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Abstract

Hardy’s uncertainty principle for the Gabor transform is proved for locally compact abelian groups
having noncompact identity component and groups of the form Rn × K, where K is a compact group
having irreducible representations of bounded dimension. We also show that Hardy’s theorem fails for a
connected nilpotent Lie group G which admits a square integrable irreducible representation. Further, a
similar conclusion is made for groups of the form G × D, where D is a discrete group.
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1. Introduction

Hardy’s uncertainty principle states that a nonzero integrable function f on R and its
Fourier transform f̂ cannot both be compactly supported. For f ∈ L2(R), the Fourier
transform f̂ is given by

f̂ (ξ) =

∫
R

f (x)e−2πiξx dx.

The following theorem of Hardy (see [7] for the proof) makes the above statement
more precise.

Theorem 1.1. Let f be a measurable function on R such that:

(1) | f (x)| ≤ Ce−aπx2
for all x ∈ R;

(2) | f̂ (ξ)| ≤ Ce−bπξ2
for all ξ ∈ R,

where a, b and C are positive constants. If ab > 1, then f = 0 a.e. (almost everywhere).
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Hardy’s theorem has been proved for the Fourier transform in the setting of Rn and
the Heisenberg group Hn (see [16]), locally compact abelian groups and some classes
of solvable Lie groups (see [2]), the Euclidean motion group (see [15, 17]), nilpotent
Lie groups (see [1, 9, 12, 13, 18]) and noncompact connected semisimple Lie groups
with finite centre (see [14]). For a detailed survey of the uncertainty principles for the
Fourier transform, refer to [5].

In recent decades, the Fourier transform was an indispensable tool in applied
mathematics, especially in signal processing. It has also been recognised that the
global Fourier transform is of little practical value in analysing the frequency spectrum
of a long signal. So, there is a necessity of the notion of frequency analysis that
is local in time, in other words, a joint time–frequency analysis. In recent times,
the Gabor transform is one of the tools that has established itself in this direction.
The approach used in this technique is cutting the signal into segments using a
smooth window function (usually a square integrable function) and then computing the
Fourier transform separately on each smaller segment. It results in a two-dimensional
representation of the signal.

Let ψ ∈ L2(R) be a fixed function usually called a window function. The Gabor
transform of a function f ∈ L2(R) with respect to the window function ψ is defined by
Gψ f : R × R̂→ C as

Gψ f (t, ξ) =

∫
R

f (x)ψ(x − t)e−2πiξx dx

for all (t, ξ) ∈ R × R̂.
Hardy’s theorem for the Gabor transform on Rn has been established in [6]. In

Section 3, Hardy’s theorem for the Gabor transform on a second countable, locally
compact, abelian group having noncompact identity component is established. In the
next section, we show that Hardy’s theorem holds for groups of the formRn × K, where
K is a compact group having irreducible unitary representations of bounded dimension.
Section 5 deals with connected nilpotent Lie groups for which Hardy’s theorem does
not hold. Finally, some auxiliary results regarding groups having discrete part and
quotient group are proved, thereby showing that Hardy’s theorem fails for groups of
the form G × D, where G is a connected nilpotent Lie group with a square integrable
irreducible representation and D is a discrete group.

2. Continuous Gabor transform

Let G be a second countable, unimodular group of type I. Let dx denote the Haar
measure on G and dπ the Plancherel measure on Ĝ. For each (x, π) ∈ G × Ĝ, we define

H(x,π) = π(x)HS(Hπ),

where π(x)HS(Hπ) = {π(x)T : T ∈ HS(Hπ)}. It can be easily seen that H(x,π) forms a
Hilbert space with the inner product given by

〈π(x)T, π(x)S 〉H(x,π) = tr (S ∗T ) = 〈T, S 〉HS(Hπ).

https://doi.org/10.1017/S1446788718000204 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000204


[3] Hardy’s theorem for Gabor transform 145

Also, H(x,π) = HS(Hπ) for all (x, π) ∈ G × Ĝ. The family {H(x,π)}(x,π)∈G×Ĝ of Hilbert
spaces indexed by G × Ĝ is a field of Hilbert spaces over G × Ĝ. LetH2(G × Ĝ) denote
the direct integral of {H(x,π)}(x,π)∈G×Ĝ with respect to the product measure dx dπ, that
is, the space of all measurable vector fields F on G × Ĝ such that

‖F‖2
H2(G×Ĝ)

=

∫
G×Ĝ
‖F(x, π)‖2(x,π) dx dπ <∞.

One can observe that H2(G × Ĝ) forms a Hilbert space with the inner product given
by

〈F,K〉
H2(G×Ĝ) =

∫
G×Ĝ

tr [F(x, π)K(x, π)∗] dx dπ.

Let f ∈ Cc(G), the set of all continuous complex-valued functions on G with compact
supports, and let ψ be a fixed function in L2(G). For (x, π) ∈ G × Ĝ, the continuous
Gabor transform of f with respect to the window function ψ can be defined as a
measurable field of operators on G × Ĝ by

Gψ f (x, π) :=
∫

G
f (y)ψ(x−1y)π(y)∗ dy. (2.1)

The operator-valued integral (2.1) is considered in the weak sense, that is, for each
(x, π) ∈ G × Ĝ and ξ, η ∈ Hπ,

〈Gψ f (x, π)ξ, η〉 =

∫
G

f (y)ψ(x−1y)〈π(y)∗ξ, η〉 dy.

