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The aim of this note is described by the title; defining the Gamma function by
f»

T(x)= f^e-'dt (x>0), (1)
Jo

to deduce its standard properties without using the infinite product for sin x,
or its equivalent, the partial fractions expansion of cot x.

Although Euler ((2), p. 184) originally defined the Gamma function in terms
of an infinite product and the modern convexity definition ((2), pp. 161-163)
leads directly to Weierstrass's product, most text-books use such products only
twice; firstly in the proof of

r(x)F(l-x) = 7icosec7cx (2)
and secondly in the proof of

= - +y+ E f ) (3)
X r = 1 \ X ~|~ /" TI

There are at least four product-free proofs of (2), one ((6), p. 411) depends
on Fourier series, another ((3), pp. 139-141) on contour integration, that of
((4), p. 400) uses partial fractions and the nth roots of unity, while the duplication
formula for F(x) is used in ((1), pp. 23-25).

Less attention seems to have been paid to proofs of (3). This note offers a
proof using a formula due to Hermite ((5), p. 427) together with the facts that

— f(x + i) = —/(x + 0 and —; log F(x) is positive for positive x. This last
dx dt dx2

fact is equivalent to the convexity of log F(x).

Lemma 1. Raabe's Integral
f*+i pi

For x > 0, log r(t)dt = log T(x + t)dt = x log x - x + \ log In.
Jx Jo

Proof. Let

G(x) = log T(t)dt, then - ^ = log F(x + 1 ) - log F(x) = log x.dx
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So G(x) = x log x-x+C. Let x->0 and C =
Jo

By a change of variable in the Beta integral it can be shown that

4
Taking logarithms we have

ilog7tdr+ log T(t)dt
Jo Jo

= iog2 (\t-i)dt+ PiogiY^W !'xogrO—)dt.

That is

i log; : + C = - i log 2 + 2 logr(u)rfu + 2 logr(u)du
Jo Ji
f1

= -i log 2 + 2 logr(u)dw.
Jo

So C = \ log lit.

Lemma 2. Hermite's Formula
Forx>0, let A(x) = (x~i) log x-x + i log 2n andR(x) = log T(x)-A(x),

then

*(*)= [\t-i)^iogr(x+t)dt (4)
Jo dt

Proof. On integrating by parts, the right hand side of (4) is

[ ( r - i ) log r ( x + 0 ] o - I ' log T(x + t)dt,
Jo

which is the required result, by Lemma 1.
Lemma 3. For x>0,

dx2

Proof. Since

the result will follow if H(x) = T"(x)T(x)-{r'(x)}2 is positive.
Now in (1), differentiate under the integral sign and we obtain

H(x) = f°° f°° (<u)x-V'-U{(log 0 2 - log t log ujdtdu,
Jo Jo
nd u gives

= P" | (/«)*-1c-t-"(log *— logM
Jo Jo

so interchanging t and u gives
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Theorem 1. For x>0,

T(x) x r?i\r x + rj

Proof. By Lemma 2,

log T(x) = ( x - i ) log x - x + i log 2TI+ (t-i) - log :
Jo dt

so

log:= log x- 1 + A f (t-i) |
2x dxjo df

= iogx-i+ ro-i)^iogr(x+o^ (5)

T(x)

Taking logarithms of T(x + n+l) = (x + n)(x + n-l)...(x+l)xT(x) and
differentiating, we have

n x ) = _ l _ j , 1 | T'(x + n + l)
T(x) x r= + T( + + l)

Now in (5) replace x by x + n+ l and substitute in the right hand side of (6)
giving

£r\ = - - ~y"+ t (--—) + logfi+ — ) - .,, 1 _,_„ +Rn(x),
i(x) x r = i \ r x + r/ \ n J 2(x + n+l )

(7)
where yn = Y - - log n and Rn(x) = I (t—$) -̂= log T(x + n + l +,= Z log n and/?n(x) = (t-i) —

r = i r Jo dt1

Since I /—-J | < i for 0<f< l , and —.

/* 1 l 7 7 /* 1 J

~ 2 Jo df2 2 dx Jo dt

1

~ 2 ( ^

The theorem follows by letting n-*co in (7).
By differentiating we have

Theorem 2. For x > 0 an J n > 1,

rfx" 6 r^o (x + r)"

Theorem 3. With the notation of Lemma 2,

- -^~-x <R(x)- — <0.
192x3 12x
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Proof. Integrating the right hand side of (4) by parts gives

R(x) = i P (t-t2) f-2 log r(x + t)dt
Jo "'

-2

The first integral on the right hand side of (8) is

1 d f1 d . _,
_ — _ logT(x +
I2dx]o dt

and the second gives, on integrating twice by parts,

Id. 1
= logx= — ,

12 dx 12

4
24Now by Theorem 2,

Also, since
.

16

The extension of Theorem 3 to the case of complex z, | arg z 15s7r-<5, <5>0
can be effected by using the inequality \z+p\^(\z\ +p) sin 8/2, forp>0, when
for example

1

sin4<5/2 dt

which reduces the theory to the real case.

Theorem 4. For x>0 and integers n>0

Proof. Let f(x) =

d2

—2 Iog/(X) =

j \ n J \
, then by Theorem 2,

1

= T-^lOg
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Sof(x) = becxr(x). But
+ l)=-f(x),soee=-.

n n

Now b is a function of n only, and

logfc = xlogw + y log T — -
r=0 V « /

So by Theorem 3, and the result

log 6 = K«~l) log 27t+x log n+ jf ( — -*\ log f ^

~ "if—V(*-i)

-(x-i)logx+o(-
\x

ft— \ / \

= K«-l)l°g27i + ilogrt+ y ( — i J log
r = o V n I \ x

= K«-l) log 2n + i log »+

= K«-l) log 2n + i log n + O

B - l

Now let x-*oo, and fc = (2n) 2 n*.

X ( r
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