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Abstract

Separation commonly occurs in political science, usually when a binary explanatory variable perfectly
predicts a binary outcome. In these situations, methodologists often recommend penalized maximum
likelihood or Bayesian estimation. But researchersmight struggle to identify an appropriate penalty or prior
distribution. Fortunately, I show that researchers can easily test hypotheses about themodel coefficientswith
standard frequentist tools. While the popular Wald test produces misleading (even nonsensical) p-values
under separation, I show that likelihood ratio tests and score tests behave in the usual manner. Therefore,
researchers can produce meaningful p-values with standard frequentist tools under separation without the
use of penalties or prior information.
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1. Introduction

Separation commonly occurs in political science, usually when a binary explanatory variable perfectly
predicts a binary outcome (e.g., Gustafson 2020; Mehltretter 2022; Owsiak and Vasquez 2021).1 For
example, Barrilleaux and Rainey (2014) find that being a Democrat perfectly predicts a governor
supporting Medicaid expansion under the Affordable Care Act. Under separation, the usual maximum
likelihood estimate is unreasonably large and the Wald test is highly misleading.

As a solution, some methodologists propose using a Bayesian prior distribution to regularize the
estimates, which we can alternatively consider as a penalized maximum likelihood estimator. Zorn
(2005; see also Heinze and Schemper 2002) points political scientists toward Firth’s (1993) penalized
maximum likelihood estimator, which is equivalent to Jeffreys prior distribution. Gelman et al. (2008),
on the other hand, recommend a Cauchy prior distribution. Both methods ensure finite estimates
in theory and usually produce reasonably sized estimates in practice. Methodologists continue to
recommend these penalized or Bayesian estimators as a solution to separation (e.g., Anderson, Bagozzi,

1Throughout this paper, I use “separation” to refer to quasicomplete separation (Albert and Anderson 1984) when a single
binary explanatory variable s perfectly predicts either the outcome y = 1 or y = 0. Zorn (2005) notes that quasicomplete
separation is “far more common” (161) than complete separation in political science and focuses on the situation where
“only one cell of the implied 2× 2 table of s and y is ‘empty”’ (161; notation adjusted to match). This is the most common
form of separation identified in political science. Also, focusing here simplifies the presentation. However, separation can
occur outside this scenario I consider. In particular, separation can occur due to a linear combination of explanatory variables
(rather than a single explanatory variable) and in models other than logistic regression (e.g., ordered logistic regression,
Cox proportional hazards). The arguments I present extend beyond the “single empty cell” scenario to other forms of
separation (e.g., complete, linear combinations) and to other models (e.g., ordinal logistic regression, Cox proportional
hazards).

©The Author(s), 2023. Published by Cambridge University Press on behalf of the Society for Political Methodology.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
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and Koren 2021; Cook, Hays, and Franzese 2020; Cook, Niehaus, and Zuhlke 2018; Crisman-Cox,
Gasparyan, and Signorino 2023).

But Rainey (2016) points out that the estimates (and especially the confidence intervals) depend
largely on the chosen prior. Many priors that produce finite estimates also produce meaningfully
different conclusions. He argues that the set of a priori “reasonable” and “implausible” parameters
depends on the substantive application, so context-free defaults (like Jeffreys and Cauchy priors) might
not produce reasonable results. Starkly emphasizing this point, Beiser-McGrath (2022) shows that
Jeffreys prior can lead to (statistically significant) estimates in the opposite direction of the separation.
Rainey (2016) concludes that “[w]hen facing separation, researchers must carefully choose a prior
distribution to nearly rule out implausibly large effects” (354). Given the sensitivity of the result to
the chosen prior distribution, how can researchers make their analysis more compelling? In particular,
can they obtain useful p-values to test hypotheses about model coefficients in the usual frequentist
framework without injecting prior information into their model?

I show that while the popular Wald test produces misleading (even nonsensical) p-values under
separation, likelihood ratio tests and score tests behave in the usual manner. Thus, researchers can
produce meaningful p-values with standard frequentist tools under separation without the use of a
penalty or prior. A complete analysis of a data set with separation will usually include penalized or
Bayesian estimates to obtain reasonable estimates of quantities of interest, but a hypothesis test without a
penalty or prior canmore convincingly establish that the most basic claim holds: the separating variable
has a positive (or negative) effect.

