section 4.

2. Cobordism obstruction

In this section, we introduce a cobordism obstruction for manifold-knot pairs and prove Theorem 1.2
by applying the obstruction to the pairs (𝑌𝑛, 𝐾𝑛), calling upon the computational results in the later part
of the paper. In addition, we compute the values of the concordance homomorphisms 𝜑𝑖, 𝑗 of [2] on the
family (𝑌𝑛, 𝐾𝑛), which may be of independent interest.

We start with some preliminaries on knot Floer homology. Knot Floer homology was defined by
Ozsváth-Szabó [7] and Rasmussen [10]. We associate, following the conventions of Zemke [13], to a
manifold-knot pair (𝑌, 𝐾) a chain complex CFKF[U ,V ] (𝑌, 𝐾) = CFK(𝑌, 𝐾) over the polynomial ring
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F[U ,V],where F = Z/2Z, called the knot Floer complex. This chain complex is a free module generated
by intersecting points of two Lagrangians in a symmetric product of a Heegaard surface, equipped
with differentials by counting holomorphic disks, weighted over the intersection numbers with the two
basepoints. The topological invariance of CFK(𝑌, 𝐾) up to chain homotopy equivalence over F[U ,V]
is due to Ozsváth-Szabó and Rasmussen.

The knot Floer complex CFK(𝑌, 𝐾) comes with a bigrading, namely (grU , grV ), where U ,V , and 𝜕
each have bigrading (−2, 0), (0,−2) and (−1,−1), respectively. The Alexander grading of a homoge-
neous element 𝑥 ∈ CFK(𝑌, 𝐾) is defined by 𝐴(𝑥) = 1

2 (grU (𝑥) − grV (𝑥)).
A chain map between two complexes is called a local map if it induces an isomorphism on the (U ,V)-

localized homology. Following from a special case of [13, Theorem 1.4], the next theorem provides the
main technical input for the obstruction.

Theorem 2.1 (Theorem 1.4 in [13]). Suppose that (𝑊, 𝑆) : (𝑌1, 𝐾1) → (𝑌2, 𝐾2) is a cobordism between
the manifold-knot pairs (𝑌1, 𝐾1) and (𝑌2, 𝐾2), such that W is a homology cobordism and S is of genus
𝑔. Then, for any given (𝑐1, 𝑐2) ∈ (2Z)2, such that 𝑐1 + 𝑐2 = −2𝑔 and 𝑐1, 𝑐2 ≤ 0, there exists a local map

𝑓𝑊 ,𝑆 : CFK(𝑌1, 𝐾1) → CFK(𝑌2, 𝐾2)

with bigrading (𝑐1, 𝑐2).

In particular, when 𝑔(𝑆) = 0, namely, when (𝑌1, 𝐾1) and (𝑌2, 𝐾2) are homology concordant, then the
cobordism map 𝑓𝑊 ,𝑆 is a local map that preserves the bigrading.

Definition 2.2. Two bigraded chain complexes 𝐶1 and 𝐶2 over F[U ,V] are locally equivalent if there
exist bigrading-preserving local maps

𝑓 : 𝐶1 → 𝐶2 and 𝑔 : 𝐶2 → 𝐶1.

It is straightforward to verify that local equivalence is an equivalence relation. By turning the
cobordism around, we thus obtain that homology concordance induces local equivalence of the knot
Floer complexes. Since the cobordism distance is invariant over the homology concordance class, we
study the local equivalence class of the knot Floer complexes of the interested manifold-knot pairs.

Due to computational reasons, it is somewhat easier to first consider

−(𝑌𝑛, 𝐾𝑛) = −
(
𝑆3
−1 (𝑇2𝑛,2𝑛+1)# − 𝑆3

−1 (𝑇2𝑛,2𝑛+1), 𝜇2𝑛−1,−1#𝑈
)
,

that is, the orientation reversal of the manifold-knot pairs that appear in the Section 1. Observe that
−(𝑆3

−1 (𝑇2𝑛,2𝑛+1), 𝜇2𝑛−1,−1) is equivalent to (𝑆3
1 (−𝑇2𝑛,2𝑛+1), 𝜇2𝑛−1,1). According to Lemma 4.3, over

the ring F[𝑈,𝑈−1], the complex 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1)〈2𝑛 − 1〉 represents the local equivalence class of

CFK∞(𝑆3
1 (−𝑇2𝑛,2𝑛+1), 𝜇2𝑛−1,1) for all 𝑛 ≥ 3 (see the beginning of Section 3 for more about the knot

Floer complex CFK∞(𝑌, 𝐾) defined over the ring F[𝑈,𝑈−1]).
Recall that the knot Floer complex enjoys a Künneth principle by [7, Theorem 7.1]. Since

−(𝑌𝑛, 𝐾𝑛) =
(
𝑆3

1 (−𝑇2𝑛,2𝑛+1), 𝜇2𝑛−1,1
)
#
(
𝑆3
−1(𝑇2𝑛,2𝑛+1),𝑈

)
, the knot Floer complex of the pair −(𝑌𝑛, 𝐾𝑛)

is locally equivalent to CFK∞(𝑆3
1 (−𝑇2𝑛,2𝑛+1), 𝜇2𝑛−1,1) tensored with a trivial complex, with the Maslov

grading adjusted such that the tensored complex has d–invariant equal to 0. Translate this into the ring
F[U ,V]; for 𝑛 ≥ 1, let 𝐶𝑛 denote the complex corresponding to 𝑋∞

2𝑛−1 (−𝑇2𝑛,2𝑛+1)〈2𝑛 − 1〉, with a
(𝑑 (𝑆3

−1 (𝑇2𝑛,2𝑛+1)), 𝑑 (𝑆
3
−1 (𝑇2𝑛,2𝑛+1))) bigrading shift. Then 𝐶𝑛 represents the local equivalence class of

the complex CFKF[U ,V ] (−(𝑌𝑛, 𝐾𝑛)) (see Figure 3 for an example when 𝑛 = 3).
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Figure 1. The complex 𝐶∗
3 , defined to be the dual complex of 𝐶3. The axes indicate the U and V

actions. The solid dots are generators, marked abstractly, missing actual U ,V decorations, and the
edges represent the differentials.

Proposition 2.3. For 𝑛 ≥ 3, the complex 𝐶𝑛 is characterized by

𝜕𝛼𝑠 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

U 𝑛(𝑛−1)
2 V 𝑛(𝑛−1)

2 𝑏 (1)𝑛−1, 𝑠 = 1
U 𝑛(𝑛+1)

2 −𝑠+1V 𝑛(𝑛+1)
2 𝑏 (𝑠−1)

𝑛 + U 𝑛(𝑛−1)
2 V 𝑛(𝑛−1)

2 𝑏 (𝑠)𝑛−1, 2 ≤ 𝑠 ≤ 𝑛 − 2
U 𝑛(𝑛−1)

2 +𝑛−𝑠+1V 𝑛(𝑛+1)
2 𝑏 (𝑠−1)

𝑛 + U 𝑛(𝑛+1)
2 V 𝑛(𝑛−1)

2 −𝑛+𝑠+1𝑏 (𝑠)𝑛 𝑛 − 1 ≤ 𝑠 ≤ 𝑛 + 1
U 𝑛(𝑛−1)

2 V 𝑛(𝑛−1)
2 𝑏 (𝑠−1)

𝑛+1 + U 𝑛(𝑛+1)
2 V 𝑛(𝑛−1)

2 −𝑛+𝑠+1𝑏 (𝑠)𝑛 , 𝑛 + 2 ≤ 𝑠 ≤ 2𝑛 − 2
U 𝑛(𝑛−1)

2 V 𝑛(𝑛−1)
2 𝑏 (2𝑛−2)

𝑛+1 , 𝑠 = 2𝑛 − 1

(1)

𝜕�̃�𝑠 =

{
U𝑛𝑏 (𝑠)𝑛 + V𝑛−𝑠−1𝑏 (𝑠)𝑛−1, 1 ≤ 𝑠 ≤ 𝑛 − 2
U 𝑠−𝑛𝑏 (𝑠)𝑛+1 + V𝑛𝑏 (𝑠)𝑛 , 𝑛 + 1 ≤ 𝑠 ≤ 2𝑛 − 2.

