
Glasgow Math. J. 61 (2019) 231–248. C© Glasgow Mathematical Journal Trust 2018.
doi:10.1017/S0017089518000186.

FOURIER-TYPE TRANSFORMS ON
REARRANGEMENT-INVARIANT QUASI-BANACH

FUNCTION SPACES

KWOK-PUN HO
Department of Mathematics and Information Technology,

The Education University of Hong Kong, 10 Lo Ping Road,
Tai Po, Hong Kong, China
e-mail: vkpho@eduhk.hk

(Received 24 May 2017; revised 2 February 2018; accepted 23 February 2018; first published online
20 June 2018)

Abstract. We establish the mapping properties of Fourier-type transforms on
rearrangement-invariant quasi-Banach function spaces. In particular, we have the
mapping properties of the Laplace transform, the Hankel transforms, the Kontorovich-
Lebedev transform and some oscillatory integral operators. We achieve these mapping
properties by using an interpolation functor that can explicitly generate a given
rearrangement-invariant quasi-Banach function space via Lebesgue spaces.
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1. Introduction. The main theme of this paper is the mapping properties of the
Fourier-type transforms on rearrangement-invariant quasi-Banach function spaces.

We call a linear operator T a Fourier-type transform if there exist two pairs (pi, qi),
i = 0, 1, such that T is of strong type (pi, qi), i = 0, 1 with

a
pi

+ b
qi

= c,

for some a, b, c > 0.
It is easy to see that the above definition is motivated by the Hausdorff–Young

inequality of the Fourier transform, which states that

‖f̂ ‖Lp′ ≤ C‖f ‖p,

where f̂ is the Fourier transform of f and 1 ≤ p ≤ 2.
Other than the Fourier transform, there are a number of interesting examples of

Fourier-type transforms.
Recently, the Hausdorff–Young type inequalities for the Hankel transforms are

obtained in [3]. Moreover, the Hausdorff–Young inequalities for the Kontorovich–
Lebedev transform are established in [30]. For the Hausdorff–Young inequalities of
the oscillatory integral operators, see [19, Theorem 1.1].

Therefore, the Hankel transforms, the Kontorovich–Lebedev transform and
oscillatory integrals are Fourier-type transforms.
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In view of [13, Theorem 6.1], the Hausdorff–Young inequality for the Fourier
transform can be extended to rearrangement-invariant quasi-Banach function spaces
(r.i.q.B.f.s.). Notice that the r.i.q.B.f.s. includes the Lorentz spaces, the Orlicz spaces, the
Lorentz–Zygmund spaces and the Lorentz–Karamata spaces. Therefore, [13, Theorem
6.1] gives extensions of Hausdorff–Young inequalities to the above-mentioned function
spaces. In addition, the study of r.i.q.B.f.s. has been further extended to ball quasi-
Banach function spaces, see [27].

Moreover, the mapping properties of the generalized Hankel conjugate
transformations, which are operators defined via the Hankel transform, on
rearrangement-invariant Banach function spaces are established in [21].

Therefore, it motivates us to study the mapping properties of Fourier-type
transforms on r.i.q.B.f.s.

In this paper, we employ the interpolation functor used in [13] to obtain our
main results. As shown in [13], this interpolation functor can generate the function
spaces involved in the mapping properties on Fourier transform. The main result in
this paper shows that the function spaces needed for the mapping properties of the
Laplace transform, the Hankel transform, the Kontorovich–Lebedev transform and
the oscillatory integral operator can also be generated by this interpolation functor.

This paper is organized as follows. Some preliminary results for r.i.q.B.f.s. are
presented in Section 2. In Section 3, we introduce the interpolation functor used to
prove our main result. A new family of function spaces used to characterize the mapping
properties of the Laplace transform, the Hankel transform, the Kontorovich–Lebedev
transform and the oscillatory integral operator is also introduced in Section 3. The main
result for interpolation of operators is presented and proved in Section 4. The mapping
properties of the Laplace transform, the Hankel transform, the Kontorovich–Lebedev
transform and the oscillatory integral operator are established in Section 5. We present
the application of our main results on Lorentz–Karamata spaces in Section 6.

2. Preliminaries. For any σ -finite measure μ, let M(μ) be the set of μ-
measurable functions. WriteM(0,∞) andM(�n) to be the classes of Lebesgue measur-
able functions on (0,∞) and �n, respectively. For any 1 ≤ p ≤ ∞, let Lp(μ) be the
Lebesgue spaces with respect to μ. In particular, let Lp(0,∞) and Lp(�n) denote the
Lebesgue spaces on (0,∞) and �n, respectively.

For any f ∈ M(μ) and s > 0, write

df (s) = μ({x ∈ �n : |f (x)| > s}),
and

f ∗
μ (t) = inf{s > 0 : df (s) ≤ t}, t > 0.

We say that f and g are equimeasurable, if df (s) = dg(s) for all s > 0. We write
f ≈ g if

Bf ≤ g ≤ Cf,

for some constants B, C > 0 independent of appropriate quantities involved in the
expressions of f and g.