2. Hypothesis Tests under Separation

Maximum likelihood provides a general and powerful framework for obtaining estimates of model
parameters and testing hypotheses. In our case of logistic regression, we write the probability πi that
an event occurs for observation i of n (or that the outcome variable yi = 1) as πi = logit−1(Xiβ) for
i = 1,2,...,n, where X represents a matrix of explanatory variables and β represents a vector of
coefficients. Then we have the likelihood function L(β ∣ y) = ∏n

i=1π
yi
i (1 − πi)(1−yi) and the log-

likelihood function �(β ∣ y) = logL(β ∣ y) = ∑n
i=1[yi log(πi) + (1 − yi) log(1 − πi)]. Researchers

typically use numerical algorithms to locate the maximum likelihood estimate β̂ML that maxi-
mizes � and then use certain features of � to test hypotheses. To fix ideas, I focus on the point
null hypothesis H0 ∶ βs = 0. However, the intuition and conclusions generalize to more complex
hypotheses.

The literature offers three common methods to assess the null hypothesis—the “holy trinity” of
hypothesis tests: the Wald test, the likelihood ratio test, and the score test (also known as the Lagrange
multiplier test). For practical reasons, most regression tables in political science report Wald p-values.
However, theWald test is uniquely ill-suited for testing hypotheses under separation. Because the usual
Wald test fails, some researchers turn immediately penalized estimators (e.g., Bell and Miller 2015) or
Bayesian inference (e.g., Barrilleaux and Rainey 2014). However, the usual likelihood ratio and score
tests work as expected under separation. Thus, researchers can use the likelihood ratio or score test to
evaluate the core hypothesis that the separating variable has a positive (or negative) effect before turning
to penalized or Bayesian methods to estimate quantities of interest. Below, I briefly describe each test,
explain why the Wald test works poorly under separation, and describe why the likelihood ratio and
score tests perform better.

2.1. Wald Test
The Wald test uses the shape of the log-likelihood function around the maximum to estimate the
precision of the point estimate. If small changes in the parameter near the maximum lead to large
changes in the log-likelihood function, then we can treat the maximum likelihood estimate as precise.
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Score: Is the curve steep here?

Likelihood Ratio: Is this difference large?

Wald: Is the curve peaked here?
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An Example Log−Likelihood Function without Separation

Score: Is the curve steep here?

Likelihood Ratio: Is this difference large?

Wald: Is the curve peaked here?
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And with Separation

Figure1.A figure summarizing logic of the “holy trinity” of hypothesis tests. TheWald test relies on the curvature around themaximum

of the log-likelihood function,whichbreaksdownunder separation. The likelihood ratioandscore test, on theotherhand, relyonother
features of the log-likelihood function that are not meaningfully impacted by separation.

We usually estimate the standard error ŜE(β̂ML
i ) as

ŜE(β̂ML
i ) = ⎛⎝−

∂2�(β̂ML
i ∣ y)

∂2β̂ML
i

⎞
⎠
− 1

2

.

Wald (1943) advises us how compare the estimate with the standard error: the statistic Zw = β̂ML
i

ŜE(β̂ML
i )

approximately follows a standard normal distribution (Casella and Berger 2002, 492–493; Greene 2012,
527–529).

TheWald approach works poorly when dealing with separation. Under separation, the log-likelihood
function at the numerical maximum is nearly flat. The flatness produces very large standard error
estimates—much larger than the coefficient estimates. Figure 1 shows this intuition for a typical, non-
monotonic log-likelihood function (i.e., without separation) and a monotonic log-likelihood function
(i.e., with separation). In the absence of separation, the curvature of the log-likelihood function around
the maximum speaks to the evidence against the null hypothesis. But under separation, the monotonic
likelihood function is flat at the maximum, regardless of the relative likelihood of the data under the
null hypothesis.

We can develop this intuitionmore precisely and formally. Suppose that a binary explanatory variable
s with coefficient βs perfectly predicts the outcome yi such that when si = 1 then yi = 1. Then the log-
likelihood function increases in βs.The standard error estimate associatedwith eachβs increases as well.
Critically, though, the estimated standard error increases faster than the associated coefficient, because

limβs→∞
⎡⎢⎢⎢⎢⎣
(−∂2�(βs ∣ y)

∂2βs
)
− 1

2 −βs

⎤⎥⎥⎥⎥⎦
= ∞. Thus, under separation, the estimated standard error will be

much larger than the coefficient for the separating variable. This implies two conclusions. First, so long
as the researcher uses a sufficiently precise algorithm, the Wald test will never reject the null hypothesis
under separation, regardless of the data set. Second, if the Wald test can never reject the null hypothesis
for any data setwith separation, then the power of the test is strictly bounded by the chance of separation.
In particular, the power of the test cannot exceed 1−Pr(separation). If the data set features separation in
nearly 100% of repeated samples, then the Wald test will have power near 0%.