(2)

Proof. This is a direct translation from Lemma 4.4. �

This allows us to compute the values of the family of concordance homomorphisms 𝜑𝑖, 𝑗 defined in
[2, Definition 8.1], as follows.

Proposition 2.4. For each 𝑛 ≥ 3, we have

𝜑𝑖,0(𝐶𝑛) =

{
−1, 1 ≤ 𝑖 ≤ 𝑛 − 2
−𝑛 + 2, 𝑖 = 𝑛.

(3)

𝜑 𝑛(𝑛−1)
2 , 𝑛(𝑛−1)

2
(𝐶𝑛) = −𝑛 + 2, (4)

𝜑 𝑛(𝑛+1)
2 , 𝑗

(𝐶𝑛) = −1,
𝑛(𝑛 − 1)

2
≤ 𝑗 ≤

𝑛(𝑛 + 1)
2

− 1, (5)

and 𝜑𝑖, 𝑗 (𝐶𝑛) = 0 for all other i and 𝑗 .
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Proof. The complexes over F[U ,V] can be translated to complexes over the ring X defined in [2] using
the maps

U ↦−−−−−→ 𝑈𝐵 +𝑊𝑇 ,0

V ↦−−−−−→ 𝑉𝑇 +𝑊𝐵,0.

Due to its simple form, it is not hard to formulate a change of a basis under which𝐶𝑛 becomes a standard
complex (see [2, Section 5.1]). In particular, the invariants 𝑎𝑖 of 𝐶𝑛 with i odd (see [2, Definition 6.1])
are given by the sequence(

−
(𝑛(𝑛 − 1)

2
,
𝑛(𝑛 − 1)

2

)
,−(𝑛, 0),︸������������������������������������︷︷������������������������������������︸

repeats 𝑛−2 times

· · · ,−
(𝑛(𝑛 + 1)

2
,
𝑛(𝑛 − 1)

2

)
,−

(𝑛(𝑛 + 1)
2

,
𝑛(𝑛 − 1)

2
+ 1

)
,

−
(𝑛(𝑛 + 1)

2
,
𝑛(𝑛 − 1)

2
+ 2

)
,−(1, 0), · · · ,−

(𝑛(𝑛 + 1)
2

,
𝑛(𝑛 − 1)

2
+ 𝑠 + 1

)
,−(𝑠, 0)︸������������������������������������������������������������������������������������������������������︷︷������������������������������������������������������������������������������������������������������︸

for 1≤𝑠≤𝑛−2

, · · ·

)
.

The computations for the values of 𝜑𝑖, 𝑗 (𝐶𝑛) immediately follow. �

Similarly, for the case 𝑛 = 2, Lemma 4.5 yields the following.
Lemma 2.5. We have

𝜑3,1 (𝐶2) = 𝜑3,2 (𝐶2) = −1,

and 𝜑𝑖, 𝑗 (𝐶2) = 0 for all other i and 𝑗 .
As a consequence, we can compute the 𝜏 invariant of the manifold-knot pair (𝑌𝑛, 𝐾𝑛).

Proposition 2.6. For all 𝑛 ≥ 1,

𝜏(𝑌𝑛, 𝐾𝑛) = 2𝑛2 − 3𝑛 + 1.

Proof. The 𝜏 invariant can be computed from 𝜑𝑖, 𝑗 by [2, Proposition 1.4]. For 𝑛 ≥ 3,

𝜏(𝐶𝑛) = 𝑛(−𝑛 + 2) −
𝑛−2∑
𝑖=1
𝑖 −

𝑛∑
𝑖=1
𝑖

= −2𝑛2 + 3𝑛 − 1.

When 𝑛 = 2,

𝜏(𝐶2) = −1 − 2 = −3.

The complex 𝐶1 is locally trivial, so 𝜏(𝐶1) = 0. The result now follows from the fact that 𝜏 is additive
in the concordance group. �

According to [7, Proposition 3.8], the knot Floer complex of the mirror knot is the dual complex to
the original knot. Therefore, the local equivalence class of CFK(𝑌𝑛, 𝐾𝑛) is given by the dual complex
of 𝐶𝑛; denote it by 𝐶∗

𝑛. Denote by 𝛼∗𝑠 and �̃�∗𝑠 the dual of 𝛼𝑠 , �̃�𝑠 , respectively, and similarly denote by
𝑏∗, (𝑠)𝑖 the dual of 𝑏 (𝑠)𝑖 .
Proposition 2.7. For 𝑛 ≥ 3, the complex 𝐶∗

𝑛 is characterized by the following

𝜕𝑏∗, (𝑠)𝑛−1 = U
𝑛(𝑛−1)

2 V
𝑛(𝑛−1)

2 𝛼∗𝑠 + V𝑛−𝑠−1�̃�∗𝑠 , 1 ≤ 𝑠 ≤ 𝑛 − 2 (6)
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𝜕𝑏∗, (𝑠)𝑛 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U 𝑛(𝑛+1)

2 −𝑠V 𝑛(𝑛+1)
2 𝛼∗𝑠+1 + U𝑛�̃�∗𝑠 , 1 ≤ 𝑠 ≤ 𝑛 − 2

U 𝑛(𝑛+1)
2 V 𝑛(𝑛−1)

2 −𝑛+𝑠+1𝛼∗𝑠 + U 𝑛(𝑛+1)
2 −𝑠V 𝑛(𝑛+1)

2 𝛼∗𝑠+1, 𝑛 − 1 ≤ 𝑠 ≤ 𝑛

U 𝑛(𝑛+1)
2 V 𝑛(𝑛−1)

2 −𝑛+𝑠+1𝛼∗𝑠 + V𝑛�̃�∗𝑠 , 𝑛 + 1 ≤ 𝑠 ≤ 2𝑛 − 2
(7)

𝜕𝑏∗, (𝑠)𝑛+1 = U
𝑛(𝑛−1)

2 V
𝑛(𝑛−1)

2 𝛼∗𝑠+1 + U 𝑠−𝑛�̃�∗𝑠 , 𝑛 + 1 ≤ 𝑠 ≤ 2𝑛 − 2. (8)

Proof. This follows from Proposition 2.3 and the fact that 𝐶∗
𝑛 is the dual complex of 𝐶𝑛. �

We record a few salient features of the complex 𝐶∗
𝑛 for 𝑛 ≥ 3 from Proposition 2.7:

Lemma 2.8. We have the inequalities

grV 𝛼∗𝑠 , grV �̃�∗𝑠 ≤ grV 𝛼∗𝑛 − 2𝑛, for 𝑠 ≤ 𝑛 − 1.

Similarly,

grU 𝛼∗𝑠 , grU �̃�∗𝑠 ≤ grU 𝛼∗𝑛 − 2𝑛, for 𝑠 ≥ 𝑛 + 1.

Proof. We have

grV 𝛼∗𝑛−1 = grV 𝛼∗𝑛 − 2𝑛.

