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Constructing representations of Hecke algebras for complex
reflection groups

Gunter Malle and Jean Michel

Abstract

We investigate the representations and the structure of Hecke algebras associated to certain
finite complex reflection groups. We first describe computational methods for the construction
of irreducible representations of these algebras, including a generalization of the concept of a
W -graph to the situation of complex reflection groups. We then use these techniques to find
models for all irreducible representations in the case of complex reflection groups of dimension
at most three. Using these models we are able to verify some important conjectures on the
structure of Hecke algebras.

1. Introduction

Let W 6 GL(V ) be a finite irreducible group on a complex vector space V generated by
complex reflections; that is, W is a finite complex reflection group. Let R⊂W denote the
set of reflections in W . For any reflection s ∈R let Hs ⊂ V denote its hyperplane of fixed
points on V . Then V reg := V \

⋃
s∈R Hs is connected in the complex topology, and W acts

freely (and continuously) on V reg by the well-known theorem of Steinberg. The braid group
associated to (W, V ) is the fundamental group

B(W ) := π1(V̄ , x̄0)

of the quotient V̄ := V reg/W with respect to some base point x̄0 ∈ V̄ .
Let H be the reflecting hyperplane of some reflection of W . Then its stabilizer WH is cyclic,

consisting solely of reflections (and the identity). The distinguished reflection sH ∈WH of
WH is by definition the reflection whose non-trivial eigenvalue on V equals exp(2πi/d), where
d := |WH |. Via the natural projection map from B(W ) onto W induced by the quotient map
V reg→ V̄ , the distinguished reflection sH can be lifted to so-called braid reflections s in B(W ).
For each reflection sH choose d indeterminates us,0, . . . , us,d−1 such that us,j = ut,j if s, t are
conjugate in W . We write u for the collection of these indeterminates, and let A := Z[u, u−1].
The generic cyclotomic Hecke algebra associated to W with parameters u is the quotient

H(W, u) :=AB(W )/I

of the group algebra AB(W ) of the braid group B(W ) by the ideal I generated by the∏d−1
i=0 (s− us,i), where s runs over the distinguished reflections and s over the associated braid

reflections.
An important and well-studied special case occurs if W is actually a real reflection group,

that is a Coxeter group, in which case the cyclotomic Hecke algebra becomes the well-known
Iwahori–Hecke algebra of W . In this situation, all of the questions mentioned later in the
paper were settled quite a while ago, so here we will be concerned exclusively with the non-real
groups.

Bessis [3, 0.1(e)] has shown that B(W ) has a presentation of the form

〈s1, . . . , sn | pj(s1, . . . , sn) = qj(s1, . . . , sn)〉, (1.1)

Received 22 September 2009.

2000 Mathematics Subject Classification 16Z05, 20C08 (primary), 16A65 (secondary).

https://doi.org/10.1112/S1461157009000412 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm
http://www.ams.org/mathscinet/msc/msc.html
https://doi.org/10.1112/S1461157009000412


CONSTRUCTING REPRESENTATIONS OF HECKE ALGEBRAS 427

where si are braid reflections whose images in W form a minimal system of reflections needed
to generate W (thus if W is irreducible we have n= dim V or n= dim V + 1) and where
(pj , qj) run over a finite set of pairs of positive words of equal length in the si. One obtains
a presentation of W by adding the relations s

dsi
i = 1 where dsi

is the order of the reflection
si ∈W , which is the image of si (cf. [3, 0.1(f)]).

A consequence is that the cyclotomic Hecke algebra specializes to the group algebra of W
under the map us,j 7→ exp(2πij/ds).

Explicit presentations of the form (1.1) of B(W ) and hence of H(W, u) are known for all
irreducible reflection groups; see Broué, Malle and Rouquier [9] and the references given there,
Bessis and Michel [5] and Bessis [4, Theorem 0.6].

