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The generator rank of subhomogeneous
C∗-algebras
Hannes Thiel
Abstract. We compute the generator rank of a subhomogeneous C∗-algebra in terms of the covering
dimension of the pieces of its primitive ideal space corresponding to irreducible representations
of a fixed dimension. We deduce that every Z-stable approximately subhomogeneous algebra has
generator rank one, which means that a generic element in such an algebra is a generator.

This leads to a strong solution of the generator problem for classifiable, simple, nuclear
C∗-algebras: a generic element in each such algebra is a generator. Examples of Villadsen show that
this is not the case for all separable, simple, nuclear C∗-algebras.

1 Introduction

The generator rank of a unital, separable C∗-algebra A is the smallest integer n ≥ 0
such that the self-adjoint (n + 1)-tuples that generate A as a C∗-algebra are dense
in An+1

sa (see Definition 2.1 for the nonunital and nonseparable case). This invariant
was introduced in [Thi21] to study the generator problem, which asks to determine
the minimal number of (self-adjoint) generators for a given C∗-algebra.

One difficulty when studying the generator problem is that the minimal number of
generators for a C∗-algebra can increase when passing to ideals or inductive limits. The
main advantage of the generator rank is that it enjoys nice permanence properties: it
does not increase when passing to ideals, quotients, or inductive limits (see Section 2).

For example, using these permanence properties, one can easily show that approxi-
mately finite-dimensional C∗-algebras (AF-algebras) have generator rank at most one.
In particular, every AF-algebra is generated by two self-adjoint elements, which solves
the generator problem for this class of algebras (see [Thi21, Theorem 7.3]).

In this paper, we compute the generator rank of subhomogeneous C∗-algebras.
Recall that a C∗-algebra is said to be d-homogeneous (d-subhomogeneous) if each
of its irreducible representations has dimension (at most) d. The typical example of
a d-homogeneous C∗-algebra is C0(X , Md) for a locally compact Hausdorff space X.
Furthermore, a C∗-algebra is subhomogeneous if and only if it is a sub-C∗-algebra of
C0(X , Md) for some X and some d (see, for example, [Bla06, Proposition IV.1.4.3]).
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The generator rank of subhomogeneous C∗-algebras 1315

Subhomogeneous C∗-algebras and their inductive limits (called approximately
subhomogeneous algebras [ASH-algebras]) play an important role in the structure and
classification theory of C∗-algebras since the algebras covered by the Elliott program
are either purely infinite or approximately subhomogeneous. To be precise, let
us say that a C∗-algebra is classifiable if it is unital, separable, simple, nuclear, and
Z-stable (that is, it tensorially absorbs the Jiang–Su algebra Z) and satisfies the
Universal Coefficient Theorem (UCT). By the recent breakthrough in the Elliott
classification program [EGLN15, GLN20, TWW17], two classifiable C∗-algebras are
isomorphic if and only if their Elliott invariants (K-theoretic and tracial data) are
isomorphic.

Classifiable C∗-algebras come in two flavors: stably finite and purely infinite.
Every stably finite, classifiable C∗-algebra is automatically an ASH-algebra. A major
application of our results is that every Z-stable ASH-algebra has generator rank one
(see Corollary C). In [Thi20], we show that every Z-stable C∗-algebra of real rank zero
has generator rank one. This includes all purely infinite, classifiable C∗-algebras. It
follows that every classifiable C∗-algebra has generator rank one and therefore contains
a dense Gδ-subset of generators (see Corollary E).

One important aspect of the generator problem is to determine if every separable,
simple C∗-algebra is generated by a single operator (equivalently, by two self-adjoint
elements). While this remains unclear, we can refute the possibility that every separa-
ble, simple C∗-algebra contains a dense set of generators: Villadsen constructed exam-
ples of separable, simple, approximately homogeneous C∗-algebras (AH-algebras) of
arbitrarily high real rank (see [Vil99]). Let A be such an AH-algebra with rr(A) = ∞.
By [Thi21, Proposition 3.10] (see Proposition 2.4), the real rank is dominated by the
generator rank, whence gr(A) = ∞. In particular, for every n, the generating self-
adjoint n-tuples (if there are any) are not dense in An

sa.
In [TW14, Theorem 3.8], the author and Winter showed that every unital, sepa-

rable, Z-stable C∗-algebra is singly generated. The results of this paper and of [Thi20]
show that under additional assumptions, a (unital) separable,Z-stable C∗-algebra even
contains a dense set of generators. This raises the natural question if every Z-stable
C∗-algebra has generator rank one (see [Thi20, Remarks 5.8(2)]).

Given a locally compact Hausdorff space X, the local dimension locdim(X) is
defined as the supremum of the covering dimension of all compact subsets, with
the convention that locdim(∅) = −1. For σ-compact (in particular, second countable),
locally compact Hausdorff spaces, the local dimension agrees with the usual covering
dimension (in general they differ). In Section 4, we compute the generator rank of
arbitrary homogeneous C∗-algebras.

Theorem A (4.17) Let A be a d-homogeneous C∗-algebra. Set X ∶= Prim(A). If d = 1,
then gr(A) = locdim(X × X). If d ≥ 2, then

gr(A) = ⌈ locdim(X) + 1
2d − 2

⌉ .

In particular, gr(C(X , Md)) = ⌈ dim(X)+1
2d−2 ⌉ if X is a compact Hausdorff space and

d ≥ 2. To prove Theorem A, we first show a Stone–Weierstraß-type result that char-
acterizes when a tuple generates C(X , Md): the tuple has to generate Md pointwise,
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1316 H. Thiel

and it has to suitably separate the points in X (see Proposition 4.1). This indicates
the general strategy to determine when generating n-tuples in C(X , Md) are dense:
first, we need to characterize when every tuple can be approximated by tuples that
generate Md pointwise, and second, we need to characterize when a pointwise
generating tuple can be approximated by tuples that separate the points. To address
the first point, we compute the codimension of the manifold of generating n-tuples
of self-adjoint d-matrices (see Lemma 4.11). For the second point, we use known
results characterizing when continuous maps to a manifold can be approximated by
embeddings, in conjunction with a suitable version of the homotopy extension lifting
property.

In Section 5, we compute the generator rank of d-subhomogeneous C∗-algebras by
induction over d. Given a d-subhomogeneous C∗-algebra A, we consider the ideal I ⊆
A corresponding to irreducible representations of dimension d. Then A/I is (d − 1)-
subhomogeneous. Using Theorem A and the assumption of the induction, we know
the generator rank of I and A/I. The crucial result to compute the generator rank
of the extension is the following proposition, which we also expect to have further
applications in the future.

Proposition B (5.3) Let A be a separable C∗-algebra, and let (Ik)k∈N be a decreasing
sequence of ideals satisfying ⋃k hull(Ik) = Prim(A). Then,

gr(A) = sup
k

gr(A/Ik).

The main result of this paper is the following theorem.

Theorem C (5.5) Let A be a subhomogeneous C∗-algebra. For each d ≥ 1, set Xd ∶=
Primd(A), the subset of the primitive ideal space of A corresponding to d-dimensional
irreducible representations. Then,

gr(A) = max{locdim(X1 × X1), max
d≥2

⌈ locdim(Xd) + 1
2d − 2

⌉} .

The main application is the following corollary.

Corollary D (5.10) Let A be a nonzero, separable, Z-stable ASH-algebra. Then,
gr(A) = 1, and so a generic element of A is a generator.

It was shown in [TW14, Theorem 3.8] that every unital, separable, Z-stable C∗-
algebra is singly generated. We note that Corollary D does not require unitality. In
particular, Corollary D implies that certain C∗-algebras are singly generated that were
not considered in [TW14].

Together with the main result of [Thi20], we obtain the following consequence.

Corollary E [Thi20, Corollary 5.7] Let A be a unital, separable, simple, nuclear, Z-
stable C∗-algebra satisfying the UCT. Then, A has generator rank one. In particular, a
generic element in A is a generator.
Notation We set N ∶= {0, 1, 2, . . .}. Given a C∗-algebra A, we use Asa to denote the set
of self-adjoint elements in A. We denote by Ã the minimal unitization of A. By an ideal
in a C∗-algebra, we mean a closed, two-sided ideal. We write Md for the C∗-algebra of
d-by-d matrices Md(C).
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Given a, b ∈ A, and ε > 0, we write a =ε b if ∥a − b∥ < ε. Given a ∈ A and G ⊆ A,
we write a ∈ε G if there exists b ∈ G with a =ε b. We use bold letters to denote tuples,
for example, a = (a1 , . . . , an) ∈ An . Given a, b ∈ An , we write a =ε b if a j =ε b j for j =
1, . . . , n. We use C∗(a) to denote the sub-C∗-algebra of A generated by the elements of
a. We write An

sa for (Asa)n , the space of n-tuples of self-adjoint elements in A.

2 The generator rank and its precursor

In this section, we briefly recall the definition and basic properties of the generator
rank gr and its predecessor gr0 from [Thi21].

Definition 2.1 [Thi21, Definitions 2.1 and 3.1] Let A be a C∗-algebra. We define gr0(A)
as the smallest integer n ≥ 0 such that for every a ∈ An+1

sa , ε > 0, and c ∈ A, there exists
b ∈ An+1

sa such that

b =ε a, and c ∈ε C∗(b).

If no such n exists, we set gr0(A) = ∞. The generator rank of A is gr(A) ∶= gr0(Ã).

We use Genn(A)sa to denote the set of tuples a ∈ An
sa that generate A as a C∗-

algebra. For separable C∗-algebras, the generator rank and its predecessor can be
described by the denseness of such tuples.

Theorem 2.2 [Thi21, Theorem 3.4] Let A be a separable C∗-algebra and n ∈ N. Then:
(1) gr0(A) ≤ n if and only if Genn+1(A)sa ⊆ An+1

sa is a dense Gδ-subset.
(2) gr(A) ≤ n if and only if Genn+1(Ã)sa ⊆ Ãn+1

sa is a dense Gδ-subset.

Remark 2.3 Let A be a separable C∗-algebra. If A has generator rank at most one, then
the set of (nonself-adjoint) generators in A is a dense Gδ-subset (see [Thi21, Remark
3.7]). If A is unital, then the converse also holds: we have gr(A) ≤ 1 if and only if a
generic element in A is a generator.

The connection between gr0 , gr and the real rank is summarized by the next result,
which combines Proposition 3.12 and Theorem 3.13 in [Thi21]. In Theorem 5.5, we
show that gr0 and gr agree for subhomogeneous C∗-algebras. In general, however, it
is unclear if gr0 = gr (see [Thi21, Question 3.16]).

Proposition 2.4 Let A be a C∗-algebra. Then,

max{ rr(A), gr0(A)} = gr(A) ≤ gr0(A) + 1.

We will frequently use the following permanence properties of gr0 and gr, which
were shown in Propositions 2.2, 2.7, and 2.9 and Theorem 6.2 in [Thi21].

Theorem 2.5 Let A be a C∗-algebra, and let I ⊆ A be an ideal. Then,

max{ gr0(I), gr0(A/I)} ≤ gr0(A) ≤ gr0(I) + gr0(A/I) + 1,

and

max{ gr(I), gr(A/I)} ≤ gr(A) ≤ gr(I) + gr(A/I) + 1.
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1318 H. Thiel

Recall that a C∗-algebra A is said to be approximated by sub-C∗-algebras Aλ ⊆ A
if, for every finite subset F ⊆ A and ε > 0, there is λ such that a ∈ε Aλ for each a ∈ F.
We do not require the subalgebras to be nested. Thus, while ⋃λ Aλ is a dense subset
of A, it is not necessarily a subalgebra. The next result combines Propositions 2.3
and 2.4 and Theorem 6.3 in [Thi21].