As a final illustration, suppose an absurd example in which a binary treatment perfectly predicts 500
successes and 500 failures (i.e., y = x always). Of course, this data set is extremely unlikely under the
null hypothesis that the coefficient for the treatment indicator equals zero. The exact p-value for the
null hypothesis that successes and failures are equally likely under both treatment and control equals
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2×( 12)500×( 12)500 = 2
21000 ≈ 2

10301 . (For comparison, there are about 1080 atoms in the known universe.)
Yet the default glm() routine in R calculates a Wald p-value of 0.998 with the default precision
(and 1.000 with the maximum precision). When dealing with separation, the Wald test breaks down;
researchers cannot use the Wald test to obtain reasonable p-values for the coefficient of a separating
variable.2

2.2. Likelihood Ratio Test
The likelihood ratio test resolves the problem of the flat log-likelihood by comparing the maximum log-
likelihood of two models: an “unrestricted” modelML that imposes no bounds on the estimates and a
“restricted” model ML0 that constrains the estimates to the region suggested by the null hypothesis. If
the data set is muchmore likely under the unrestricted estimate than under the restricted estimate, then
the researcher can reject the null hypothesis. Wilks (1938) advises us how to compare the unrestricted
log-likelihood �(β̂ML ∣ y) to the restricted log-likelihood �(β̂ML0 ∣ y): D = 2×[�(β̂ML ∣ y)−�(β̂ML0 ∣ y)]
approximately follows a χ2 distribution with degrees of freedom equal to the number of constrained
dimensions (Casella and Berger 2002, 488–492; Greene 2012, 526–527).

Figure 1 shows the intuition of the likelihood ratio test. The gap between the unrestricted and
restricted maximum summarizes the evidence against the null hypothesis. Importantly, the logic does
not break down under separation. Unlike the Wald test, the likelihood ratio test can reject the null
hypothesis under separation.3

2.3. Score Test
The score test (or Lagrange multiplier test) resolves the problem of the flat log-likelihood by evaluating
the gradient of the log-likelihood function at the null hypothesis. If the log-likelihood function is
increasing rapidly at the null hypothesis, this casts doubt on the null hypothesis. The score test uses the

score function S(β) = ∂�(β ∣ y)
∂β

and the Fisher information I(β) = −Eβ (∂2�(β ∣ y)
∂2β

). When evaluated

at the null hypothesis, the score function quantifies the slope and the Fisher information quantifies the
variance of that slope in repeated samples. If the score at the null hypothesis is large, then the researcher
can reject the null hypothesis. Rao (1948) advises us how to compare the score to its standard error:
Zs = S(β0

s )√
I(β0

s )
follows a standard normal distribution (Casella and Berger 2002, 494–495; Greene 2012,

529–530).
Figure 1 shows the intuition of the score test. The slope of the log-likelihood function under the null

hypothesis summarizes the evidence against the null hypothesis. As with the likelihood ratio test, the
logic works even under separation, and the score test can reject the null hypothesis under separation.

Table 1 summarizes the three tests. For further discussion of the connections among the tests, see
Buse (1982). Most importantly, the likelihood ratio and score tests rely on features of the log-likelihood
function that are not meaningfully affected by a monotonic log-likelihood function. The Wald test, on
the other hand, cannot provide a reasonable test under separation.

2de Carvalho Barreto et al. (2014) make a similar point. They use a hypothetical data set to argue that “Wald statistics are
inappropriate for analysis [in the context of separation], because these are affected in the presence of the phenomenon of
separation of variables” (725).

3As a helpful illustration, Nagashima and Sato (2017) make a similar observation in an applied data analysis. Their Wald
test returns a p-value of 0.98, while the likelihood ratio test returns a p-value of less than 0.01 (4323). Given their data, they
find the latter more plausible. Similarly, Sun et al. (2015) recognize that the likelihood ratio test is an appropriate alternative to
theWald test under separation.They adopt a strategy preemptively: “If a separation (or monotone likelihood) problem occurs,
the likelihood ratio test is used to replace Wald’s test for computing the p-value” (33).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

28
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2023.28


“PAN_Driver” — 2024/2/19 — 7:29 — page 176 — #5

176 Carlisle Rainey

Table 1. A table summarizing the “holy trinity” of hypothesis tests.

Test Feature Statistic and distribution

Wald Curvature of the log-likelihood function

around the maximum

Zw =
β̂MLi

ŜE(β̂MLi )
follows a standard normal distribution.

Likelihood ratio Relative log-likelihoods of the

unrestricted and restricted models

D = 2×[�(β̂ML ∣ y)− �(β̂ML0 ∣ y)] follows aχ2
distribution with degrees of freedom equal to the

number of constrained dimensions.

Score Slope of the log-likelihood function at
the null hypothesis

Zs = S(β0
s )√

I(β0
s )
follows a standard normal distribution.