The properties of cyclotomic Hecke algebras have been studied because of their (conjectured)
role in the representation theory of finite reductive groups. Nevertheless, several important
questions remain open at present, or have been settled only for some of the irreducible reflection
groups. We recall them in § 2.

Apart from these structural problems, there are questions of a more computational nature
which need to be settled. We would like to be able to write down an explicit A-basis ofH(W, u),
with known structure constants. Furthermore, we would like to know explicit models for all
irreducible representations of H(W, u). Again, these two questions have been solved for the
imprimitive reflection groups [2, 16]. In the present paper, we solve these computational
problems for the primitive irreducible reflection groups of dimension at most three, which
only leaves the five groups G29, G31, G32, G33 and G34 (in Shephard and Todd’s notation for
the irreducible reflection groups) to be considered.

It is easy to see that the reflection representation V of W can be realized over the field KW

generated by the traces of the elements of W on V . It is a theorem of Benard and Bessis that
all representations of W can be realized over KW .

Let O be the ring of integers of KW and let Ã=O[vs,i, v−1
s,i ]s,i where vs,i are such that

ves,i = exp(−2πij/ds)us,i, where e is the order of the group of roots of unity in KW . It has been
shown in [14] that assuming Conjecture 2.2(a) below, the characters of H(W, u) take their
values (on any basis of H(W, u) consisting of images of a subset of B(W )) in Ã. A consequence
of our results here is that, whenever we can compute them, the representations of H(W, u)
have a model where the matrices for the generators si have entries in the field generated by
the corresponding character values.

2. Some conjectures

We start by recalling some basic conjectures on the structure and representation theory of
cyclotomic Hecke algebras. The most basic conjecture states the following.

Conjecture 2.1. Let W be a complex reflection group, K = Frac(A). Then:
(a) H(W, u)⊗A K has dimension |W |;
(b) there exist pairwise non-isomorphic irreducible representations ρi of H(W, u) over Ã

such that
∑
i dim(ρi)2 = |W |.

Part (a) is known to hold for the infinite series by work of Ariki [1] and Broué and Malle [7],
for the two-dimensional primitive groups by Etingof and Rains [11] and has been checked for
the three-dimensional primitive groups by Müller (see Table 9). Our methods can prove part (b)
in some cases, which shows that the dimension is at least that big, but we obtain no information
on an upper bound. But, assuming these weak statements, we will derive the validity of an
important stronger assertion. For this, now let W be irreducible. Then it is known by [4,
Remark 12.4] that, except possibly for the case of G31, the center of B(W ) is cyclic, generated
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by some element z. We set π = z|ZW |, with ZW the center of W (an element of the pure braid
group π1(V reg, x0)).

Conjecture 2.2. Let W be an irreducible complex reflection group. Then:
(a) H(W, u) is free over A of rank |W |;
(b) H(W, u) carries a non-degenerate symmetrizing form t :H(W, u)→A which makes it

into a symmetric algebra, and such that

t(Tb−1)∨ = t(Tbπ)/t(Tπ) for all b ∈B(W ), (2.3)

where we denote by b 7→ Tb the natural map from B(W )→H(W, u) and x 7→ x∨ is the
automorphism of A given by u 7→ u−1.

Once Conjecture 2.2(a) has been established, it follows from Tits’ deformation theorem that
H(W, u) is a deformation of the group algebra of W , that is, it becomes isomorphic to the
group algebra over a suitable finite extension of the field of fractions of A.

It was shown in [8, 2.1] that assuming part (a), there is at most one symmetrizing trace on
H(W, u) satisfying part (b) which specializes to the canonical trace on CW .