We recall the definition of rearrangement-invariant quasi-Banach function space
(r.i.q.B.f.s.) from [12, Definition 4.1].
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DEFINITION 2.1. Let μ be a σ -finite measure. A quasi-Banach space X ⊂ M(μ)
is called a rearrangement-invariant quasi-Banach function space on μ if there exists a
quasi-norm ρX : M(0,∞) → [0,∞] satisfying

(1) ρX (f ) = 0 ⇔ f = 0 a.e.,
(2) |g| ≤ |f | a.e. ⇒ ρX (g) ≤ ρX (f ),
(3) 0 ≤ fn ↑ f a.e. ⇒ ρX (fn) ↑ ρX (f ),
(4) χE ∈ M(0,∞) and |E| < ∞ ⇒ ρX (χE) < ∞,
so that

‖f ‖X = ρX (f ∗
μ ), ∀f ∈ X. (1)

Write

X̄ = {g ∈ M(0,∞) : ρX (g) < ∞}.

It is obvious that X̄ is a quasi-Banach space.
Furthermore, a Banach space X ⊂ M(μ) is a Banach function space if ‖ · ‖X is a

norm and satisfies Items (1)–(3),

χE ∈ M(μ) and μ(E) < ∞ ⇒ χE ∈ X (2.2)

and

χE ∈ M(μ) and μ(E) < ∞ ⇒
∫

E
f dμ ≤ CE‖f ‖X , (2.3)

for some CE > 0.
Moreover, X is a rearrangement-invariant Banach function space (r.i.B.f.s) if X is

a Banach function space and for any equimeasurable functions f and g, ‖f ‖X = ‖g‖X .
Whenever X is a r.i.B.f.s. on μ, the Luxemburg representation theorem [1, Chapter

2, Theorem 4.10] assures the existence of ρX for X . For the uniqueness of ρX , the reader
is referred to [1, p. 64].

For any s ≥ 0 and f ∈ M(0,∞), define (Dsf )(t) = f (st), t ∈ (0,∞). Let ‖Ds‖X̄→X̄
be the operator norm of Ds on X̄ . We recall the definition of Boyd’s indices for r.i.q.B.f.s.
from [23].

DEFINITION 2.2. Let X be a r.i.q.B.f.s. on μ. Define the lower Boyd index of X , pX ,
and the upper Boyd index of X , qX , by

pX = sup{p > 0 : ∃C > 0 such that ∀ 0 ≤ s < 1, ‖Ds‖X̄→X̄ ≤ Cs−1/p},
qX = inf{q > 0 : ∃C > 0 such that ∀ 1 ≤ s, ‖Ds‖X̄→X̄ ≤ Cs−1/q},

respectively.

The Boyd indices of the Lorentz space Lp,q are pLp,q = qLp,q = p. In addition, the
reader is referred to [1] for the Boyd indices of the Orlicz space.

Let X be a r.i.q.B.f.s. on μ. For any 0 < p < ∞, the p-convexification of X , Xp is
defined by

Xp = {f : |f |p ∈ X}.
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We equip Xp with the quasi-norm ‖f ‖Xp = ‖|f |p‖1/p
X . For a complete account of the p-

convexification, the reader may consult [22, Volumne II, p. 53–53] for the case 1 ≤ p <

∞ and [25, Section 2.2] for the general case. Notice that in [25], the p-convexification
of X is called as the 1

p th power of X .
Next, we recall another index for r.i.q.B.f.s. It is used in the proof of the

interpolation theorem.
For any r.i.q.B.f.s. X , according to Aoki–Rolewicz theorem [20, Theorem 1.3],

there exists a κX ∈ (0, 1] such that ρ
κX
X is sub-additive. That is,

ρ
κX
X (f + g) ≤ ρ

κX
X (f ) + ρ

κX
X (g).

3. Interpolation functor. In this section, we first introduce the interpolation
functor used in Section 4 to establish the mapping properties of the Fourier-type
transforms.

The definition of this interpolation functor requires the notion of category and
compatible couples. For brevity, we refer the reader to [29, Section 1.2] for details of
category and compatible couples.

We recall the definition of K-functional from [1, Section 3.1] and [29, Section
1.3.1].

DEFINITION 3.1. Let (X0, X1) be a compatible couple of quasi-normed spaces. For
any f ∈ X0 + X1, the K-functional is defined as

K(f, t, X0, X1) = inf{‖f0‖X0 + t‖f1‖X1 : f = f0 + f1},
where the infimum is taken over all f = f0 + f1 for which fi ∈ Xi, i = 0, 1.

We introduce the interpolation functor used in [13].

DEFINITION 3.2. Let μ be a σ -finite measure. Let 0 < θ, r < ∞ and X be a
r.i.q.B.f.s. on μ. Let (X0, X1) be a compatible couple of quasi-normed spaces. The
space (X0, X1)θ,r,X consists of all f in X0 + X1 such that

‖f ‖(X0,X1)θ,r,X = ρX (t−
1
r K(f, t

1
θ , X0, X1)) < ∞ (3.1)

where ρX is the quasi-norm given in (1).

We now present one of main results from [13], it guarantees that (X0, X1)θ,r,X is
indeed an interpolation functor.

THEOREM 3.1. Let μ be a σ -finite measure. Let 0 < θ, r < ∞ and X be a r.i.q.B.f.s.
on μ with 0 < pX ≤ qX < ∞. If 1

qX
+ 1

θ
> 1

r and r < pX , then (·, ·)θ,r,X is an interpolation
functor.