Note also the equalities:

grV �̃�∗𝑠 = grV 𝛼∗𝑠+1 − 𝑛(𝑛 + 1) for 1 ≤ 𝑠 ≤ 𝑛 − 2 (9)

grV �̃�∗𝑠 = grV 𝛼∗𝑠 − 𝑛(𝑛 − 1) + 2(𝑛 − 𝑠 − 1) for 1 ≤ 𝑠 ≤ 𝑛 − 2. (10)

In particular,

grV 𝛼∗𝑠 ≤ grV 𝛼∗𝑠+1 − 2𝑛 − 2

for 1 ≤ 𝑠 ≤ 𝑛 − 2.
From here, the claim of the lemma follows for 𝛼∗𝑠 for all 1 ≤ 𝑠 ≤ 𝑛 − 1. The statement for �̃�∗𝑠 follows

from (9).
The case of grU follows similarly, where we use

grU 𝛼∗𝑛+1 = grU 𝛼∗𝑛 − 2𝑛,

and also calculate:

grU �̃�∗𝑠 = grU 𝛼∗𝑠 − 𝑛(𝑛 + 1) for 𝑛 + 1 ≤ 𝑠 ≤ 2𝑛 − 2 (11)

grU �̃�∗𝑠 = grU 𝛼∗𝑠+1 − 𝑛(𝑛 − 1) + 2(𝑠 − 𝑛) for 𝑛 + 1 ≤ 𝑠 ≤ 2𝑛 − 2. (12)

In particular,

grU 𝛼∗𝑠+1 ≤ grU 𝛼∗𝑠 − 2𝑛 − 2

for 𝑛 + 1 ≤ 𝑠 ≤ 2𝑛− 2. From here, the claim of the lemma follows for 𝛼∗𝑠 for all 𝑛 + 1 ≤ 𝑠 ≤ 2𝑛 − 1. The
statement for �̃�∗𝑠 follows from (11). �

Lemma 2.9. For 𝑛 ≥ 3, let 𝜙 : 𝐶∗
𝑛 → 𝐶∗

𝑛 be a chain map of bigrading (𝑐1, 𝑐2), where 𝑐1 > −2𝑛 and
𝑐2 > −2𝑛. Then, 𝜙(𝛼∗𝑛) is either an F[U ,V]-multiple of 𝛼∗𝑛 or 0.
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Proof. By Lemma 2.8, all of the other generators of 𝐶∗
𝑛, which are cycles, have either U -grading or

V-grading less than that of 𝜙(𝛼∗𝑛). No linear combination of the 𝑏∗-type terms is a cycle, and so 𝜙(𝛼∗𝑛)
is supported only by 〈𝛼∗𝑛〉. �

Lemma 2.10. For 𝑛 ≥ 3, let 𝜙 : 𝐶∗
𝑛 → 𝐶∗

𝑛 be a homogeneous chain map with degree as in Lemma 2.9
and so that 𝜙(𝛼∗𝑛) is a boundary in 𝐶∗

𝑛 ⊗ F[U ,V = 1]/(U𝑛−1). Then, 𝜙(𝛼∗𝑛) must be divisible by U𝑛−1.

Proof. From Lemma 2.9, 𝜙(𝛼∗𝑛) = 𝑐𝛼∗𝑛 for some 𝑐 ∈ F[U ,V]. Considering the differential of 𝐶∗
𝑛 mod

V = 1,U𝑛−1 = 0, we obtain that 𝑐𝛼∗𝑛 is a boundary over this quotient ring if and only if U𝑛−1 | 𝑐. �

We say that a chain complex D over F[U ,V] is 𝑆3-knotlike if 𝐻∗(𝐷 ⊗ F[U ,V = 1]) = F[U ]. Recall
that for a knot 𝐾 ⊂ 𝑌, by setting V = 1 in CFK(𝑌, 𝐾) and taking the homology, one recovers the
Heegaard Floer homology HF−(𝑌 ). In particular, if D is the knot Floer complex of a knot in 𝑆3, then D
is 𝑆3-knotlike.

Lemma 2.11. For 𝑛 ≥ 3, let f be a map from 𝐶∗
𝑛 to an 𝑆3-knotlike complex D, and let g be a map from

D to 𝐶∗
𝑛. Then, 𝑔 𝑓 (𝛼∗𝑛) is a boundary in 𝐶∗

𝑛 ⊗ F[U ,V = 1]/(U𝑛−1).

Proof. We have, by considering 𝑏∗, (𝑛−1)
𝑛 , that

U𝑛(𝑛−1)/2+1V𝑛(𝑛+1)/2𝛼∗𝑛 + U𝑛(𝑛+1)/2V𝑛(𝑛−1)/2𝛼∗𝑛−1

is a boundary. Setting V = 1,

U𝑛(𝑛−1)/2+1 ( 𝑓 (𝛼∗𝑛) + U𝑛(𝑛+1)/2−𝑛(𝑛−1)/2−1 𝑓 (𝛼∗𝑛−1)) is a boundary in 𝐶𝑛/(V = 1).

Since any cycle in an 𝑆3-knotlike complex that is U -torsion in (V = 1) homology is actually zero in
homology, we have that

𝑓 (𝛼∗𝑛) + U𝑛−1 𝑓 (𝛼∗𝑛−1)

is a boundary in 𝐷/(V = 1). So 𝑓 (𝛼∗𝑛) is a boundary in 𝐷/(V = 1,U𝑛−1 = 0). Since g is a chain map,
the same holds for 𝑔 𝑓 (𝛼∗𝑛). �

Lemma 2.12. For 𝑛 ≥ 3, let f be a local map from 𝐶∗
𝑛 to a knotlike complex D. There does not exist a

local map 𝑔 : 𝐷 → 𝐶∗
𝑛, so that 𝑔 ◦ 𝑓 is of bigrading (𝑐1, 𝑐2) with 𝑐1 > −2𝑛 + 2 and 𝑐2 > −2𝑛.

Proof. Suppose such a g exists. Since f and g are local and 𝛼∗𝑛 generates the (U ,V)-localized homology,
it follows that 𝑔 𝑓 (𝛼∗𝑛) ≠ 0. Hence, by Lemma 2.9, we obtain that

𝑔 𝑓 (𝛼∗𝑛) = U−𝑐1/2V−𝑐2/2𝛼∗𝑛.

By Lemma 2.11, 𝑔 𝑓 (𝛼∗𝑛) is a boundary mod U𝑛−1 = 0,V = 1, and so by Lemma 2.10, we have
𝑛 − 1 ≤ −𝑐1/2. That is, −2𝑛 + 2 ≥ 𝑐1 > −2𝑛 + 2, a contradiction. �

Proof of Theorem 1.2. When 𝑛 = 2, for any knot 𝐽 ⊂ 𝑆3, by [2, Theorem 10.1], we have 𝜑𝑖, 𝑗 (𝑆3, 𝐽) = 0
for any 𝑗 ≠ 0, so Lemma 2.5 obstructs the existence of a homology concordance between (𝑌2, 𝐾2) and
(𝑆3, 𝐽).

Now suppose 𝑛 ≥ 3. Say that there is a pair (𝑊, 𝑆) as in the discussion preceding Theorem 1.2,
with S of genus 𝑔 ≤ 𝑛 − 2. Then, for any choice of (𝑐1, 𝑐2), (𝑑1, 𝑑2) ∈ (2Z)2 so that 𝑐𝑖 , 𝑑𝑖 ≤ 0
and 𝑐1 + 𝑐2 = −2𝑔 = 𝑑1 + 𝑑2, there exist local maps 𝑓 : 𝐶𝑛 → CFK(𝐽) and 𝑔 : CFK(𝐽) → 𝐶𝑛 of
bigrading (𝑐1, 𝑐2), (𝑑1, 𝑑2), respectively. Let f be of bigrading (0,−2𝑔) and g be of bigrading (−2𝑔, 0).
By hypothesis, −2𝑔 ≥ −2𝑛 + 4, and so Lemma 2.12 applies to show that such 𝑓 , 𝑔 do not exist, a
contradiction. �
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3. Preliminaries on the filtered mapping cone formula

We start by reviewing the original definition of the knot Floer complex over the ring F[𝑈,𝑈−1]
by Ozsváth and Szabó, as this is the setting where the filtered mapping cone formula can be most
conveniently defined.

In the original definition, the knot Floer complex is freely generated by the intersecting points of
the two Lagrangians over the ring F[𝑈,𝑈−1], where the differentials similarly count the holomorphic
disks but are weighted over the intersection number with only one of the basepoints. The datum of
the other basepoint is encoded in the Alexander grading. This version of the knot Floer complex is
denoted by CFK∞(𝑌, 𝐾), and commonly depicted in an (𝑖, 𝑗)–plane, where the j–coordinate is given by
the Alexander grading, and the i–coordinate is the normalized filtration level naturally induced by the
U–action. We will often think of CFK∞(𝑌, 𝐾) as a chain complex with an extra filtration given by the
Alexander grading. By collapsing the Alexander filtration, one recovers a chain complex associated to
the underlying three-manifold, CF∞(𝑌 ).

