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Flavor and transverse momentum 
generation and the vector meson 

to pseudoscalar meson ratio 

12.1 Introduction 

In this and the next chapter we are going to extend the Lund fragmentation 
model in several different directions in order to make it into a realistic 
model for the production of different kinds of hadron. 

In the first section we start by investigating the classical motion of 
a string when it contains a qq-pair having both mass and momentum 
components transverse to the string direction. One reason for doing this 
is to get an insight into the classical motion of a confined object. From 
this exercise we will learn that there are modes of motion of the massless 
relativistic string (the MRS) which contain much richer dynamics than 
that of a linearly rising potential. In this case the different parts (called 
'segments') of the string will be found to move with respect to each other. 
We will meet similar examples later on in which our experience from this 
investigation will be useful. 

It is possible to continue the investigation into the properties of the 
wave functions for this situation, [17]. Although we will present a few 
steps in that direction below a more complete treatment necessitates con­
siderable mathematical machinery. The main result is, however, essentially 
the same as that obtained from the simple WKB-approximation, which 
was presented in Chapter 11. 

The production of heavy quark masses and transverse momentum in 
a string field is intrinsically non-perturbative and leads to a gaussian 
suppression in both the quantities. The phenomena are governed by the 
string constant K, i.e. the available energy per unit length along the 
force field. We will discuss a general process for transverse momentum 
generation and afterwards show its close resemblance to Brownian motion. 

The results will necessitate a few phenomenological remarks. In par­
ticular it will become evident that heavy quark flavors like charm and 
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214 Flavor and transverse momentum generation 

bottom will never be produced during the fragmentation process of the 
Lund model. We briefly consider the pion-to-kaon ratio and its signifi­
cance for measuring the strange-to-up and strange-to-down flavor ratios 
in muitiparticle reactions. 

We will after that consider the vector-to-pseudoscalar rate in a frag­
mentation process. The tunnelling process, which we deal with in the first 
section, also has implications for the relative rate of final-state hadrons. 
The produced qq-particles have up to now been treated as if they were 
freely moving outwards after their production. This is evidently not the 
case in connection with the Lund model fragmentation process. In this 
process they are tunnelling into bound-state hadronic wave functions. 

The classical turning point for the potential, i.e. the point where the 
kinetic energy vanishes for classical motion, is also the place where the 
virtual qq-pair will come onto the mass shell after the production. The pair 
production rate is directly proportional to the squared wave function at 
this point. This is the place where the bound-state wave function starts to 
playa role for the produced q and q. We will show that, depending upon 
the properties of the bound-state interaction, different kinds of hadron 
may have a different size of wave function at the turning point. 

The spin-spin interaction between the constituents, which is different 
for vector mesons and pseudoscalar mesons, implies that the vector meson 
production rate should be suppressed compared with the pseudoscalar 
rate. In other words it is more difficult to tunnel out into a vector meson 
state than into a pseudoscalar meson state. 

We consider a simple model for the phenomenon (a 'one-dimensional 
bag'). Then the relative rate behaves as a power law in the masses. The sim­
plicity of the model prevents it from being a reliable tool for quantitative 
prediction of the suppression. But it provides a useful method of finding 
the wave functions for the tunnelling process, which we omitted before. 
We will also find qualitative agreement between the phenomenology and 
and the experimental observations. 

We end by pointing out another problem, related to the production rate 
of 1]' particles. This also provides an opportunity to discuss the assignment 
of projection probabilities for the different flavor states in the Lund model. 

12.2 The classical transverse motion of a string 

The classical motion of a string when one of the endpoints has a momen­
tum component transverse to the string direction is more complex than 
the modes of the MRS we have encountered up to now. The string field 
no longer behaves as a classical potential because different segments of 
the string are moving relative to each other. 
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12.2 The transverse motion of a string 215 

Fig. 12.1. The motion of a (massless) endpoint particle initially possessing 
transverse momentum together with the adjoining string piece. The times (a), (b) 
and (c) correspond to snapshots of the situation, as described in the text. 

The transverse momentum of the endpoint is a very transitory property 
because of the interaction between the string and the particle at the 
endpoint, which will lead to a transfer of the momentum from the endpoint 
particle to a region of the string in its neighborhood. The size of this string 
segment is proportional to the size of the transverse momentum if the 
endpoint particle is massless and somewhat more complicated if the 
endpoint is a massive particle. 

This means that transverse momentum is not a conserved property for 
such a particle, when it is part (and also generator) of a confining force 
field. But it is not possible to distiguish between the particle and the neigh­
boring force field unless one introduces some measurement prescription. 

We therefore feel confident in treating the particle quantum mechani­
cally as an entity (although we are then also incorporating some part of 
the field in its neighbourhood). The major difference from the (1 + 1)­
dimensional scenario we have discussed before is that a segment of the 
string containing transverse momentum will seem to have a larger longi­
tudinal size, proportional to its transverse mass, rather than its ordinary 
mass. 

1 Transverse string motion with a massless endpoint particle 

Consider the situation depicted in Fig. 12.1(a) as a given starting point 
for the motion. The endpoint is assumed to have longitudinal momentum 
k3 = 0 and a transverse momentum component kl =1= o. 