Theorem 2.6 Let A be a C∗-algebra that is approximated by sub-C∗-algebras Aλ ⊆ A,
and let n ∈ N. If gr0(Aλ) ≤ n for each λ, then gr0(A) ≤ n. Analogously, if gr(Aλ) ≤ n
for each λ, then gr(A) ≤ n.

Moreover, if A = lim�→ j
A j is an inductive limit, then

gr0(A) ≤ lim inf
j

gr0(A j), and gr(A) ≤ lim inf
j

gr(A j).

Theorem 2.7 [Thi21, Theorem 5.6] Let X be a locally compact Hausdorff space. Then,

gr0(C0(X)) = gr(C0(X)) = locdim(X × X).

3 Reduction to the separable case

Let us recall a few concepts from model theory that allow us to reduce some proofs
in the following sections to the case of separable C∗-algebras. We refer to [FHL+21,
FK10] for details.
3.1. Let A be a C∗-algebra. We use Subsep(A) to denote the set of separable sub-
C∗-algebras of A. A collection S ⊆ Subsep(A) is said to be σ-complete if we have
⋃{B ∶ B ∈ T} ∈ S for every countable directed subcollection T ⊆ S. Furthermore, S is
said to be cofinal if, for every B0 ∈ Subsep(A), there is B ∈ S such that B0 ⊆ B. It is well
known that the intersection of countably many σ-complete, cofinal collections is again
σ-complete and cofinal.

In [Thi13, Definition 1], I formalized the notion of a noncommutative dimension
theory as an assignment that to each C∗-algebra A associates a number d(A) ∈
{0, 1, 2, . . . ,∞} such that six axioms are satisfied. Axioms (D1)–(D4) describe com-
patibility with passing to ideals, quotients, directs sums, and unitizations. The other
axioms are:

(D5) If n ∈ N and if A is a C∗-algebra that is approximated by sub-C∗-algebras Aλ ⊆ A
(as in Theorem 2.6) such that d(Aλ) ≤ n for each λ, then d(A) ≤ n.

(D6) If A is a C∗-algebra and B0 ⊆ A is a separable sub-C∗-algebra, then there is a
separable sub-C∗-algebra B ⊆ A such that B0 ⊆ B and d(B) ≤ d(A).

It was noted in [Thi21, Paragraph 4.1] that if d is an assignment from C∗-algebras to
{0, 1, . . . ,∞} that satisfies (D5) and (D6), then for each n ∈ N and each C∗-algebra A
satisfying d(A) ≤ n, the collection

{B ∈ Subsep(A) ∶ d(B) ≤ n}

is σ-complete and cofinal. It was shown in [Thi21] that gr0 and gr satisfy (D5) and (D6).
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Lemma 3.2 Let A be a C∗-algebra, and let I ⊆ A be an ideal. We have:
(1) Let S ⊆ Subsep(I) be a σ-complete and cofinal subcollection. Then, the family {B ∈

Subsep(A) ∶ B ∩ I ∈ S} is σ-complete and cofinal.
(2) Let S ⊆ Subsep(A/I) be a σ-complete and cofinal subcollection. Then, the family

{B ∈ Subsep(A) ∶ B/(B ∩ I) ∈ S} is σ-complete and cofinal.
Proof (1): Set T ∶= {B ∈ Subsep(A) ∶ B ∩ I ∈ S}. It is easy to see that T is σ-complete.
To show that it is cofinal, let B0 ∈ Subsep(A). We will inductively find increasing
sequences (Ik)k in S and (Bk)k in Subsep(A) such that

B0 ∩ I ⊆ I0 ⊆ B1 ∩ I ⊆ I1 ⊆ ⋅ ⋅ ⋅ .
Assume that we have obtained Bk for some k ∈ N. Then, Bk ∩ I ∈ Subsep(I), and
since S is cofinal in Subsep(I), we obtain Ik ∈ S such that Bk ∩ I ⊆ Ik . Then, let Bk+1 be
the sub-C∗-algebra of A generated by Bk and Ik .

Set B ∶= ⋃k Bk , which belongs to Subsep(A) and contains B0. We have B ∩ I =
⋃k Ik . Since S is σ-complete, B ∩ I belongs to S. Thus, B belongs to T, as desired.

Statement (2) is shown similarly. ∎
3.3. Recall that a C∗-algebra is called d-homogeneous (for some d ≥ 1) if all its
irreducible representations are d-dimensional, and it is called homogeneous if it is d-
homogeneous for some d (see [Bla06, Definition IV.1.4.1, p. 330]).

Let A be a d-homogeneous C∗-algebra, and set X ∶= Prim(A), the primitive ideal
space of A. Then, X is a locally compact Hausdorff space, and there exists a locally
trivial bundle over X with fiber Md such that A is canonically isomorphic to the
algebra of continuous cross sections vanishing at infinity, with pointwise operations
(see [Fel61, Theorem 3.2]).

It follows that the center of A is canonically isomorphic to C0(X), and this gives A
the structure of a continuous C0(X)-algebra, with each fiber isomorphic to Md . For
the definition and results of C0(X)-algebras, we refer the reader to Section 2 of
[Dad09]. Given a C0(X)-algebra A and a closed subset Y ⊆ X, we let A(Y) denote
the quotient of A corresponding to Y. The fiber of A at x ∈ X is A(x) ∶= A({x}).
Given a ∈ A and x ∈ X, we write a(x) for the image of a in the quotient A(x). Given
a = (a0 , . . . , an) ∈ An+1, we set a(x) ∶= (a0(x), . . . , an(x)) ∈ A(x)n+1.

Given a locally compact Hausdorff space X, the local dimension of X is

locdim(X) ∶= sup{dim(K) ∶ K ⊆ X compact},

with the convention that locdim(∅) = −1. As noted in [Thi21, Paragraph 5.5], if X is
nonempty, then locdim(X) agrees with the dimension of the one-point compactifica-
tion of X. If X is σ-compact, then dim(X) = locdim(X).

Lemma 3.4 Let d ≥ 1, l ∈ N, and let X be a compact Hausdorff space satisfying
dim(X) ≤ l . Set A ∶= C(X , Md). Then,

S ∶= {B ∈ Subsep(A) ∶ B d-homogeneous, locdim(Prim(B)) ≤ l}
is σ-complete and cofinal.

Proof σ-completeness: Let T ⊆ S be a countable directed family, and set C ∶=
⋃{B ∶ B ∈ T}. To show that C is d-homogeneous, let ρ be an irreducible representation
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of C. Since C is d-subhomogeneous (as a subalgebra of A), the dimension of ρ is at
most d. If dim(ρ) < d, then the restriction of ρ to each B ∈ T is zero, whence ρ = 0, a
contradiction.

In [BP09, Section 2.2], Brown and Pedersen introduce the topological dimension
of type IC∗-algebras. Given a homogeneous C∗-algebra D, the topological dimension
topdim(D) is equal to locdim(Prim(D)). Hence, each B ∈ T satisfies topdim(B) =
locdim(Prim(B)) ≤ l . By [Thi13, Lemma 3], a continuous trace C∗-algebra (in partic-
ular, a homogeneous C∗-algebra) has topological dimension at most l whenever it is
approximated by sub-C∗-algebras with topological dimension at most l. Hence,

locdim(Prim(C)) = topdim(C) ≤ l ,

which verifies that C belongs to S, as desired.
Cofinality: Let B0 ⊆ A be a separable sub-C∗-algebra. We identify A with C(X) ⊗

Md . Let e jk ∈ Md , j, k = 1, . . . , d, be matrix units. Let C(Y) ⊆ C(X) be a separable,
unital sub-C∗-algebra such that f ∈ C(X) belongs to C(Y) whenever f ⊗ e jk ∈ B0 for
some j, k. Using that the real rank satisfies (D6), let C(Z) ⊆ C(X) be a separable sub-
C∗-algebra containing C(Y) such that rr(C(Z)) ≤ rr(C(X)). Then,

dim(Z) = rr(C(Z)) ≤ rr(C(X)) = dim(X) ≤ l ,

and it follows that C(Z) ⊗ Md ⊆ C(X) ⊗ Md has the desired properties. ∎

Proposition 3.5 Let d ≥ 1, l ∈ N, and let A be a d-homogeneous C∗-algebra satisfying
locdim(Prim(A)) ≤ l . Then,

S ∶= {B ∈ Subsep(A) ∶ B d-homogeneous, locdim(Prim(B)) ≤ l}

is σ-complete and cofinal.

Proof As in the proof of Lemma 3.4, we obtain that S is σ-complete.
Cofinality: Let B0 ⊆ A be a separable sub-C∗-algebra. Let I ⊆ A be the ideal gen-

erated by B0. Then, I is d-homogeneous and X ∶= Prim(I) is σ-compact. We view I
as a C0(X)-algebra with all fibers isomorphic to Md . Since the Md -bundle associated
with I is locally trivial, and since X is σ-compact, we can choose a sequence of compact
subsets X0 , X1 , X2 , . . . ⊆ X that cover X such that I(X j) ≅ C(X j) ⊗ Md for each j ∈ N.

Given j, let π j ∶ I → C(X j) ⊗ Md be the corresponding quotient map, and set

S j ∶= {B ∈ Subsep(I) ∶ π j(B) d-homogeneous, locdim(Prim(π j(B))) ≤ l}.

Applying Lemmas 3.2(2) and 3.4, we obtain thatS j is σ-complete and cofinal. It follows
that S ∶= ⋂∞j=0 S j is σ-complete and cofinal as well. Choose B ∈ S satisfying B0 ⊆ B.

To verify that B is d-homogeneous, let ρ be an irreducible representation
of B. Since B is d-subhomogeneous, we have dim(ρ) ≤ d. Extend ρ to an irreducible
representation ρ′ of I (a priori on a possibly larger Hilbert space). Then, there exists
x ∈ X such that ρ′ is isomorphic to the quotient map to the fiber at x. Let j ∈ N such that
x ∈ X j . Since B belongs to S j , it exhausts the fiber at x, and we deduce that dim(ρ) ≥ d.

To see that locdim(Prim(B)) ≤ l , let K ⊆ Prim(B) be a compact subset. For
each j, let F j ⊆ Prim(B) be the closed subset corresponding to the quotient π j(B)
of B. Since B belongs to S j , we have locdim(F j) ≤ l . Hence, dim(K ∩ F j) ≤ l . We have
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K = ⋃ j(K ∩ F j), and therefore

dim(K) = sup
j

dim(K ∩ F j) ≤ l

by the Countable Sum Theorem (see [Pea75, Theorem 3.2.5, p. 125]; see also the
introduction to Section 5). ∎

4 Homogeneous C∗-algebras

In this section, we compute the generator rank of homogeneous C∗-algebra; (see Theo-
rem 4.17). We first consider the unital separable case (Lemma 4.15), we then generalize
to the unital nonseparable case (Proposition 4.16) and finally to the general case.
Unlike for commutative C∗-algebras, the unital separable case is highly nontrivial and
it requires a delicate analysis of the codimension of certain submanifolds of (Md)n+1

sa
(Lemma 4.11) in connection with a suitable version of the homotopy extension lifting
property (Lemma 4.14).

The next result characterizes generating tuples in separable C(X)-algebras with
simple fibers, and thus in particular in unital, separable, homogeneous C∗-algebras.
Given a map φ∶D → E between C∗-algebras and a = (a0 , . . . , an) ∈ Dn+1, we set

φ(a) ∶= (φ(a0), . . . , φ(an)) ∈ En+1 .

Proposition 4.1 Let X be a compact metric space, and let A be a separable C(X)-
algebra such that all fibers are simple. Let n ∈ N and a ∈ An+1

sa . Then, a ∈ Genn+1(A)sa if
and only if the following are satisfied:
(a) a generates each fiber, that is, a(x) ∈ Genn+1(A(x))sa for each x ∈ X.
(b) a separates the points of X in the sense that for distinct x , y ∈ X, there is no

isomorphism α∶A(x) → A(y) satisfying α(a(x)) = a(y).