In addition, if (X0, X1) and (Y0, Y1) are compatible couples of quasi-normed spaces
and T is a linear operator such that

‖Tf ‖Yi ≤ Mi‖f ‖Xi , i = 0, 1. (3.2)

Then, for any ε, there exists a constant Cε > 0 independent of Mi, i = 0, 1 such that

‖Tf ‖(Y0,Y1)θ,r,X ≤ CεM‖f ‖(X0,X1)θ,r,X , (3.3)
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where

M =
(M1

M0

) θ
r
M0 max

((M1

M0

)− θ
pX

+ε

,
(M1

M0

)− θ
qX

−ε)
. (3.4)

For the proof of the above theorem, the reader is referred to [13, Theorem 4.1].
The subsequent result assures that X can be generated from Lebesgue spaces and

the functor (·, ·)θ,r,X .

PROPOSITION 3.2. Let 0 < p0 < p1 < ∞, μ be a σ -finite measure and X be a
r.i.q.B.f.s. on μ with 0 < pX ≤ qX < ∞. Suppose that p0 and p1 satisfy p1 > qX , p0 < pX

and 1
θ

= 1
p0

− 1
p1

. Then

(Lp0 (μ), Lp1 (μ))θ,p0,X = X.

For the proof of the above proposition, the reader is referred to [13, Corollary
4.3]. Even though the proof in [13] is presented for Lebesgue measure, it is still valid
for function spaces defined on the σ -finite measure μ.

We now introduce the function spaces used to characterize the mapping properties
of the Laplace transform, the Hankel transform, the Kontorovich-Lebedev transform
and some oscillatory integral operators.

DEFINITION 3.3. Let β > 0, γ ≥ 0 and μ, ν be σ -finite measures. For any r.i.q.B.f.s.
X on μ, the set X̂β,γ (ν) consists of all f ∈ M(ν) such that

‖f ‖X̂β,γ (ν) = ρX (t−γ f ∗
ν (t−β)) < ∞.

When μ and ν are Lebesgue measures and X = Lp(�n), 1 ≤ p < ∞, we find that

‖f ‖Lp(�n) =
( ∫ ∞

0
f ∗(t)pdt

)1/p
.

Therefore,

‖f ‖L̂p
β,γ (�n) =

( ∫ ∞

0
(t−γ f ∗(t−β))pdt

)1/p
.

By using the change of variable t = s−1/β , we obtain

‖f ‖L̂p
β,γ (�n) =

( 1
β

∫ ∞

0
sγp/β(f ∗(s))ps− 1

β
−1ds

)1/p

=
( 1
β

∫ ∞

0
s

γp−1
β (f ∗(s))p ds

s

)1/p
.

That is, when γ > 1
p , L̂p

β,γ (�n) is the Lorentz space Lq,p(�n) where q = γp−1
βp . Therefore,

X̂β,γ (�n) can be considered as the Lorentz space associated with X .
Moreover, for γ = 1, we have X̂β,1(�n) = X̂β where X̂β is introduced in [13,

Definition 3.2]. In [13, Section 6], the function space X̂β is used to characterize the
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mapping properties of the Fourier transform, the oscillatory integral operator and the
restriction theorem on r.i.q.B.f.s. In particular, we find that

‖f̂ ‖X̂1
≤ C‖f ‖X , (3.5)

if the Boyd’s indices of the r.i.q.B.f.s. X satisfy

1 < pX ≤ qX < 2, (3.6)

see [13, Theorem 6.1].
In particular, we can obtain the mapping properties of the Fourier transform for

Orlicz spaces whenever the Boyd’s indices of the Orlicz spaces are strictly in between
1 and 2. Notice that there exists a sharp estimate of the mapping properties of the
Fourier transform for Orlicz spaces in the terms of the Paley–Titchmarsh inequalities
[11, Theorem 2.6].

The interpolation method given in this paper cannot regenerate this sharp result.
On the other hand, in [11], the sharp estimate is obtained by an interpolation method
for quasi-linear operator of weak type (a, a) and weak type (b, b), 1 ≤ a < b < ∞, see
[11, Theorem 2.1].

Therefore, the method given in [11] cannot be applied to linear operators T of
strong type (pi, qi), i = 0, 1 with

a
pi

+ b
qi

= c,

for some a, b, c > 0, which are the mapping properties satisfied by the Laplace
transform, the Hankel transforms, the Kontorovich–Lebedev transform and the
oscillatory integral operator.

The following theorem shows that whenever γ > 1
pX

, X̂β,γ (ν) is a r.i.q.B.f.s.

THEOREM 3.3. Let β > 0, γ > 0 and μ, ν be σ -finite measures. If X is a r.i.q.B.f.s
on μ with 1 < pX ≤ qX < ∞ and

γ >
1

pX
,

then X̂β,γ (ν) is a r.i.q.B.f.s. on ν.

Proof. Items (1)–(3) of Definition 2.1 are obviously fulfilled.
It suffices to show that ‖ · ‖X̂β,γ (ν) is a quasi-norm and it satisfies Item (4) of

Definition 2.1.
Since

(f + g)∗ν(t) ≤ f ∗
ν (t/2) + g∗

ν(t/2), ∀t > 0,

we find that

t−γ (f + g)∗ν(t−β) ≤ t−γ f ∗
ν (t−β/2) + t−γ g∗

ν(t−β/2).