We assume that it is connected to a string stretched along the 3-
direction, which is sufficiently long that we do not need to consider the 
other endpoint and its motion. We start with the case when the endpoint 
particle q is massless; we will discuss a set of snapshots of the motion in 
time. 
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216 Flavor and transverse momentum generation 

• After a time bt the endpoint has moved out along the 1-direction 
a distance bt (c = 1). A small region adjoining it has been affected 
(Fig. 12.1(b)). A signal has moved along the string also with the 
velocity of light so that the string segment between the endpoint and 
the rest of the string has a (geometrical) length equal to JiM. 

This segment is also in motion; it is evident that its velocity is 

1 
v=-

Ji 
(12.1 ) 

This velocity, as in the transverse motion of the yoyo mode in Chapter 6, 
is related to the half angle 8/2; in this case 8 = n /2 : 

v = cos(8/2) = 1/-!i 

1 1 
y(v) = ~= sin(8/2) =-!i 

(12.2) 

This means that the string segment will have the energy-momentum 

e = K-!ibty(v) = 2Kbt 

PI = K-!ibtvy(v)cos(8/2) = Kbt (12.3) 

P3 = K-!ibtvy(v)sin(8/2) = Kbt 

Consequently 

• the endpoint has lost Kbt both in energy and in the 1-component of 
its momentum, in accordance with the ordinary equations of motion. 
The string segment has picked up these quantities together with 
the energy-momentum which was in the string behind the moving 
signal-corner. 

In this way we make use of the same considerations of local energy­
momentum conservation as in Chapter 6 when we traced the transverse 
motion of the yoyo-state. 

• This part of the motion continues until the endpoint q has lost all its 
original energy-momentum along the 1-direction. At that time it will 
start to move in the 3-direction (Fig. 12.1(c)). From now on, until 
the q reaches the other endpoint the string segment serves only as 
a convenient transporter of energy-momentum to the endpoint q. Thus 
the q-particle will gain energy-momentum along the 3-axis just as if 
it were a particle joined to an elastic cord, i.e. to the MRS. 

In fact the string segment now picks up energy-momentum at the other 
end (from the remaining string), at the rate of K per unit time and length, 
and delivers the same amount to the q. The string segment is in this 
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Fig. 12.2. The full motion when a q-particle comes in and leaves again. The q 
and the adjoining string segments share the transverse momentum in different 
proportions at different times. 

way also moving on just like a rigid pole (but without changing its total 
energy-momentum). 

In Fig. 12.2 we exhibit the full motion of a q-particle which comes 
in, dragging out the string behind it, and then turns around and leaves 
outwards again in accordance with the discussion above. 

This corresponds to the motion discussed in Chapter 6, when a classical 
particle comes in and rebounds from the classical turning point. It is 
useful to trace the part of the motion before that discussed above, i.e. the 
motion inwards; we will leave it to the reader to understand the details 
by making use of local energy-momentum conservation and the fact that 
the endpoint particle moves with the velocity of light. 

2 Transverse string motion with a massive endpoint particle 

Before we display the above motion in a space-time diagram we will briefly 
consider the changes which occur when a massive q-particle (mass p) is at 
the endpoint. The starting situation is the same as before but this time the 
endpoint is no longer moving with the velocity of light and consequently 
it can no longer go straight out along the I-axis. 

It will instead follow a hyperbola and, using the parameter a(t) indi­
cated in Fig. 12.3, we can write out the energy-momentum conservation 
equations. We use the indices p for the particle and s for the segment 
connecting the particle to the rest of the string. Let us suppose that 

the starting value of the particle's energy is EJ.. = Vkr + p2. Then the 
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218 Flavor and transverse momentum generation 

Fig. 12.3. The motion of a massive particle connected to a string when the 
particle initially possesses only a transverse momentum component. 

equations for the conservation of energy and momentum will be 

es(t) + ep(t) = E1.. + Kt, es(t) = 2K(t - a) 

P3s + P3p = Kt, P3s = K(t - a) (12.4) 

PIs + PIp = kl, PIs = K(t - a) 

in accordance with the results in Eq. (12.3). We have used the fact that a 
string segment of a given size and with the transverse velocity given in Eq. 
(12.1) will have the same relation between size and energy-momentum as 
in the massless case. The string segment does not know that it is connected 
to a massive particle this time! 

The requirement that the endpoint particle should be on the mass shell, 
i.e. e~ - P~p - pip = Jl2, provides equations for the quantity a = a(t) and 
also for the hyperbola along which the particle will move, 

(12.5) 

(the coordinates XI p, X3p being defined with respect to an origin at the 
turning point). Note that when Jl = 0 we obtain the orbits shown above 
in Fig. 12.2. We leave it to the reader to prove Eq. (12.5) and to obtain 
the equation for a(t). 

In this way it is obvious that as long as we are not resolving the motion 
on a scale corresponding to the value of K(t - a(t)) - kl, i.e. E1.. - ki (valid 
at large values of t) we do not know whether there is a massless or massive 
particle at the endpoint. 