3. Simulations

To evaluate the performance of the three tests under separation, I use a Monte Carlo simulation to
compute the power functions for a diverse collection of data-generating processes (DGPs). For each
DGP, I compute the probability of rejecting the null hypothesis as the coefficient for the potentially
separating explanatory variable varies from −5 to 5. For a properly functioning test, the power function
should be about 5% when βs = 0 (i.e., the “size” of the test) and grow quickly toward 100% as βs moves
away from zero (i.e., the “power” of the test).

Importantly, I cannot focus on data setswith separation because separation is a feature of a particular
sample. Instead, I focus on DGPs that sometimes feature separation (e.g., in 15% of repeated samples or
in 50% of repeated samples). To develop these DGPs, I imagine the logistic regression model Pr(y =
1) = logit−1(βcons+βss+βz1z1+⋯+βzkzk) and a researcher testing the null hypothesis that the binary
explanatory variable s (that might produce separation) has no effect on a binary outcome variable y (i.e.,
that βs = 0).

I generate a diverse collection of 150 DGPs using the following process. First, I choose the total num-
ber of observations randomly from {50,100,1000}. Then I choose the frequency that s = 1 (∑s) from{5,10,25,50,100} (subject to the constraint that∑smust be less than the total number of observations).
Next, I draw the value of the constant term (βcons) from a continuous uniform distribution from−5 to 0,
the number of control variables (k) from a uniform distribution from 0 to 6, and the correlation among
the explanatory variables (ρ) from a continuous uniform distribution from 0 to 0.5.4 I simulate many
of these DGPs and keep 150 that feature (1) separation in a least 30% of repeated samples for some
βs ∈ [−5,5] and (2) variation in the outcome variable in at least 99.9% of repeated samples. For each of
the 150 DGPs, I use Monte Carlo simulations to compute the power function for each of the three tests
discussed above.5 For comparison, I also compute the power function forWald tests using Firth’s (1993)
penalty and Gelman et al.’s (2008) Cauchy penalty.

3.1. A Close Look at a Single DGP
First, I describe the results for a single DGP. For this particular DGP, there are 1,000 total observations,
s = 1 for only five of the observations and s = 0 for the other 995 observations, the constant term
βcons equals −4.1, there are three control variables, and the latent correlation ρ among the explanatory
variables is 0.06. Table 2 shows the power function for each test and the chance of separation as βs varies.
Separation is relatively rare when βs—the coefficient for the potentially separating variable—is between

4I simulate each control variable zi from a normal distribution with a standard deviation of 0.5 and set the coefficient for
each control variable βzi to one. To create the dependence between s and the continuous control variables, I draw a latent
random variable s∗ from a multivariate normal distribution with the control variables and code the∑ s highest values as 1 all
others as 0.

5I use 2,500 simulations per estimate, for a worst-case Monte Carlo standard error of
√

0.5×0.5√
2,500 =

0.5
50 = 0.01 or 1 percentage

point.
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Table 2. This table shows the power for the Wald, likelihood ratio, and score tests for a data-generating process that often

features separation, aswell as the power for theWald tests using Firth’s and the Cauchy penalty. I selected this particular DGP

to highlight tendencies in the larger collection, but this particular DGP is not necessarily representative in all respects. See

Figure 3 for a more diverse collection.

βs Ideal power Chance of ML ML ML PML (Firth) PML (Cauchy)

separation w/ Wald w/ LR w/ Score w/ Wald w/ Wald

5.00 62% 34% 98% 98% 92% 87%

4.00 35% 53% 92% 92% 85% 76%

3.00 14% 57% 75% 75% 76% 57%

2.00 4% 39% 45% 45% 70% 33%

1.00 1% 14% 16% 16% 74% 12%

0.75 As high as possible 1% 10% 12% 12% 76% 8%

0.50 1% 7% 8% 8% 80% 6%

0.40 1% 6% 7% 7% 79% 5%

0.30 2% 5% 7% 7% 83% 5%

0.20 2% 4% 6% 5% 85% 3%

0.10 3% 4% 7% 7% 83% 4%

0.00 5% 3% 2% 6% 6% 86% 3%

−0.10 4% 2% 6% 6% 88% 3%

−0.20 5% 2% 6% 6% 88% 2%

−0.30 5% 2% 7% 6% 90% 2%

−0.40 6% 2% 8% 8% 91% 2%

−0.50 8% 1% 8% 8% 92% 2%

−0.75 As high as possible 11% 1% 11% 11% 94% 2%

−1.00 16% 0% 16% 15% 96% 2%

−2.00 42% 0% 43% 41% 100% 7%

−3.00 70% 0% 69% 66% 100% 11%

−4.00 87% 0% 87% 83% 100% 14%

−5.00 95% 0% 95% 91% 100% 16%

−0.5 and 2.0. But for βs above 2.0 or below −0.50, separation becomesmore common. For βs larger than
about 4.0 and smaller than about −2.0, though, a majority of the data sets feature separation.

