
10 A first look at supersymmetry breaking

If supersymmetry has anything to do with the real world, it must be a broken symmetry,
as we do not see any degeneracy between bosons and fermions in nature. In the
globally supersymmetric framework that we have presented so far, this breaking could
be spontaneous or explicit. As we will argue later, once we promote the symmetry to
a local symmetry, the breaking of supersymmetry must be spontaneous. The signal of
such a breaking is a massless fermion, the goldstino, whose interactions are governed by
low-energy theorems. However, as we will also see, at low energies the theory can appear
to be a globally supersymmetric theory with explicit, “soft”, breaking of the symmetry. In
this chapter we will discuss some features of both spontaneous and explicit breaking.

10.1 Spontaneous supersymmetry breaking

We have seen that supersymmetry breaking is signaled by a non-zero expectation value
of an F component of a chiral superfield or a D component of a vector superfield.
Models involving only chiral fields with no supersymmetric ground state are referred
to as O’Raifeartaigh models. A simple example has three singlet fields, A, B and X, with
superpotential

W = λA(X 2 − μ2)+ mBX. (10.1)

With this superpotential, the equations

FA = ∂W
∂A

= 0, FB = ∂W
∂B

= 0 (10.2)

are incompatible. To actually determine the expectation values and the vacuum energy,
it is necessary to minimize the potential. There is no problem in satisfying the equation
FX = 0. So, we need to minimize

Veff = |FA|2 + |FB|2 = |λ2||X 2 − μ2|2 + m2|X|2. (10.3)

Assuming that μ2 and λ are real, the solutions are given by

X = 0, X 2 = 2λ2μ2 − m2

2λ2 . (10.4)
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152 A first look at supersymmetry breaking

The corresponding vacuum energies are

V (A)0 = |λ2μ4|, V (B)0 = m2μ2 − m4

4λ2 . (10.5)

The vacuum at X �= 0 disappears at a critical value of μ.
Let us consider the spectrum in the first of these (the solution with X = 0). We will focus,

in particular, on the massless states. First, there is a massless scalar. This arises because at
this level not all the fields are fully determined. The equation

∂W
∂X

= 0 (10.6)

can be satisfied provided that

2λAX + mB = 0. (10.7)

This vacuum degeneracy is accidental and, as we will see later, is lifted by quantum
corrections.

There is also a massless fermion, ψA. This fermion is the goldstino. Replacing the
auxiliary fields in the supersymmetry current for this model (Eq. (9.54)) gives

jαμ = i
√

2FAσ
μ
αα̇ψ

∗α̇
A . (10.8)

You should check that the massive states do not form Bose–Fermi degenerate multiplets.

10.1.1 The Fayet–Iliopoulos D term

It is also possible to generate an expectation value for a D term. In the case of a U(1) gauge
symmetry, we saw that

μ2
∫

d 4θ V = μ2D (10.9)

is gauge invariant. Under the transformation δV = � + �†, the integrals over the chiral
and antichiral fields � and �† are zero. This can be seen either by doing the integrations
directly or by noting that differentiation by Grassmann numbers is equivalent to integration
(recall our integral table). As a result, for example,

∫
d2θ̄ ∝ (D̄)2. This Fayet–Iliopoulos D

term can lead to supersymmetry breaking. For example, if one has two charged fields �±
with charges ±1 and superpotential m�+�−, one cannot simultaneously make the two
auxiliary F fields and the auxiliary D field vanish.

One important feature of both types of model is that at tree level, in the context of global
supersymmetry, the spectra are never realistic. They satisfy a sum rule,∑

(−1)Fm2 = 0. (10.10)

Here (−1)F = 1 for bosons and −1 for fermions. This guarantees that there are always light
states, and often color and/or electromagnetic symmetry are broken. These statements are
not true of radiative corrections or of supergravity, as we will explain later.
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153 10.2 The goldstino theorem

It is instructive to prove this sum rule. Consider a theory with chiral fields only (no gauge
interactions). The potential is given by

V =
∑

i

∣∣∣∣∂W
∂φi

∣∣∣∣2 . (10.11)

The boson mass matrix has terms of the form φ∗̄
i φj and φiφj + c.c., where we are using

indices ī and j̄ for complex conjugate fields. The latter terms, as we will now see, are
connected with supersymmetry breaking. The various terms in the mass matrix can be
obtained by differentiating the potential:

m2
ij̄ = ∂2V

∂φi∂φ
∗̄
j

= ∂2W
∂φi∂φk

∂2W ∗

∂φ∗̄
k ∂φ

∗̄
j

, (10.12)

m2
ij = ∂2V

∂φi∂φj
= ∂W
∂φ∗̄

k

∂3W
∂φk ∂φi∂φj

. (10.13)

The first term has just the structure of the square of the fermion mass matrix,

MFij = ∂2W
∂φi∂φj

. (10.14)

So, writing the boson mass matrix M2
B in the basis (φi φ

∗̄
j ) we see that Eq. (10.10) holds.