This is shown in a projection onto the tX3-plane (i.e. the plane where 
the remainder of the string is dwelling) of the motion of a massless and 
of a massive endpoint particle (Fig. 12.4). We note in particular that the 
distances of closest approach (to the vertex of the hyperbola) in the two 
cases are given by k1.. = ki and E1.. > ki respectively. 
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Fig. 12.4. The space-time diagram of the motion of an endpoint particle with 
a transverse momentum at the endpoint of a string, projected onto the plane 
spanned by the time and logitudinal direction of the string. The dotted line shows 
a massless particle; at closest approach it is at a distance k.L/K from the hyperbola 
focus. The broken line shows a massive particle; at closest approach it is at a 
distance E.L/K from the focus. 

12.3 A general process for transverse momentum generation 

1 Preliminaries 

With the same methods used to derive the longitudinal fragmentation 
function we will now exhibit a general method for endowing the produced 
particles with transverse momentum. This leads to a correlation length 
in the model (further discussed and determined in Chapter 18). We will 
relate the result via the Langevin equation to Brownian motion; this is 
the Ornstein-Uhlenbeck process, [109]. 

We will assume that there is a set of hadrons produced along the 
positive lightcone direction; hadron j possesses transverse momentum Pj. 
After n steps the total transverse momentum is k: 

(12.6) 

We now take one more step and produce a hadron with transverse mo-

https://doi.org/10.1017/9781009401296.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401296.012


220 Flavor and transverse momentum generation 

mentum p, thereby reaching the next vertex with transverse momentum 

k'=k+p 

We further assume the following . 

(12.7) 

• After many steps the distribution in k, f(k)d2k, 'saturates' and be­
comes independent of the earlier steps and there is no longer a 
preferred transverse direction . 

• The transverse momentum production of the next hadron then only 
depends upon the the value reached, k, and on the step, p. We 
will in particular assume that there is an anticorrelation so that it 
depends upon the distribution g(p+yk)d2p, y being a positive number 
determined by what hadron is produced. 

We may evidently also consider the vector k' as the result of the 
production of a set of hadrons along the negative lightcone with transverse 
momenta Ij, thereby reaching the point 

N 

k' = - L Ij (12.8) 
j=n+l 

(the minus sign is necessary to conserve the total transverse momentum, 
cf. Eq. (12.7) and we assume that there are N particles produced). The 
probability of doing this is again given by the saturating distribution 
f(k')d2k'. The next step from k' to k, with k = k' - p, thereby producing 
the hadron with transverse momentum p, is given by g( -p + yk')d2p. 

2 The resulting distributions 

If we equate the two probabilities for producing a hadron with transverse 
momentum p we obtain (exchanging p for k' - k): 

f(k)g(k' + (y - 1)k)d2kd2k' = f(k')g(k + (y - 1)k')d2kd2k' (12.9) 

After removing the differentials we may take logarithms of the functions 
(putting log f = F, log g = G) and then partial differentials of the result 
with respect to the same components of k and k'. We note the similarity 
to the methods used in Chapter 8 to derive the longitudinal fragmentation 
function. Once again one set of functions vanishes, this time the f's. 

We are then as in that case left with a second-order differential equation: 

(y - 1)G(k' + (y - 1)k) = (y - 1)G(k + (y - 1)k') (12.10) 
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12.3 A general process for transverse momentum generation 221 

Therefore if y =1= 0, 1 we conclude that the two sides must be equal to the 
same constant, to be called -4f3 / [y(2 - y)]. We obtain directly the result 

4f3P2 
G(P) = 10gN - y(2 _ y) [ 4f3p2 1 

g(P) = N exp y(2 _ y) (12.11) 

We have here invoked (euclidean) invariance, i.e. the assumption that there 
is no preferred direction. Therefore there is no linear term in the vector 
arguments. 

The result for F(f) is obtained by noting that if we introduce the result 
for G(g) in Eq. (12.9) we may gather up the contributions depending upon 
k and k' on each side. The two sides must therefore again be equal to the 
same constant, log N' : 

F(P) = log N' - 4f3P2 ~ f(P) = N' exp( -4f3P2) ( 12.12) 

The constants N, N' are evidently normalisation constants, while f3, yare 
dynamical quantities. 

The result can be written in different ways. One interesting way is to 
write it as a squared matrix element (defining y == 1- exp(-T)): 

f(k)g(k' - exp( -T)k) = 1~12, ~ = (01 k') p,(k', k) (kl 0) (12.13) 

We have introduced the harmonic oscillator ground states (Chapter 3) in 
the momentum representation: 

(kl 0) = C exp ( -f3k2) (12.14) 

The symmetrical function Pr(k', k) is equal to the transition matrix from 
the state k to the state k', cf. [83] and Eq. (12.24) below: 

p,(k',k) = (k'i exp(-HT) Ik) (12.15) 

with H the harmonic oscillator hamiltonian in terms of the canonically 
conjugate variables k, b: 

(12.16) 

This brings out the symmetry of the results with respect to the transverse 
momentum and the impact parameter, b. At the same time we note the 
similarity to Feynman's path-integral formulation of quantum mechanics, 
although the result refers to an imaginary time T. The imaginary-time 
formalism fits into a statistical physics scenario and we will now show the 
close relationship between the results above and the velocity distribution 
of a particle undergoing Brownian motion. 