There is a Maslov grading on CFK∞(𝑌, 𝐾), corresponding to grU ; multiplication by U on
CFK∞(𝑌, 𝐾) is equivalent to multiplication by UV on CFKF[U ,V ] (𝑌, 𝐾). Although the setting is
slightly different, CFK∞(𝑌, 𝐾) contains the same information as CFKF[U ,V ] (𝑌, 𝐾) does. In the setting
of CFK∞(𝑌, 𝐾), the local equivalence reads as follows.

Definition 3.1. Two filtered chain complex 𝐶1 and 𝐶2 over F[𝑈,𝑈−1] are locally equivalent if there
exist Maslov grading-preserving filtered local maps

𝑓 : 𝐶1 → 𝐶2 and 𝑔 : 𝐶2 → 𝐶1.

For the rest of the paper, we will always use the knot Floer complex CFK∞(𝑌, 𝐾). Next, we recall
the filtered mapping cone formula from [14] for the reader; this is our main computational tool.

Let 𝐾 ⊂ 𝑆3 be a knot with genus equal to 𝑔. For a given positive integer p, let 𝜇𝑝,1 denote the
(𝑝, 1)-cable of the meridian of K in the +1-surgery on 𝐾. According to [14, Theorem 1.9], the knot
Floer complex CFK∞(𝑆3

1 (𝐾), 𝜇𝑝,1) is a filtered chain homotopy equivalent to the doubly filtered chain
complex 𝑋∞

𝑝 (𝐾), defined to be the mapping cone of

𝑔+𝑝−1⊕
𝑠=−𝑔+1

𝐴𝑠
𝑣𝑠+ℎ𝑠
−−−−→

𝑔+𝑝−1⊕
𝑠=−𝑔+2

𝐵𝑠 , (13)

where each 𝐴𝑠 and 𝐵𝑠 are isomorphic to CFK∞(𝑆3, 𝐾), coming with the (𝑖, 𝑗) coordinate. The map
𝑣𝑠 : 𝐴𝑠 → 𝐵𝑠 is the identity, and the map ℎ𝑠 : 𝐴𝑠 → 𝐵𝑠+1 is the reflection along 𝑖 = 𝑗 precomposed
with 𝑈𝑠 . Note that there are corresponding versions of the filtered mapping cone formula for the hat,
minus, and infinity flavors of knot Floer homology. In the following computation, we will consistently
use the infinity version of the 𝐴𝑠 and 𝐵𝑠 complexes and 𝑣𝑠 and ℎ𝑠 maps, so we repress the superindices.

Let I and J be the double filtrations, and let gr𝑀 be the absolute Maslov grading on the filtered
mapping cone complex 𝑋∞

𝑝 (𝐾). We will reserve letters I and J solely for this purpose throughout the
paper. We have

for [x, 𝑖, 𝑗] ∈ 𝐴𝑠 ,

I ([x, 𝑖, 𝑗]) = max{𝑖, 𝑗 − 𝑠} (14)

J ([x, 𝑖, 𝑗]) = max{𝑖 − 𝑝, 𝑗 − 𝑠} + 𝑝𝑠 −
𝑝(𝑝 − 1)

2
(15)

gr𝑀 ([x, 𝑖, 𝑗]) = g̃r([x, 𝑖, 𝑗]) + 𝑠(𝑠 − 1) (16)
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and for [x, 𝑖, 𝑗] ∈ 𝐵𝑠 ,

I ([x, 𝑖, 𝑗]) = 𝑖 (17)

J ([x, 𝑖, 𝑗]) = 𝑖 − 𝑝 + 𝑝𝑠 − 𝑝(𝑝 − 1)
2

(18)

gr𝑀 ([x, 𝑖, 𝑗]) = g̃r([x, 𝑖, 𝑗]) + 𝑠(𝑠 − 1) − 1. (19)

Here, g̃r denotes the absolute Maslov grading on the original chain complex CFK∞(𝑆3, 𝐾). It is
straightforward to check that for 𝑠 < −𝑔 + 1, the map ℎ𝑠 induces an isomorphism on the homology; for
𝑠 > 𝑔 + 𝑝 − 1, the map 𝑣𝑠 (𝐾) induces an isomorphism on the homology, which justifies the truncation
of the mapping cone.

The general strategy for computation involves finding a reduced basis for 𝑋∞
𝑝 (𝐾), where every term

in the differential strictly lowers at least one of the filtrations. This can be achieved through a cancellation
process (see, for example [6, Proposition 11.57]) as follows: suppose 𝜕𝑥𝑖 = 𝑦𝑖 + lower filtration terms,
where the double filtration of 𝑦𝑖 is the same as 𝑥𝑖 , then the subcomplex of 𝑋∞

𝑝 (𝐾) generated by all such
{𝑥𝑖 , 𝜕𝑥𝑖} is acyclic, and the 𝑋∞

𝑝 (𝐾) quotient by this complex is reduced. Alternatively, one can view the
above process as a change of basis, that splits off acyclic summands which individually lie entirely in
one double-filtration level.

There is an apparent symmetry on the mapping cone as follows. Let [x, 𝑖, 𝑗] ↦→ [𝜓(x), 𝑗 , 𝑖] be a
homotopy equivalence that realizes the symmetry on the original chain complex CFK∞(𝑆3, 𝐾). In the
following lemma, we use a subindex to mark elements from 𝐴𝑠 or 𝐵𝑠 .

Proposition 3.2. Let Ψ : 𝑋∞
𝑝 (𝐾) −→ 𝑋∞

𝑝 (𝐾) be the map, defined as
for [x, 𝑖, 𝑗]𝑠 ∈ 𝐴𝑠 ,

Ψ([x, 𝑖, 𝑗]𝑠) = 𝑈
(𝑝−1) (𝑝−2𝑠)

2 [𝜓(x), 𝑗 , 𝑖]𝑝−𝑠 ∈ 𝐴𝑝−𝑠 (20)

for [x, 𝑖, 𝑗]𝑠 ∈ 𝐵𝑠 ,

Ψ([x, 𝑖, 𝑗]𝑠) = 𝑈
𝑝 (𝑝−2𝑠+1)

2 [x, 𝑗 , 𝑖]𝑝−𝑠+1 ∈ 𝐵𝑝−𝑠+1. (21)

Then, Ψ is a chain map that realizes a homotopy equivalence on the doubly filtered chain complex
CFK∞(𝑆3

1 (𝐾), 𝜇𝑝,1) that switches the I and J filtrations.

Proof. By definition, Ψ is U–equivariant, so it suffices to show Ψ realizes the symmetry for any one I
and J value.

Over each chain complex 𝐴𝑠 , by (14) and (15), we have {I = 0} = max{𝑖, 𝑗 − 𝑠} and {J =
𝑝𝑠 − 𝑝 (𝑝−1)

2 } = max{𝑖 − 𝑝, 𝑗 − 𝑠}. Compute

Ψ({I = 0}𝑠) = 𝑈
(𝑝−1) (𝑝−2𝑠)

2 max{𝑖 − 𝑠, 𝑗}𝑝−𝑠

= 𝑈
(𝑝−1) (𝑝−2𝑠)

2 +(𝑝−𝑠) max{𝑖 − 𝑝, 𝑗 − (𝑝 − 𝑠)}𝑝−𝑠

= 𝑈
𝑝2+𝑝−2𝑝𝑠

2 {J = 𝑝(𝑝 − 𝑠) −
𝑝(𝑝 − 1)

2
}𝑝−𝑠

= {J = 0}𝑝−𝑠

Ψ({J = 𝑝𝑠 −
𝑝(𝑝 − 1)

2
}𝑠) = 𝑈

(𝑝−1) (𝑝−2𝑠)
2 max{𝑖 − 𝑠, 𝑗 − 𝑝}𝑝−𝑠

= 𝑈
(𝑝−1) (𝑝−2𝑠)

2 −𝑠 max{𝑖, 𝑗 − (𝑝 − 𝑠)}𝑝−𝑠

= {I = 𝑝𝑠 −
𝑝(𝑝 − 1)

2
}𝑝−𝑠,
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while the computations for 𝐵𝑠 are similar and left for the reader. Moreover, by definition, we have
Ψ ◦ 𝑣𝑠 = ℎ𝑠 ◦ Ψ, and Ψ ◦ ℎ𝑠 = 𝑣𝑠 ◦ Ψ, therefore, Ψ is a chain map. �

4. Cables of the knot meridian of −𝑇2𝑛,2𝑛+1

In this section, we perform the filtered mapping cone computation, which determines the knot Floer
complex in Proposition 2.3 and Lemma 2.5.