Proof Let us first assume that a ∈ Genn+1(A)sa. For x ∈ X, let πx ∶A → A(x) be the
quotient map onto the fiber at x. Since πx is a surjective ∗-homomorphism, it maps
Genn+1(A)sa to Genn+1(A(x))sa, which verifies (a). Similarly, for distinct points x , y ∈
X, the map πx ⊕ πy ∶A → A(x) ⊕ A(y) is a surjective ∗-homomorphism. It follows
that (a(x), a(y)) = (πx ⊕ πy)(a) ∈ Genn+1(A(x) ⊕ A(y))sa. To verify (b), assume
that α∶A(x) → A(y) is an isomorphism satisfying α(a(x)) = a(y). Then,

C∗((a(x), a(y))) = {(d , α(d)) ∈ A(x) ⊕ A(y) ∶ d ∈ A(x)} ≠ A(x) ⊕ A(y),

which contradicts that (a(x), a(y)) generates A(x) ⊕ A(y). Thus, no such α exists.
Conversely, let us assume that (a) and (b) are satisfied. Set B ∶= C∗(a). We need to

prove B = A. This follows from [TW14, Lemma 3.2] once we show that B exhausts the
fiber A(x) for each x ∈ X, and that for distinct x , y ∈ X, there exists b ∈ B such that
b(x) is full in A(x) and b(y) = 0. The exhaustion of fibers follows directly from (a).

Let x , y ∈ X be distinct, and set C ∶= (πx ⊕ πy)(B) ⊆ A(x) ⊕ A(y). Note that C is
the sub-C∗-algebra of A(x) ⊕ A(y) generated by (a(x), a(y)). If C ≠ A(x) ⊕ A(y),
using that A(x) and A(y) are simple, it follows from [Thi21, Lemma 5.10] that there
exists an isomorphism α∶A(x) → A(y) such that

C = {(d , α(d)) ∈ A(x) ⊕ A(y) ∶ d ∈ A(x)},
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which implies that α(a(x)) = a(y). Since this contradicts (b), we deduce that C =
A(x) ⊕ A(y). Hence, there exists b ∈ B such that b(x) is full in A(x) and b(y) = 0. ∎
Notation 4.2 For d ≥ 2 and n ∈ N, we set

En+1
d ∶= (Md)n+1

sa , and Gn+1
d ∶= Genn+1(Md)sa ⊆ En+1

d .

Note that En+1
d is isomorphic to R

(n+1)d2
as topological vector spaces. In particular,

En+1
d is a (real) manifold with dim(En+1

d ) = (n + 1)d2.
We let Ud denote the unitary group of Md . It is a compact Lie group of dimension d2.

Every automorphism of Md is inner, and the kernel of Ud → Aut(Md) is the group of
central unitariesT1 ⊆ Ud . Hence, Aut(Md) is naturally isomorphic toPUd ∶= Ud/(T1),
the projective unitary group, which is a compact Lie group of dimension d2 − 1. Given
u ∈ Ud , we use [u] to denote its class in PUd .

The action PUd ↷ Md induces an action PUd ↷ En+1
d by setting

[u].a ∶= (ua0u∗ , . . . , uanu∗)
for u ∈ Ud and a = (a0 , . . . , an) ∈ En+1

d .

4.3. Let A be a unital, separable, d-homogeneous C∗-algebra, and let n ∈ N. Set X ∶=
Prim(A). We consider A with its canonical C(X)-algebra structure, with each fiber
isomorphic to Md (see Paragraph 3.3). Set

Genfiber
n+1 (A)sa ∶= {a ∈ An+1

sa ∶ a(x) ∈ Genn+1(A(x))sa for each x ∈ X}.

Given x ∈ X, let πx ∶A → A(x) denote the map to the fiber at x. This induces
a map An+1

sa → (A(x))n+1
sa , which we also denote by πx . Choose an isomorphism

A(x) ≅ Md , which induces an isomorphism (A(x))n+1
sa ≅ En+1

d = (Md)n+1
sa . Since the

isomorphism A(x) ≅ Md is unique up to an automorphism of Md , we obtain a
canonical homeomorphism (A(x))n+1

sa /Aut(A(x)) ≅ En+1
d /PUd . We let ψx ∶An+1

sa →
En+1

d /PUd be the resulting natural map.
Given a ∈ An+1

sa , one checks that ψx(a) depends continuously on x. This allows us
to define Ψ∶An+1

sa → C(X , En+1
d /PUd) by

Ψ(a)(x) ∶= ψx(a),

for a ∈ An+1
sa and x ∈ X. Restricting Ψ to Genfiber

n+1 (A)sa gives a continuous map

Ψ∶Genfiber
n+1 (A)sa → C(X , Gn+1

d /PUd).

We let E(X , Gn+1
d /PUd)denote the set of continuous maps X → Gn+1

d /PUd that are
injective. By Proposition 4.1, a tuple a ∈ An+1

sa belongs to Genn+1(A)sa if and only if (a):
a ∈ Genfiber

n+1 (A)sa, and (b): Ψ(a) ∈ E(X , Gn+1
d /PUd). Thus, to determine the generator

rank of A, we need to answer the following questions:
(a) When is Genfiber

n+1 (A)sa dense in An+1
sa ?

(b) When is E(X , Gn+1
d /PUd) dense in C(X , Gn+1

d /PUd)?
Analogous as for the computation of the generator rank for unital, separable, com-

mutative C∗-algebras in [Thi21, Section 5], the answer to question (a) is determined by
dim(X), and the answer to (b) is determined by dim(X × X). However, while in the
commutative case the dominating condition was (b) involving dim(X × X), we will
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see that for d-homogeneous C∗-algebras with d ≥ 2 the dominating condition is (a)
involving dim(X).

To study (a), we will determine the dimension of En+1
d /Gn+1

d . For this, we study the
action PUd ↷ En+1

d . We will show that Gn+1
d consists precisely of the tuples in En+1

d
with trivial stabilizer subgroup (see Lemma 4.7). This allows us to describe En+1

d /Gn+1
d

as the union of the submanifolds corresponding to nontrivial stabilizer subgroups. We
then estimate the dimension of these submanifolds (see Lemma 4.11).

To study (b), we show that Gn+1
d is an open subset of En+1

d (see Lemma 4.9). Hence,
Gn+1

d is a manifold with dim(Gn+1
d ) = dim(En+1

d ) = (n + 1)d2. We let Gn+1
d /PUd

denote the quotient space. Since PUd is a compact Lie group of dimension d2 − 1, it
follows that Gn+1

d /PUd is a manifold of dimension (n + 1)d2 − (d2 − 1) = nd2 + 1. We
then use a result of [Luu81] which characterizes when a continuous map to a manifold
can be approximated by injective maps.

Finally, we use a version of the homotopy extension lifting property for the projec-
tion Gn+1

d → Gn+1
d /PUd (see Lemma 4.14) to show that a given tuple in Genfiber

n+1 (A)sa
can be approximated by tuples that are mapped to E(X , Gn+1

d /PUd) by Ψ.
4.4. Let G be a compact Lie group, acting smoothly on a connected manifold M. We
briefly recall the orbit-type decomposition. For details, we refer the reader to [Bre72,
Mei03]. We will later apply this for the action PUd ↷ En+1

d .
The stabilizer subgroup of m ∈ M is

Stab(m) ∶= {g ∈ G ∶ g .m = m}.

Two subgroups H and H′ of G are conjugate, denoted H ∼ H′, if there exists g ∈ G such
that H = gH′g−1. We let

T ∶= {{H′ ∶ H′ ∼ Stab(m)} ∶ m ∈ M}

denote the collection of all conjugation classes of stabilizer subgroups. Set

Mt ∶= {m ∈ M ∶ Stab(m) ∈ t}

for t ∈ T . We have Stab(g .m) = g Stab(m)g−1 for all g ∈ G and m ∈ M, which implies
that each Mt is G-invariant.

Let us additionally assume that each Mt is connected. Then, by [Mei03,
Theorem 1.30], each Mt is a smooth embedded submanifold of M, and M decom-
poses as a disjoint union M = ⋃t∈T Mt . (See also [Bre72, Theorem IV.3.3, p. 182].)
Furthermore, this decomposition satisfies the frontier condition: for all t′ , t ∈ T , if
Mt′ ∩ Mt ≠ ∅, then Mt′ ⊆ Mt . This defines a partial order on T by setting t′ ≤ t if
Mt′ ⊆ Mt . The depth of t ∈ T is defined as depth(t) = 0 if t is maximal, and otherwise

depth(t) ∶= sup{k ≥ 1 ∶ t < t1 < t2 < ⋅ ⋅ ⋅ < tk for some t1 , . . . , tk ∈ T}.

In many cases, one knows that T is finite and contains a largest element (see
Sections IV.3 and IV.10 of [Bre72]).

Set Mfree ∶= {m ∈ M ∶ Stab(m) = {1}}. If Mfree ≠ ∅, then the conjugacy class of the
trivial subgroup is the largest element in T, and Mfree is an open submanifold of M.
The restriction of the action to Mfree is free.
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Proposition 4.5 Retain the situation from Paragraph 4.4. Assume that M is metrizable
with metric dM , T is finite, and M ≠ Mfree ≠ ∅. Let X be a compact Hausdorff space.
Then, the following are equivalent:

(1) C(X , Mfree) ⊆ C(X , M) is dense with respect to the metric d( f , g) ∶=
supx∈X dM( f (x), g(x)), for f , g ∈ C(X , M).

(2) dim(X) < dim(M) − dim(M/Mfree).

Proof Note that T contains exactly one element of depth zero, namely the conjugacy
class of {1}. Therefore,

M/Mfree = ⋃
t∈T ,depth(t)≥1

Mt ,

and it follows that

dim(M/Mfree) = max{dim(Mt) ∶ depth(t) ≥ 1}.

To show that (1) implies (2), assume that dim(X) ≥ dim(M) − dim(M/Mfree).
Choose t ∈ T of depth ≥ 1 such that dim(X) ≥ dim(M) − dim(Mt). As noted in
[BE91, Proposition 1.6], it follows that C(X , M/Mt) ⊆ C(X , M) is not dense, which
implies that (1) fails.

Assuming (2), let us prove (1). Let f ∈ C(X , M) and ε > 0. The proof is similar to
that of Theorem 1.3 in [BE91]. We inductively change f to avoid each Mt , but instead
of proceeding by the (co)dimension of the submanifolds, we use their depths.

It follows from the frontier condition that for each t ∈ T , the set Mt/Mt is contained
in the union of submanifolds Ms with s ∈ T and depth(s) > depth(t). Let t1 , . . . , tK be
an enumeration of the elements in T with depth ≥ 1, such that depth(t1) ≥ depth(t2) ≥
⋅ ⋅ ⋅ ≥ depth(tK). Note that Mt1 is a closed submanifold (since t1 has maximal depth and
thus Mt1/Mt1 = ∅), and for each j ≥ 2, the set Mt j/Mt j is contained in Mt1 ∪ . . . Mt j−1 .
Furthermore, every Mt j is a submanifold of codimension ≥ dim(X) + 1.

By [BE91, Lemma 1.4], if Y ⊆ M is submanifold of codimension ≥ dim(X) + 1, if
δ > 0, and if g ∈ C(X , M) satisfies g(X) ∩ (Y/Y) = ∅, then there exists g′ ∈ C(X , M)
such that d(g , g′) ≤ δ and g′(X) ∩ Y = ∅. Set f0 ∶= f . We will inductively find fk ∈
C(X , M) such that, for each k = 1, . . . , K, we have

d( fk−1 , fk) <
ε

2k , and fk(X) ∩ Mt j = ∅ for j = 1, . . . , k.