One can verify that Gψ f (x, π) is a Hilbert–Schmidt operator for all x ∈ G and for
almost all π ∈ Ĝ. We can extend Gψ uniquely to a bounded linear operator from L2(G)
into a closed subspace H of H2(G × Ĝ), which we still denote by Gψ. As in [4], for
f1, f2 ∈ L2(G) and window functions ψ1 and ψ2,

〈Gψ1 f1,Gψ2 f2〉 = 〈ψ2, ψ1〉〈 f1, f2〉. (2.2)

3. Locally compact abelian groups

Throughout this section, G will be a second countable, locally compact, abelian
group and Ĝ the dual group of G. For z ∈ G and ω ∈ Ĝ, we define the translation
operator Tz on L2(G) as

(Tz f )(y) = f (z−1y)

and the modulation operator Mω on L2(G) as

(Mω f )(y) = f (y)ω(y),

where f ∈ L2(G) and y ∈ G. In the next lemma, we list some properties of the Gabor
transform which can be verified easily, so we omit the proofs.
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Lemma 3.1. Let f , ψ ∈ L2(G). For x, z ∈ G and γ, ω ∈ Ĝ, we have:

(i) Gψ f (x, γ) = γ(x−1)G fψ(x−1, γ−1);
(ii) Gψ(MωTz f )(x, γ) = (ω−1γ)(z−1)Gψ f (z−1x, ω−1γ);
(iii) G(MωTzψ)(MωTz f )(x, γ) = ω(x)γ(z−1)Gψ f (x, γ).

Lemma 3.2. Let f , ψ ∈ L2(G) and F : G × Ĝ→ C be defined as

F(x, γ) = γ(x)Gψ f (x, γ)Gψ f (x−1, γ−1),

where (x, γ) ∈ G × Ĝ. For (ω, z) ∈ Ĝ ×G, the Fourier transform F̂ of F is given by
F̂(ω, z) = F(z−1, ω), where z in F̂(ω, z) is identified with τz via the isomorphism z→ τz

of G onto ̂̂G (see [8, Theorem 24.2]).

Proof. For z ∈ G and ω ∈ Ĝ,

F̂(ω, z) =

∫
G

∫
Ĝ

F(x, γ)ω(x−1)γ(z−1) dx dγ

=

∫
G

∫
Ĝ
γ(x)Gψ f (x, γ)γ(x−1)G fψ(x, γ)ω(x−1)γ(z−1) dx dγ

[by Lemma 3.1(i)]

=

∫
G

∫
Ĝ

Gψ f (x, γ)G(MωTz−1 f )(MωTz−1ψ)(x, γ) dx dγ

[by Lemma 3.1(iii)]
= 〈Gψ f ,G(MωTz−1 f )(MωTz−1ψ)〉

= 〈 f ,MωTz−1ψ〉〈ψ,MωTz−1 f 〉 [using (2.2)]

=

∫
G

f (x)MωTz−1ψ(x) dx
∫

G
ψ(y)MωTz−1 f (y) dy

=

∫
G

f (x)ψ(zx)ω(x) dx
∫

G
ψ(y) f (zy)ω(y) dy

= Gψ f (z−1, ω)
∫

G
ψ(z−1y) f (y)ω(z−1y) dy

= Gψ f (z−1, ω)ω(z−1)
∫

G
f (y)ψ(z−1y)ω(y) dy

= ω(z−1)Gψ f (z−1, ω)Gψ f (z, ω−1)
= F(z−1, ω). �

The structure theory of locally compact abelian groups asserts that G decomposes
into a direct product G = Rn × H, where n ≥ 0 and H contains a compact open
subgroup. So, the connected component of the identity of G is noncompact if and
only if n ≥ 1 (see [8]). Let G be a locally compact abelian group such that the
connected component of the identity is noncompact. We can write G = R × K, where
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K = Rn−1 × H, and Ĝ = R̂ × K̂. We now prove the following analogue of Hardy’s
theorem for the Gabor transform.

Theorem 3.3. Let G be a locally compact abelian group such that the connected
component of the identity is noncompact. Let f , ψ ∈ L2(G) be such that

|Gψ f (x, k, ξ, γ)| ≤ e−π(ax2+bξ2)/2ϕ(k)η(γ)

for all (x, k) ∈ G = R × K, (ξ, γ) ∈ Ĝ = R̂ × K̂, where a, b are positive real numbers;
ϕ and η are bounded functions in L2(K) and L2(K̂), respectively. If ab > 1, then either
f = 0 a.e. or ψ = 0 a.e.

Proof. For (x, k), (z, t) ∈ R × K and (ξ, γ), (ζ, χ) ∈ R̂ × K̂, we define

F(z,t,ζ,χ)(x, k, ξ, γ) = e2πiξxγ(k)Gψ(Mζ,χTz,t f )(x, k, ξ, γ)
×Gψ(Mζ,χTz,t f )(−x, k−1,−ξ, γ−1).