These power functions clearly demonstrate the poor performance of the Wald test. Even though the
data sets with separation should allow the researcher to reject the null hypothesis, at least occasionally,
the power of the Wald test is low even for very large effects. This happens because the Wald test cannot
reject the null hypothesis under separation. The cases where βs = 4.0 and βs = 5.0 show this clearly. The
Wald test fails to reject when separation exists, but does reject the null hypothesis when separation does
not exist (i.e., when the sample effects are smaller).

The likelihood ratio and score tests, on the other hand, perform as expected. For both, the power
of the test when βs = 0 is about 5%, as designed, and the power approaches 100% relatively quickly
as βs moves away from zero. This table also shows the Wald tests for Firth’s and the Cauchy penalty.
Compared to the likelihood ratio and score tests, the Wald test using the Cauchy penalty is under-
powered, especially (but not only) for negative values of βs, and the Wald test using Firth’s penalty
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ML w/ Wald ML w/ LR ML w/ Score

PML (Cauchy) w/ Wald PML (Firth) w/ Wald
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Figure 2. This figure shows the power of tests across a range of scenarios as the chance of separation varies.

rejects the null hypotheses far too often under the null. I emphasize that I selected this particular DGP
to highlight tendencies in the larger collection, but this particular DGP is not necessarily representative
in all respects. See Figure 3 for a more diverse collection.

3.2. A Broad Look at Many DGPs
Using the algorithm I describe above, I create a diverse collection of 150DGPs. Figure 2 shows the power
(i.e., the probability of rejecting the null hypothesis) of each test as the chance of separation varies across
the many scenarios. Each point shows the power for a particular scenario (where βs ≠ 0, though some
βs are small). Most starkly, the power of the Wald test is bounded above by 1−Pr(separation), and
many scenarios achieve the boundary. Intuitively, as the chance of separation increases, the power of a
properly functioning test should increase as well, because separation is evidence of a large coefficient.
But because a large coefficient makes separation more likely, a large coefficient decreases the power of
the Wald test. The likelihood ratio test, the score test, and the two Wald tests using penalized estimates
do not exhibit this pattern.

Figure 3 shows the power function for each of the 150 DGPs in the diverse collection. Each of the
many lines shows the power function for a particular DGP as βs varies. First, the power functions for
the Wald tests show its consistently poor properties. For most of the Wald power functions, as the true
coefficient grows larger in magnitude from about two or three, the test becomes less powerful. This
occurs because separation becomes more likely and the test cannot reject the null hypothesis when
separation occurs. Second, the likelihood ratio and score tests behave reasonably well.Most importantly,
the size of the likelihood ratio and score tests is about 5% when the coefficient equals zero and grows as
the coefficient moves away from zero. Third, the Wald tests using the penalized estimates exhibit some
troubling patterns. For the Cauchy penalty, the tests seem under-powered relative to the likelihood ratio
and score tests. For Firth’s penalty, the chances of rejection when βs = 0 seem high (e.g., 25% or more)
for many DGPs.

Figure 4 summarizes the many power functions in Figure 3 using the median power across all 150
DGPs. The solid, dark line shows the median power, and the two dashed lines show the 25th and 75th
percentiles. This figure clearly shows the unusual behavior of the Wald test—the power decreases when
the magnitude of the coefficient grows larger than about two or three. Further, it shows that both the
likelihood ratio and score tests work well. For both tests, the chance of rejection is about 5% when the
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ML w/ Wald ML w/ LR ML w/ Score

PML (Cauchy) w/ Wald PML (Firth) w/ Wald

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Coefficient of Potentially Separating Variable

P
ow

er

Figure 3. This figure shows the power for the Wald, likelihood ratio, and score tests for a diverse collection of data-generating

processes, as well as the power for the Wald tests using Firth’s and the Cauchy penalty.
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Figure 4. This figure shows themedian, 25th percentile, and 75th percentile power for the Wald, likelihood ratio, and score tests for a

diverse collection of data-generating processes, as well as for the Wald tests using Firth’s and the Cauchy penalty.

coefficient equals zero and grows quickly as the coefficientmoves away from zero.This figure also shows
that the likelihood ratio tests tend to be slightly more powerful than the score tests. The problematic
patterns for the penalized estimators appear here as well. For the Cauchy penalty, the Wald tests can
have relatively low power. For Firth’s penalty, the Wald tests can reject the null hypothesis far too often
when the null hypothesis is true.

To further see the behavior under separation, I divide the scenarios into three categories: low chance
of separation, where the chance of separation is less than 10%; moderate chance of separation, between
10% and 30%; and high chance of separation, greater than 30%. Figure 5 shows the power for the various
scenarios.
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Figure 5. This figure shows the power for the Wald, likelihood ratio, and score tests for three levels of chance of separation, as well as

for the Wald tests using Firth’s and the Cauchy penalty. The smoothed lines are an additive model.