Given 𝑛 ≥ 1, let 𝑇2𝑛,2𝑛+1 be the (2𝑛, 2𝑛 + 1)-torus knot, with genus equal to 𝑛(2𝑛 − 1). It is a fun
exercise to compute its Alexander polynomial as follows

(𝑡2𝑛(2𝑛+1) − 1) (𝑡 − 1)
(𝑡2𝑛 − 1) (𝑡2𝑛+1 − 1)

=
𝑡 (2𝑛−1) (2𝑛+1) + 𝑡 (2𝑛−2) (2𝑛+1) + · · · + 1

𝑡2𝑛−1 + 𝑡2𝑛−2 + · · · + 1
=

1 +

2𝑛−2∑
𝑖=0

(
𝑡 (2𝑛−𝑖) (2𝑛−1)−𝑖 − 𝑡 (2𝑛−𝑖) (2𝑛−1)−2𝑖−1) .

For example, if we let 𝑆2𝑛 (𝑖) =
(
𝑡 (2𝑛−𝑖) (2𝑛−1)−𝑖 − 𝑡 (2𝑛−𝑖) (2𝑛−1)−2𝑖−1) (𝑡2𝑛−1 + 𝑡2𝑛−2 + · · · + 1

)
for

𝑖 = 0, 1, · · · , 2𝑛 − 2, by induction, we obtain that for 0 ≤ ℓ ≤ 2𝑛 − 2

ℓ∑
𝑖=0
𝑆2𝑛 (𝑖) = 𝑡

(2𝑛−1) (2𝑛+1) + · · · + 𝑡 (2𝑛−ℓ−1) (2𝑛+1) − 𝑡 (2𝑛−ℓ) (2𝑛−1)−ℓ−1 − · · · − 𝑡 (2𝑛−ℓ) (2𝑛−1)−2ℓ−1.

Taking ℓ to be 2𝑛 − 2 leads to the answer.
Torus knots are L–space knots. Therefore, according to [9, Theorem 1.2], the knot Floer complex

CFK∞(𝑆3, 𝑇2𝑛,2𝑛+1) is generated by 𝑎∗𝑖 with coordinate (0, (2𝑛−𝑖) (2𝑛−𝑖+1)
2 −

𝑖 (𝑖−1)
2 ) for 𝑖 ∈ {1, · · · , 2𝑛}

and 𝑏∗𝑖 with coordinate (0, (2𝑛−𝑖) (2𝑛−𝑖+1)
2 −

𝑖 (𝑖+1)
2 ) for 𝑖 ∈ {1, · · · , 2𝑛 − 1} (this is, in fact, a set of

generators coming from a �𝐻𝐹𝐾 model), where the differentials are given by

𝜕𝑏∗𝑖 = 𝑈
𝑖𝑎∗𝑖 + 𝑎

∗
𝑖+1.

It follows from [7, Proposition 3.8], that the knot Floer complex of the mirror knot is the dual
complex to the original knot. Therefore, CFK∞(𝑆3,−𝑇2𝑛,2𝑛+1) is generated by 𝑎𝑖 with coordinate
(0,− (2𝑛−𝑖) (2𝑛−𝑖+1)

2 +
𝑖 (𝑖−1)

2 ) for 𝑖 ∈ {1, · · · , 2𝑛} and 𝑏𝑖 with coordinate (0,− (2𝑛−𝑖) (2𝑛−𝑖+1)
2 +

𝑖 (𝑖+1)
2 ) for

𝑖 ∈ {1, · · · , 2𝑛− 1} (simply by taking 𝑎𝑖 to be the dual of 𝑎∗𝑖 and 𝑏𝑖 to be the dual of 𝑏∗𝑖 ). As a notational
shorthand, we will let 𝑔𝑎 (𝑛, 𝑖) � −

(2𝑛−𝑖) (2𝑛−𝑖+1)
2 +

𝑖 (𝑖−1)
2 and 𝑔𝑏 (𝑛, 𝑖) � −

(2𝑛−𝑖) (2𝑛−𝑖+1)
2 +

𝑖 (𝑖+1)
2 . Note

that 𝑔𝑎 (𝑛, 𝑖) + 𝑖 = 𝑔𝑏 (𝑛, 𝑖). The differentials are given by

𝜕𝑎𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑈𝑏𝑖 , 𝑖 = 1
𝑏𝑖−1, 𝑖 = 2𝑛
𝑈𝑖𝑏𝑖 + 𝑏𝑖−1, otherwise.

Note that the (horizontal) arrow from 𝑎𝑖 to 𝑏𝑖 is of length i, while the (vertical) arrow from 𝑎𝑖 to 𝑏𝑖−1 is
of length 2𝑛 − 𝑖 + 1 (see Figure 2 for an example of CFK∞(𝑆3,−𝑇2𝑛,2𝑛+1) when 𝑛 = 3).

The interesting examples are given by the pair (𝑆3
1 (−𝑇2𝑛,2𝑛+1), 𝜇2𝑛−1,1), where 𝜇2𝑛−1,1 is the

(2𝑛 − 1, 1)-cable of the dual knot. To compute the knot Floer complex of said examples, we apply
the filtered mapping cone formula for the cables of the dual knot on −𝑇2𝑛.2𝑛+1, with the surgery
coefficient equal to +1. Following the recipe described in Section 3, the filtered chain complex
CFK∞(𝑆3

1 (−𝑇2𝑛,2𝑛+1), 𝜇2𝑛−1,1) is filtered homotopy equivalent to the filtered complex 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1)
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Figure 2. The knot Floer complex CFK∞(𝑆3,−𝑇6,7). The solid dots are generators. The differentials
point to lower filtration levels, and the numbers indicate their lengths.

defined by the mapping cone of

(𝑛+1) (2𝑛−1)−1⊕
𝑠=−𝑛(2𝑛−1)+1

𝐴𝑠
𝑣𝑠+ℎ𝑠
−−−−→

(𝑛+1) (2𝑛−1)−1⊕
𝑠=−𝑛(2𝑛−1)+2

𝐵𝑠 .

Through the isomorphism with CFK∞(𝑆3,−𝑇2𝑛,2𝑛+1), denote the corresponding generators in 𝐴𝑠 by
𝑎 (𝑠)𝑖 and 𝑏 (𝑠)𝑖 , and the generators in 𝐵𝑠 by 𝑎′(𝑠)𝑖 and 𝑏′(𝑠)𝑖 , for suitable i and s. Recall that we use I and
J specifically for the double filtrations on the entire mapping cone complex. Using the formulas given
by (14), (15), (17), and (18), the computations for the I and J filtrations of the generators described
above are quite straightforward. We collect the result in a following lemma, with 𝑔𝑎 (𝑛, 𝑖) and 𝑔𝑏 (𝑛, 𝑖)
the quantities defined in the previous paragraph. Also define a notational shorthand

𝑓 (𝑛, 𝑠) � −
(𝑛 − 1)𝑛

2
+ 𝑛𝑠. (22)

Note that 𝑓 (𝑛, 𝑠 − 1) + 𝑛 = 𝑓 (𝑛, 𝑠).