The function F(z,t,ζ,χ) is continuous and belongs to L1(R × K × R̂ × K̂). By Lemma 3.2,

F̂(z,t,ζ,χ)(ω, δ, y, v) = F(z,t,ζ,χ)(−y, v−1, ω, δ).

Using Lemma 3.1(ii),

F(z,t,ζ,χ)(x, k, ξ, γ) = e2πiξxγ(k)e−2πi(ξ−ζ)z( χ−1γ)(t−1)Gψ f (x − z, t−1k, ξ − ζ, χ−1γ)
× e−2πi(−ξ−ζ)z( χ−1γ−1)(t−1)Gψ f (−x − z, t−1k−1,−ξ − ζ, χ−1γ−1),

which implies that

|F(z,t,ζ,χ)(x, k, ξ, γ)|
= |Gψ f (x − z, t−1k, ξ − ζ, χ−1γ)| |Gψ f (−x − z, t−1k−1,−ξ − ζ, χ−1γ−1)|

≤ e−π[a(x−z)2+b(ξ−ζ)2]/2ϕ(t−1k)η( χ−1γ)e−π[a(−x−z)2+b(−ξ−ζ)2]/2ϕ(t−1k−1)η( χ−1γ−1)

= e−πa(x2+z2)e−πb(ξ2+ζ2)ϕ(t−1k)η( χ−1γ)ϕ(t−1k−1)η( χ−1γ−1)

= e−πax2
β(z,t,ζ,χ)(k, ξ, γ),

where β(z,t,ζ,χ) is the function on K × R̂ × K̂ = S (say) given by

β(z,t,ζ,χ)(k, ξ, γ) = e−πaz2
e−πb(ξ2+ζ2)ϕ(t−1k)η( χ−1γ)ϕ(t−1k−1)η( χ−1γ−1).

Using the Cauchy–Schwarz inequality, β(z,t,ζ,χ) ∈ L1(S ) ∩ L2(S ). Also,

|F̂(z,t,ζ,χ)(ω, δ, y, v)| = |F(z,t,ζ,χ)(−y, v−1, ω, δ)|

≤ e−πa(y2+z2)e−πb(ω2+ζ2)ϕ(t−1v−1)η( χ−1δ)ϕ(t−1v)η( χ−1δ−1)

= e−πbω2
ρ(z,t,ζ,χ)(δ, y, v),

where ρ(z,t,ζ,χ) is the function on Ŝ = K̂ × R × K given by

ρ(z,t,ζ,χ)(δ, y, v) = e−πa(y2+z2)e−πbζ2
ϕ(t−1v−1)η( χ−1δ)ϕ(t−1v)η( χ−1δ−1).
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Again, using the Cauchy–Schwarz inequality, we have ρ(z,t,ζ,χ) ∈ L1(Ŝ ) ∩ L2(Ŝ ) and it
is also bounded.

Thus, by [2, Theorem 1.1], we have F(z,t,ζ,χ) ≡ 0 for all (z, t, ζ, χ) whenever ab > 1.
Since F(−z,t−1,−ζ,χ−1)(0, e, 0, I) = e4πiζz χ(t)2(Gψ f (z, t, ζ, χ))2, it follows that Gψ f ≡ 0

whenever ab > 1.
By (2.2), we have ‖ψ‖2‖ f ‖2 = 0, which implies that either f = 0 a.e. or ψ = 0 a.e.

whenever ab > 1. �

4. Rn × K, K a compact group

In this section, we shall prove Hardy’s theorem for the Gabor transform for the
groups of the form Rn × K when K is a compact group with irreducible unitary
representations of bounded dimension, that is, there exists a positive integer M such
that dσ ≤ M for every σ ∈ K̂.

A well-known theorem of Moore [10] implies that compact groups with all
irreducible representations of bounded dimension are precisely the compact groups
with an abelian subgroup of finite index. Thus, groups of the form N o F, where N
is a compact abelian group and F is a finite group, are examples of such groups. In
particular, T2 o {1,−1} with multiplication given by

(eit1 , eit2 , α1) · (eit′1 , eit′2 , α2) = (ei(t1+α1t′1), ei(t2+α1t′2), α1α2).

Theorem 4.1. Let f , ψ ∈ L2(Rn × K), where K is a compact group with all irreducible
unitary representations of bounded dimension such that

‖Gψ f (x, k, ξ, σ)‖HS ≤ Ce−π(a‖x‖2+b‖ξ‖2)/2ϕ(σ) (4.1)

for all (x, k) ∈ Rn × K, (ξ, σ) ∈ R̂n × K̂, where a, b and C are positive real numbers
and ϕ is a function in L2(K̂). If ab > 1, then either f = 0 a.e. or ψ = 0 a.e.

Proof. Assume that ψ , 0. For ω, γ ∈ K̂, let Hω and Hγ be the Hilbert spaces of
dimensions dω and dγ with orthonormal bases {eωi }

dω
i=1 and {eγi }

dγ
i=1, respectively.