First, using that the boundary of Mt1 is empty, we can apply [BE91, Lemma 1.4] to
obtain f1 ∈ C(X , M) such that

d( f0 , f1) <
ε
2

, and f1(X) ∩ Mt1 = ∅.

For k ≥ 2, assuming that we have chosen fk−1, let δk denote the (positive) distance
between the compact set fk−1(X) and Mt1 ∪ ⋅ ⋅ ⋅ ∪ Mtk−1 . Applying [BE91, Lemma 1.4],
we obtain fk ∈ C(X , M) such that
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d( fk−1 , fk) < min{ ε
2k , δk} , and fk(X) ∩ Mtk = ∅.

By choice of δk , it follows that fk(X) is disjoint from Mt1 ∪ ⋅ ⋅ ⋅ ∪ Mtk .
Finally, the element fK belongs to C(X , Mfree) and satisfies d( f , fK) < ε. ∎

4.6. We let Sub1(Md) denote the collection of sub-C∗-algebras of Md that contain the
unit of Md . Given a ∈ En+1

d ∶= (Md)n+1
sa , we set C∗1 (a) ∶= C∗(a, 1) ∈ Sub1(Md). We let

PUd act on Sub1(Md) by [u].B ∶= uBu∗ for u ∈ Ud and B ∈ Sub1(Md). Given B1 , B2 ∈
Sub1(Md), we write B1 ∼ B2 if B1 and B2 lie in the same orbit of this action, that is, if
B1 = uB2u∗ for some u ∈ Ud .

Given a ∈ En+1
d , we have C∗1 (a) = Md if and only if C∗(a), and thus

Gn+1
d ∶= Genn+1(Md)sa = {a ∈ (Md)n+1

sa ∶ C∗(a) = Md}
= {a ∈ (Md)n+1

sa ∶ C∗1 (a) = Md}.

Given a sub-C∗-algebra B ⊆ Md , we let B′ ∶= {c ∈ Md ∶ bc = cb for all b ∈ B}denote
its commutant. We always have B′ ∈ Sub1(Md), and by the bicommutant theorem, we
have B′′ = B for all B ∈ Sub1(Md).

Lemma 4.7 Let a ∈ En+1
d . Then,

Stab(a) = {[u] ∶ u ∈ U(C∗(a)′)}.

Furthermore, we have a ∈ Gn+1
d if and only if Stab(a) = {[1]}.

Proof Given u ∈ Ud , we have [u].a = a if and only if uxu∗ = x for every x ∈ C∗(a).
This implies the formula for Stab(a).

If a ∈ Gn+1
d , then C∗(a)′ = C1, which implies that Stab(a) is trivial. Conversely,

assuming that a ∈ En+1
d /Gn+1

d , let us verify that a has nontrivial stabilizer subgroup.
Since C∗(a) ≠ Md , we also have C∗1 (a) ≠ Md . Using the bicommutant theorem, we
deduce that C∗1 (a)′ is strictly larger than the center of Md . Using that C∗(a)′ = C∗1 (a)′,
we obtain a noncentral unitary in C∗(a)′. ∎

Lemma 4.8 Let a, b ∈ En+1
d . Then, we have Stab(a) ∼ Stab(b) if and only if C∗1 (a) ∼

C∗1 (b).

Proof Let B1 , B2 ∈ Sub1(Md). If u ∈ Ud satisfies uB1u∗ = B2, then one checks
uB′1u∗ = B′2. Using also that B1 and B2 agree with their bicommutants, we obtain

B1 ∼ B2 ⇔ B′1 ∼ B′2 .

Using that C∗1 (a) = C∗(a)′′ and C∗1 (a)′ = C∗(a)′, and similarly C∗1 (b) = C∗(b)′′ and
C∗1 (b)′ = C∗(b)′, we need to show

Stab(a) ∼ Stab(b) ⇔ C∗(a)′ ∼ C∗(b)′ .

To prove the forward implication, we assume that Stab(a) ∼ Stab(b). Let v ∈
Ud such that [v] Stab(a)[v]−1 = Stab(b). Given u ∈ U(C∗(a)′), it follows from
Lemma 4.7 that

[vuv∗] ∈ Stab(b) = {[w] ∶ w ∈ U(C∗(b)′)}.

https://doi.org/10.4153/S0008414X22000268 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000268


1326 H. Thiel

Using that T1 ⊆ U(C∗(b)′), we obtain vuv∗ ∈ U(C∗(b)′). Since C∗(a)′ is spanned
by its unitary elements, we get vC∗(a)′v∗ ⊆ C∗(b)′. The reverse inclusion is shown
analogously, whence vC∗(a)′v∗ = C∗(b)′, that is, C∗(a)′ ∼ C∗(b)′.

Conversely, if C∗(a)′ ∼ C∗(b)′, let v ∈ Ud such that uC∗(a)′v∗ = C∗(b)′. Using
Lemma 4.7, we get [v] Stab(a)[v]−1 = Stab(b), that is, Stab(a) ∼ Stab(b). ∎

Lemma 4.9 Let B be a finite-dimensional C∗-algebra and n ≥ 1. Then, the set {a ∈
Bn+1

sa ∶ C∗1 (a) = B} is a path-connected, dense, open subset of Bn+1
sa .

Proof Set G ∶= {a ∈ Bn+1
sa ∶ C∗1 (a) = B}.

Denseness: By [Thi21, Lemma 7.2], we have gr(B) ≤ 1 ≤ n. Since B is unital and
separable, it follows from Theorem 2.2 that Genn+1(B)sa ⊆ Bn+1

sa is dense. Using that
Genn+1(B)sa ⊆ G, we get that G is also dense in Bn+1

sa .
Openness: Let D denote the family of sub-C∗-algebras D ⊆ B such that D +C1B is

a proper sub-C∗-algebra of B (that is, C∗1 (D) ≠ B). Then,

G = Bn+1
sa / ⋃

D∈D
Dn+1

sa .

Thus, we need to show that ⋃D∈D Dn+1
sa is a closed subset of Bn+1

sa .
We let U(B) denote the unitary group of B. It naturally acts on D by setting

u.D ∶= uDu∗ for u ∈ U(B) and D ∈D. Since B is finite-dimensional, two sub-C∗-
algebras D1 , D2 ⊆ B are unitarily equivalent if and only if D1 ≅ D2 and the inclusions
induce the same maps in ordered K0-theory. It follows that the action U(B) ↷D

has only finitely many orbits, and we choose representatives D1 , . . . , Dm ∈D. Then,
D = ⋃m

j=1 ⋃u∈UB uD ju∗.
For each j, since D j is a closed subset of B, it follows that (D j)n+1

sa is a closed subset
of Bn+1

sa . Since B is finite-dimensional, U(B) is compact, and it follows that

⋃
D∈D

Dn+1
sa =

m
⋃
j=1

⋃
u∈U(B)

u(D j)n+1
sa u∗

is closed, as desired.
Path-connectedness: We only sketch the argument for the case B = Md for

some d ≥ 2. Let a ∈ Genn+1(Md)sa. Using that the unitary group of Md is path-
connected, and that a0 is unitarily equivalent to a diagonal matrix, we find a path
in Genn+1(Md)sa from a to some b such that b0 is diagonal. By splitting multiple
eigenvalues of b0 and moving them away from zero, we find a path (xt)t∈[0,1] inside
the self-adjoint, diagonal matrices starting with x0 = b0 and ending with some x1 such
that x1 has k distinct, nonzero diagonal entries, and such that b0 ∈ C∗(xt) for each
t ∈ [0, 1]. Then, t ↦ (xt , b1 , . . . , bn) defines a path inside Genn+1(Md)sa.

Let S denote the set of self-adjoint matrices in Md such that every off-diagonal entry
is nonzero. Note that S is path-connected. Next, we let (yt)t∈[0,1] be a path inside the
self-adjoint matrices starting with y0 = b1, ending with some matrix y1 that has the
eigenvalues 1, 2, . . . , d such that yt belongs to S for every t ∈ (0, 1]. Note that x1 and yt
generated Md for every t ∈ (0, 1]. It follows that t ↦ (x1 , yt , b2 , . . . , bn) defines a path
inside Genn+1(Md)sa.

Conjugating by a suitable path of unitaries, we find a path in Genn+1(Md)sa
from (x1 , y1 , b2 , . . . , bn) to some c = (c0 , c1 , . . . , cn) such that c1 = diag(1, 2, . . . , d).
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Arguing as above, we find a path in Genn+1(Md)sa that changes c0 to the matrix c̃0
with all entries 1. Then, c̃0 and c1 generate Md .

Then, t ↦ (c̃0 , c1 , (1 − t)c2 , . . . , (1 − t)cn) is a path in Genn+1(Md)sa connecting
to (c̃0 , c1 , 0 . . . , 0). Thus, every a ∈ Genn+1(Md)sa is path-connected to the same
element. ∎

4.10. Let d ≥ 2, and n ∈ N. The compact Lie group PUd acts smoothly on the mani-
fold En+1

d ∶= (Md)n+1
sa . We will describe the corresponding orbit-type decomposition

of En+1
d .

Given a, b ∈ En+1
d , by Lemma 4.8, we have Stab(a) ∼ Stab(b) if and only if C∗1 (a) ∼

C∗1 (b). Moreover, given B ∈ Sub1(Md), there exists a ∈ En+1
d with B = C∗1 (a). It follows

that the orbit types ofPUd ↷ En+1
d naturally correspond to the orbit types of the action

PUd ↷ Sub1(Md).
Given B1 , B2 ∈ Sub1(Md), it is well known that B1 ∼ B2 if and only if B1 and B2 are

isomorphic, that is, B1 ≅ B2 ≅ ⊕L
j=1Md j for some L, d1 , . . . , dL ≥ 1, and if, for each j, the

maps Md j → B1 → Md and Md j → B2 → Md have the same multiplicity m j . Thus, to
parametrize the orbit types of PUd ↷ Sub1(Md), we consider

T0 ∶=
⎧⎪⎪⎨⎪⎪⎩
((d1 , . . . , dL), (m1 , . . . , mL)) ∶ L, d j , m j ≥ 1,

L
∑
j=1

d jm j = d
⎫⎪⎪⎬⎪⎪⎭

.

Given (d, m) ∈ T0, we let B(d, m) ⊆ Md be the sub-C∗-algebra of block diagonal
matrices, with m1 equal blocks of size d1, followed by m2 equal blocks of size d2,
and so on. We point out that the numbers d1 , . . . , dL are not required to be distinct.
For example, B((d), (1)) = Md , B((1), (d)) = C1, and B((1, . . . , 1), (1, . . . , 1)) is the
algebra of diagonal matrices.

We define an equivalence relation on T0 by setting (d, m) ∼ (d′ , m′) if all tuples
d, m, d′ , m′ contain the same number of elements, say L ≥ 1, and if there is a permu-
tation σ of {1, . . . , L} such that

d j = d′σ( j) , m j = m′σ( j) for j = 1, . . . , L.

For example, we have ((2, 2), (1, 2)) ∼ ((2, 2), (2, 1)), but ((2, 2), (1, 2)) ≁ ((2), (3)).
We have (d, m) ∼ (d′ , m′) if and only if B(d, m) ∼ B(d′ , m′).
Set T ∶= T0/∼. Given (d, m) ∈ T0, we let [d, m] denote its equivalence class in T. For

every B ∈ Sub1(Md), there exists (d, m) ∈ T0 such that B ∼ B(d, m). It follows that the
orbit types of PUd ↷ Sub1(Md) are parametrized by T:

Sub1(Md)/PUd = Sub1(Md)/∼ ≅ T0/∼ = T .