Lemma 4.1. In the complex 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1), we have

J (𝑎 (𝑠)𝑖 ) =

{
𝑓 (𝑛, 𝑠) + 𝑔𝑎 (𝑛, 𝑖) − 𝑠, 𝑠 ≤ 𝑔𝑎 (𝑛, 𝑖) + 2𝑛 − 1
𝑓 (𝑛, 𝑠 − 1), 𝑠 > 𝑔𝑎 (𝑛, 𝑖) + 2𝑛 − 1

(23)

J (𝑏 (𝑠)𝑖 ) =

{
𝑓 (𝑛, 𝑠) + 𝑔𝑏 (𝑛, 𝑖) − 𝑠, 𝑠 ≤ 𝑔𝑏 (𝑛, 𝑖) + 2𝑛 − 1
𝑓 (𝑛, 𝑠 − 1), 𝑠 > 𝑔𝑏 (𝑛, 𝑖) + 2𝑛 − 1;

(24)
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I (𝑎 (𝑠)𝑖 ) = I (𝑏 (𝑠)𝑖 ) = I (𝑎′(𝑠)𝑖 ) = I (𝑏′(𝑠)𝑖 ) = 0; (25)

J (𝑎′(𝑠)𝑖 ) = J (𝑏′(𝑠)𝑖 ) = 𝑓 (𝑛, 𝑠 − 1). (26)

For the rest of the computation, we assume that 𝑛 ≥ 3 (the case when 𝑛 = 1, 2 does not fit into the
following model. Instead, the results of those two cases are recorded in Lemma 4.5.).

We first aim to obtain a reduced model of the generators of 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1). Up to filtered homotopy

equivalence (as a subcomplex of 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1)), each 𝐵𝑠 is one-dimensional. Indeed, quotienting

out {𝑎′(𝑠)𝑖 , 𝜕𝑎′(𝑠)𝑖 }2≤𝑖≤2𝑛 leaves us with a sole generator 𝑎′(𝑠)1 in each 𝐵𝑠 .
Each 𝐴𝑠 is a subcomplex of the quotient complex

⊕
𝑠 𝐴𝑠 , which inherits the (I,J ) filtration

naturally. We would like to obtain a reduced model for each 𝐴𝑠 . For the next part, let 𝜕 temporarily
denote the differential restricted to each subquotient-complex 𝐴𝑠 , as opposed to the differential on the
entire chain complex 𝑋∞

2𝑛−1 (−𝑇2𝑛,2𝑛+1). There are two types of complex 𝐴𝑠 , depending on the dimension
of the reduced model.

When 𝑠 ∈ [−𝑛(2𝑛 − 1),−𝑛(2𝑛 − 1) + 2𝑛] ∪ {−𝑛(2𝑛 − 1) + 2 𝑗𝑛 − 1,−𝑛(2𝑛 − 1) + 2 𝑗𝑛}1≤ 𝑗≤2𝑛−2 ∪

[𝑛(2𝑛 − 1) − 1, (𝑛 + 1) (2𝑛 − 1) − 1], after quotienting out {𝑎 (𝑠)𝑖 , 𝜕𝑎 (𝑠)𝑖 }2≤𝑖≤2𝑛−1, the reduced model of
𝐴𝑠 is three-dimensional.

◦ When 𝑠 ∈ [−𝑛(2𝑛 − 1),−𝑛(2𝑛 − 1) + 2𝑛], the reduced model is generated by {𝑎 (𝑠)2𝑛 , 𝑏
(𝑠)
1 , 𝑎 (𝑠)1 } with

modified differentials:

𝜕𝑎 (𝑠)1 = 𝑈𝑏 (𝑠)1 , 𝜕𝑎 (𝑠)2𝑛 = 𝑈−𝑛(2𝑛−1)+1𝑏 (𝑠)1 .

◦ When 𝑠 ∈ {−𝑛(2𝑛 − 1) + 2 𝑗𝑛 − 1,−𝑛(2𝑛 − 1) + 2 𝑗𝑛}1≤ 𝑗≤2𝑛−2,the reduced model is generated by
{𝑎 (𝑠)2𝑛 , 𝑏

(𝑠)
𝑗 , 𝑎

(𝑠)
1 } and modified differentials are

𝜕𝑎 (𝑠)1 = 𝑈
𝑗 ( 𝑗+1)

2 𝑏 (𝑠)𝑗 , 𝜕𝑎 (𝑠)2𝑛 = 𝑈−𝑛(2𝑛−1)+ 𝑗 ( 𝑗+1)
2 𝑏 (𝑠)𝑗 .

◦ When 𝑠 ∈ [𝑛(2𝑛 − 1) − 1, (𝑛 + 1) (2𝑛 − 1) − 1], the reduced model is generated by {𝑎 (𝑠)2𝑛 , 𝑏
(𝑠)
2𝑛−1, 𝑎

(𝑠)
1 }

with modified differentials

𝜕𝑎 (𝑠)1 = 𝑈𝑛(2𝑛−1)𝑏 (𝑠)2𝑛−1, 𝜕𝑎 (𝑠)2𝑛 = 𝑏 (𝑠)2𝑛−1.

When 𝑠 ∈
⋃

1≤ 𝑗≤2𝑛−2 [−𝑛(2𝑛 − 1) + 2 𝑗𝑛 + 1,−𝑛(2𝑛 − 1) + 2( 𝑗 + 1)𝑛 − 2], the reduced model of 𝐴𝑠
is five-dimensional. Indeed, quotienting out {𝑎 (𝑠)𝑖 , 𝜕𝑎 (𝑠)𝑖 } 𝑗∈[2, 𝑗 ]∪[ 𝑗+2,2𝑛−1] leaves us with generators
{𝑎 (𝑠)2𝑛 , 𝑏

(𝑠)
𝑗+1, 𝑎

(𝑠)
𝑗+1, 𝑏

(𝑠)
𝑗 , 𝑎

(𝑠)
1 }. The difference here from the previous case is that both terms in 𝜕𝑎 (𝑠)𝑗+1

strictly decrease I or J grading, and therefore survive into the reduced complex. The modified differ-
entials are given by

𝜕𝑎 (𝑠)1 = 𝑈
𝑗 ( 𝑗+1)

2 𝑏 (𝑠)𝑗 , 𝜕𝑎 (𝑠)𝑗+1 = 𝑏 (𝑠)𝑗 +𝑈 𝑗+1𝑏 (𝑠)𝑗+1,

𝜕𝑎 (𝑠)2𝑛 = 𝑈−𝑛(2𝑛−1)+ ( 𝑗+1) ( 𝑗+2)
2 𝑏 (𝑠)𝑗+1.

Finally, consider the entire chain complex 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1), using the reduced models for both 𝐴𝑠 and

𝐵𝑠 .Let 𝜕 denote the differential on the entire mapping cone complex (including 𝑣𝑠 and ℎ𝑠 maps). Observe
that ℎ𝑠 (𝑈−𝑠𝑎 (𝑠)2𝑛 ) = 𝑎′(𝑠+1)

1 = 𝑣𝑠+1(𝑎
(𝑠+1)
1 ) for −𝑛(2𝑛 − 1) + 1 ≤ 𝑠 ≤ 𝑛(2𝑛 − 1), while I (𝑈−𝑠𝑎 (𝑠)2𝑛 ) =

I (𝑎′(𝑠+1)
1 ) = I (𝑎 (𝑠+1)

1 ) and J (𝑈−𝑠𝑎 (𝑠)2𝑛 ) = J (𝑎′(𝑠+1)
1 ) ≤ J (𝑎 (𝑠+1)

1 ), where the last equality is reached
when 𝑠 ≥ −(𝑛−1) (2𝑛−1). Thus, we may quotient out {𝑎 (𝑠)2𝑛 , 𝜕𝑎

(𝑠)
2𝑛 } for −𝑛(2𝑛−1) +1 ≤ 𝑠 ≤ 𝑛(2𝑛−1).
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If we let 𝛼𝑠 denote the image of 𝑎 (𝑠)1 in the quotient for −𝑛(2𝑛 − 1) + 1 ≤ 𝑠 ≤ 𝑛(2𝑛 − 1) + 1, notice that
for −𝑛(2𝑛 − 1) + 2 ≤ 𝑠 ≤ 𝑛(2𝑛 − 1) + 1, this amounts to a change of basis 𝑎 (𝑠)1 ↦→ 𝑈−𝑠+1𝑎 (𝑠−1)

2𝑛 + 𝑎 (𝑠)1
followed by a homotopy equivalence. Similarly, we may quotient out {𝑎 (𝑠)1 , 𝜕𝑎 (𝑠)1 } for 𝑛(2𝑛 − 1) + 2 ≤

𝑠 ≤ (𝑛 + 1) (2𝑛 − 1) − 1.
We have obtained a reduced model for 𝑋∞

2𝑛−1 (−𝑇2𝑛,2𝑛+1). Observe that no generator in 𝐵𝑠 survives
into the reduced basis. Moreover, from the viewpoint of the quotient complex, the induced differential
𝜕 restricted to 𝐴𝑠 is a map 𝜕 : 𝐴𝑠 → 𝐴𝑠 ⊕ 𝐴𝑠−1 for −𝑛(2𝑛 − 1) + 2 ≤ 𝑠 ≤ 𝑛, viewing 𝛼𝑠 as an element
of 𝐴𝑠 . However, we will generally adopt the viewpoint of a change of basis, and view 𝛼𝑠 as an element
of 𝐴𝑠 ⊕ 𝐴𝑠−1, mainly because this plays well with the symmetry on the mapping cone complex.