For fixed eγr , e
γ
s , we define τ : Rn → C by

τ(x) =

∫
K
ψ(x, k)〈γ(k)∗eγr , e

γ
s 〉 dk.

Using Hölder’s inequality, it follows that τ ∈ L2(Rn). We fix γ ∈ K̂ for which τ , 0. For
σ ∈ K̂, we can write

γ(k)eγr =

dγ∑
j=1

Ck
j,re

γ
j

and

γ ⊗ σ =
∑
δ∈Kσ

mδδ, (4.2)

where Kσ is a finite subset of K̂ and the Ck
j,r, mδ are scalars (see [8]).
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For fixed eωp , e
ω
q , we define g : Rn → C such that

g(x) =

∫
K

f (x, k)〈ω(k)∗eωp , eωq 〉 dk.

Clearly, g ∈ L2(Rn). Consider a function ϕ : Rn × K → C defined by

ϕ(x, k) = ψ(x, k)〈γ(k)∗eγr , e
γ
s 〉.

Then ϕ ∈ L2(Rn × K) and Gϕ f (x, k, ξ, σ) is a Hilbert–Schmidt operator for all (x, k) ∈
Rn × K and for almost all (ξ, σ) ∈ R̂n × K̂.

For σ ∈ K̂ and fixed eσl , e
σ
m,

〈Gϕ f (x, k, ξ, σ)eσl , e
σ
m〉

=

∫
Rn×K

f (y, v)ψ(y − x, k−1v)〈γ(k−1v)∗eγr , e
γ
s 〉e−2πiξy〈σ(v)∗eσl , e

σ
m〉 dy dv

=

∫
Rn×K

f (y, v)ψ(y − x, k−1v)e−2πiξy〈(γ ⊗ σ)(v)∗(γ(k)eγr ) ⊗ eσl , e
γ
s ⊗ eσm〉 dy dv

=

dγ∑
j=1

Ck
j,r

∫
Rn×K

f (y, v)ψ(y − x, k−1v)e−2πiξy〈(γ ⊗ σ)(v)∗eγj ⊗ eσl , e
γ
s ⊗ eσm〉 dy dv

=

dγ∑
j=1

Ck
j,r

∫
Rn×K

f (y, v)ψ(y − x, k−1v)e−2πiξy
∑
δ∈Kσ

mδ〈δ
∗(v)eδl, j, e

δ
m,s〉 dy dv

=

dγ∑
j=1

∑
δ∈Kσ

Ck
j,rmδ〈Gψ f (x, k, ξ, δ)eδl, j, e

δ
m,s〉.

Let Mσ = max {mδ : δ ∈ Kσ}; then, using (4.1) and the Cauchy–Schwarz inequality, we
can write

‖Gϕ f (x, k, ξ, σ)‖2HS =

dσ∑
l,m=1

|〈Gϕ f (x, k, ξ, σ)eσl , e
σ
m〉|

2

=

dσ∑
l,m=1

∣∣∣∣∣ dγ∑
j=1

∑
δ∈Kσ

Ck
j,rmδ〈Gψ f (x, k, ξ, δ)eδl, j, e

δ
m,s〉

∣∣∣∣∣2

≤

dσ∑
l,m=1

( dγ∑
j=1

∑
δ∈Kσ

|Ck
j,rmδ〈Gψ f (x, k, ξ, δ)eδl, j, e

δ
m,s〉|

)2

≤

dσ∑
l,m=1

M2
σ|Kσ|dγ

( dγ∑
j=1

∑
δ∈Kσ

|〈Gψ f (x, k, ξ, δ)eδl, j, e
δ
m,s〉|

2
)
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≤

dσ∑
l,m=1

M2
σ|Kσ|dγ

dγ∑
j=1

∑
δ∈Kσ

‖Gψ f (x, k, ξ, δ)‖2HS

≤ d2
σM2

σ|Kσ|d2
γC

2e−π(a‖x‖2+b‖ξ‖2)
∑
δ∈Kσ

|ϕ(δ)|2.

So,

‖Gϕ f (x, k, ξ, σ)‖2HS ≤ d2
σM2

σ|Kσ|d2
γC

2‖ϕ‖22e−π(a‖x‖2+b‖ξ‖2). (4.3)

Now, from (4.2), we have dim(γ ⊗ σ) = dγdσ, so |Kσ| ≤ dγdσ ≤ M2.
Also, Mσ = max {mδ : δ ∈ Kσ} ≤ M (see [8, Corollary 27.31]).
It follows that (4.3) can be written as

‖Gϕ f (x, k, ξ, σ)‖HS ≤ M4C‖ϕ‖2e−π(a‖x‖2+b‖ξ‖2)/2

= C1e−π(a‖x‖2+b‖ξ‖2)/2, (4.4)

where C1 = M4C‖ϕ‖2.
Also,

Gτg(x, ξ) =

∫
Rn

∫
K

∫
K

f (y, v)ψ(y − x, k)e−2πiξy〈γ(k)∗eγr , e
γ
s 〉〈ω(v)∗eωp , e

ω
q 〉 dy dk dv

=

∫
Rn

∫
K

∫
K

f (x, v)ψ(y − x, k−1v)e−2πiξy〈γ(k−1v)∗eγr , e
γ
s 〉〈ω(v)∗eωp , e

ω
q 〉 dy dk dv

=

∫
K
〈Gϕ f (x, k, ξ, ω)eωp , e

ω
q 〉 dk.