Given a split semi-simple symmetric algebraH with a symmetrizing form t such that t(1) = 1,
we define the Schur element Sχ attached to χ ∈ Irr(H) by the property that

t(x) =
∑

χ∈Irr(H)

χ(x)/Sχ for all x ∈H. (2.4)

Let us denote by s 7→ Ts the natural map B(W )→H(W, u). In [13, 15], assuming
Conjecture 2.2(a) (which implies that H(W, u) is split semi-simple over a suitable extension
of A), it was shown that for all exceptional complex reflection groups there is a unique
symmetrizing trace such that t(Tx) = 0 for x ∈ E\{1}, where E is a subset of B(W ) such
that:

– all character values on {Tx | x ∈ E} could be determined;
– equations (2.4) for x ∈ E are sufficient in number to have a unique solution. For instance,

it is enough that the image of E in W intersects all conjugacy classes.
Moreover, the corresponding Schur elements Sχ were determined in all cases. When specializing
the Hecke algebra to the group algebra CW , t specializes to the canonical trace tW on CW
given by tW (w) = δw,1, so the Schur elements computed in [15] specialize to |W |/χ(1).

We fix this symmetrizing form t described above. All of our computational verifications will
depend on a suitable choice of basis for the cyclotomic Hecke algebra.

Lemma 2.5. Assume Conjecture 2.1. Let C ⊆H(W, u) be of cardinality |W | and
specializing to W ⊆ CW under the specialization of H(W, u) to the group algebra. Then C
is a K-basis of H(W, u)⊗A K.

Proof. Indeed, by (2.4) the matrix M := t(xy)x,y∈C has entries in the localization of Ã at
the collection of the Schur elements. Since the specialization of Schur elements is non-zero,
we may specialize M to obtain the corresponding matrix M := tW (vw)v,w∈W for W , which is
a permutation matrix. Thus, det(M) is non-zero, and hence C is K-linear independent. The
claim then follows from Conjecture 2.1.

An obvious way to construct a set C as above is by lifting the elements of W to B(W ). We
are looking for lifts which satisfy an additional property with respect to t.

Conjecture 2.6. There exists a section W →W, w 7→w, of W in B(W ) such that W 3 1,
and such that for any w ∈W\{1} we have t(Tw) = 0.
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According to Lemma 2.5, {Tw | w ∈W} is a K-basis of H(W, u)⊗A K. Note, however, that
in general it will not necessarily be an A-basis of H(W, u). Now (2.3) and Conjecture 2.6 are
related as follows.

Proposition 2.7. Assume Conjecture 2.6. If either all irreducible representations of
H(W, u) have models over Ã, or else {Tw | w ∈W} is an A-basis ofH(W, u) then property (2.3)
is equivalent to:

for any w ∈W − {1} we have t(Tw−1π) = 0. (2.8)

Proof. Let us extend ∨ to Ã so that it does complex conjugation on O and sends vi,j to
v−1
i,j . Using equation (2.4) for x= T−1

b and x= Tbπ, condition (2.3) reads

t(Tπ)
∑

χ∈Irr(H(W,u))

χ(T−1
b )∨

S∨χ
=

∑
χ∈Irr(H(W,u))

ωχ(Tπ)
χ(Tb)
Sχ

,

where ωχ is the central character of χ. Under the standard specialization ϕ : Ã→ C, vs,j 7→ 1,
we obviously have the following compatibility with complex conjugation: ϕ(a∨) = ϕ(a) for all
a ∈ Ã. Thus

ϕ(χ(T−1
b )∨) = ϕ(χ(T−1

b )) = χ(b−1) = χ(b−1) = ϕ(χ(Tb)),

whence χ(T−1
b )∨ = χ(Tb) (note that by our assumptions all character values χ(Tb) lie in Ã).

Our first equation then reads

t(Tπ)
∑

χ∈Irr(H(W,u))

χ(Tb)
S∨χ

=
∑

χ∈Irr(H(W,u))

ωχ(Tπ)
χ(Tb)
Sχ

,

which is a linear condition in Tb. Thus:
– if the equation holds for the image of B(W ) it holds for any element of H(W, u);
– it is sufficient to check the equation for a basis of H(W, u)⊗A K.