The bottom panel of Figure 5 is particularly helpful. When the chance of separation is high, the
Wald tests rarely reject the null hypothesis. The likelihood ratio and score tests, on the other hand,
still function as expected. Again, the likelihood ratio tests tend to exhibit slightly greater power than
the score tests. The penalized estimates perform noticeably worse. Using the Cauchy penalty, the Wald
test is under-powered compared to both the likelihood ratio and score tests. Using Firth’s penalty, the
results are even worse. Many of these tests reject the null in 50% ormore repeated sampleswhen the null
hypothesis that βs = 0 is correct.

Finally, Figure 6 plots the size of the test (i.e., the chance of rejecting the null hypothesis that
βs = 0 when the null hypothesis is true) as the chance of separation varies for each of the 150 DGPs.
Ideally, the size should be about 5%. The Wald, likelihood ratio, and score tests all have reasonable
size. The size of the Wald tests falls between 2% and 5%, depending on the chance of separation. (The
problem with the Wald tests is power, not size.) The size of likelihood ratio tests falls between about
2.5% and about 10%. Notably, the likelihood ratio tests are over-sized when separation is relatively
unlikely. The size of the score tests falls around 5% regardless of the chance of separation. The Wald
tests using the penalized estimates perform worse. Using the Cauchy penalty, the Wald test is under-
sized, around 2% regardless of the chance of separation. Using Firth’s penalty, the Wald test performs
surprisingly poorly. For some DGPs, the Wald tests using Firth’s penalized estimates always reject the
null hypothesis when separation occurs, even when separation is common under the null hypothesis.6
This underscores the advice of Rainey (2016) and Beiser-McGrath (2022) to treat default penalties with
care.

4. Concrete Recommendations

Given the arguments above, how should researchers proceed when facing separation? I offer the follow-
ing four suggestions, which incorporate the arguments above with the larger literature. Importantly,
I view the likelihood ratio and/or score tests as a supplement to (not a replacement for) penalized

6Beiser-McGrath (2022) discusses the details of this unusual property of Firth’s penalty in greater detail.
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Figure 6. This figure shows the size for theWald, likelihood ratio, and score tests for a diverse collection of data-generating processes,

as well as the size for the Wald tests using Firth’s and the Cauchy penalty. The smoothed lines are an additive model.

estimation (e.g., Bell and Miller 2015) or Bayesian inference with informative priors (e.g., Barrilleaux
and Rainey 2014).

1. Identify separation. Software varies in how and whether it detects and reports the presence of
separation. Become familiar with your preferred software.7

2. Donot drop the separating variable. If a variable creates separation, then researchersmight be tempted
to omit the offending variable from the model. This is poor practice. See Zorn (2005, 161–162) for
more details.

3. Test the hypothesis about the coefficient of the separating variable. While the maximum likelihood
estimate of the coefficient might be implausible (see Rainey 2016) and theWald p-values nonsensical
(see above), researchers can still use a likelihood ratio and/or score test to obtain a useful p-value and
test the null hypothesis that the coefficient for the separating variable equals zero.8 The researcher
can report this test in the text of the paper and/or in a regression table, carefully distinguishing the
likelihood ratio and/or score tests from theWald test readers expect. In particular, I recommend the
following three changes to the standard regression table:
a. Replace the finite numerical maximum likelihood estimate with the theoretical maximum likeli-

hood estimate of∞ or −∞. Researchers can code the binary separating variable so that values
of 1 perfectly predict the outcome. This makes the ML estimate of the intercept finite and
interpretable.9

7As of this writing, the glm() function in R sometimes reports a warning that “fitted probabilities numerically 0 or 1
occurred.”The researcher must detect separation by noticing the unusually large coefficient estimate and standard error. Stata’s
logit and probit commands print a “note” that describes the separation. It then drops the problematic variable and the
observations it perfectly predicts. See Konis (2007) for a thorough discussion of identifying separation.

8Even if the coefficient of the separating variable is not of substantive interest (i.e., the researcher does not have a specific
hypothesis about its value; the researcher includes the separating variable only as a control), then I still recommend reporting
this hypothesis test. By convention, researchers report p-values for model coefficients, but researchers should not report the
Wald p-values because these are highly misleading. Researchers can either supply the p-value from the likelihood ratio and/or
score test for completeness or omit the p-value for this variable.