Using (4.4),

|Gτg(x, ξ)|2 =

∣∣∣∣∣∫
K
〈Gϕ f (x, k, ξ, ω)eωp , e

ω
q 〉 dk

∣∣∣∣∣2
≤

∫
K
|〈Gϕ f (x, k, ξ, ω)eωp , e

ω
q 〉|

2 dk

≤ ‖Gϕ f (x, k, ξ, ω)‖2HS

≤ C1e−π(a‖x‖2+b‖ξ‖2).

By Hardy’s theorem for the Gabor transform on Rn, we have g = 0 a.e.
Since ω ∈ K̂ is arbitrary, f = 0 a.e. �

5. Connected nilpotent Lie groups

In this section, we shall prove that Hardy’s theorem fails for a connected nilpotent
Lie group G having a square integrable irreducible representation. We shall use the
notation of [1].

Let G be a connected nilpotent Lie group and G̃ be its simply connected covering
group. Let Γ be a discrete subgroup of G̃ such that G = G̃/Γ. Let g be the Lie algebra
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of G and G̃. The exponential maps of G and G̃ are denoted by expG : g→ G and
expG̃ : g→ G̃, respectively.

Let B = {X1,X2, . . . ,Xn} be a strong Malcev basis of g through the ascending central
series of g. The norm function on g is defined as the Euclidean norm of X with respect
to the basis B, that is, for X =

∑n
j=1 x jX j ∈ g, x j ∈ R,

‖X‖ =

( n∑
j=1

x2
j

)1/2
.

Define a ‘norm function’ on G by setting

‖x‖ = inf {‖X‖ : X ∈ g such that expG X = x}.

The composed map

Rn → g→ G̃,

given as

(x1, . . . , xn)→
n∑

j=1

x jX j → expG̃

( n∑
j=1

x jX j

)
,

is a diffeomorphism and maps the Lebesgue measure on Rn to the Haar measure on G̃.
In this manner, we shall always identify g, and sometimes G̃, as sets with Rn. Thus,
measurable (integrable) functions on G̃ can be viewed as such functions on Rn.

Let g∗ denote the vector space dual of g and {X∗1, . . . ,X
∗
n} the basis of g∗ which is dual

to {X1, . . . , Xn}. Then {X∗1, . . . , X
∗
n} is a Jordan–Hölder basis for the coadjoint action of

G on g∗. We shall identify g∗ with Rn via the map

ξ = (ξ1, . . . , ξn)→
n∑

j=1

ξ jX∗j

and on g∗ we introduce the Euclidean norm relative to the basis {X∗1, . . . , X
∗
n}, that is,∥∥∥∥∥ n∑

j=1

ξ jX∗j

∥∥∥∥∥ =

( n∑
j=1

ξ2
j

)1/2
= ‖ξ‖.

Let U denote the Zariski open subset of g∗ of generic elements under the coadjoint
action of G̃ with respect to the basis {X∗1, . . . , X

∗
n}. Let S be the set of jump indices,

T = {1, . . . , n}\S and VT = R-span{X∗i : i ∈ T }. ThenW = U ∩ VT is a cross-section
for the generic orbits andW supports the Plancherel measure on G̃.

We now state Hardy’s theorem for the Gabor transform on connected nilpotent Lie
groups.

Hardy’s theorem (Conjecture). Let f , ψ ∈ L2(G) be such that

‖Gψ f (x, τ)‖HS ≤ Ce−π(a‖x‖2+b‖τ‖2)/2

for all (x, τ) ∈ G ×W, where a, b and C are positive real numbers. If ab > 1, then
either f = 0 a.e. or ψ = 0 a.e.
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The following theorem shows that Hardy’s theorem for the Gabor transform
fails for a connected nilpotent Lie group G having a square integrable irreducible
representation.

Theorem 5.1. Let G be a connected nilpotent Lie group having a square integrable
irreducible representation σ. Then there exist nonzero functions f , ψ ∈ L2(G) such that

‖Gψ f (x, τ)‖HS ≤ Ce−π(a‖x‖2+b‖τ‖2)/2

for all x ∈ G, τ ∈ Ĝ, where a, b and C are positive real numbers with ab > 1.

Proof. Given that G has a square integrable irreducible representation σ, the centre
Z(G) of G is compact. It implies that Z(G) = Td for some d ∈ N. Let χ0 be the character
of Z(G) such that σ|Z(G) is a multiple of χ0. Suppose that χ0 is given by

χ0(z1, z2, . . . , zd) =

d∏
j=1

z−m j

j ,

where (m1,m2, . . . ,md) ∈ Zd. Given a > 0, we define functions f and ψ on G as

f (expG X) = exp
(
−aπ

n∑
j=d+1

x2
j

)
exp

(
−2πi

d∑
j=1

x jm j

)
and

ψ(expG X) = exp
(
−aπ

n∑
j=d+1

x2
j

)
,

where X =
∑n

j=1 x jX j ∈ g. For x = expG (
∑n

j=1 x jX j),

‖x‖2 =

( n∑
j=d+1

x2
j

)
+ inf

{ d∑
j=1

y2
j : y j − x j ∈ Z for 1 ≤ j ≤ d

}
≤ d +

n∑
j=d+1

x2
j . (5.1)

It implies that

exp (−aπ‖x‖2) ≥ exp
(
−aπ

n∑
j=d+1

x2
j

)
exp (−aπd).