Note that {T−1
w |w ∈W} is still a basis ofH(W, u)⊗A K since it is the image of {Tw |w ∈W}

by the anti-automorphism a1 of [8, 1.26]. Writing the condition on this basis we get

t(Tw)∨ =
t(Tw−1π)
t(Tπ)

.

This holds trivially for w = 1, and for the others t(Tw)∨ = 0 whence the result.

Definition 2.9. We say that a section W is good if for any w ∈W − {1} we have
t(Tw) = t(Tw−1π) = 0, and the matrix {t(Tww′)}w,w′∈W is in GL|W |(A).

The notion of good section is the tool which will allow us to prove Conjecture 2.2 in quite a
few cases, using the next proposition.

Proposition 2.10. Assume that W is a good section and that for a generating set
S of B(W ) we have for all s ∈ S, w,w′ ∈W that t(Tsww′) ∈A. Then H(W, u) satisfies
Conjecture 2.2, and {Tw |w ∈W} is an A-basis of H(W, u).

Proof. Let M be the matrix {t(Tww′)}w,w′∈W. From the assumption M ∈GL|W |(A) it
follows that the dual basis {T ′w} of {Tw} with respect to t lies in A[Tw]w∈W. It follows
that h ∈H(W, u) lies in A[Tw]w∈W if and only if for any w we have t(hTw) ∈A; indeed
the coefficient of h on Tw is t(hT ′w) which is in A if all the t(hTw) are in A.

Thus the condition in the statement shows that Tsw ∈A[Tw]w∈W, that is that Tw is an
A-basis.
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3. Imprimitive groups

Before turning to the main subject of the present paper, the exceptional complex reflection
groups, we recall the current situation for the infinite series, that is, the imprimitive groups
and the symmetric groups. Conjecture 2.2(a) has been verified in these cases by Ariki and
Koike [2], Broué and Malle [7] and Ariki [1, 1.6(2)]. The properties of a symmetrizing form on
H(G(de, e, r), u) have been investigated by Malle and Mathas in [16]. It is not clear, though,
that it satisfies the additional properties mentioned in Conjecture 2.2. Conjecture 2.6 has been
verified for G(d, 1, r) by Bremke and Malle [6].

Explicit models for the irreducible representations of the generic cyclotomic Hecke algebra
for the imprimitive complex reflection group G(d, 1, r) have been given by Ariki and Koike [2],
and have been extended to G(de, e, r) by Ariki [1]. However, these models are over KW (u1/e

s,i )s,i.
Models for the case G(d, 1, r) are known over A, using the fact that this is a cellular algebra,

and that the generators act with coefficients in A on a cellular basis. For example this can be
seen from Dipper, James and Mathas [10]. Let the generators of H(W, u) correspond to the
diagram

©
T0

©
T1

©
T2

. . . ©
Tr−1

,

where T0 has parameters Q1 = u0,0, . . . , Qd = u0,d−1 and the Ti (i 6= 1) have parameters
q = u1,0,−1 = u1,1. Then the action of the Ti in a cellular basis is given by [10, 3.15 and
3.18], while the action of T0 is given by [10, 3.20] (note that only the term x1 of [10] subsists
in the model for the representation λ).

We are not aware of similarly nice integral/rational models for the representations of
H(G(de, e, r), u), where e > 1.

4. Two-dimensional primitive groups

In this section we describe the construction of models for the irreducible representations of the
Hecke algebras H(W, u), where W is a primitive two-dimensional reflection group, so one of
the groups G4, . . . , G22. We first describe several reductions.