It is of interest to note that motion in spacelike directions (i.e. in impact­
parameter space) is formally equivalent to an imaginary-time formalism. 
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222 Flavor and transverse momentum generation 

This is evident from the considerations of Chapter 2, l.e. III spacelike 
directions the proper time '[ becomes i.Jb2 - t2. 

3 The relation to Brownian motion: the Ornstein-Uhlenbeck process 

Another way to understand the results in Eqs. (12.11) and (12.12) is to 
consider a seemingly different problem, the motion of a Brownian particle, 
mass m, under the influence of a friction force proportional to the velocity, 
-mpv, and a gaussian random force, mR. This is expressed by the Langevin 
equation: 

dv 
- =-pv+R 
dt 

(12.17) 

In this way v is obtained as a stochastical variable defined by R. We assume 
that there is an ensemble of states on which measurements may be made. 
The ensemble average of a measurement of a dynamical variable a will 
be denoted (a). 

We may evidently write as a general solution for Eq. (12.17): 

v(t) = v(to) exp( -p(t - to)) + rt dt'R(t') exp( -p(t - t')) (12.18) 
Jto 

The gaussian randomness assumption on R means that only 'white' noise 
is included. This means that R has a vanishing average value and only 
contains equal-time correlations; with IR a constant we have for the 
ensemble averages 

(R(t)) = 0 ( 12.19) 

(R(t)R(t')) = 2nIRb(t - t') 

From this we conclude that the mean value and the time correlation 
function of v are given by 

(v(t)) = (v(to)) exp[-p(t - toJ 

/ ') nIR , \v(t)v(t) = - exp(-plt - t I) 
p 

(12.20) 

We have then assumed that the distribution is 'thermalised' at the starting 
time to so that, according to the Maxwell velocity distribution, 

/ v2(to)) = nIR = kT == ~ 
\ p m 2{3 

(12.21) 

It is then also the same for all times, \V2(tO)) == \V2(t)), but there is 
an exponentially falling correlation between the value of v obtained at 
one time and at another. The correlation function depends only upon the 
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time difference and therefore the stochastic process is called a stationary 
stochastic process. The variance of v(t) is 

\ (v(t) _ (V(t)) )2) = [1 - exp(~;p(t - to)] (12.22) 

If we define u(t) = v(t) - (v(t)) then u(t) considered as a stochastical 
variable will have the particular gaussian property that all higher-order 
correlation functions are determined by the two-point correlations: 

(IT u(tn)) = L II (u(tj)U(tk)) 
j= 1 perm j=/=k 

(12.23) 

i.e. they only contain all possible two-point correlations in time (the nota­
tion 'perm' means all possible permutations of 1, ... , 2n). The expectation 
value of an odd number of u's vanishes. 

It is no coincidence that the Wick rearrangements of a time-ordered 
product of free fields, as discussed in Chapter 3, lead to the same results. 
The vacuum expectation values of free fields are just like the gaussian 
processes we consider here and the Feynman propagator corresponds to 
the correlations between two space time points. 

The transition probability P(vo, tolv, t) from the value Vo at to to v at t is 
then given by the gaussian distribution 

{ (3 }d/2 {{3[v-voeXP(-PM)]2} 
P(vo, tolv, t) = n[l _ exp( -2p<5t)] exp 1 - exp( -2p<5t) 

J ddv1 P(vo, tolv1, tdP(V1, t11v1, td = P(vo, tolv, t), to:<::;; t1 :<::;; t 

(12.24) 

Here we have introduced the number of dimensions, d, in which the 
process goes on and written <5t = t - to for the time difference. 

It is not difficult to recognise the distribution g (with y = 1-exp( -pM) 
== 1 - exp( -T)) in the transition probability for the change in velocity of a 
Brownian particle in thermal equilibrium under the influence of gaussian 
white noise; see Eq. (12.11). 

4 Concluding remarks 

The formulation of transverse momentum generation above may seem 
abstract. It is obvious, however, that it corresponds to the possibility of 
producing a pair at every vertex with transverse momenta ±k. Together 
the q (with transverse momentum -k) and the q (with k') from adjacent 
vertices will then combine to give a hadron with transverse momentum 
p=k'-k. 
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224 Flavor and transverse momentum generation 

From this interpretation we may, using the tunnelling arguments in 
Chapter 11, identify the scale parameter, /3, in terms of the string tension 
K (note that the factor 4 in the definition of /3 in Eq. (12.11) is justified 
if we compare with the tunnelling process in Eq. (11.5) and also with the 
transition matrix elements in Eqs. (12.13) and (12.16)): 

/3 = ~ (12.25) 
4K 

In the present Lund model the possibility of a correlation between the 
vertices for transverse momentum generation is not used, i.e. we have 
always put y = 1. This corresponds to a large 'friction' coefficient, i.e. the 
'memory' is very short. 