The theorem is true whenever a theory can be described by a renormalizable effective
action. Various non-renormalizable terms in the effective action can give additional
contributions to the mass. For example, in our O’Raifeartaigh model,

∫
d4θA†AZ†Z will

violate the tree level sum rule. Such terms arise in renormalizable theories when one
integrates out heavy fields to obtain an effective action at some scale. In the context of
supergravity, such terms are present already at tree level. This is perhaps not surprising,
given that these theories are non-renormalizable and must be viewed as effective theories
from the very beginning (perhaps as the effective low-energy description of string theory).
We will discuss the construction of realistic models shortly. First, however, we turn to the
issues of the goldstino theorem (the fermionic analog of Goldstone’s theorem) and explicit,
soft, supersymmetry breaking.

10.2 The goldstino theorem

In each of the examples of supersymmetry breaking there is a massless fermion in the
spectrum. We might expect this, by analogy with Goldstone’s theorem. The essence of
the usual Goldstone theorem is the statement that, for a spontaneously broken global
symmetry, there is a massless scalar. There is a coupling of this scalar to the symmetry
current jμ. From Lorentz invariance (see Appendix B),

〈0| jμ|π( p)〉 = fpμ. (10.15)
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154 A first look at supersymmetry breaking

Correspondingly, in the low-energy effective field theory (valid below the scale of
symmetry breaking) the current takes the form

jμ = f ∂μπ(x). (10.16)

Analogous statements for the spontaneous breaking of global supersymmetry are easy
to prove. Suppose that the symmetry is broken by the F component of a chiral field (this
can be a composite field). Then we can study∫

d 4x ∂μ
(
eiq·xT

〈
jμα (x)ψ�(0)

〉) = 0, (10.17)

where T is the time-ordering operator and jμα is the supersymmetry current; the integral
of j 0

α over space is the supersymmetry charge. This expression vanishes because it is an
integral of a total derivative. Now evaluating the derivatives, there are two non-vanishing
contributions: one from the exponential and one from the action on the time-ordering
symbol. Obtaining these derivatives and then taking the limit q → 0 gives

〈{Qα ,ψ�(0)}〉 = iqμT
〈
jμα (x)ψ�(0)

〉
FT, (10.18)

where FT indicates the Fourier transform. The left-hand side is constant, so the Green’s
function on the right-hand side must be singular as q → 0. By the usual spectral represen-
tation analysis, this shows that there is a massless fermion coupled to the supersymmetry
current. In weakly coupled theories we can understand this more simply. Recalling the
form of the supersymmetry current, if one of the Fs has an expectation value then

jμα = i
√

2(σμ)αα̇ψ∗α̇F. (10.19)

To leading order in the fields, current conservation amounts to just the massless Dirac
equation; F, here, is the goldstino decay constant. We can understand the massless fermion
which appeared in the O’Raifeartaigh model in terms of this theorem. It is easy to check
that

ψG ∝ FAψA + FBψB, (10.20)

as in Eq. (10.8) for the case FB = 0.

10.3 Loop corrections and the vacuum degeneracy

We saw that in the O’Raifeartaigh model, at the classical level there is a large vacuum
degeneracy. To understand the model fully, we need to investigate the fate of this
degeneracy in the quantum theory. Consider the vacuum with X = 0. In this case, A is
undetermined at the classical level. But A is only an approximate modulus. At one loop,
quantum corrections generate a potential for A. Our goal is to integrate out the various
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155 10.4 Explicit soft supersymmetry breaking

massive fields to obtain the effective action for A. At one loop, this is particularly easy.
The tree level mass spectrum depends on A. The one-loop vacuum energy is∑

i
(−1)F

∫ d3k
(2π)3

1
2

√
�k2 + m2

i . (10.21)

Here the sum is over all possible helicity states; again the factor (−1)F weights bosons
with 1 and fermions with −1. In field theory this expression is usually very divergent
in the ultraviolet, but in the supersymmetric case it is far less so. If supersymmetry is
unbroken, the boson and fermion contributions cancel and the correction simply vanishes.
If supersymmetry is broken, the divergence is only logarithmic. To see this we can
simply study the integrand at large k, expanding the square root in powers of m2/k2. The
leading, quartically divergent, term is independent of m2 and so vanishes. The next term is
quadratically divergent, but it vanishes because of the sum rule:

∑
(−1)Fm2

i = 0.
So, at one loop the potential behaves as

V(A) = −
∑
(−1)Fm4

i

∫ d3k
16(2π)3k3 ≈

∑
(−1)Fm4

i
1

64π2 ln
m2

i
�2 . (10.22)

To compute the potential precisely, we need to work out the spectrum as a function of A.
We will content ourselves with the limit of large A. Then the spectrum consists of a massive
fermion ψX, with mass 2λA, and the real and imaginary parts of the scalar components of
X, with masses

m2
s = 4|λ2A2| ± 2μ2λ2x2. (10.23)

So

V(A) = |λ2|μ4
(

1 + λ2

8π2 ln
|λA|2
�2

)
. (10.24)

This result has a simple interpretation. The leading term is the classical energy; the
correction corresponds to replacing λ2 by λ2(A), the running coupling at scale A. In this
theory, a more careful study shows that the minimum of the potential is precisely at A = 0.

10.4 Explicit soft supersymmetry breaking

Ultimately, if nature is supersymmetric, it is likely that we will want to understand
supersymmetry breaking through some dynamical mechanism. But we can be more
pragmatic, accept that supersymmetry is broken and parameterize the breaking using the
mass differences between the ordinary fields and their superpartners. It turns out that this
procedure does not spoil the good ultraviolet properties of the theory. Such mass terms are
said to be “soft” for precisely this reason.

We will consider soft breakings in more detail in the next chapter when we discuss the
Minimal Supersymmetric Standard Model (MSSM), but we can illustrate the main point
simply. Take as a model the Wess–Zumino model, with m = 0 in the superpotential. Add
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156 A first look at supersymmetry breaking

Fig. 10.1 One-loop corrections to scalar masses arising from Yukawa couplings.

to the Lagrangian an explicit mass term m2
soft|φ|2. Then we can calculate the one-loop

correction to the scalar mass from the two graphs of Fig. 10.1. In the supersymmetric case
these two graphs cancel. With the soft breaking term, the cancelation is not exact; instead
one obtains

δm2 = − |λ|2
16π2 m2

soft ln
�2

m2
soft

. (10.25)

We can understand this simply on dimensional grounds. We know that for m2
soft = 0 there is

no correction. Treating the soft term as a perturbation, the result is necessarily proportional
to m2

soft; at most, then, any divergence must be logarithmic.
In addition to soft masses for scalars, one can add soft masses for gauginos; one can

also include trilinear scalar couplings. We can understand how these might arise at a more
fundamental level, which also makes clear the sense in which these terms are soft. Suppose
that we have a field Z with non-zero F component, as in the O’Raifeartaigh model (but
in a more general form). Suppose, further, that at tree level there are no renormalizable
couplings between Z and the other fields of the model, which we will denote generically as
φ. Non-renormalizable couplings, such as

LZ = 1
M2

∫
d 4θ Z†Zφ†φ, (10.26)

can be expected to arise as we integrate high-energy processes to obtain the effective
Lagrangian; they are not forbidden by any symmetry. Replacing Z by its expectation value,
〈Z〉 = · · · + θ2〈FZ〉, gives a mass term for the scalar component of φ:

LZ = |〈F〉|2
M2 |φ|2 + · · · . (10.27)

This is precisely the soft scalar mass we described above; it is soft because it is associated
with a high-dimensional operator Similarly, the operator:∫

d 2θ
Z
M

W 2
α = FZ

M
λλ+ · · · (10.28)

gives rise to a mass for gauginos. The term∫
d 2θ

Z
M
φφφ (10.29)

leads to a trilinear coupling of the scalars. Simple power counting shows that loop cor-
rections to these couplings due to renormalizable interactions are at most logarithmically
divergent.
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157 10.5 Supersymmetry breaking in supergravity models

To summarize, there are three types of soft-breaking term which can appear in a
low-energy effective action:

• soft scalar masses, m2
φ |φ|2 and m̃φ2φφ + c.c.;

• gaugino masses, mλλλ;
• trilinear scalar couplings, �φφφ.

All three types of coupling will play an important role when we think about possible
supersymmetry phenomenologies.