Step 1. It is sufficient to find models in the case of G7, G11 and G19.
The braid groups of G7, G11 and G19 are isomorphic to the same group

B := 〈s1, s2, s3 | s1s2s3 = s2s3s1 = s3s1s2〉

(see [9, § 5]). Let u = (x1, x2; y1; y2; y3; z1, . . . , zk), where k = 3 for G7 (respectively 4, 5 for
G11, G19). The cyclotomic Hecke algebra H(W, u) of G7 (respectively G11, G19) is the quotient
of the group algebra of B over Z[u, u−1] by the relations

(s1 − x1)(s1 − x2) = 0, (s2 − y1)(s2 − y2)(s2 − y3) = 0,
i=k∏
i=1

(s3 − zi) = 0.

In turn the Hecke algebras for G4 to G6 are subalgebras of suitable partial specializations of
that for G7 (the same holds for G8 to G15 with respect to G11 and for G16 to G22 with respect
to G19) (see [13, Proposition 4.2]). More precisely, in each case, these algebras are generated
by suitable conjugates of a subset of the generators (or of some power of them), while the
other generators are specialized to the group algebra. The necessary generators are collected
in Table 1.

Moreover, each irreducible representation of the Hecke algebra of any of the groups
G4, . . . , G22 can be obtained as the restriction of an irreducible representation of the Hecke
algebra of one of G7, G11 or G19. It follows that it is sufficient to determine the representations
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of the Hecke algebras of G7, G11 and G19 to determine the representations of the Hecke
algebras of all two-dimensional primitive reflection groups.

Step 2. It is sufficient to compute irreducible representations of B of dimension 2 6 d6 6,
with an additional condition on the eigenvalues of the generators.

The irreducible representations of G7 have dimension one, two or three, those of G11

dimension one to four and those ofG19 dimension one to six. It follows that any two-dimensional
representation of B gives a representation of H(W, u) where W is any of G7, G11, G19; any
three-dimensional representation of B where s1 has only two distinct eigenvalues gives a
representation of the same algebras; any four-dimensional representation of B where s1 has
only two distinct eigenvalues and s2 has only three distinct eigenvalues gives a representation
of H(W, u) where W is any of G11, G19; finally any five- or six-dimensional representation of
B where s1 has only two distinct eigenvalues, s2 has only three distinct eigenvalues and s3 has
only five distinct eigenvalues gives a representation of H(G19, u).

Step 3. It is sufficient to compute one irreducible representations of B in each dimension
2 6 d6 6.

For each dimension (from one to six) and each W ∈ {G7, G11, G19}, the irreducible
representations of H(W, u) (up to isomorphism) form a single orbit under the Galois
automorphisms corresponding to permuting the xi, the yi, the zi among themselves. It
transpires that we just need to find one representation of B of the right dimension with the
required number of eigenvalues.

It turns out that one can find such representations of B by matrices of the form

s1 7→


∗ . . . . . . ∗

0
. . .

...
...

. . . . . .
...

0 . . . 0 ∗

, s2 7→


∗ . . . . . . ∗
... . . . 0
... . . . . . .

...
∗ 0 . . . 0

, s3 7→


0 . . . 0 ∗
... . . . . . .

...

0 . . .
...

∗ . . . . . . ∗

.
A solution for the two-dimensional representation is

s1 7→

x1
y1 + y2
y1y2

− (z1 + z2)x2

r
0 x2

, s2 7→
(
y1 + y2 1/x1

−y1y2x1 0

)
, s3 7→

0
−r

y1y2x1x2

r z1 + z2

,

Table 1. Generators for Hecke algebras of two-dimensional primitive groups.

W Generators of H(W )