For C′ = exp (aπd), we can write

| f (x)| = exp
(
−aπ

n∑
j=d+1

x2
j

)
≤ C′ exp (−aπ‖x‖2)
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and

|ψ(x)| = exp
(
−aπ

n∑
j=d+1

x2
j

)
≤ C′ exp (−aπ‖x‖2).

So, f , ψ ∈ L2(G) and are both nonzero functions.
Let q : G̃→ G be the quotient homomorphism; then the irreducible representation

π = σ ◦ q of G̃ is square integrable modulo Z(G̃).
By [3, Corollary 4.5.4 and Theorem 3.2.3], it follows that the induced representation

indG̃
Z(G̃)

(π|Z(G̃)) is a multiple of π. Since Z(G) = q(Z(G̃)), it follows that indG
Z(G)(σ|Z(G))

is a multiple of σ.
Let τ be an irreducible representation of G and χ ∈ Ẑ(G) be such that τ|Z(G) is a

multiple of χ. We normalise the Haar measures on G, Z(G) and G/Z(G) so that Z(G)
has measure one and Weil’s formula holds. LetHτ denote the Hilbert space of τ. Then,
for any ζ, η ∈ Hτ,

〈Gψ f (x, τ)ζ, η〉 =

∫
G

f (y)ψ(x−1y)〈τ(y)∗ζ, η〉 dy

=

∫
G/Z(G)

∫
Z(G)

f (yz)ψ(x−1yz)〈τ(z)∗τ(y)∗ζ, η〉 dẏ dz

=

∫
G/Z(G)

(∫
Z(G)

f (yz)ψ(x−1yz)χ(z) dz
)
〈τ(y)∗ζ, η〉 dẏ. (5.2)

If y = expG (
∑n

j=1 y jX j) ∈ G and z = expG (
∑d

j=1 z jX j) ∈ Z(G), then

f (yz) = f
(
expG

( d∑
j=1

(y j + z j)X j +

n∑
j=d+1

y jX j

))

= exp
(
−aπ

n∑
j=d+1

y2
j

)
exp

(
−2πi

d∑
j=1

(y j + z j)m j

)

= f (y) exp
(
−2πi

d∑
j=1

z jm j

)
and

ψ(x−1yz) = ψ
(
expG

( d∑
j=1

(−x j + y j + z j)X j +

n∑
j=d+1

(−x j + y j)X j

))
= exp

(
−aπ

n∑
j=d+1

(−x j + y j)2
)

= ψ(x−1y).
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This implies that∫
Z(G)

f (yz)ψ(x−1yz)χ(z) dz =

∫
Z(G)

f (y) exp
(
−2πi

d∑
j=1

z jm j

)
ψ(x−1y)χ(z) dz

= f (y)ψ(x−1y)
∫

Z(G)
χ0(z)χ(z) dz

=

{
f (y)ψ(x−1y) if χ = χ0,

0 otherwise. (5.3)

On combining (5.2) and (5.3),

〈Gψ f (x, τ)ζ, η〉 =


∫

G/Z(G)
f (y)ψ(x−1y)〈τ(y)∗ζ, η〉 dẏ if τ|Z(G) is a multiple of χ0,

0 otherwise,
which implies that ‖Gψ f (x, τ)‖HS = 0 for all τ , σ.

Let {ei} be an orthonormal basis of the Hilbert spaceHσ. Then

〈Gψ f (x, σ)er, es〉 =

∫
G/Z(G)

f (y)ψ(x−1y)〈σ(y)∗er, es〉 dẏ

=

∫
G/Z(G)

exp
(
−aπ

n∑
j=d+1

y2
j

)
exp

(
−2πi

d∑
j=1

y jm j

)
× exp

(
−aπ

n∑
j=d+1

(y j − x j)2
)
〈σ(y)∗er, es〉 dẏ

=

∫
G/Z(G)

exp
(
−aπ

n∑
j=d+1

[y2
j + (y j − x j)2]

)
exp

(
−2πi

d∑
j=1

y jm j

)
〈σ(y)∗er, es〉 dẏ

=

∫
G/Z(G)

exp
(
−

aπ
2

n∑
j=d+1

[x2
j + (2y j − x j)2]

)
exp

(
−2πi

d∑
j=1

y jm j

)
〈σ(y)∗er, es〉 dẏ

= exp
(
−

aπ
2

n∑
j=d+1

x2
j

) ∫
G/Z(G)

exp
(
−

aπ
2

n∑
j=d+1

(2y j − x j)2
)

× exp
(
−2πi

d∑
j=1

y jm j

)
〈σ(y)∗er, es〉 dẏ. (5.4)

Let

g(y) = exp
(
−

aπ
2

n∑
j=d+1

(2y j)2
)

exp
(
−2πi

d∑
j=1

y jm j

)
and

t = exp
( n∑

j=d+1

x j

2
X j

)
,
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so that

tg(y) = g(yt−1) = exp
(
−

aπ
2

n∑
j=d+1

(2y j − x j)2
)

exp
(
−2πi

d∑
j=1

y jm j

)
.