Considering the symmetry on 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1) (see Proposition 3.2), our strategy would be to focus

on the “first half” of the complex, namely, the mapping cone of

𝑛−1⊕
𝑠=−𝑛(2𝑛−1)+1

𝐴𝑠
𝑣𝑠+ℎ𝑠
−−−−→

𝑛⊕
𝑠=−𝑛(2𝑛−1)+2

𝐵𝑠 ,

which under the current basis is simply the chain complex

𝑛−1⊕
𝑠=−𝑛(2𝑛−1)+1

𝐴𝑠 .

So, let us summarize the generators and relations of this first half complex in the following lemma (we
also include those 𝐴𝑠 where s is in the interval [𝑛, 2𝑛 − 1] for the continuity). Let �̃�𝑠 denote 𝑎 (𝑠)𝑗+1 when
𝑠 ∈ [−𝑛(2𝑛 − 1) + 2 𝑗𝑛 + 1,−𝑛(2𝑛 − 1) + 2( 𝑗 + 1)𝑛 − 2] for each 1 ≤ 𝑗 ≤ 𝑛.

Lemma 4.2. Under the reduced basis chosen above, we have

◦ For 𝑠 ∈ [−𝑛(2𝑛 − 1) + 1,−𝑛(2𝑛 − 1) + 2𝑛], the complex 𝐴𝑠 is generated by 𝛼𝑠 and 𝑏 (𝑠)1 , where the
differentials are given by

𝜕𝛼𝑠 =

{
𝑈𝑏 (𝑠)1 , 𝑠 = −𝑛(2𝑛 − 1) + 1
𝑈−𝑠+2𝑏 (𝑠−1)

1 +𝑈𝑏 (𝑠)1 , 𝑠 > −𝑛(2𝑛 − 1) + 1.
(27)

◦ For 𝑠 ∈ [−𝑛(2𝑛 − 1) + 2 𝑗𝑛 + 1,−𝑛(2𝑛 − 1) + 2( 𝑗 + 1)𝑛 − 2] with some 1 ≤ 𝑗 ≤ 𝑛, the complex 𝐴𝑠 is
generated by 𝛼𝑠 , �̃�𝑠 , 𝑏 (𝑠)𝑗 and 𝑏 (𝑠)𝑗+1, where the differentials are given by

𝜕𝛼𝑠 =

{
𝑈−𝑠+1+ 𝑗 ( 𝑗+1)

2 𝑏 (𝑠−1)
𝑗 +𝑈

𝑗 ( 𝑗+1)
2 𝑏 (𝑠)𝑗 , 𝑠 = −𝑛(2𝑛 − 1) + 2 𝑗𝑛 + 1,

𝑈−𝑠+1+ ( 𝑗+1) ( 𝑗+2)
2 𝑏 (𝑠−1)

𝑗+1 +𝑈
𝑗 ( 𝑗+1)

2 𝑏 (𝑠)𝑗 , 𝑠 > −𝑛(2𝑛 − 1) + 2 𝑗𝑛 + 1,
(28)

𝜕�̃�𝑠 = 𝑏
(𝑠)
𝑗 +𝑈 𝑗+1𝑏 (𝑠)𝑗+1. (29)

◦ For 𝑠 ∈ {−𝑛(2𝑛− 1) + 2 𝑗𝑛− 1,−𝑛(2𝑛− 1) + 2 𝑗𝑛} with some 2 ≤ 𝑗 ≤ 𝑛, the complex 𝐴𝑠 is generated
by 𝛼𝑠 and 𝑏 (𝑠)𝑗 , where the differentials are given by

𝜕𝛼𝑠 = 𝑈
−𝑠+1+ 𝑗 ( 𝑗+1)

2 𝑏 (𝑠−1)
𝑗 +𝑈

𝑗 ( 𝑗+1)
2 𝑏 (𝑠)𝑗 . (30)

Proof. This follows from the earlier discussion. �
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We prove in the next lemma that, up to local equivalence, we can further truncate the mapping cone.
Define 𝑋∞

2𝑛−1 (−𝑇2𝑛,2𝑛+1)〈ℓ〉 for ℓ ∈ Z to be the filtered mapping cone

ℓ⊕
𝑠=−ℓ+2𝑛−1

𝐴𝑠
𝑣𝑠+ℎ𝑠
−−−−→

ℓ⊕
𝑠=−ℓ+2𝑛

𝐵𝑠 ,

which under the reduced basis simplifies to the filtered chain complex

ℓ⊕
𝑠=−ℓ+2𝑛−1

𝐴𝑠 .

Note that under this notation 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1) = 𝑋∞

2𝑛−1 (−𝑇2𝑛,2𝑛+1)〈(𝑛 + 1) (2𝑛 − 1) − 1〉.

Lemma 4.3. Up to a change of basis, the filtered complex 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1) is isomorphic to

𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1)〈2𝑛 − 1〉 ⊕ 𝐷, where 𝐻∗(𝐷) = 0.

Proof. It suffices to show for any 2𝑛 ≤ ℓ ≤ (𝑛 + 1) (2𝑛 − 1) − 1, the complex 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1)〈ℓ〉 is

isomorphic to 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1)〈ℓ − 1〉 ⊕ 𝐷 ′ up to a change of basis, where 𝐻∗(𝐷

′) = 0. For every such
ℓ, we will demonstrate a filtered change of basis, such that the complex 𝐴−ℓ+2𝑛−1 becomes a summand.
Following from the symmetry given by Proposition 3.2, there is also a filtered change of basis, such that
𝐴ℓ becomes a summand under the new basis as required. Let 𝑠 = −ℓ + 2𝑛 − 1. Recall that we view 𝛼𝑠
as an element in 𝐴𝑠 ⊕ 𝐴𝑠−1.

◦ For 𝑠 ∈ [−𝑛(2𝑛 − 1) + 2,−𝑛(2𝑛 − 1) + 2𝑛 + 1], perform the change of basis

𝛼𝑠 ↦−−−−−→𝛼𝑠 +𝑈
−𝑠+1𝛼𝑠−1.

According to (27) and (28), this splits off an acyclic summand as required. Since J (𝛼𝑠) = J (𝑎𝑠1) >

J (𝑎𝑠−1
1 ) = J (𝛼𝑠−1), by (23), this change of basis is clearly filtered.

◦ For 𝑠 ∈ [−𝑛(2𝑛 − 1) + 2 𝑗𝑛 + 2,−𝑛(2𝑛 − 1) + 2( 𝑗 + 1)𝑛 − 1] for some 1 ≤ 𝑗 ≤ 𝑛 − 1, and when 𝑠 ≤ 1,
perform the change of basis

𝛼𝑠 ↦−−−−−→𝛼𝑠 +𝑈
−𝑠+1 (𝛼𝑠−1 +𝑈

𝑗 ( 𝑗+1)
2 �̃�𝑠−1

)
.

According to (28), (29), and (30), this splits off an acyclic summand as required. This change of basis
is clearly filtered when 𝑠 ≤ 1 (the equality is reached in the interval associated to 𝑗 = 𝑛 − 1).