Given [d, m] ∈ T , set

E[d,m] ∶= {a ∈ En+1
d ∶ C∗1 (a) ∼ B(d, m)}.

Then, E[d,m] is the submanifold of En+1
d corresponding to orbit type [d, m], and the

orbit-type decomposition (as described in Paragraph 4.4) for PUd ↷ En+1
d is

En+1
d = ⋃

[d,m]∈T
E[d,m] .
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By Lemma 4.7, a tuple a ∈ En+1
d has trivial stabilizer group if and only if a belongs

to Gn+1
d . It follows that Gn+1

d = E[(d),(1)], and in the notation of Paragraph 4.4, with
M = En+1

d , we have Mfree = Gn+1
d .

Lemma 4.11 Let [d, m] ∈ T with [d, m] ≠ [(d), (1)]. Then, E[d,m] is a connected
submanifold of En+1

d satisfying

dim(E[d,m]) ≤ (n + 1)d2 − 2n(d − 1).

Furthermore, dim(E[(d−1,1),(1,1)]) = (n + 1)d2 − 2n(d − 1).

Proof Set B ∶= B(d, m). Note that a tuple a ∈ En+1
d belongs to E[d,m] if and only if

C∗1 (a) ∼ B. Set

F ∶= {a ∈ En+1
d ∶ C∗1 (a) = B}.

By Lemma 4.9, F is connected. Since every orbit in E[d,m] meets F, and since PUd is
connected, it follows that E[d,m] is connected as well.

By [Bre72, Theorem IV.3.8], if a compact Lie group L acts smoothly on a connected
manifold M such that all orbits have the same type, then dim(M) = dim(M/L) +
dim(L/K), where K is the stabilizer subgroup of any element in M.

Let K ⊆ PUd be the stabilizer subgroup of some element in F. By considering the
restricted action PUd ↷ E[d,m], we obtain that

dim(E[d,m]) = dim(E[d,m]/PUd) + dim(PUd/K).

Closed subgroups of Lie groups are again Lie groups. It follows that K is a Lie group
as well. Since K is acting freely on the connected manifold PUd with only one orbit
type, we also get dim(PUd/K) = dim(PUd) − dim(K) and thus

dim(E[d,m]) = dim(E[d,m]/PUd) + dim(PUd) − dim(K).(4.1)

Set

N ∶= {[u] ∈ PUd ∶ uBu∗ = B},

which is a closed subgroup of PUd . Given a ∈ F and [u] ∈ PUd , we have [u].a ∈ F if
and only if [u] ∈ N . It follows that N naturally acts on F. Furthermore, for each a ∈ F,
the N-orbit N .a agrees with PUd .a ∩ F. Since every PUd -orbit in E[d,m] meets F, we
deduce that E[d,m]/PUd ≅ F/N . Note that Bn+1

sa is a linear space. By Lemma 4.9, F is
an open subset of Bn+1

sa . It follows that F is a manifold satisfying

dim(F) = dim(Bn+1
sa ) = (n + 1)

L
∑
j=1

d2
j .

Analogous to (4.1), by considering the action of the compact Lie group N on F, we
obtain

dim(F) = dim(F/N) + dim(N) − dim(K).(4.2)
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Note that N contains {[u] ∶ u ∈ U(B)}, which implies that

dim(N) ≥
⎛
⎝

L
∑
j=1

d2
j
⎞
⎠
− 1.

Combining this estimate with (4.1) and (4.2), using that E[d,m]/PUd ≅ F/N , and
that [d, m] ≠ [(d), (1)], we get

dim(E[d,m]) = dim(F) + dim(PUd) − dim(N)

≤
⎛
⎝
(n + 1)

L
∑
j=1

d2
j
⎞
⎠
+ (d2 − 1) −

⎛
⎝
⎛
⎝

L
∑
j=1

d2
j
⎞
⎠
− 1

⎞
⎠

= d2 + n
L
∑
j=1

d2
j

≤ d2 + n((d − 1)2 + 1) = (n + 1)d2 − 2n(d − 1).

For [d, m] = [(d − 1, 1), (1, 1)], we have B(d, m) ≅ Md−1 ⊕C ⊆ Md . In this case,
we get N = {[u] ∈ PUd ∶ u ∈ U(Md−1 ⊕C)} and thus dim(N) = (d − 1)2 + 1 − 1 =
(d − 1)2. It follows that

dim(E[(d−1,1),(1,1)]) = dim(F) + dim(PUd) − dim(N)
= (n + 1)((d − 1)2 + 1) + (d2 − 1) − (d − 1)2

= (n + 1)d2 − 2n(d − 1). ∎

Lemma 4.12 Let X be a compact Hausdorff space, d ≥ 2, and n ∈ N. Then, the following
are equivalent:
(1) C(X , Gn+1

d ) ⊆ C(X , En+1
d ) is dense.

(2) dim(X) < 2n(d − 1).

Proof We use the notation from Paragraph 4.10. The orbit-type decomposition for
the action PUd ↷ En+1

d is

En+1
d = ⋃

[d,m]∈T
E[d,m] , E[d,m] ∶= {a ∈ En+1

d ∶ C∗1 (a) ∼ B(d, m)}.

Furthermore, Gn+1
d = E[(d),(1)], which is the submanifold of orbits with trivial stabi-

lizers. In the notation of Paragraph 4.4, with M = En+1
d , we have Mfree = Gn+1

d .
Applying Proposition 4.5, we obtain that C(X , Gn+1

d ) ⊆ C(X , En+1
d ) is dense if and

only if

dim(X) < dim(En+1
d ) − dim(En+1

d /Gn+1
d ).

Since En+1
d /Gn+1

d is the finite union of E[d,m] for [d, m] ≠ [(d), (1)], we obtain from
Lemma 4.11

dim(En+1
d /Gn+1

d ) = max
[d,m]≠[(d),(1)]

dim(E[d,m]) = (n + 1)d2 − 2n(d − 1).

Now, the result follows using that dim(En+1
d ) = (n + 1)d2. ∎
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The next result provides the answer to question (a) from Paragraph 4.3. Recall that
Genfiber

n+1 (A)sa denotes the set of tuples that are fiberwise generators.
Lemma 4.13 Let A be a unital, separable, d-homogeneous C∗-algebra, d ≥ 2, and n ∈N.
Then, Genfiber

n+1 (A)sa ⊆ An+1
sa is open. Furthermore, the following are equivalent:

(1) Genfiber
n+1 (A)sa is dense in An+1

sa .
(2) dim(Prim(A)) < 2n(d − 1).
Proof Set X ∶= Prim(A). Since X is compact, and since the Md -bundle associated
with A is locally trivial, we can choose closed subsets X1 , . . . , Xm ⊆ X that cover X
such that A(X j) ≅ C(X j , Md) for each j. Let π j ∶A → C(X j , Md) be the corresponding
quotient map, which induces a natural map An+1

sa → C(X j , Md)n+1
sa ≅ C(X j , En+1

d ) that
we also denote by π j .

A tuple a ∈ An+1
sa belongs to Genfiber

n+1 (A)sa if and only if π j(a) belongs to
C(X j , Gn+1

d ) for each j. It follows from Lemma 4.9 that Gn+1
d ⊆ En+1

d is open.
Since X is compact, we obtain that C(X j , Gn+1

d ) ⊆ C(X j , En+1
d ) is always open. Hence,

Genfiber
n+1 (A)sa ⊆ An+1

sa is open.
Since the intersection of finitely many open dense sets is again dense, we see that (1)

holds if and only if C(X j , Gn+1
d ) ⊆ C(X j , En+1

d ) is dense for each j. By Lemma 4.12,
this is in turn equivalent to dim(X j) < 2n(d − 1) for each j. Using that dim(X) =
max j dim(X j), this is finally equivalent to (2). ∎
Lemma 4.14 Let X be a compact metric space, let Y ⊆ X be closed, and let F and F̃ be
continuous maps as in the diagram below such that q ○ F̃ agrees with F on (Y × [0, 1]) ∪
(X × {0}).

(Y × [0, 1]) ∪ (X × {0}) F̃ ��
� �

��

Gn+1
d

q

��

(Y × [0, 1]) ∪ (X × [0, t])
H̃

�����������

� �

��
X × [0, 1] F �� Gn+1

d /PUd .

Then, there exist t > 0 and a continuous map H̃ making the above diagram commute.
Proof Using that the action PUd ↷ Gn+1

d is free, it follows that the quotient map
q∶Gn+1

d → Gn+1
d /PUd is the projection of a fiber bundle with base space Gn+1

d /PUd
and with fibers homeomorphic to PUd . Using the homotopy lifting property for fiber
bundles, we obtain H∶X × [0, 1] → Gn+1

d such that

q ○ H = F , and H(x , 0) = F̃(x , 0), for x ∈ X .

Next, we will correct H to agree with F̃ on Y × [0, t] for some t > 0.
Given (y, s) ∈ Y × [0, 1], we have

q(H(y, s)) = F(y, s) = q(F̃(y, s)).

Let c(y, s) ∈ PUd be the unique element such that H(y, s) = c(y, s).F̃(y, s). This
defines a map c∶Y × [0, 1] → PUd . Using that the fiber bundle is locally trivial, we
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see that c is continuous. For every y ∈ Y , we have H(y, 0) = F̃(y, 0) and there-
fore c(y, 0) = 1. We extend c to a map c∶ (Y × [0, 1]) ∪ (X × {0}) → PUd by setting
c(x , 0) ∶= 1 for every x ∈ X.

Every Lie group is a (metrizable) locally contractible, finite-dimensional space
and therefore an absolute neighborhood extensor (see Theorems 1.2.7 and 4.2.33 in
[vM01]). This allows us to extend c to a continuous map c̃∶U → PUd defined on a
neighborhood U of (Y × [0, 1]) ∪ (X × {0}) ⊆ X × [0, 1]. Then, define H̃∶U → Gn+1

d
by

H̃(x , s) ∶= c̃(x , s).F̃(x , s), for (x , s) ∈ U ⊆ X × [0, 1].

Choose t > 0 such that (Y × [0, 1]) ∪ (X × [0, t]) ⊆ U . Then, the restriction of H̃
to (Y × [0, 1]) ∪ (X × [0, t]) has the desired properties. ∎

Lemma 4.15 Let A be a unital, separable, d-homogeneous C∗-algebra, d ≥ 2. Then,

gr(A) = ⌈dim(Prim(A)) + 1
2d − 2

⌉ .

Proof Set X ∶= Prim(A). Since A is noncommutative, we have gr(A) ≥ 1 by [Thi21,
Proposition 5.7]. We also have ⌈ dim(X)+1

2d−2 ⌉ ≥ 1 for every value of dim(X). Thus, it is
enough to show that, for every n ≥ 1, the following holds:

gr(A) ≤ n ⇔ dim(X) < 2n(d − 1).

Recall that we use E(X , Gn+1
d /PUd) to denote the set of injective continuous maps

X → Gn+1
d /PUd . As explained in Paragraph 4.3, we have the following inclusions and

maps:

Genn+1(A)sa ⊆

Ψ��

Genfiber
n+1 (A)sa ⊆

Ψ��

An+1
sa

E(X , Gn+1
d /PUd) ⊆ C(X , Gn+1

d /PUd).

Assume that gr(A) ≤ n. Since A is separable, it follows from Theorem 2.2 that
Genn+1(A)sa ⊆ An+1

sa is dense. Since Genn+1(A)sa ⊆ Genfiber
n+1 (A)sa, we deduce from

Lemma 4.13 that dim(X) < 2n(d − 1).
Conversely, assume that dim(X) < 2n(d − 1). Applying Lemma 4.13, we see that

Genfiber
n+1 (A)sa ⊆ An+1

sa is dense and open. Furthermore, by Proposition 4.1, a tuple a ∈
Genfiber

n+1 (A)sa belongs to Genn+1(A)sa if and only if Ψ(a)belongs to E(X , Gn+1
d /PUd).