Therefore,

〈σ(tg(y))er, es〉 =

∫
G

tg(y)〈σ(y)∗er, es〉 dy

=

∫
G

exp
(
−

aπ
2

n∑
j=d+1

(2y j − x j)2
)

exp
(
−2πi

d∑
j=1

y jm j

)
〈σ(y)∗er, es〉 dy

=

∫
G/Z(G)

∫
Z(G)

exp
(
−

aπ
2

n∑
j=d+1

(2y j − x j)2
)

× exp
(
−2πi

d∑
j=1

(y j + u j)m j

)
〈σ(yu)∗er, es〉 du dẏ

=

∫
G/Z(G)

∫
Z(G)

exp
(
−

aπ
2

n∑
j=d+1

(2y j − x j)2
)

× exp
(
−2πi

d∑
j=1

y jm j

)
χ0(u)χ0(u)〈σ∗(y)er, es〉 du dẏ

=

∫
G/Z(G)

exp
(
−

aπ
2

n∑
j=d+1

(2y j − x j)2
)

× exp
(
−2πi

d∑
j=1

y jm j

)
〈σ(y)∗er, es〉 dẏ. (5.5)

Hence, (5.1), (5.4) and (5.5) imply that

|〈Gψ f (x, σ)er, es〉| ≤ exp
(aπ

2
(d − ‖x‖2)

)∣∣∣∣∣∫
G/Z(G)

exp
(
−

aπ
2

n∑
j=d+1

(2y j − x j)2
)

× exp
(
−2πi

d∑
j=1

y jm j

)
〈σ(y)∗er, es〉 dẏ

∣∣∣∣∣
= C1e−aπ‖x‖2/2|〈σ(tg)er, es〉|.

Thus,

‖Gψ f (x, σ)‖HS =

( n∑
r,s=1

|〈Gψ f (x, σ)er, es〉|
2
)1/2

≤ C1e−aπ‖x‖2/2
( n∑

r,s=1

|〈σ(tg)er, es〉|
2
)1/2
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= C1e−aπ‖x‖2/2‖σ(tg)‖HS

≤ C1e−π(a‖x‖2+b‖σ‖2)/2eπb‖σ‖2/2‖σ(t)‖ ‖σ(g)‖HS

= Ce−π(a‖x‖2+b‖σ‖2)/2,

where C = C1eπb‖σ‖2/2‖σ(g)‖HS. �

Remark. Hardy’s theorem for the Gabor transform does not hold for G5,1/Z, G5,3/Z
and G5,6/Z, since each of these groups admits a square integrable irreducible
representation. See [11] for relevant data about these low-dimensional connected
nilpotent Lie groups. The same conclusion can be made for the reduced Weyl–
Heisenberg group.

6. Auxiliary results

In this section, we shall establish some auxiliary results related to Hardy’s theorem
for the Gabor transform.

Theorem 6.1. Let H be a separable unimodular locally compact group of type I and
D be a unimodular discrete group of type I. If Hardy’s theorem holds for the Gabor
transform on Rn × H × D, then it also holds for the Gabor transform on Rn × H.

Proof. Let f , ψ ∈ L2(Rn × H) be such that

‖Gψ f (x, h, ξ, σ)‖HS ≤ e−π(a‖x‖2+b‖ξ‖2)/2ϕ1(h)ϕ2(σ) (6.1)

for all (x, h) ∈ Rn × H, (ξ, σ) ∈ R̂n × Ĥ, where a and b are positive real numbers; ϕ1
and ϕ2 are bounded functions in L2(H) and L2(Ĥ), respectively.

We show that either f = 0 a.e. or ψ = 0 a.e. whenever ab > 1.
Define a function g : Rn × H × D→ C by setting

g(x, h, t) = f (x, h)χ{e}(t)

and a function τ : Rn × H × D→ C by

τ(x, h, t) = ψ(x, h)χ{e}(t)

for all (x, h, t) ∈ Rn × H × D. Here χ{e} denotes the characteristic function of {e}, e
being the identity of D.

Since ∫
Rn×H

∑
t∈D

|g(x, h, t)|2 dx dh =

∫
Rn×H

| f (x, h)|2 dx dh <∞

and ∫
Rn×H

∑
t∈D

|τ(x, h, t)|2 dx dh =

∫
Rn×H

|ψ(x, h)|2 dx dh <∞,

we have g, τ ∈ L2(Rn × H × D).
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For (x, h, t) ∈ Rn × H × D and (ξ, σ, δ) ∈ Rn × Ĥ × D̂,

Gτg(x, h, t, ξ, σ, δ) =

∫
Rn×H

∑
u∈D

g(y, k, u)τ(y − x, h−1k, t−1u)e−2πiyξσ(k−1)δ(u−1) dy dk

=

∫
Rn×H

f (y, k)ψ(y − x, h−1k)χ{e}(t−1)e−2πiyξσ(k−1) dy dk

= Gψ f (x, h, ξ, σ)χ{e}(t−1).