9For simplicity, imagine that s perfectly predicts y = 1. To borrow the language of dummy variables for regression models,
researchers might want to choose the “reference category” of the dummy variable (i.e., s = 0) so that β̂cons is finite and β̂s pushes
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b. Omit the standard error estimate for the separating variable.
c. Replace the Wald p-value for the coefficient of the separating variable with the likelihood ratio

p-value.10 Clearly indicate this change. The simulations above suggest that the likelihood ratio
test works marginally better than the score test in scenarios that commonly feature separation,
so I suggest that researcher report the likelihood ratio test by default. In the table note, clearly
explain the rationale for using the alternative test and supply the p-value from the score test as
additional information. There is no need to replace the Wald p-values for variables that do not
create separationwith likelihood ratio or score p-values.Theusual standard errors aremeaningful,
and the Wald p-values work well for these variables that do not create separation, even when
another variable in the model does create separation.11

4. Estimate the coefficients and uncertainty using penalized maximum likelihood or Bayesian estimation
and compute substantively meaningful quantities of interest. Firth (1993; Zorn 2005) and Gelman
et al. (2008) offer reasonable default penalties or prior distributions that might work well for a
given application. However, Rainey (2016) and Beiser-McGrath (2022) show that the inferences can
meaningfully depend on the chosen penalty or prior. With this sensitivity in mind, the researcher
should choose the penalty or prior carefully and demonstrate the robustness of their conclusions
to alternative prior specifications. Researchers using penalized maximum likelihood can use the
informal posterior simulation procedure suggested by King, Tomz, and Wittenberg (2000; see also
Gelman and Hill 2006) to compute point estimates and confidence intervals for the quantities of
interest. See Bell and Miller (2015) for an example. Researchers using full posterior simulation can
transform the simulations of the model coefficients to obtain posterior simulations of the quantities
of interest. See Barrilleaux andRainey (2014) for an example.While researchers should rely primarily
on a model with a thoughtful penalty or prior, it can be helpful to also report estimates using both
Firth’s (1993) and Gelman et al.’s (2008) default priors so that readers have a common benchmark.

5. Re-Analysis of Barrilleaux and Rainey (2014)

To illustrate the power and simplicity of frequentist hypothesis tests under separation, I reanalyze
data from Barrilleaux and Rainey (2014), who examine U.S. state governors decisions’ to support
or oppose the Medicaid expansion under the 2010 Affordable Care Act. Because no Democratic
governors oppose the expansion, separation occurs—being a Democratic governor perfectly predicts
non-opposition.

I focus on their first hypothesis:Republican governors aremore likely to oppose theMedicaid expansion
funds than Democratic governors. Barrilleaux and Rainey adopt a fully Bayesian approach, modeling
the probability that a state’s governor opposes the Medicaid expansion as a function of the governor’s

the probability up to one, rather than choosing the reference category so that β̂cons is infinite and β̂s pulls the probability
down from one. Suppose a simple logistic regression model where Pr(y ∣ s) = βcons +βss. Let P̂r(⋅) denote the maximum
likelihood estimate of the probability of an event for a given s. If P̂r(y ∣ s = 0) = logit−1(β̂cons) ∈ (0,1) and P̂r(y ∣ s = 1) =
logit−1(β̂cons + β̂s) = 1, then β̂cons is finite and β̂s = ∞. But if we recode s so that P̂r(y ∣ s = 1) = logit−1(β̂cons + β̂s) ∈ (0,1)
and P̂r(y ∣ s = 0) = logit−1(β̂cons) = 1 then β̂cons + β̂s is finite and βcons = ∞. For β̂cons + β̂s to be finite while βcons = ∞, β̂s
must equal −∞. Thus, coding the separating variable s so that s = 1 perfectly predicts y produces the most interpretable table
of regression coefficients. Importantly, this logic does not affect my main argument about testing the null hypothesis that
βs = 0—the likelihood ratio and score tests work well and the Wald test works poorly regardless of the coding.

10While I focus on how researchers can compute a reasonable p-value without a penalty, the simulations above support
the claim of Rainey (2016) that default penalties do not necessarily produce reasonable tests. The simulations suggest that
researchers should be especially skeptical of the p-values from the Wald test using Firth’s penalized estimates—they show
that these p-values can reject the null hypothesis incorrectly at well above the nominal rate for a variable that often creates
separation when the null hypothesis is true. While the Cauchy penalty performs better than the Firth penalty, it is under-sized
and under-powered relative to the likelihood ratio and score tests.

11AmongmyDGPs, the p-values produced by the likelihood ratio andWald test for these other variables are nearly identical
in almost all cases. The correlation between the two is 0.99, and the average absolute difference is less than 0.01. This does not
necessarily apply to the intercept term (see footnote 9).
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Table 3. This table provides the maximum likelihood estimates and penalized maximum liklihood estimates for Barrilleaux and Rainey’s (2014) model explaining

governors’ opposition to Medicaid expansion. It illustrates how researchers might design their regression tables to include reasonable hypothesis tests for variables

that create separation (i.e., likelihood ratio or score test, not Wald test).