Thus, to verify gr(A) ≤ n, it suffices to show the following.
Let a ∈ Genfiber

n+1 (A)sa and ε > 0. Then, there exists b ∈ Genfiber
n+1 (A)sa such that

b =ε a, and Ψ(b) ∈ E(X , Gn+1
d /PUd).

By [Luu81, Theorem 5.1], if M is a metrizable manifold with 2 dim(X) <
dim(M), then E(X , M) ⊆ C(X , M) is dense with respect to the metric d( f , g) =
sup{dM( f (x), g(x)) ∶ x ∈ X}, where dM is a metric inducing the topology on M.

By Lemma 4.9, Gn+1
d is an open subset of En+1

d and therefore is a manifold of
dimension (n + 1)d2. Furthermore, PUd is a compact Lie group of dimension d2 − 1,
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acting freely on Gn+1
d . Hence, as noted in the proof of Lemma 4.11, it follows from

[Bre72, Theorem IV.3.8] that Gn+1
d /PUd is a manifold of dimension (n + 1)d2 −

(d2 − 1) = nd2 + 1. By assumption, we have dim(X) < 2n(d − 1), and thus

2 dim(X) < 4n(d − 1) ≤ nd2 + 1.

It follows that E(X , Gn+1
d /PUd) is dense in C(X , Gn+1

d /PUd).
Set f ∶= Ψ(a). Then, f ∶X → Gn+1

d /PUd is a continuous map, which can be approx-
imated arbitrarily closely by embeddings. To complete the proof, we need to show that
one of these embeddings is realized as Ψ(b) for some b ∈ An+1

sa close to a. We will do
this by successively applying our version of the homotopy extension lifting property
proved in Lemma 4.14.

Every manifold is finite-dimensional and locally contractible and therefore an
absolute neighborhood retract (ANR) (see [vM01, Theorem 4.2.33]). Given a homo-
topy H∶X × [0, 1] → M and t ∈ [0, 1], we let Ht ∶X → M be given by Ht(x) ∶= H(x , t).

Step 1: We find a homotopy F ∶X × [0, 1] → Gn+1
d /PUd such that F0 = f and such that

F1/k belongs to E(X , Gn+1
d /PUd) for every k ≥ 1.

Set M ∶= Gn+1
d /PUd . We use that M is an ANR. Given δ > 0, one says that H∶X ×

[0, 1] → M is a δ-homotopy if d(H0 , Ht) < δ for all t ∈ [0, 1]. By [vM01, Theorem 4.1.1],
for every δ > 0, there exists γ > 0 such that, for every g ∈ C(X , M) satisfying d( f , g) <
γ, there exists a δ-homotopy H∶X × [0, 1] → M with H0 = f and H1 = g. Given n ∈
N, we apply this for δn = 1

2n , to obtain γn > 0. Using that E(X , M) ⊆ C(X , M) is
dense, choose gn ∈ E(X , M) satisfying d( f , gn) < γn . By choice of γn , we obtain a

1
2n -homotopy H(n)∶X × [0, 1] → M satisfying H(n)0 = f and H(n)1 = gn .

Next, we define H∶X × [0,∞) → M by

H(x , t) =
⎧⎪⎪⎨⎪⎪⎩

H(k)(x , 2k + 1 − t), if t ∈ [2k, 2k + 1],
H(k+1)(x , t − 2k − 1), if t ∈ [2k + 1, 2k + 2].

Thus, H is the concatenation of the reverse of H(1), followed by H(2) and its reverse,
and so on, as shown in the following picture:

0 1 2 3 4 5
H(0)1−t H(1)t−1 H(1)3−t H(2)t−3 H(2)5−t

Note that H(_ , 2k) = gk for each k ∈ N, and limt→∞H(x , t) = f (x) for every
x ∈ X. Let ρ∶ (0, 1] → [0,∞) be a strictly decreasing, continuous map satisfying
ρ( 1

k ) = 2k − 2 for k ≥ 1. Then, F∶X × [0, 1] defined by F(x , 0) = f (x) and F(x , t) =
H(x , ρ(t)) for t ∈ (0, 1] has the desired properties.

Step 2: Since X is compact, and since the Md -bundle associated with A is locally
trivial, we can choose closed subsets X1 , . . . , Xm ⊆ X that cover X such that A(X j) ≅
C(X j , Md) for each j. Let π j ∶A → C(X j , Md) be the corresponding quotient map.
Abusing notation, we also use π j to denote the naturally induced map

π j ∶ An+1
sa → C(X j , Md)n+1

sa ≅ C(X j , En+1
d ).

Given j, k ∈ {1, . . . , m}, both π j and πk induce an isomorphism between A(X j ∩ Xk)
and C(X j ∩ Xk , Md). Let ck , j ∶X j ∩ Xk → PUd = Aut(Md) be the continuous map
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such that ck , j(x).π j(e)(x) = πk(e)(x) for every e ∈ A and x ∈ X j ∩ Xk . Then,

ck , j(x).π j(e)(x) = πk(e)(x)(4.3)

for every e ∈ An+1
sa and x ∈ X j ∩ Xk .

Step 3: We will successively choose t1 ≥ t2 ≥ ⋅ ⋅ ⋅ ≥ tm > 0 and continuous maps

H(k)∶Xk × [0, tk] → Gn+1
d

such that

H(k)(_ , 0) = πk(a), and q ○ H(k) = F∣Xk×[0,tk] ,(4.4)

and such that, for every j ≤ k and (x , s) ∈ (X j ∩ Xk) × [0, tk], we have

ck , j(x).H( j)(x , s) = H(k)(x , s).(4.5)

We start by setting t1 ∶= 1. The map π1(a)∶X1 → Gn+1
d satisfies q ○ π1(a) = f ∣X1 .

Thus, π1(a) is a lift of F∣X1×{0}. Using the homotopy lifting property for fiber bundles,
we obtain H(1)∶X1 × [0, 1] → Gn+1

d such that

H(1)0 = π1(a), and q ○ H(1) = F∣X1×[0,1] .

Next, assume that we have chosen t1 ≥ ⋅ ⋅ ⋅ ≥ tk−1 and H( j) for j = 1, . . . , k − 1. Set
Yk ∶= Xk ∩ (X1 ∪ ⋅ ⋅ ⋅ ∪ Xk−1), which is a closed subset of Xk . We define F̃(k)∶ (Yk ×
[0, tk−1]) ∪ (Xk × {0}) → Gn+1

d by

F̃(k)(x , t) ∶=
⎧⎪⎪⎨⎪⎪⎩

ck , j(x).H( j)(x , t), if x ∈ Xk ∩ X j , for j ≤ k − 1,
πk(a)(x), if t = 0.

It follows from (4.5) that F̃(k) is well defined. Furthermore, using (4.4), we obtain
that q ○ F̃(k) and F agree on (Yk × [0, tk−1]) ∪ (Xk × {0}). Applying Lemma 4.14, we
obtain tk ∈ (0, tk−1] and H(k) making the following diagram commute:

(Yk × [0, tk−1]) ∪ (Xk × {0}) F̃(k)
��

� �

��

Gn+1
d

q

��

(Yk × [0, tk−1]) ∪ (Xk × [0, tk])
H(k)

������������

� �

��
Xk × [0, tk−1] F �� Gn+1

d /PUd .

One checks that H(k) has the desired properties.
Step 4: Let t ∈ [0, tm]. For each j ∈ {1, . . . , m}, the map H( j)

t ∶X j → Gn+1
d defines an

element in b( j)
t ∈ C(X j , Md)n+1

sa . Given j ≤ k in {1, . . . , m} and x ∈ X j ∩ Xk , it follows
from (4.5) that

ck , j(x).b( j)
t (x) = b(k)t (x).

Thus, b(1)t , . . . , b(m)t can be patched to give bt ∈ An+1
sa such that b( j)

t = π j(bt) for each j.
One checks that each b( j)

t depends continuously on t, which implies that the map
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[0, tm] → An+1
sa , t ↦ bt , is continuous. By construction, we have b0 = a, and Ψ(bt) =

Ft for each t ∈ [0, tm]. Using that a belongs to Genfiber
n+1 (A)sa, which is an open subset

of An+1
sa , we can choose k ≥ 1 such that

a =ε b1/k ∈ Genfiber
n+1 (A)sa .

We have Ψ(b1/k) = F1/k , which by construction of F (Step 1) belongs to
E(X , Gn+1

d /PUd). It follows that b1/k ∈ Genn+1(A)sa. ∎

Proposition 4.16 Let A be a unital d-homogeneous C∗-algebra, d ≥ 2. Then,

gr(A) = ⌈dim(Prim(A)) + 1
2d − 2

⌉ .

Proof Set n ∶= gr(A) and l ∶= dim(Prim(A)), and then set

S1 ∶= {B ∈ Subsep(A) ∶ 1 ∈ B, gr(B) ≤ n}, and
S2 ∶= {B ∈ Subsep(A) ∶ B d-homogeneous, locdim(Prim(B)) ≤ l}.

As noted in Paragraph 3.1, since gr satisfies (D5) and (D6), it follows that S1 is σ-
complete and cofinal. By Proposition 3.5, S2 is σ-complete and cofinal. Hence, S1 ∩ S2
is σ-complete and cofinal as well.

Let B ∈ S1 ∩ S2. Then, B is a unital, separable, d-homogeneous C∗-algebra. Hence,
dim(Prim(B)) = locdim(Prim(B)), and by Lemma 4.15, we have

gr(B) = ⌈dim(Prim(B)) + 1
2d − 2

⌉ .

Thus, each B ∈ S1 ∩ S2 satisfies gr(B) ≤ ⌈ l+1
2d−2 ⌉. Since A is approximated by the

family S1 ∩ S2, we obtain gr(A) ≤ ⌈ l+1
2d−2 ⌉ by Theorem 2.6.

To show the converse inequality, set

m ∶= max{m0 ∈ N ∶ n ≥ ⌈m0 + 1
2d − 2

⌉} .

Then, each B ∈ S1 ∩ S2 satisfies topdim(B) = dim(Prim(B)) ≤ m. Arguing with the
topological dimension as in the proof of Lemma 3.4, we deduce that dim(Prim(A)) =
topdim(A) ≤ m, and thus n ≥ ⌈ dim(Prim(A))+1

2d−2 ⌉, as desired. ∎

Theorem 4.17 Let A be a d-homogeneous C∗-algebra. Set X ∶= Prim(A). If d = 1, then
gr0(A) = gr(A) = locdim(X × X). If d ≥ 2, then

gr0(A) = gr(A) = ⌈ locdim(X) + 1
2d − 2

⌉ .

Proof For d = 1, this follows from Theorem 2.7. So assume that d ≥ 2. By Proposi-
tion 2.4, we have gr0(A) ≤ gr(A). Let K ⊆ X be a compact subset. The corresponding
quotient A(K) is a unital d-homogeneous C∗-algebra with Prim(A(K)) ≅ K. Using
Proposition 4.16 at the first step, and using Theorem 2.5 at the last step, we get

⌈dim(K) + 1
2d − 2

⌉ = gr(A(K)) = gr0(A(K)) ≤ gr0(A).
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Since this holds for every compact subset of X, we deduce that

⌈ locdim(X) + 1
2d − 2

⌉ ≤ gr0(A) ≤ gr(A).