There is, however, one kind of hadron, the pions, which have very small 
mass and for which, therefore, the two production vertices are very close. 
There are several indications that a proper treatment of the pions directly 
produced along the string actually does require a correlation, which then 
will diminish the transverse momentum of the final hadron. Note that the 
inclusive distribution of the hadron p is 

J d2kJ(k)g(p + yk) ex exp ( _ 2~p2) (12.26) 

This means that the mean transverse momentum of the hadron is 

(12.27) 

which diminishes with y. We will return to these features in Chapter 18. 

12.4 The phenomenological implications of the tunnelling process 

1 The production of heavy flavors 

The results derived above are compatible with the WKB results, i.e. 
they are equivalent to Schwinger's result for the decay of the no-particle 
vacuum in the presence of an external electric field. We obtain for the qq 
production rate, with 11 the mass and ±kl. the transverse momenta of the 
pan, 

(12.28) 

The result in Eq. (12.28) has several different consequences. 
The first is related to the relative abundance of different flavors in the 

fragmentation process. It is difficult to obtain precise mass-values for the 
unobservable qq-particles but it is possible to obtain estimates. 
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If we start with the heavy flavors, i.e. charm, c, and bottom, b, then 
there are potential models for the bound states of the cc-states, J 1'1' and 
its relatives, and likewise for the corresponding bb-states, Yetc., [55]. 

These authors make use of nonrelativistic kinematics and potential 
terms containing Coulomb contributions, a linearly rising confining po­
tential and also spin-spin and angular-momentum-spin interactions. In 
this way they obtain flc ,....., 1.5 GeV and flb ,....., 5 GeV (in both cases with a 
spread of a few hundred MeV). 

Using the value K :::::::: 0.2 Ge V2 we find numbers smaller than 0.3 x 
10-11 for the c-flavor production and vanishingly small numbers for the 
corresponding b-production. As the lighter-flavor masses are at most in 
the range of a few hundred MeV with small suppression we conclude 
that c- and b-fiavors are never produced in a fragmentation process. The 
available energy density (K) means that we need a string with a size at 
least around 3 fm to obtain a cc-pair. At that point the lighter flavors 
have already supplied tremendous amounts of possible string-breakers. 

2 The production of light flavors 

The relative rates of u-, d- and s-flavor production are much more difficult 
to estimate. The reason is that there are different ways of attributing mass­
values to these light flavors. In the classical treatment of the motion of a 
string with transverse momentum at the endpoint, we found that there is 
a certain region of the string close to the endpoint particle that exchanges 
energy-momentum with the particle. Thus it is difficult to distinguish 
between the particle and the field around it, at least in stable, long-time 
situations. 

There is a corresponding notion in phenomenological models for the 
hadrons, i.e. the 'constituent quark mass' whereas in fast-production sit­
uations one talks of the 'current quark mass'. A quark-parton, which is 
exposed to an external probe acting very quickly in an almost pointlike 
way, is a current quark and one then expects to be able to neglect the field 
surrounding the quark charge. In the corresponding bound-state (stable) 
situation a constituent quark is always part of the bound-state force field 
and therefore 'heavier' than the 'bare' current quark. 

If we compare the masses of the p-, K* - and ¢-mesons, which contain 
zero, one or two s- andlor s-flavors, we may tentatively assign a mass 
difference fls - flu :::::::: 120 MeV to the constituents. We are then referring 
the whole mass difference to the quark masses and are using a linear 
interpolation between the meson masses (there have been suggestions that 
the mass formulas should be quadratic for the mesons but we will not 
consider the reasons for such complications). 

If we further assume that both the K* - and the K-mesons are 'normal' 
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with respect to chiral symmetry breaking (which strongly affects the mass 
of the n- and the p-mesons) then we could expect that the constituent 
u-quark mass is around 330 MeV. Then the ratio between the s- and the 
u-flavor rates should be close to 0.25 according to Eq. (12.28). 

A change of K to 0.24 GeV-2 or a reduction in the u-quark mass to 
260 Me V will give a number close to 0.3. This seems to be the preferred 
relative fraction among the Monte Carlo users of the Lund model (i.e. 
the JETSET simulation program [105]), although 0.25 is not ruled out. In 
order to observe the ratio it is also necessary to take into account a few 
simple kinematical properties (cf. below in subsection 4). 

3 Transverse momentum generation 

We will later learn that the major contributor to the transverse momentum 
spectrum of the hadrons in high-energy interactions is the gluonic radia­
tion. The transverse momentum we obtained in Eq. (12.27) should rather 
be looked upon as a quantum mechanical fluctuation in the ground state 
of the string (a zero-point fluctuation). These fluctuations imply that any 
primary meson should come out with a gaussian transverse momentum 
spectrum of width (the result stems from Eqs. (12.26) and (12.25)) 

(pi) = 2:K c:::: (0.35)2y(GeV le)2 (12.29) 

We have inserted the word 'primary' above in order to distinguish between 
the hadrons that are produced directly in the fragmentation process and 
those which are actually observed. About half the primary particles are 
resonances and from the tables of the Particle Data Group one finds 
that they decay afterwards into many n's and K's. These decay products 
therefore constitute a large part of the observed charged particles. 

The general preference of Monte Carlo users seems to be an average 
(Pl.) "" 0.4 GeV Ie, which is a little above Eq. (12.29) (with y = 1). The 
difference can be easily attributed to soft gluonic radiation. 