10.5 Supersymmetry breaking in supergravity models

We stressed in the last chapter that, since nature includes gravity, if supersymmetry is not
simply an accident it must be a local symmetry. If the underlying scale of supersymmetry
breaking is high enough, supergravity effects will be important. The potential of a
supergravity model will be sufficiently important to us that it is worth writing it down
again:

V = eK

[(
∂W
∂φi

+ ∂K
∂φi

W
)

gij̄

(
∂W
∂φ∗̄

j
+ ∂K
∂φ∗̄

j
W ∗

)
− 3|W|2

]
. (10.30)

In supergravity the condition for unbroken supersymmetry is that the Kahler derivative
of the superpotential should vanish:

DiW = ∂W
∂φi

+ ∂K
∂φi

W = 0. (10.31)

When this is not the case, supersymmetry is broken. If we require the vanishing of the
cosmological constant then we have

3|W |2 =
∑
i, j̄

DiWD j̄W
∗g ij̄. (10.32)

In this case the gravitino mass turns out to be

m3/2 = 〈
eK/2W

〉
. (10.33)

There is a standard strategy for building supergravity models. One introduces two sets
of fields, the hidden-sector fields, denoted by Zi, and the visible-sector fields, denoted
by ya. The Zis are assumed to be connected with supersymmetry breaking and to have
only very small couplings to the ordinary fields ya. In other words, one assumes that the
superpotential W has the form

W = W(Z)+ Wy(y), (10.34)

at least up to terms suppressed by 1/M. The y fields should be thought of as the ordinary
matter fields and their superpartners.
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158 A first look at supersymmetry breaking

One also usually assumes that the Kahler potential has a “minimal” form,

K =
∑

Z†
i Zi +

∑
y†

a ya. (10.35)

One chooses (i.e. tunes) the parameters of WZ in such a way that

〈FZ〉 ≈ MWM (10.36)

and

〈V 〉 = 0. (10.37)

Note that this means that

〈W〉 ≈ MWM2. (10.38)

The simplest model of the hidden sector is known as the Polonyi model. In this model

W = m2(Z + β), (10.39)

β = (2 + √
3)M. (10.40)

In global supersymmetry, with only renormalizable terms, this would be a rather trivial
superpotential, but this is not so in supergravity. The minimum of the potential for Z lies at

Z = (
√

3 − 1)M, (10.41)

and

m3/2 = (m2/M)e(
√

3−1)2/2. (10.42)

This symmetry breaking also leads to soft-breaking mass terms for the fields y, i.e. terms
of the form

m2
0|yi|2. (10.43)

These arise from the |(∂iK) W|2 = |yi|2|W|2 terms in the potential. For the simple Kahler
potential,

m2
0 = 2

√
3m2

3/2, A = (3 − √
3)m3/2. (10.44)

If we now allow for a non-trivial Wy, we also find supersymmetry-violating quadratic
and cubic terms in the potential. These are known as the B and A terms and have the form

Bijm3/2φiφj + Aijkm3/2φiφjφk. (10.45)

For example, if W is homogeneous and of degree three, there are terms in the supergravity
potential of the form

eK ∂W
∂ya

∂K
∂y∗

a
〈W〉 + c.c. = 3m3/2W(y). (10.46)

Additional contributions arise from

eK
〈
∂W
∂zi

〉
〈z∗

i 〉W ∗ + c.c. (10.47)
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159 Exercises

There are analogous contributions to the B terms. In the exercises, these are worked out for
specific models.

Gaugino masses mλ (both in local and global supersymmetry) can arise from a
non-trivial gauge coupling function

f a = c
Z
M

, (10.48)

which gives

mλ = cFz
M

. (10.49)

These models have just the correct structure to build a theory of TeV-scale super-
symmetry, provided that m3/2 ∼ TeV. They have soft breakings of the correct order of
magnitude. We will discuss their phenomenology further when we discuss the Minimal
Supersymmetric Standard Model (MSSM) in the next chapter.

Even without a deep understanding of local supersymmetry, there are a number of
interesting observations we can make. Most important, our arguments for the non-
renormalization of the superpotential in global supersymmetry remain valid here. This will
be particularly important when we come to string theory, which is a locally supersymmetric
theory.

Suggested reading

It was Witten (1981) who most clearly laid out the issues of supersymmetry breaking. His
paper remains extremely useful and readable today. The notion that one should consider
adding soft-breaking parameters to the MSSM was developed by Dimopoulos and Georgi
(1981). Good introductions to models with supersymmetry breaking in supergravity are
provided by a number of review articles and textbooks, for example those of Mohapatra
(2003) and Nilles (1984).

Exercises

(1) Work out out the spectrum of the O’Raifeartaigh model. Show that the spectrum is not
supersymmetric, but verify the sum rule

∑
(−1)Fm2 = 0.

(2) Work out the spectrum of a model with a Fayet–Iliopoulos D term and supersymmetry
breaking. Again verify the sum rule.

(3) Check Eqs. (10.40)–(10.44) for the Polonyi model.
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