Consequently, that ‖ · ‖X̂β,γ (ν) is a quasi-norm follows from the assumption qX < ∞.
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For the proof of Item (4) of Definition 2.1, it suffices to consider E = (0, b), b > 0.
Let c = b−β . We find that

ρ
κX
X (t−γ χ(0,b)(t−β)) = ρ

κX
X (t−γ χ(c,∞)(t))

≤
∞∑

k=0

ρ
κX
X (t−γ χ(2kc,2k+1c](t))

≤ C
∞∑

k=0

2−kγ κX ρ
κX
X ((D2−kχ(c,2c])(t))

≤ C
∞∑

k=0

2−kγ κX 2κX k( 1
pX

−ε)
ρ

κX
X (χ(c,2c](t)).

Therefore, the assumption 1
pX

< γ yields an ε > 0 such that 1
pX

− ε < γ . Consequently,
‖ · ‖X̂β,γ (ν) fulfils Item (4) of Definition 2.1. �

4. Interpolation of operators. We present a general interpolation theory that is
tailored for the Fourier-type transforms in this section.

We first establish an interpolation result of Lebesgue spaces by using the functor
(·, ·)θ,r,X . The following theorem shows that the interpolation functor (·, ·)θ,r,X is not
introduced to offer some abstract existing results. The following theorem shows that
X̂β,γ (ν) can be generated from Lebesgue spaces via the functor (·, ·)θ,r,X .

THEOREM 4.1. Let μ, ν be σ -finite measures. Let 0 < θ, r < ∞, 0 < u0 < u1 < ∞
and X be a r.i.q.B.f.s. on μ. Let η satisfies

1
η

= 1
u0

− 1
u1

. (4.1)

Suppose that

1
r

>
1

pX
≥ 1

qX
>

1
r

− 1
θ
. (4.2)

If

1
r

− 1
θ

+ η

θu0
>

1
pX

, (4.3)

then

(Lu1 (ν), Lu0 (ν))θ,r,X = X̂β,γ (ν), (4.4)

where

β = η

θ
and γ = 1

r
− 1

θ
+ η

θu0
.

Proof. As

γ = 1
r

− 1
θ

+ η

θu0
>

1
pX

,
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Theorem 3.3 guarantees that X̂β,γ (ν) is a r.i.q.B.f.s.
Since

K(f, t, Lu1 (ν), Lu0 (ν)) = tK(f, t−1, Lu0 (ν), Lu1 (ν)),

the Holmstedt formulas for Lebesgue spaces [17] gives

t−
1
r K(f, t

1
θ , Lu1 (ν), Lu0 (ν)) = t−

1
r t

1
θ K(f, t−

1
θ , Lu0 (ν), Lu1 (ν))

≈ t−
1
r + 1

θ

(∫ t−
η
θ

0
(f ∗

ν (s))u0 ds

) 1
u0

+ t−
1
r

( ∫ ∞

t−
η
θ

(f ∗
ν (s))u1 ds

) 1
u1

.

We find that

ρX (t−
1
r K(f, t

1
θ , Lu1 (ν), Lu0 (ν)))

≤ CρX

(
t−

1
r + 1

θ

( ∫ t−
η
θ

0
(f ∗

ν (s))u0 ds
) 1

u0
)

+ CρX

(
t−

1
r

( ∫ ∞

t−
η
θ

(f ∗
ν (s))u1 ds

) 1
u1

)

= CρX

(
t−

1
r + 1

θ
− η

θu0

( ∫ 1

0
(f ∗

ν (st−
η

θ ))u0 ds
) 1

u0
)

+ CρX

(
t−

1
r − η

θu1

( ∫ ∞

1
(f ∗

ν (st−
η

θ ))u1 ds
) 1

u1
)

= I + II

for some C > 0.
We first deal with I . Since f ∗

ν is non-increasing, we obtain

I ≤ Cρ
1

u0

X
1

u0

(
t−

u0
r + u0

θ
− η

θ

∫ 1

0
(f ∗

ν (st−
η

θ ))u0 ds
)

≤ Cρ
1

u0

X
1

u0

( 0∑
j=−∞

t−
u0
r + u0

θ
− η

θ 2j−1(f ∗
ν (2j−1t−

η

θ ))u0

)

≤ Cρ
1

u0

X
1

u0

( 0∑
j=−∞

2(j−1) θ
η

(− u0
r + u0

θ
)(D2(−j+1)θ/η F)(t)u0

)
,

where F(t) = t−
1
r + 1

θ
− η

θu0 f ∗
ν (t−

η

θ ).
According to the Aoki–Rolewicz theorem, we have a 0 < κ0 ≤ 1 such that ρ

κ0

X
1

u0
is

sub-additive. Consequently,

Iu0κ0 ≤ Cρ
κ0

X
1

u0

( 0∑
j=−∞

2(j−1) θ
η

(− u0
r + u0

θ
)(D2(−j+1)θ/η F)(t)u0

)

≤ C
∞∑

j=0

2(−j−1) θ
η

(− u0
r + u0

θ
)κ0 (ρX (D2(j+1)θ/η F))u0κ0 .
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For any ε > 0, the definition of Boyd’s index qX yields

Iu0κ0 ≤ C
∞∑

j=0

2(−j−1) θ
η

(− u0
r + u0

θ
)κ0 2− jθu0κ0

η(qX +ε) ρX (F)u0κ0 .

Thus, (4.2) guarantees that there exists an ε > 0 such that − 1
r + 1

θ
+ 1

qX +ε
> 0.