If we go back to the result in Eq. (12.28) then we may use the impact 
vector description from Chapter 10 to obtain an idea of the transverse 
width inside which the qq-particles are produced. The matrix element 
becomes 

"" J d2pl. exp (iPl.b - ni: ) c:::: exp ( - ~~) (12.30) 

Thus the average impact-vector size is (b2) = nlK c:::: (0.8)2fm2, a number 
almost twice as large as the transverse radius value we obtained from 
the phenomenology of the b-parameter in the Lund model in Chapter 11. 
However, we are not discussing the same quantity when we refer to the 
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12.4 The phenomenological implications of tunnelling 227 

transverse size in connection with the b-parameter as when we refer to 
the size provided by the transverse momentum fluctuations in the string 
fragmentation process. 

For the transverse momentum fluctuations it is not only the size of the 
string field but also the localisation of its centre which is of interest. Thus 
if we localise a quantum mechanical object very well in coordinate space 
then the wave function will evidently contain a large spread of momentum 
components in the dual space. The size 0.8 fm corresponds more to how 
well localised the string is in transverse directions than to the size of the 
emission region. 

Note that the transverse momentum generation also influences the 
longitudinal distributions because in this case we must use the transverse 

mass mJ.. = Vpi + m2 instead of the ordinary mass m. The reason is 

the relation p+p_ = mi, which implies that we can conserve energy­
momentum in the string plane only by this exchange. 

4 The mother-daughter relation 

There is another aspect of the resonance decays. The n's and K's from 
the decays populate phase space in different ways. There is a well-known 
kinematical property, usually referred to as the 'mother-daughter relation'. 

Consider a resonance decay in the rest frame of the resonance. Obviously 
the decay products will go out in different directions in order to conserve 
the momentum. Their velocities are given by the mass of the particles, 

V1- 4m2/M2 (cf. Chapter 4) when a resonance with mass M decays 
into two particles with the same mass m. This translates into a rapidity 
difference of the order of 1 to 2 units. (For p ~ nn decay, which is an 
extreme case because of the smallness of the n mass, one obtains, after 
angular averaging, around 1.5 units.) 

Therefore the 'daughters', i.e. the decay products, tend to have roughly 
the same rapidity as the 'mother' so that they will have momenta which 
are proportional to their masses. In the decay of a K* to a K n this means 
that the (much) lighter n-particle in general takes a much smaller share 
of the mother's momentum than the K-particle. The n's also occur much 
more often as decay products than do other particles. The large amount 
of n's and the smaller correlation to their 'heritage' means that the n's 
occur in a rather uncorrelated fashion in the final states. They often have 
small momenta, in particular transverse to the jet. 

This means that the central parts of rapidity space and the small 
transverse momentum region contains many more n's than K's and the 
ratio K/n is much smaller than the s/u ratio discussed above (typically 
below 0.1). If we consider the ratio K/n as a function of transverse 
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momentum then it grows quickly with transverse momentum size and 
reaches for PJ.. ::::::: 0.4 GeV (which corresponds to the average transverse 
momentum) the value 0.3. 

We note, however, that if a primary n is produced with a large transverse 
momentum then there is a smaller difference from the production of a 
directly produced K because they will then have similar transverse masses. 

12.5 Vector meson suppression 

1 Preliminary remarks 

At first sight one may guess that the ratio of the vector mesons (in the 
JPc = 1-- nonet; we use the usual notation with J the spin, P the 
parity and C the charge conjugation quantum number, cf. the Particle 
Data Group tables) to the pseudoscalar mesons (in the JPc = 0-+ 
nonet) should be 3 : 1. This is a purely statistical result corresponding 
to the number of states (three spin states for a vector as compared to 
the single spin 0 state for a pseudoscalar). The numbers of isospin and 
strangeness states are of course the same because the vector mesons and 
the pseudoscalars are both nonets in SU(3)-flavor. 

This ratio is not in accordance with the results of e+ e- annihilation 
experiments. Although it is difficult to disentangle the vector mesons 
(there are many possible combinations of K's and, particularly, of n's in a 
multiparticle final state) the general consensus for the PEP-PETRA energy 
region (20--40 GeV) is that the ratio of vector mesons to pseudoscalar 
mesons is in fact about 1 : 1 or maybe even smaller. 

There is a good dynamical reason for this disagreement and we will now 
consider it in some detail. The vector meson wave functions are actually 
more difficult to tunnel into because they are smaller at the point, the 
classical turning point, where the produced q and Z[ start to notice their 
final fate. The ensuing model should be applicable to all relative yields in 
which two produced hadrons, with similar quantum numbers, for some 
reason, e.g. due to constituent interactions, have different masses. 