To verify that gr(A) ≤ ⌈ locdim(X)+1
2d−2 ⌉, set l ∶= locdim(X), which we may assume to

be finite. By Proposition 3.5, the collection

S ∶= {B ∈ Subsep(A) ∶ B d-homogeneous, locdim(Prim(B)) ≤ l}

is σ-complete and cofinal. Let B ∈ S. We view B as a locally trivial Md -bundle over Y ∶=
Prim(B). Since B is separable, Y is σ-compact and thus dim(Y) = locdim(Y) ≤ l <
∞. By [Phi07, Lemma 2.5], the Md -bundle has finite type. Applying [Phi07, Proposi-
tion 2.9], we obtain a locally trivial Md -bundle over the Stone–Čech-compactification
βY extending the bundle associated with B. This means that there is a unital d-
homogeneous C∗-algebra D with Prim(D) ≅ β(Y) such that B is an ideal in D. Since Y
is a normal space, we have dim(βY) = dim(Y) by [Pea75, Proposition 6.4.3, p. 232].
Using Theorem 2.5 at the first step, and Proposition 4.16 at the second step, we get

gr(B) ≤ gr(D) = ⌈dim(βY) + 1
2d − 2

⌉ ≤ ⌈ l + 1
2d − 2

⌉ .

Since A is approximated by S, we obtain gr(A) ≤ ⌈ l+1
2d−2 ⌉ by Theorem 2.6. ∎

In Corollary 5.7, we will generalize the following result to compute the generator
rank of direct sums of subhomogeneous C∗-algebras.

Lemma 4.18 Let A and B be d-homogeneous C∗-algebras. Then,

gr(A⊕ B) = max{ gr(A), gr(B)}.

Proof For d = 1, this follows from [Thi21, Proposition 5.9]. So assume that d ≥ 2.
Set X ∶= Prim(A), and Y ∶= Prim(B). Then, A⊕ B is d-homogeneous with Prim(A⊕
B) ≅ X ⊔ Y , the disjoint union of X and Y. Applying Theorem 4.17 at the first and last
steps, we obtain

gr(A⊕ B) = ⌈ locdim(X ⊔ Y) + 1
2d − 2

⌉ = ⌈max{locdim(X), locdim(Y)} + 1
2d − 2

⌉

= max{⌈ locdim(X) + 1
2d − 2

⌉ , ⌈ locdim(Y) + 1
2d − 2

⌉}

= max{ gr(A), gr(B)}. ∎

Remark 4.19 Let A be a unital d-homogeneous C∗-algebra. Set X ∶= Prim(A). If
d = 1, then A ≅ C(X), and by Theorem 2.7, the generator rank of A is dim(X × X).
The value of dim(X × X) is either 2 dim(X) or 2 dim(X) − 1, and accordingly we say
that X is of basic type or of exceptional type (see [Thi21, Proposition 5.3]).

If d ≥ 2, then by Proposition 4.16, the generator rank of A only depends on dim(X)
(and d), but not on dim(X × X). Thus, in this case, the generator rank of A does not
depend on whether X is of basic or exceptional type.
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Remark 4.20 Let m ≥ 1 and d ≥ 2, and set A = C([0, 1]m , Md). Let gen(A) denote
the minimal number of self-adjoint generators for A. By [Nag04, Theorem 4], [BE91,
Corollary 3.2] (see also [Bla06, Theorem V.3.2.6]), and Proposition 4.16, we have

gen(A) = ⌈m − 1
d2 + 1⌉ , rr(A) = ⌈ m

2d − 1
⌉ , gr(A) = ⌈ m + 1

2d − 2
⌉ .

5 Subhomogeneous C∗-algebras

In this section, we compute the generator rank of subhomogeneous C∗-algebras (see
Theorem 5.5). Recall that a C∗-algebra is d-subhomogeneous (for some d ≥ 1) if all of
its irreducible representations have dimension at most d, and it is subhomogeneous
if it is d-subhomogeneous for some d (see [Bla06, Definition IV.1.4.1, p. 330]). It is
known that a C∗-algebra is subhomogeneous if and only if it is a sub-C∗-algebra of a
homogeneous C∗-algebra; equivalently, it is a sub-C∗-algebra of C(X , Md) for some
compact Hausdorff space X and some d ≥ 1.

Inductive limits of subhomogeneous C∗-algebras are called ASH-algebras. As an
application, we show that every nonzero, Z-stable ASH-algebra has generator rank
one (see Theorem 5.10).

To compute the generator rank of a subhomogeneous C∗-algebra, we use that it is
a successive extension by homogeneous C∗-algebras. Using the results from Section 4,
we compute the generator rank of the homogeneous parts. The crucial extra ingredient
is Proposition 5.3, which allows us to compute the generator rank of the extension by
a homogeneous C∗-algebra.

Given a C∗-algebra A, we equip the primitive ideal space Prim(A) with the hull-
kernel topology (see [Bla06, Section II.6.5, p. 111ff] for details). Given an ideal I ⊆ A,
the set hull(I) ∶= {J ∈ Prim(A) ∶ I ⊆ J} is a closed subset of Prim(A), and this defines
a natural bijection between ideals of A and closed subsets of Prim(A).

Lemma 5.1 Let A be a unital C∗-algebra, and let (Ik)k∈N be a decreasing sequence of
ideals. Then, the following are equivalent:
(1) ⋃k hull(Ik) = Prim(A).
(2) For each φ ∈ A∗, we have limk→∞ ∥φ∣Ik∥ = 0.

Proof For each k ∈ N, let zk denote the support projection of Ik in A∗∗, and let
πk ∶A → A/Ik denote the quotient map.

Claim: Let φ ∈ A∗+ and k ∈ N. Then, ∥φ∣Ik∥ = φ∗∗(zk). To prove the claim, let (hα)α
denote an increasing, positive, contractive approximate unit of Ik . Since φ∣Ik is a
positive functional on Ik , we have ∥φ∣Ik∥ = limα φ(hα) by [Bla06, Proposition II.6.2.5].
Using also that zk is the weak*-limit of (hα)α in A∗∗, we get

∥φ∣Ik∥ = lim
α

φ(hα) = φ∗∗(zk),

which proves the claim.
Let S(A) denote the set of states on A, which is a compact, convex subset of A∗,

and let P(A) denote the pure states on A, which agrees with the set of extreme points
in S(A). Given a ∈ (A∗∗)sa, we let â∶ S(A) → R be given by

â(φ) = φ∗∗(a),
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for φ ∈ S(A). Then, â is affine. If a ∈ Asa, then â is continuous. Given k ∈ N, let (hα)α
be an increasing approximate unit of Ik . Then, ẑk is the pointwise supremum of the
increasing net (ĥα)α of continuous functions, and therefore lower-semicontinuous.

To show that (1) implies (2), assume that ⋃k hull(Ik) = Prim(A). Let φ ∈ P(A).
Since every pure state on A factors through an irreducible representation, there
exists k such that φ factors through πk . Let φ̄ ∈ (A/Ik)∗ such that φ = φ̄ ○ πk . We have
π∗∗k (zk) = 0, and therefore

ẑk(φ) = φ∗∗(zk) = φ̄∗∗(π∗∗k (zk)) = 0.

Thus, (ẑk)k is a decreasing sequence of lower semicontinuous, affine functions
with limk→∞ ẑk(φ) = 0 for each φ ∈ P(A). By [Alf71, Proposition 1.4.10, p. 36],
we have limk→∞ ẑk(φ) = 0 for each φ ∈ S(A). Applying the claim, it follows that
limk→∞ ∥φ∣Ik∥ = 0 for every φ ∈ S(A). Now, (2) follows using that every functional
in A∗ is a linear combination of four states, by [Bla06, Theorem II.6.3.4, p. 106].

To show that (2) implies (1), assume that ⋃k hull(Ik) ≠ Prim(A). We will show
that (2) does not hold. Let J ⊆ A be a primitive ideal with J ∉ ⋃k hull(Ik), and let φ̄ be
a pure state on A/J. Let π∶A → A/J denote the quotient map. Set φ ∶= φ̄ ○ π, which is a
pure state on A. Let k ∈ N. In general, the restriction of a pure state to an ideal is either
zero or again a pure state. Since J ∉ hull(Ik), we have φ∣Ik ≠ 0, and thus ∥φ∣Ik∥ = 1.
Thus, limk→∞ ∥φ∣Ik∥ = 1 ≠ 0. ∎

Proposition 5.2 Let A be a C∗-algebra, let (Ik)k∈N be a decreasing sequence of ideals
such that ⋃k hull(Ik) = Prim(A), and let B ⊆ A be a sub-C∗-algebra. Assume that
B/(B ∩ Ik) = A/Ik for each k. Then, B = A.

Proof We first reduce to the unital case. So assume that A is nonunital, let Ã denote
its minimal unitization, and let B̄ denote the sub-C∗-algebra of Ã generated by B and
the unit of Ã. For each k ∈ N, we consider Ik as an ideal in Ã. Let πk ∶A → A/Ik and
π+k ∶ Ã → Ã/Ik denote the quotient maps. Note that Ã/Ik is naturally isomorphic to
(A/Ik)+, the forced unitization of A/Ik . By assumption, πk(B) = πk(A). It follows
that π+k (B̄) = π+k (Ã). Furthermore, Prim(Ã) is the union of the hulls of the Ik . Then,
assuming that the results holds in the unital case, we obtain B̄ = Ã, which implies B =A.

Thus, we may assume from now on that A is unital. To reach a contradiction,
assume that B ≠ A. Using Hahn–Banach, we choose φ ∈ A∗ with φ∣B ≡ 0 and ∥φ∥ = 1.
Apply Lemma 5.1 to obtain k such that ∥φ∣Ik∥ < 1

8 . Since every functional is a linear
combination of four states [Bla06, Theorem II.6.3.4, p.106], we obtain ψm ∈ (Ik)∗+ with
φ∣Ik = ∑3

m=0 imψm , and we may also ensure that ∥ψm∥ ≤ ∥φ∣Ik∥ < 1
8 . Using [Bla06,

Theorem II.6.4.16, p. 111], we can extend each ψm to a positive functional ψ̃m ∈
A∗+ with ∥ψ̃m∥ = ∥ψm∥. Set ω ∶= φ −∑3

m=0 imψ̃m . Then, ω ∈ A∗ satisfies ω∣Ik ≡ 0 and
∥φ − ω∥ < 1

2 .
Let ω̄ ∈ (A/Ik)∗ satisfy ω = ω̄ ○ πk . Given a ∈ A, use that A/Ik = πk(B) to choose

b ∈ B with πk(b) = πk(a) and ∥b∥ = ∥πk(a)∥ (see [Bla06, Proposition II.5.1.5]). Then,
ω(a) = ω(b), and thus

∣ω(a)∣ = ∣ω(b)∣ ≤ ∣ω(b) − φ(b)∣ + ∣φ(b)∣ ≤ ∥ω − φ∥∥b∥ ≤ 1
2 ∥a∥.

Hence, ∥ω∥ ≤ 1
2 , and so 1 = ∥φ∥ ≤ ∥φ − ω∥ + ∥ω∥ < 1, which is a contradiction. ∎
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Proposition 5.3 Let A be a separable C∗-algebra, and let (Ik)k∈N be a decreasing
sequence of ideals satisfying ⋃k hull(Ik) = Prim(A). Then,

gr0(A) = sup
k

gr0(A/Ik), and gr(A) = sup
k

gr(A/Ik).

Proof Part 1: We verify the equality for gr0. For each k, set Bk ∶= A/Ik and let
πk ∶A → Bk denote the quotient map. By Theorem 2.5, we have gr0(A) ≥ gr0(Bk). It
thus remains to prove gr0(A) ≤ supk gr0(Bk). Set n ∶= supk gr0(Bk), which we may
assume to be finite. For each k, set

Dk ∶= {(a0 , . . . , an) ∈ An+1
sa ∶ (πk(a0), . . . , πk(an)) ∈ Genn+1(Bk)sa}.