Consequently,

Iu0κ0 ≤ CρX (F)u0κ0 . (4.5)

We consider II . The Aoki–Rolewicz theorem gives a 0 < κ1 ≤ 1 such that ρ
κ1

X
1

u1
is

sub-additive. Consequently,

IIu1κ1 ≤ Cρ
κ1

X
1

u1

( ∞∑
j=0

2−j θ
η

u1
r (D2−jθ/η F)(t)u1

)

≤ C
∞∑

j=0

2−j θ
η

u1κ1
r ρ

κ1

X
1

u1

(
(D2−jθ/η F)(t)u1

)
,

because (4.1) gives

F(t) = t−
1
r + 1

θ
− η

θu0 f ∗
ν (t−

η

θ ) = t−
1
r − η

θu1 f ∗
ν (t−

η

θ ).

The definition of Boyd’s index pX assures that for any pX > ε > 0, we have

IIu1κ1 ≤ C
0∑

j=−∞
2j θ

η

u1κ1
r ρX (D2jθ/η F)u1κ1

≤ C
0∑

j=−∞
2j θ

η

u1κ1
r 2−j θu1κ1

η(pX −ε) ρX (F)u1κ1 .

Therefore, (4.2) provides an ε > 0 such that 1
r > 1

pX −ε
. Consequently, we find that

IIu1κ1 ≤ ρX (F)u1κ1 . (4.6)

Since ρX (F) = ρX (t−
1
r + 1

θ
− η

θu0 f ∗
ν (t−

η

θ )) = ‖f ‖X̂β,γ (ν), (4.5) and (4.6) yield the embedding

X̂β,γ (ν) ↪→ (Lu1 (ν), Lu0 (ν))θ,r,X .
Next, since f ∗

ν is non-increasing, we get

ρX (t−
1
r K(f, t

1
θ , Lu1 (ν), Lu0 (ν))) ≥ CρX

(
t−

1
r + 1

θ

( ∫ t−
η
θ

0
(f ∗

ν (s))u0 ds
) 1

u0
)

≥ CρX

(
t−

1
r + 1

θ
− η

θu0 f ∗
ν (t−

η

θ )
)
.

Thus, the embedding (Lu1 (ν), Lu0 (ν))θ,r,X ↪→ X̂β,γ (ν) is also valid. Hence, we establish
(4.4). �

The above theorem is a complementary result of [13, Theorem 4.2].
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We are now to apply the above theorem to obtain the mapping properties for the
Fourier type transforms on r.i.q.B.f.s.

THEOREM 4.2. Let μ, ν be σ -finite measures. Let a, b, c, p0, p1 > 0 and X be a
r.i.q.B.f.s. on μ with p0 < pX ≤ qX < p1. Suppose that the linear operator T : Lpi (μ) →
Lqi (ν), i = 0, 1, are bounded where

a
pi

+ b
qi

= c, i = 0, 1. (4.7)

Then, T can be extended to be a bounded linear operator from X to X̂ b
a , c

a
(ν).

Proof. Let 1
θ

= 1
p0

− 1
p1

and r = p0. Corollary 3.2 yields that

(Lp0 (μ), Lp1 (μ))θ,p0,X = X.

In view of Theorem 3.1, it remains to show that

(Lq0 (ν), Lq1 (ν))θ,p0,X = X̂ b
a , c

a
(ν).

Notice that q1 < q0. We are going to apply Theorem 4.1 with u0 = q1 and u1 = q0.
Thus, 1

η
= 1

q1
− 1

q0
. Since

a
p0

+ b
q0

= a
p1

+ b
q1

,

we find that a
θ

= b
η
. That is, η

θ
= b

a .
Therefore,

1
r

= 1
p0

>
1

pX

and

1
qX

>
1
p1

= 1
p0

−
(

1
p0

− 1
p1

)
.

Furthermore, (4.7) with i = 0 gives c
a > 1

p0
. Consequently, we have

1
r

− 1
θ

+ η

θu0
= 1

p1
+ b

aq1
= 1

a

(
a
p1

+ b
q1

)
= c

a
>

1
p0

>
1

pX
.

Therefore, the conditions in Theorem 4.1 are fulfilled. Since

β = η

θ
= b

a
and

1
r

− 1
θ

+ η

θu0
= c

a
,

Theorems 3.1 and 4.1 yield the boundedness of T : X → X̂ b
a , c

a
(ν). �

Notice that the Kontorovich–Lebedev transform maps Lp(0,∞) to

Lp(dt/t) =
{

f ∈ M(0,∞) :
∫ ∞

0
|f (t)|pdt/t < ∞

}
,
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see Section 5.2. This is the main motivation why we consider the operators that maps
Lp(μ) to Lq(ν) with different σ -finite measures μ and ν in Theorem 4.2.

In Theorem 4.2, we just consider the case (4.7). The idea of the proof can be
applied to those bounded linear operators T : Lp → Lq with a

p = b
q + c, a, b > 0, see

[16]. Moreover, the above idea can be further extended to the linear operator on Hardy
spaces, see [13, 14].

5. Fourier-type transforms. In this section, as applications of Theorem 4.2, we
obtain the mapping properties for some concrete transforms on r.i.q.B.f.s.

5.1. Laplace transform. For any f ∈ M(0,∞), the Laplace transform of f is
given by

Lf (s) =
∫ ∞

0
e−stf (t)dt.

It is easy to see that L : L1(0,∞) → L∞(0,∞) is bounded. According to [8, p.189],
L is bounded on L2(0,∞).