The q- and q-particle stem from two adjacent vertices and there is an 
attractive force from the string which will bind them together. There are 
also, however, spin-dependent forces which will act in opposite ways in a 
pseudo scalar state and a vector state. The spin-spin correlation between 
particles 1 and 2 is positive for vectors and negative for pseudoscalars 
(note that the eigenvalue of S2 is s(s + 1)): 

S1 . S2 = ! [(S1 + S2)2 - si - S~)] = { ~~ for vectors 
for pseudo scalars 

(12.31) 
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It is a very general property that all physical systems try to 'economise' 
with the energy. This means that in a system with a hamiltonian H (Ho 
provides the space structure of the qq interaction), 

H = Ho + gSl . S2 (12.32) 

the constituents of a vector meson will try to avoid regions with positive 
g-values because the interaction energy of the state is increased in these 
regions and avoidance therefore implies a total decrease in the state 
energy. In contrast, for the pseudo scalar states it is advantageous for the 
constituents to be in regions with positive g-values. Therefore we expect 
that the wave functions of the pseudoscalars will be concentrated in regions 
with g positive while the vector states will behave in the opposite way. 

This type of spin-dependent force occurs in a state with color-force 
binding, because of gluon exchange. It turns out that the effect has a 
very short-range character in coordinate space. A simple model for it is a 
positive contact form, which is very large when the constituents are close 
and vanishing when they are apart (Xj, j = 1,2 are the coordinates of the 
particles and Il( > 0 the effective coupling): 

(12.33) 

For such an interaction it is evident that in one space dimension the vector 
state, where the q- and the q-particle try to stay apart, will be larger in 
size than the corresponding pseudo scalar state, where they would like to 
stay close together. A more spread-out vector meson wave function, which 
is still normalised to unity over the region, will be smaller at the classical 
turning point. 

For real, three-space dimensional, bag models of the hadrons there is 
a corresponding effect, although the bag radii in this case are similar. 
Nevertheless the constituents in a vector meson bag move close to the 
outskirts of the bag so that they stay apart as much as possible while the 
pseudo scalar bag constituents tend to stay close together at the centre. 

2 A one-dimensional bag model 

We will now estimate the ratio, mentioned at the beginning of the last 
subsection by solving for the eigenstates of the hamiltonian in Eq. (12.32). 
For simplicity we will use nonrelativistic kinematics for Ho (with equal 
masses j.t for the ql and the q2): 

p2 p2 p2 p2 
Ho = 2j.t + -21 + 22 + "Ixl - x21 == 2j.t + 4crns + - + "Ix - xol (12.34) 

j.t j.t j.t ~ 

Here the cms motion of the pair has been omitted and we choose for the 
cms momentum eigenvalue Pcrns = O. The relative coordinates x - Xo and 
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Fig. 12.5. The shapes of the wave functions corresponding to tunnelling into a 
vector meson (dotted line) and into a pseudoscalar meson (solid line) as well as 
into the Airy function 1p (broken line) mentioned in the text. 

momentum p are introduced together with the reduced mass Pr = p/2. 
We will now construct the wave functions for the ground states in the 
pseudoscalar case, the vector case and the case when IX = 0 in Eq. (12.33), 
denoted j = ps, v, 0, respectively. 

The linear potential evidently vanishes at x = Xo and we note that for 
x < Xo we have the differential equation 

[ __ 1_ d2 + K(XO _ X)] <P -(x) = (E -- 2p)<P -(x) 
2pr dx2 ) } } 

(12.35) 

For all wave functions <Pj we choose a value of Xo == Xj such that the 
left-most classical turning point (classically defined by p = 0 and quantum 
mechanically by an inflection point in the wave function) is at the same 
point x = p/K. This means that for all cases when x < Xj we have 

( __ 1_ d2 _ KX) <P -(x) = -p<P -(x), Xj = Ej - P (12.36) 
2pr dx2 } } K 

This means that the wave functions for all j have the same behaviour 
in this region. The differential equation can be solved and one obtains a 
function, known as an Airy function (which we denote 1p(x)). It decreases 
exponentially along the negative x-axis. We do not need its properties but 
it is shown in Fig. 12.5. 

The different wave functions do not need to be normalised in the same 
way and we therefore introduce the normalisation constants N j : 

<Pj(X) = N j1p(x), x < Xj 

From the symmetry of the problem we deduce that 

<Pj(x) = Nj1p(2xj - x), x> Xj 

thus ensuing continuity at x = Xj. 

(12.37) 

( 12.38) 
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For the case when the spin-spin interaction vanishes (j = 0) the eigen­
value Eo = KXo + 11 is determined from the requirement that the first 
derivative at x = Xo should be continuous, which implies 

<1>0 d1p 
dx (x == xo) = dx (xo) = 0 (12.39) 

For the two other cases we obtain a discontinuous first derivative by 
integrating the differential equation over the region including the point 
Xj: 

. 1 [d<l> j d<l> j ] hm- --(X'+e)--(X'-e) =aSl·S2<1>·(X·) 
1'--->0 211 dx ] dx ] ] ] 

This means 

for j = ps 
for j = v 

(12.40) 

(12.41 ) 

We conclude that for the pseudoscalar (vector) case the ratio of the wave 
function and its derivative (known as the logarithmic derivative) is positive 
(negative) while for the case j = 0 it vanishes. 

The function 1p starts out very small, for large negative x-values, and 
then increases towards a maximum at the value x = Xo; afterwards it 
decreases. Therefore we conclude that the value x = xps must be on the 
upward slope, and the value x = Xv on the downward slope, in order that 
the logarithmic derivatives should have the right signs. 