◦ For 𝑠 ∈ {−𝑛(2𝑛− 1) + 2 𝑗𝑛,−𝑛(2𝑛− 1) + 2 𝑗𝑛 + 1} with some 2 ≤ 𝑗 ≤ 𝑛− 1 (noting that 𝑠 < 0 always
holds), perform the change of basis

𝛼𝑠 ↦−−−−−→𝛼𝑠 +𝑈
−𝑠+1𝛼𝑠−1.

This change of basis is again clearly filtered. �

Therefore, the local equivalence class of 𝑋∞
2𝑛−1 (−𝑇2𝑛,2𝑛+1) is given by

⊕2𝑛−1
𝑠=0 𝐴𝑠 under the reduced

basis. The differentials in this complex are already given by Lemma 4.2, and the filtrations of the
generators are given by Lemma 4.1. In the following lemma, we will work out the J –filtration shifts
between the generators that are related by a differential.

Suppose 𝑈𝑐𝛽 is a nontrivial term in 𝜕𝛼, where 𝛽 is used to represent some 𝑏 (𝑠)𝑖 and 𝛼 is used to
represent some 𝛼𝑠 or �̃�𝑠 . Define

ΔI,J (𝛼, 𝛽) = (I,J ) (𝛼) − (I,J ) (𝑈𝑐𝛽) (31)

and, similarly define ΔI and ΔJ .
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Table 1. The filtrations of the generators in the reduced basis of⊕2𝑛−1
𝑠=0 𝐴𝑠 ..

Generators The J –filtrations Range

𝛼𝑠 𝑓 (𝑛, 𝑠 − 1) 1 ≤ 𝑠 ≤ 2𝑛 − 1
𝛼𝑠 𝑓 (𝑛, 𝑠 − 1) + 𝑛 − 1 − 𝑠 1 ≤ 𝑠 ≤ 𝑛 − 2

𝑓 (𝑛, 𝑠 − 1) 𝑛 + 1 ≤ 𝑠 ≤ 2𝑛 − 2
𝑏 (𝑠)
𝑛 𝑓 (𝑛, 𝑠) − 𝑠 1 ≤ 𝑠 ≤ 2𝑛 − 2

𝑏 (𝑠)
𝑛−1 𝑓 (𝑛, 𝑠 − 1) 1 ≤ 𝑠 ≤ 𝑛 − 2

𝑏 (𝑠)
𝑛+1 𝑓 (𝑛, 𝑠) + 2𝑛 + 1 − 𝑠 𝑛 + 1 ≤ 𝑠 ≤ 2𝑛 − 2

Lemma 4.4. Generators in the reduced basis of
⊕2𝑛−1

𝑠=0 𝐴𝑠 satisfy the following.

ΔI,J (𝛼𝑠 , 𝑏
(𝑠)
𝑛−1) =

(𝑛(𝑛 − 1)
2

,
𝑛(𝑛 − 1)

2
)
, 1 ≤ 𝑠 ≤ 𝑛 − 2 (32)

ΔI,J (𝛼𝑠 , 𝑏
(𝑠−1)
𝑛+1 ) =

(𝑛(𝑛 − 1)
2

,
𝑛(𝑛 − 1)

2
)
, 𝑛 + 2 ≤ 𝑠 ≤ 2𝑛 − 1 (33)

ΔI,J (𝛼𝑠 , 𝑏
(𝑠−1)
𝑛 ) =

(𝑛(𝑛 + 1)
2

− 𝑠 + 1,
𝑛(𝑛 + 1)

2
)
, 2 ≤ 𝑠 ≤ 𝑛 (34)

ΔI,J (𝛼𝑠 , 𝑏
(𝑠)
𝑛 ) =

(𝑛(𝑛 + 1)
2

,
𝑛(𝑛 − 1)

2
+ 𝑠 − 𝑛 + 1

)
, 𝑛 ≤ 𝑠 ≤ 2𝑛 − 2 (35)

ΔI,J (𝛼𝑛−1, 𝑏
(𝑛−1)
𝑛 ) =

(𝑛(𝑛 + 1)
2

,
𝑛(𝑛 − 1)

2
)
, (36)

ΔI,J (𝛼𝑛+1, 𝑏
(𝑛)
𝑛 ) =

(𝑛(𝑛 − 1)
2

,
𝑛(𝑛 + 1)

2
)
, (37)

ΔI,J (�̃�𝑠 , 𝑏
(𝑠)
𝑛−1) =

(
0, 𝑛 − 1 − 𝑠

)
, ΔI,J (�̃�𝑠 , 𝑏

(𝑠)
𝑛 ) =

(
𝑛, 0

)
, 1 ≤ 𝑠 ≤ 𝑛 − 2 (38)

ΔI,J (�̃�𝑠 , 𝑏
(𝑠)
𝑛 ) =

(
0, 𝑛

)
, ΔI,J (�̃�𝑠 , 𝑏

(𝑠)
𝑛+1) =

(
𝑠 − 𝑛, 0

)
, 𝑛 + 1 ≤ 𝑠 ≤ 2𝑛 − 2. (39)

Proof. We collect in Table 1 the filtrations of the generators in the reduced basis of
⊕2𝑛−1

𝑠=0 𝐴𝑠 from
Lemma 4.1. Note that 𝑔𝑏 (𝑛, 𝑛) = 0 and 𝑔𝑎 (𝑛, 𝑛) = −𝑛. The I filtrations of the generators are all 0 (so
this is, in fact, a reduced model of �𝐻𝐹𝐾.)

To show (32) and (33), first, by (28), we have ΔI (𝛼𝑠 , 𝑏
(𝑠)
𝑛−1) =

𝑛(𝑛−1)
2 . Compute

ΔJ (𝛼𝑠 , 𝑏
(𝑠)
𝑛−1) = J (𝛼𝑠) − J (𝑏 (𝑠)𝑛−1) +

𝑛(𝑛 − 1)
2

=
𝑛(𝑛 − 1)

2
,

which proves (32), and (33) follows from the symmetry given by Proposition 3.2.
To show (34) and (35), first, by (28) and (30), we have ΔI (𝛼𝑠 , 𝑏

(𝑠−1)
𝑛 ) = 𝑛(𝑛+1)

2 − 𝑠 + 1. Compute

ΔJ (𝛼𝑠 , 𝑏
(𝑠−1)
𝑛 ) = J (𝛼𝑠) − J (𝑏 (𝑠−1)

𝑛 ) +
𝑛(𝑛 + 1)

2
− 𝑠 + 1

=
𝑛(𝑛 + 1)

2
,

which proves (34), and (35) follows from the symmetry given by Proposition 3.2.
The rest of the results follow from similar computations and are left for the reader. �

When 𝑛 = 1 and 2, the local equivalence class of the complex 𝑋∞
𝑛 (−𝑇2𝑛,2𝑛+1) can be decided

following a similar vein. We record the result in the next lemma, and the computations are left to the
reader as an exercise.
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Figure 3. A reduced basis for the complex 𝑋∞
5 (−𝑇6,7)〈5〉, where the coordinates are given by I and J

filtrations. The generators are marked abstractly, without U powers. The edges represent the differentials;
the edge with ∗ depicts an instance of the fact that ΔI (𝛼𝑛, 𝑏

(𝑛)
𝑛 ) = ΔI (𝛼𝑛+1, 𝑏

(𝑛)
𝑛 ) + 𝑛.

Lemma 4.5. When 𝑛 = 1, the complex 𝑋∞
1 (−𝑇2,3) is locally trivial.

When 𝑛 = 2, the complex 𝑋∞
2 (−𝑇4,5) has a local complex characterized by the following.

𝜕𝛼1 = 𝑈3𝑏 (1)2 ,

𝜕𝛼2 = 𝑈2𝑏 (1)2 +𝑈3𝑏 (2)2 ,

𝜕𝛼3 = 𝑈𝑏 (1)2 ;

ΔI,J (𝛼1, 𝑏
(1)
2 ) = (3, 1),

ΔI,J (𝛼2, 𝑏
(1)
2 ) = (2, 3),

ΔI,J (𝛼2, 𝑏
(2)
2 ) = (3, 2),

ΔI,J (𝛼3, 𝑏
(2)
2 ) = (1, 3).
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