Using (6.1), we can write

‖Gτg(x, h, t, ξ, σ, δ)‖HS = ‖Gψ f (x, h, ξ, σ)‖HSχ{e}(t−1)

≤ e−π(a‖x‖2+b‖ξ‖2)/2ϕ1(h)ϕ2(σ)χ{e}(t−1)

≤ e−π(a‖x‖2+b‖ξ‖2)/2ρ1(h, t)ρ2(σ, δ), (6.2)

where ρ1 : H × D→ C and ρ2 : Ĥ × D̂→ C are defined by

ρ1(h, t) = ϕ1(h)χ{e}(t−1)

and

ρ2(σ, δ) = ϕ2(σ).

It is easy to see that ρ1 ∈ L2(H × D) and ρ2 ∈ L2(Ĥ × D̂), where Ĥ × D̂ is equipped
with a product of Plancherel measures.

Also, ρ1 and ρ2 are bounded functions as ϕ1 and ϕ2 are bounded functions.
From (6.2), it is clear that g and τ satisfy the conditions of Hardy’s theorem for the

Gabor transform on Rn × H × D. So, either g = 0 a.e. or τ = 0 a.e. whenever ab > 1.
If g = 0 a.e., then there exists M ⊆ Rn × H × D = G such that m(M) = 0 and

g(x, h, t) = 0 for all (x, h, t) ∈ G\M.
Let p(M) denote the projection of M on Rn × H. Then

(mRn × mH)(p(M)) ≤
∫
Rn×H

∑
t∈D

χM(x, h, t) dx dh = m(M) = 0.

Also, (x, k) < p(M) implies that f (x, k) = 0, so f = 0 a.e.
Similarly, if τ = 0 a.e., then ψ = 0 a.e. �

Remark. We can conclude from the proof of the above theorem that if G is a
connected nilpotent Lie group and Hardy’s theorem for the Gabor transform holds
for G × D, where D is a discrete group of type I, then Hardy’s theorem for the Gabor
transform holds for G. In particular, by Theorem 5.1, if G has a square integrable
representation, then Hardy’s theorem for the Gabor transform fails for G × D also. A
similar conclusion can be made in case of groups of the form G × K, where K is a
compact group.

Theorem 6.2. Let H be a separable unimodular locally compact group of type I. If
Hardy’s theorem for the Gabor transform holds for Rn × H, then it also holds for
Rn × (H/K), where K is a compact normal subgroup of H.
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Proof. Let f , ψ ∈ L2(Rn × (H/K)) be such that

‖Gψ f (x, u, ξ, σ)‖HS ≤ e−π(a‖x‖2+b‖ξ‖2)/2ϕ1(u)ϕ2(σ) (6.3)

for all (x,u) ∈ Rn × (H/K), (ξ,σ) ∈ R̂n × Ĥ/K, where a and b are positive real numbers;
ϕ1 and ϕ2 are bounded functions in L2(H/K) and L2(Ĥ/K), respectively.

We show that either f = 0 a.e. or ψ = 0 a.e. whenever ab > 1.
Let q : H → H/K be the quotient map. Define g : Rn × H → C by

g(x, k) = f (x, q(k))

and τ : Rn × H → C by

τ(x, k) = ψ(x, q(k))

for all (x, k) ∈ Rn × H.
One can verify that g, τ ∈ L2(R × H). For (x, h) ∈ Rn × H, (ξ, γ) ∈ Rn × Ĥ and

ζ, η ∈ Hσ,

〈Gτg(x, h, ξ, γ)ζ, η〉 =

∫
Rn

∫
H/K

∫
K

g(y, vk)τ(y − x, h−1vk)e−2πiξy〈γ(vk)∗ζ, η〉 dy dv̇ dk

=

∫
Rn

∫
H/K

∫
K

f (y, q(v))ψ(y − x, q(h−1v))e−2πiξy〈γ(k)∗γ(v)∗ζ, η〉 dy dv̇ dk

=

{
〈Gψ f (x, ḣ, ξ, γ)ζ, η〉 if γ ∈ A(K, Ĥ),

0 otherwise,

where A(K, Ĥ) = {γ ∈ Ĥ : γ(k) = 1Hγ
, for all k ∈ K}. Using (6.3),

‖Gτg(x, h, ξ, γ)‖HS = ‖Gψ f (x, ḣ, ξ, γ)‖HS

≤ e−π(a‖x‖2+b‖ξ‖2)/2ϕ1(ḣ)ϕ2(γ)

= e−π(a‖x‖2+b‖ξ‖2)/2ϕ1(q(h))ϕ2(γ).

By Hardy’s theorem for the Gabor transform on Rn × H, we have either g = 0 a.e. or
ψ = 0 a.e. Hence, either f = 0 a.e. or ψ = 0 a.e. �
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