Notice that the pairs (p0, q0) = (1,∞) and (p1, q1) = (2, 2) satisfy

1
pi

+ 1
qi

= 1, i = 0, 1.

Therefore, Theorem 4.2 gives the following result.

THEOREM 5.1. Let X be a r.i.q.B.f.s. on (0,∞) with 1 < pX ≤ qX < 2. The Laplace
transform L is bounded from X to X̂1,1(0,∞).

5.2. Kontorovich–Lebedev transform. The mapping properties of the
Kontorovich–Lebedev transform give us an example for which the σ -finite measures
μ and ν are different.

Let Kν(z) be the modified Bessel function of the second kind. The Kontorovich–
Lebedev transform is defined as

KLf (x) = 2
∫ ∞

0
Kiτ (2

√
x)f (τ )τdτ.

According to [30, Section 2, Theorem 1], we have the following Lp boundedness of
the Kontorovich–Lebedev transform. Let dt denote the Lebesgue measure on (0,∞).

THEOREM 5.2. Let 1 ≤ p ≤ 2. The Kontorovich–Lebedev transform is bounded from
Lp(0,∞) to Lp′

(dt/t).

Similar to the Fourier transform and the Laplace transform, we have the mapping
properties of the Kontorovich–Lebedev transform on r.i.q.B.f.s.

By applying Theorem 4.2 with dμ = dt and dν = dt/t, we obtain the following
theorem.

THEOREM 5.3. Let X be a r.i.q.B.f.s. on (0,∞) with 1 < pX ≤ qX < 2. The
Kontorovich–Lebedev transform KL is bounded from X to X̂1,1(dt/t).

https://doi.org/10.1017/S0017089518000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000186


242 KWOK-PUN HO

5.3. Hankel transforms. The studies of the Hankel transforms offer an example
for which the constant c �= 1 in Theorem 4.2.

Let α ≥ − 1
2 and v, u ∈ �. The operator Lα

v,u is defined by

Lα
v,uf (y) = yu

∫ ∞

0
(xy)vf (x)Jα(xy)dy. (5.1)

where Jα(r) is the Bessel function of the first kind. The family of operators {Lα
v,u}

includes a number of operators used in analysis. For instance, if we denote the Fourier
transform of f (|x|) by f̂ (|ξ |), then

f̂ (|ξ |) = (2π )n/2L
n
2 −1
n
2 ,1−nf (|ξ |). (5.2)

According to [10], for any α > −1, the operator Lα
α+1,−2α−1 is named as the Hankel

transform. Noticed that Lα
α+1,−2α−1 = H̃α is also called as the Fourier-Bessel transform

of order α in [4]. Moreover,

Hαf = Lα
1
2 ,0f =

∫ ∞

0
f (t)(xt)

1
2 Jα(xt)dt,

is the so-called Hankel transform of order α.
Therefore, the family of operators {Lα

v,u} contains those operators related to the
Hankel transform.

We now state the mapping properties of the operator Lα
v,u from [3, Theorem 1.1].

THEOREM 5.4. Let u, v ∈ �, α ≥ − 1
2 and 1 ≤ p ≤ q ≤ ∞. The operator Lα

v,u is
bounded from Lp(0,∞) to Lq(0,∞) if and only if

u = 1 − 1
p

− 1
q
, and − α − 1 + 1

p
< v ≤ 1

2
− max{u, 0}. (5.3)

Since 1 ≤ p ≤ q and

1
p

+ 1
q

= 1 − u,

we find that the conditions in the above theorem impose a restriction on u. Precisely, u
satisfies −1 ≤ u ≤ 1.

Additionally, for any fixed u, we have

1
p

≤ 1
p

+ 1
q

= 1 − u.

Since 1 ≤ p ≤ q, we also have

2
p

≥ 1
p

+ 1
q

= 1 − u.

Therefore, the conditions in Theorem 5.4 show that u and p fulfil

1 − u
2

≤ 1
p

≤ 1 − u. (5.4)
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With the above preparations, we now ready to present the mapping properties of
Lα

v,u on r.i.q.B.f.s.

THEOREM 5.5. Let −1 < u < 1, v ∈ � and α ≥ − 1
2 . Let X be a r.i.q.B.f.s. on (0,∞)

with

1 − u
2

<
1

qX
≤ 1

pX
< 1 − u (5.5)

−α − 1 + 1
pX

< v ≤ 1
2

− max{u, 0}. (5.6)

The operator Lα
v,u is bounded from X to X̂1,1−u(0,∞).

Proof. As 1 − u > 1
pX

, Theorem 3.3 assures that X̂1,1−u is a r.i.q.B.f.s. Take 1 <

p0 < p1 < ∞ such that p0 < pX ≤ qX < p1, 1−u
2 < 1

p1
< 1

p0
< 1 − u and

−α − 1 + 1
p0

< v ≤ 1
2

− max{u, 0}.

Let q0, q1 satisfy

1
q0

= 1 − 1
p0

− u, and
1
q1

= 1 − 1
p1

− u. (5.7)

Notice that q0 > q1.
Since 1−u

2 < 1
p1

, we find that 2
p1

> 1 − u and hence,

1
p1

> 1 − 1
p1

− u = 1
q1

.

That is, q1 > p1. Similarly, as 1−u
2 < 1

p0
, we also have

1
p0

> 1 − 1
p0

− u = 1
q0

.