Since gr0(Bk) ≤ n, and since Bk is separable, Genn+1(Bk)sa is a dense Gδ-subset of
(Bk)n+1

sa by Theorem 2.2. We deduce that Dk is a dense Gδ-subset of An+1
sa . Then, by

the Baire category theorem, D ∶= ⋂k Dk is a dense subset of An+1
sa .

Let us show that D ⊆ Genn+1(A)sa, which will imply that gr0(A) ≤ n. Let a ∈ D,
and set B ∶= C∗(a) ⊆ A. By construction, we have πk(B) = A/Ik for each k. Applying
Proposition 5.2, we get B = A, and thus a ∈ Genk(A)sa.

Part 2: We verify the equality for gr. If A is unital, this follows from Part 1. So assume
that A is nonunital. We consider Ik as an ideal in Ã. As in the proof of Proposition 5.2,
we see that Ã/Ik ≅ (A/Ik)+, and that Prim(Ã) is the union of the hulls of the Ik . By
[Thi21, Lemma 6.1], we have gr(B) = gr(B+) for every C∗-algebra B. Applying Part 1
at the second step, we get

gr(A) = gr0(Ã) = sup
k

gr0(Ã/Ik) = sup
k

gr0((A/Ik)+) = sup
k

gr(A/Ik). ∎
Lemma 5.4 Let A and B be separable C∗-algebras. Assume that no nonzero quotient
of A is isomorphic to a quotient of B. Then,

gr0(A⊕ B) = max{ gr0(A), gr0(B)}, and gr(A⊕ B) = max{ gr(A), gr(B)}.

Proof The equality for gr0 follows directly from [Thi21, Proposition 5.10] by consid-
ering the ideal I ∶= A. Applying Proposition 2.4 at the first and last steps, and using the
formula for gr0 and that rr(A⊕ B) = max{rr(A), rr(B)} at the second step, we get

gr(A⊕ B) = max{ gr0(A⊕ B), rr(A⊕ B)}
= max{ gr0(A), gr0(B), rr(A), rr(B)} = max{ gr(A), gr(B)}. ∎

Theorem 5.5 Let A be a subhomogeneous C∗-algebra. For each d ≥ 1, set Xd ∶=
Primd(A), the subset of the primitive ideal space of A corresponding to d-dimensional
irreducible representations. Then,

gr0(A) = gr(A) = max{locdim(X1 × X1), max
d≥2

⌈ locdim(Xd) + 1
2d − 2

⌉} .

Proof By Proposition 2.4, we have gr0(A) ≤ gr(A). Given d ≥ 1, let Ad denote the
ideal quotient of A corresponding to the locally closed set Primd(A) ⊆ Prim(A).
Applying Theorem 2.5, we obtain gr0(Ad) ≤ gr0(A). Note that Ad is d-homogeneous.
In particular, A1 ≅ C0(X1). Using Theorem 2.7, we get

locdim(X1 × X1) = gr0(A1) ≤ gr0(A).
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For d ≥ 2, applying Theorem 4.17, we get

⌈ locdim(Xd) + 1
2d − 2

⌉ = gr0(Ad) ≤ gr0(A).

It remains to verify that

gr(A) ≤ max{locdim(X1 × X1), sup
d≥2

⌈ locdim(Xd) + 1
2d − 2

⌉} .(5.1)

Recall that a C∗-algebra is m-subhomogeneous if each of its irreducible represen-
tations has dimension at most m. We prove the inequality (5.1) by induction over m.
Note that 1-subhomogeneous C∗-algebras are precisely commutative C∗-algebras, in
which case (5.1) follows from Theorem 2.7.

Let m ≥ 2, assume that (5.1) holds for (m − 1)-subhomogeneous C∗-algebras, and
assume that A is m-subhomogeneous. Let I be the ideal of A corresponding to the
open subset Xm ⊆ Prim(A). Note that A/I is (m − 1)-subhomogeneous. Set

n ∶= max{locdim(X1 × X1), sup
d=1, . . . ,m−1

⌈ locdim(Xd) + 1
2d − 2

⌉} .

By assumption of the induction, we have gr(A/I) ≤ n. We need to prove that

gr(A) ≤ max{n, ⌈ locdim(Xm) + 1
2m − 2

⌉} .

Set l ∶= locdim(Xm) and

S1 ∶= {B ∈ Subsep(A) ∶ gr(B/(B ∩ I)) ≤ n}, and
S2 ∶= {B ∈ Subsep(A) ∶ B ∩ I m-homogeneous, locdim(Prim(B ∩ I)) ≤ l}.

As noted in Paragraph 3.1, the collection {D ∈ Subsep(A/I) ∶ gr(D) ≤ n} is σ-
complete and cofinal. Applying Lemma 3.2(2), we obtain that S1 is σ-complete and
cofinal. Similarly, using Proposition 3.5 and Lemma 3.2(1), we see thatS2 is σ-complete
and cofinal. Hence, S1 ∩ S2 is σ-complete and cofinal as well. Using Theorem 2.6, and
using that A is approximated by S1 ∩ S2, it suffices to verify that every B ∈ S1 ∩ S2
satisfies

gr(B) ≤ max{n, ⌈ l + 1
2m − 2

⌉} .

Let B ∈ S1 ∩ S2. Set J ∶= B ∩ I. By construction, J is m-homogeneous with
locdim(Prim(J)) ≤ l , and B/J is (m − 1)-subhomogeneous with gr(B/J) ≤ n. Note
that J is the ideal of B corresponding to Primm(B). Since B is separable, Primm(B) is
σ-compact. Choose an increasing sequence (Yk)k∈N of compact subsets of Primm(B)
such that Primm(B) = ⋃k Yk .

For each k, note that Yk ⊆ Primm(B) is closed, and let Jk be the ideal of J
corresponding to the open subset Primm(B)/Yk . Considering Jk as an ideal of B,
we have B/Jk ≅ (J/Jk) ⊕ B/J. Since J/Jk is m-homogeneous, and B/J is (m − 1)-
subhomogeneous, no nonzero quotient of J/Jk is isomorphic to a quotient of B/J.
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Applying Lemma 5.4, we obtain

gr(B/Jk) = gr ((J/Jk) ⊕ B/J) = max{ gr(J/Jk), gr(B/J)}.

Since J/Jk is a quotient of J, and J is m-homogeneous with locdim(Prim(J)) ≤ l , it
follows from Theorems 2.5 and 4.17 that

gr(J/Jk) ≤ gr(J) = ⌈ locdim(Prim(J)) + 1
2m − 2

⌉ ≤ ⌈ l + 1
2m − 2

⌉ .

Applying Proposition 5.3 at the first step, we obtain

gr(B) = sup
k

gr(B/Jk) = sup
k

max{ gr(J/Jk), gr(B/J)} ≤ max{n, ⌈ l + 1
2m − 2

⌉} ,

as desired. ∎

Remark 5.6 Let A be an m-subhomogeneous C∗-algebra. For d = 1, . . . , m, let Ad be
the ideal quotient of A corresponding to the locally closed subset Primd(A). Then, it
follows from Theorem 5.5 that

gr(A) = max{ gr(A1), . . . , gr(Am)}.

Analogous formulas hold for the real and stable rank (see [Bro16, Lemma 3.4]).

Corollary 5.7 Let A and B be subhomogeneous C∗-algebras. Then,

gr(A⊕ B) = max{ gr(A), gr(B)}.

Proof Let m ≥ 1 be such that A and B are m-subhomogeneous. Let Ad be the ideal
quotient of A corresponding to Primd(A), and analogous for Bd , for d = 1, . . . , m.
Then, Ad and Bd are d-homogeneous, and Ad ⊕ Bd is naturally isomorphic to the
ideal quotient of A⊕ B corresponding to Primd(A⊕ B). Applying Theorem 5.5 (see
also Remark 5.6) at the first and last steps, and using Lemma 4.18 at the second step,
we get

gr(A⊕ B) = max
d=1, . . . ,m

gr(Ad ⊕ Bd) = max
d=1,. . . ,m

max{ gr(Ad), gr(Bd)}

= max{ max
d=1, . . . ,m

gr(Ad), max
d=1, . . . ,m

gr(Bd)} = max{ gr(A), gr(B)}. ∎

It is natural to expect that the generator rank of a direct sum of C∗-algebras is the
maximum of the generator ranks of the summands. The next result shows that this
is the case if one of the summands is subhomogeneous. In general, however, this is
unclear (see [Thi21, Questions 2.12 and 6.4]).

Proposition 5.8 Let A and B be C∗-algebra,s and assume that B is subhomogeneous.
Then,

gr0(A⊕ B) = max{gr0(A), gr0(B)}, and gr(A⊕ B) = max{gr(A), gr(B)}.

Proof Let m ≥ 1 such that B is m-subhomogeneous. The proof proceeds analogous
to that of [Thi21, Proposition 5.12] (which is the result for m = 1) by considering the
smallest ideal I ⊆ A such that A/I is m-subhomogeneous (instead of the smallest
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I such that A/I is commutative), and by using Corollary 5.7 instead of [Thi21,
Proposition 5.9]. ∎
Lemma 5.9 Let A be a nonzero, subhomogeneous C∗-algebra. Then, gr(A⊗Z) = 1.

Proof Given a finite subset F ⊆ A, set AF ∶= C∗(F) ⊆ A. Then, AF is a finitely
generated, subhomogeneous C∗-algebra. By [NW06, Theorem 1.5], there is k ∈ N
such that locdim(Primd(AF)) ≤ k for every d ≥ 1. For p, q ∈ N, let Zp,q denote the
dimension-drop algebra

Zp,q = { f ∶ [0, 1] → Mp ⊗ Mq ∶ f continuous, f (0) ∈ 1 ⊗ Mq , f (1) ∈ Mp ⊗ 1}.

For p and q sufficiently large (for example, p, q ≥ k + 2), it follows from Theorem 5.5
that gr(AF ⊗ Zp,q) ≤ 1. Using that Z is an inductive limit of dimension-drop algebras
Zpn ,qn with limn pn = limn qn = ∞, we have gr(AF ⊗Z) ≤ 1 by Theorem 2.6. The fam-
ily of sub-C∗-algebras AF ⊗Z ⊆ A⊗Z, indexed over the finite subsets of A ordered by
inclusion, approximates A⊗Z, whence gr(A⊗Z) ≤ 1 by Theorem 2.6.

By [Thi21, Proposition 5.7], every noncommutative C∗-algebra has generator rank
at least one, and thus gr(A⊗Z) = 1. ∎
Theorem 5.10 Every nonzero, Z-stable ASH-algebra has generator rank one.

If A is a separable, Z-stable ASH-algebra, then a generic element of A is a generator.

Proof Let A be a nonzero, Z-stable ASH-algebra. Let (Aλ)λ be an inductive system
of subhomogeneous C∗-algebras such that A ≅ lim�→λ

Aλ . Then,

A ≅ A⊗Z ≅ lim�→
λ

Aλ ⊗Z.

By Lemma 5.9, we have gr(Aλ ⊗Z) ≤ 1 for each λ. Using Theorem 2.6, we get
gr(A) ≤ 1. Since A is noncommutative, we deduce that gr(A) = 1 by [Thi21, Propo-
sition 5.7].

If A is also separable, then the generators in A form a dense Gδ-subset (see
Remark 2.3). ∎
Remark 5.11 Let A be a unital, separable, Z-stable C∗-algebra. It was shown in
[TW14, Theorem 3.8] that A contains a generator. If A is also approximately subho-
mogeneous, then Theorem 5.10 shows that generators are even dense in A. I expect
that every Z-stable C∗-algebra has generator rank one. However, in general, we do not
even know that every Z-stable C∗-algebra has real rank at most one.
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