Thus we obtain without much effort that 

Xps < Xo < Xv (12.42) 

which is basically what we set out to prove, namely that the vector meson 
state in this one-space dimensional model is essentially larger than the 
pseudoscalar state in extension. 

It is also rather easy to estimate the relative size of the wave functions 
at the classical turning point, because this is given by 

1 \{I v 12 INv 12 

1 \{Ips 12 INps l2 
( 12.43) 

i.e. by the normalisation condition for the integrals 

1 = INjl2 (i: dxl1p(x)1 2 + 1~ dxl1p(2Xj - X)1 2) (12.44) 

As the functions are subject to exponential rapid decrease outside the 
classical turning points and vary reasonably slowly in between these 
points we can estimate that the ratio in Eq. (12.43) is 

(12.45) 
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A more detailed numerical investigation of the ratio tells us that Eq. 
(12.45) is a very good approximation if the ratio is larger than ~ 0.2. For 
smaller values of Eps - J1 the ratio in the first line of Eq. (12.45) levels 
out and for a vanishing Eps - Wthe ratio of the normalisation constants 
becomes ~ 0.12. The question whether there should be one factor for the 
q and another for the q is probably of little interest because of the general 
simplicity of the model. 

Phenomenologically the Lund model has been successful with the fol­
lowing suppression rates: 

P 
--~0.5, 
p+n 

K* 
K* +K ~ 0.6, 

D* 
D*+D~0.75 (12.46) 

We note that there is a clear tendency that the closer the masses of the 
vectors and the pseudoscalars, the closer we come to the statistical value 
3:1. 

3 The 1]' puzzle 

In order to exhibit the way in which the Lund model distributes the 
probabilities for different flavor configurations and also to mention a 
current phenomenological problem we will discuss the assignment of 
probabilities to the isoscalar states 1] and 1]'. Recently some doubt has 
appeared, [51], about the p/(p + n) ratio - it should probably be even 
smaller than we predicted in the earlier section, maybe in the range 0.3-
0.4. It turns out, however, that the 1]' has a large branching ratio for the 
decay 

1]' - p + n (12.47) 

and in this way the number of 1]' -particles will influence the observed 
p-signal. We will now show that according to the Lund model rules 
the number of 1]' -particles must be enhanced if we suppress the directly 
produced p-particles. But then we will get back a large p-rate through the 
decay channel in Eq. (12.47). To get around the problem diminishing the 
p-rate we must therefore also suppress 1]'. The practical effect is then that 
we give an overall enhancement to the n-mesons! 

According to the philosophy of the model all states should be populated 
according to the probability of projecting out a given flavor composition 
upon them. The 1] and 1]' in the pseudo scalar nonet (from now on called 
P S) play the same role as the <p and the w for the vector (V) mesons. 

In more detail, a state with the third component of isospin vanishing 
is, in SU(3)J (with f for flavor) either the h = 0 component, (IOj)), 
of the isovector (Po for the V and no for the P S) or the total singlet 
state (11j)) or octet state (18j)) in either nonet; j = PS, V. Knowing that 
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10j) = (Iuu) -ldd;)/)2 (compare with the spin 1 states built from spin 
1/2!) we may write for the other states 

(12.4S) 

to obtain orthogonal combinations in the three flavors u, d, s. There is, 
however, one further degree of freedom, called 'mixing', meaning that the 
true observed states may be mixtures of the singlet and octet states: 

Ihj l) = ISj) cosej -11j) sinej 
(12.49) 

Ihj 2) = ISj) sinej + 11j) cosej 

The vector nonet states are 'simple' from the point of view of mixing. 
The cj>-particle is almost a pure ss-state, as it decays almost exclusively 
into a KK -pair. Therefore the V mixing angle ev '" 0.62 so that tan ev c::::: 

1/)2. Then the OJ-particle is the combination (Idd; + luu))/)2. But the 

pseudo scalar nonet states IJ and IJ' are more complex flavor states: different 
authors (cf. the Particle Data Group tables) assign different mixing angles 
eps from -0.17 to -0.40. 

Now suppose that we start with a u (or d) and pick up from the next 
vertex a u (or d). Then we may produce either a vector state (Po or OJ) or a 
pseudo scalar state (no, IJ or IJ') according to the assignments given above. 
If we suppress the vectors we enhance the pseudoscalars and therefore the 
decay channel in Eq. (12.47) will also be enhanced! 

We will in Chapter 14 again find reasons for suppressing the IJ'-rate 
(which actually is not very well known from direct measurements). One 
possible clue to such a dynamical suppression is the very large masses of 
the IJ and IJ'. There have been different models suggested (mostly built 
upon the possibility that the vacuum exhibits a dynamical 'chiral symmetry 
breaking', which we will have no space to consider in this book). 

In such models there will necessarily be some mechanism which makes 
the isoscalar states more massive than the corresponding isovector ones 
in the P S nonet. This will then, in all cases, have the further effect 
that we obtain a suppression factor similar to the one we found in our 
one-dimensional bag model, the spin interaction being exchanged for the 
mechanism that makes the isoscalars more massive. 
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