That is, q0 > p0.
Therefore, Theorem 5.4 assures that Lα

v,u : Lp0 → Lq0 and Lα
v,u : Lp1 → Lq1 are

bounded.
Since Lα

v,u is of strong type (pi, qi), i = 0, 1 where

1
pi

+ 1
qi

= 1 − u, i = 0, 1.

With a = b = 1 and c = 1 − u, Theorem 4.2 yield the boundedness of Lα
v,u : X →

X̂1,1−u(0,∞). �

When X is the Lebesgue space Lp(0,∞), aside from the boundary points 1
p = 1 − u

and 1
p = 1−u

2 , (5.5) becomes (5.4).
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We give an application of Theorem 5.5 on the Hankel transform of order α, Hα.
According to Theorem 5.5, for any r.i.q.B.f.s. on (0,∞), X satisfying

1
2

<
1

qX
≤ 1

pX
< 1, (5.8)

we have

‖Hαf ‖X̂1,1(0,∞) ≤ ‖f ‖X . (5.9)

We find that the mapping properties for the Fourier transform is the same as the
Hankel transform of order α (5.8), (5.9).

Furthermore, for α > − 1
2 , Theorem 5.5 also yields the mapping properties of the

Fourier-Bessel transform of order α, H̃α = Lα
α+1,−2α−1. Precisely, whenever a r.i.q.B.f.s.

on (0,∞), X satisfies

1 + α <
1

qX
≤ 1

pX
< 2 + 2α,

then

‖H̃αf ‖X1,2+2α(0,∞) ≤ C‖f ‖X ,

for some C > 0.
For the modular inequalities for Hankel transforms, the reader is referred to [15].

5.4. Oscillatory integrals. In [13, Section 6], we investigate the boundedness of
some oscillatory integral operators on r.i.q.B.f.s. In this section, we study another class
of oscillatory integral operators with singularities different from the one appeared in
[13]. This class of oscillatory integral operators gives us an application of Theorem 4.2
with b �= 1.

Let a(x, y, z) ∈ C∞
0 (�3). Let φ(x, y, z) ∈ C∞(�3) be real valued and the Jacobian

D( ∂φ

∂z ,
∂2φ

∂z2 )/D(x, y) is non-zero in suppa. For any f ∈ C∞
0 (�) and λ > 0, the oscillatory

integral operator Tλ is defined as

Tλf (x, y) =
∫

eiλφ(x,y,z)a(x, y, z)f (z)dz.

We have the Lp boundedness of Tλ from [19, Theorem 1.2].

THEOREM 5.6. Let 1 ≤ p < 4. The oscillatory integral operator Tλ : Lp(�) →
Lq(�2) is bounded where

1
p

+ 3
q

= 1.

By using Theorem 4.2, we can extend the above result to r.i.q.B.f.s.

THEOREM 5.7. Let λ > 0 and X be a r.i.q.B.f.s. on � with 1 < pX ≤ qX < 4. The
oscillatory integral operator Tλ is bounded from X to X̂3,1(�2).
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Proof. Let p0 = 1. According to Theorem 5.6, Tλ : L1(�) → L∞(�2). Next, pick
p1 satisfying qX < p1 < 4. Theorem 5.6 assures that Tλ : Lp1 (�) → Lq1 (�2) is bounded
where

1
p1

+ 3
q1

= 1.

Therefore, by applying Theorem 4.2 with a = c = 1 and b = 3, we establish the
boundedness of Tλ : X → X̂3,1(�2). �

6. Lorentz–Karamata spaces. Finally, we apply the above results to the Lorentz–
Karamata space. The family of Lorentz–Karamata spaces includes Lebesgue
spaces, Lorentz spaces, Lorentz–Zygmund spaces and generalized Lorentz–Zygmund.
Therefore, the followings give the mapping properties of Lα

v,u on the above-mentioned
function spaces.

To give the definition of Lorentz–Karamata spaces, we recall the notion of slowly
varying function from [7, Definition 3.4.32].

We say that the function f : [1,∞) → (0,∞) is equivalent to a function g :
[1,∞) → (0,∞) if there exist constants B, C > 0 such that

Cg(t) ≤ f (t) ≤ Bg(t), t ≥ 1.

DEFINITION 6.1. A Lebesgue measurable function b : [1,∞) → (0,∞) is called as
a slowly varying function if for any given ε > 0, tεb(t) and t−εb(t) are equivalent to a
non-decreasing function and a non-increasing function, respectively.

Let a > 0. Whenever b is a slowly varying function, ba(t) = b(ta) is also a slowing
varying function [7, Proposition 3.4.33 (viii)].

For any slowly varying function b, define γb : (0,∞) → (0,∞) by

γb(t) = b(max{t, 1/t}), t > 0.

We are now ready to define the Lorentz–Karamata space [7, Definition 3.4.38].

DEFINITION 6.2. Let μ be a σ -finite measure. Let 1 < p, q < ∞ and b be a slowly
varying function. The Lorentz–Karamata space Lp,q,b(μ) consists of those Lebesgue
measurable function f satisfying

‖f ‖Lp,q,b(μ) =
(∫ ∞

0
(t1/pγb(t)f ∗

μ(t))q dt
t

)1/q

< ∞.

The Lorentz–Karamata space Lp,q,b(μ) is a r.i.B.f.s., see [7, Theorem 3.4.41]. For the
studies of interpolation and the Hausdorff–Young inequality on Lorentz–Karamata
spaces on �n, the reader is referred to [9]. Furthermore, we refer the reader to [7, 6, 24]
for some comprehensive accounts and discussions on Lorentz–Karamata spaces.