ML PML w/Firth’s penalty PML w/Cauchy penalty

Coef. est. SE est. p-value Coef. est. SE est. p-value Coef. est. SE est. p-value

Democratic governor −∞b — 0.003 (LR)b −2.677 1.421 0.060 −3.377 1.629 0.038

Percent uninsured 0.923 2.234 0.680 0.180 1.127 0.873 0.599 1.078 0.578

Percent favorable to ACA 0.128 1.549 0.934 −0.138 1.313 0.916 −0.209 1.035 0.840

Republican-controlled legislature 2.429 1.480 0.101 1.618 1.174 0.168 1.695 1.061 0.110

Fiscal health −0.054 0.854 0.950 −0.123 0.725 0.865 0.155 0.751 0.837

Medicaid multiplier −0.355 1.193 0.766 −0.326 1.018 0.748 −0.162 0.877 0.853

Percent non-white 1.434 2.616 0.584 1.562 1.208 0.196 0.934 1.245 0.453

Percent metropolitan −2.759 1.687 0.102 −1.820 1.188 0.126 −1.459 1.044 0.162

Intercept −0.715 0.667 0.283 −0.425 0.513 0.408 −0.561 0.524 0.284

a Being a Democratic governor perfectly predicts non-opposition, so these data feature separation. While the numerical maximum likelihood algorithm returns a finite estimate (about−20
for default precision and−36 for maximum precision), the maximum likelihood estimate is actually−∞.
b Following the advice I develop above, I replace the default Wald p-value with a likelihood ratio p-value for this particular coefficient. TheWald test for maximum likelihood estimates relies
on unreasonable standard errors that produce nonsensical p-values. However, the likelihood ratio and score tests produce reasonable p-values. The score test is another suitable alternative
and produces a p-value of 0.009. The remainder of the p-values for all three models are fromWald tests.
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partisanship and several other covariates. Here, I re-estimate their logistic regression model and test
their hypothesis using the likelihood ratio and score tests.

Table 3 illustrates how a researcher can implement the third concrete suggestion above (i.e., “test
the hypothesis about the coefficient of the separating variable”). Table 3 does the following: (1) replaces
the finite estimates returned by R’s glm() function with the correct estimate of −∞ and describes this
change in footnote (a); (2) omits the problematic standard error estimate; and (3) replaces the usual
Wald p-value with the likelihood ratio p-value, clearly indicates this change, and explains the reason in
footnote (b) (and leaves the remaining Wald p-values unchanged).

Substantively, Table 3 shows that the likelihood ratio test unambiguously rejects the null hypothesis
that the coefficient for Democratic governors equals zero. That is, Democratic governors are less likely
to oppose the Medicaid expansion than their Republican counterparts. The likelihood ratio and score
p-values are 0.003 and 0.009, respectively.12 This contrasts with the default penalized estimators, which
produce a less-convincing pair of results. Firth’s penalty gives a p-value of 0.060, and Gelman et al.’s
(2008) suggested Cauchy penalty gives a p-value of 0.038.

In a complete analysis, the researcher should also compute substantively meaningful quantities of
interest.While this (usually) requires a penalty or a prior, these estimates are a critical part of a complete
analysis of a logistic regression model with separation. Barrilleaux and Rainey (2014), Bell and Miller
(2015), and Rainey (2016) offer examples of this important component. As Rainey (2016) emphasizes,
though, estimates and confidence intervals for quantities of interest can depend heavily on the penalty
or prior, so the researchermust choose their prior carefully and explore the robustness of results to other
prior specifications.

5. Conclusion

Separation commonly occurs in political science. When this happens, I show that the usual p-values
based on a Wald test are highly misleading. Zorn (2005) and Gelman et al. (2008) suggest that
substantive researchers use penalized maximum likelihood to obtain reasonable point estimates and
standard errors. However, Rainey (2016) and Beiser-McGrath (2022) urge substantive scholars to apply
these default penalties cautiously. In this paper, I show that substantive researchers can use the usual
likelihood ratio and score tests to test hypotheses about the coefficients, even under separation. While
estimating quantities of interest (usually) requires a penalty or prior, researchers can use likelihood
ratio or score tests to produce meaningful p-values under separation without using penalties or prior
information.

Supplementary Material. For supplementary material accompanying this paper, please visit https://doi.org/10.1017/
pan.2023.28.

Data Availability Statement. All data and code for the paper are available on the Open Science Framework (OSF) at
https://doi.org/10.17605/OSF.IO/WN2S4 (Rainey 2023a) and Dataverse at https://doi.org/10.7910/DVN/6EYRJG (Rainey
2023b). A computational companion that illustrates how one can compute the quantities I discuss in the paper is available
in the Supplementary Material on the publisher’s website and in the OSF and Dataverse repositories.
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