Next, we compute the Boyd’s indices of Lorentz–Karamata spaces.

PROPOSITION 6.1. Let 1 < p, q < ∞ and b be a slowly varying function. The lower
and upper Boyd’s indices of Lp,q,b(μ) are p.

Proof. It suffices to consider the case where μ is the Lebesgue measure on (0,∞).
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For any s > 1, we find that

(∫ ∞

0
(t1/pγb(t)f ∗

μ (st))q dt
t

)1/q

=
(∫ ∞

0
(t1/pγb(t)f ∗

μ (st))q dt
t

)1/q

=
(∫ ∞

0
((ys−1)1/pγb(ys−1)f ∗

μ (y))q dy
y

)1/q

,

where we use the change of variable y = st.
In view of [7, Proposition 3.4.33 (ii)], for any ε > 0, tεγb(t) is equivalent to a

non-decreasing function. Hence,

(∫ ∞

0
(t1/pγb(t)f ∗

μ(st))q dt
t

)1/q

=
(∫ ∞

0
((ys−1)

1
p −ε(ys−1)εγb(ys−1)f ∗

μ (y))q dy
y

)1/q

≤ C
(∫ ∞

0
((ys−1)

1
p −εyεγb(y)f ∗

μ (y))q dy
y

)1/q

= Cs− 1
p +ε

(∫ ∞

0
y

1
p γb(y)f ∗

μ (y))q dy
y

)1/q

.

That is, for any ε > 0,

‖Ds‖Lp,q,b(0,∞)→Lp,q,b(0,∞) ≤ Cs− 1
p +ε

.

Hence, qLp,q,b ≤ p.
Similarly, [7, Proposition 3.4.33 (ii)] guarantees that for any ε > 0, t−εγb(t) is

equivalent to a non-increasing function. We obtain

(∫ ∞

0
(t1/pγb(t)f ∗

μ(st))q dt
t

)1/q

=
(∫ ∞

0
((ys−1)

1
p +ε(ys−1)−εγb(ys−1)f ∗

μ (y))q dy
y

)1/q

≥ C
(∫ ∞

0
((ys−1)

1
p +εy−εγb(y)f ∗

μ (y))q dy
y

)1/q

= Cs− 1
p −ε

(∫ ∞

0
y

1
p γb(y)f ∗

μ (y))q dy
y

)1/q

.

The above inequalities yield ‖Ds‖Lp,q,b(0,∞)→Lp,q,b(0,∞) ≥ Cs− 1
p −ε and, hence, qLp,q,b ≥ p.

Therefore, qLp,q,b(0,∞) = p. Since the proof of pLp,q,b(0,∞) = p is similar to the proof
of qLp,q,b(0,∞) = p, for brevity, we leave the detail of the proof of pLp,q,b(0,∞) = p to the
reader. �

For any β > 0, we have

γb(t−
1
β ) = b(max{t, 1/t} 1

β ) = γb1/β (t).
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Consequently, when λ > 1
p ,

‖f ‖(L̂p,q,b)β,λ(μ) =
(∫ ∞

0
(t1/pγb(t)t−λf ∗

μ (t−β))q dt
t

)1/q

=
(∫ ∞

0
s− 1

pβ γb(s− 1
β )s

λ
β f ∗

μ (s)
ds
s

)1/q

,

where we use the change of variable s = t−β .
Therefore, we find that (L̂p,q,b)β,λ(μ) = Lr,q,b1/β (μ) where 1

r = λ − 1
p .

We have the following results for the Laplace transform and the Kontorovich–
Lebedev transform on Lorentz–Karamata spaces.

COROLLARY 6.2. Let 1 < p < 2, 1 < q < ∞ and b be a slowly varying function. The
Laplace transform is bounded from Lp,q,b(0,∞) to Lp′,q,b(0,∞) and the Kontorovich–
Lebedev transform is bounded from Lp,q,b(0,∞) to Lp′,q,b(dt/t).

By using Theorem 5.5, we have the following mapping properties for the operator
Lα

v,u on Lorentz–Karamata spaces.

COROLLARY 6.3. Let 1 < p, q < ∞ and b be a slowly varying function. Let −1 <

u < 1, v ∈ � and α ≥ − 1
2 . If

1 − u
2

<
1
p

< 1 − u

−α − 1 + 1
p

< v ≤ 1
2

− max{u, 0}.

The operator Lα
v,u is bounded from Lp,q,b(0,∞) to Lr,q,b(0,∞) where 1

r = 1 − u − 1
p .

The above result shows that when 1 < p < 2, the Hankel transform of order α,Hα is
bounded from Lp,q,b(0,∞) to Lp′,q,b(0,∞). Furthermore, for any v ≤ 1

2 , if 1 + α < 1
p <

2 + 2α, then the Fourier-Bessel transform of order α, H̃α, is bounded from Lp,q,b(0,∞)
to Lr,q,b(0,∞), where 1

r = 2 + 2α − 1
p .

Similarly, we have the mapping properties for the oscillatory integral operator on
Lorentz-Karamata spaces.

COROLLARY 6.4. Let λ > 0, 1 < p < 4, 1 < q < ∞ and b be a slowly varying
function. The oscillatory integral operators Tλ is bounded from Lp,q,b(�) to Lp′,q,b1/3 (�2).
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