G4, G8, G16 s3, s1s3

G5, G10, G18 s2, s3

G6, G9, G17 s1, s3

G14, G21 s1, s2

G12, G22 s1, s2s1, s
s2
1

G20 s2, s1s2

G13 s23, s1, s
s2
1

G15 s1, s2, s23
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where r =
√
x1x2y1y2z1z2. Note that the irrationality r occurring in the matrices is

necessary [14, Table 8.1].
A solution for the three-dimensional representation is

s1 7→


x1 0

(
(z2z3 + z1z3 + z1z2)x2x1r

−1 − (y3 + y1 + y2)r
y1y2y3

)
z−1
1

0 x1 −r(y1y2y3z1)−1

0 0 x2

,

s2 7→

y1 + y2 + y3 − r(x1z1)−1 az1
−1 −1

1 r(x1z1)−1 0
y1y2y3x1z1r

−1 0 0

,
s3 7→

 0 0 z2z3x1r
−1

0 z1 0
−rx1

−1 a z3 + z2

,
where

a= (y3 + y1 + y2)rx−1
1 − (y1y3 + y1y2 + y3y2)z1 + y1y2y3(x1z

2
1 − x2z2z3)r−1

and where r = 3
√
x2

1x2y1y2y3z1z2z3.
A solution for the four-dimensional representation is

s1 7→



x1 0 x1a− x1x2y1
b

r
x1

(
1 +

y1
y3

)
− r

y3

∑
i

1
zi

0 x1
1
y1

+
1
y2

−x2

r3

0 0 x2 0
0 0 0 x2


,

s2 7→


y3 + y1 x1y1y2a y1a y1

0 y1 + y2 1/x1 0
0 −x1y1y2 0 0
−y3 0 0 0

,

s3 7→


0 0 0 −r/(y3x2)
0 0 −r/(y2x1x2y1) 0
0 r 0 1/r2

r/(x1y1) −ra b
∑
i

zi

,
where

a= x1x2y1y2
∏
j

zj

(∑
i

1
zi

)
− r2

4∑
i=1

zi, b= x1x2y1(y2 + y3)
∏
i

zi − r2
∑
i<j

zizj

and where r = 4
√
x2

1x
2
2y1y2y

2
3z1z2z3z4.

We refer to the GAP-part of the Chevie system [17] for solutions for the five-dimensional and
six-dimensional representations of B. By our above reductions, this completes the construction
of the irreducible representations of all cyclotomic Hecke algebras attached to two-dimensional
exceptional complex reflection groups.
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5. Hensel lifting and Padé approximation

We now describe computational techniques used to obtain models for irreducible
representations of Hecke algebras for higher-dimensional primitive complex reflection groups.
It is not an algorithm in the sense that it does not always succeed, but in the case of one-
parameter algebras, it turned out to have a good rate of success. It consists of Hensel lifting
representations of W to H(W ), combined with Padé approximation.

We note that for groups generated by true reflections which are all conjugate, such as G24,
G27, G29, G31, G33 and G34, there are only two parameters us,0 and us,1, and with the usual
normalization us,1 =−1 (corresponding to replacing s by −s/us,1) there is only one parameter
q =−us,0/us,1. We will write H(W, q) for such an algebra.

5.1. Hensel lifting representations of W

We start with a presentation of B(W ), of the form

〈s1, . . . , sn | pj(s1, . . . , sn) = qj(s1, . . . , sn)〉

as explained in (1.1).
If ρq :H(W, q)→Ml×l(C(q)) is a representation ofH(W, q) over C(q), and if Mi = ρq(si), the

idea consists of writing Mi as a series in the variable r := q − 1. If we have such an expansion
Mi =M

(0)
i + rM

(1)
i + r2M

(2)
i + . . . where M (j)

i ∈Ml×l(C), then M
(0)
i is the specialization ρ1

of ρq at q = 1, a representation of W .
Conversely, if we start with a representation ρ1 of W , we may try to extend it to a

representation of H(W, q) by solving the system of equations

(Mi + 1)(Mi − r − 1) = 0 and pj(M1, . . . , Mn) = qj(M1, . . . , Mn),

where Mi =M
(0)
i + rM

(1)
i + r2M

(2)
i + . . . ∈Ml×l(C((r))) are formal power series with M (0)

i =
ρ1(si). The point here is that if we already have a solution M

(j)
i for j < j0 (where j0 > 1)

then the equations for M (j0)
i form a system of linear equations, which, if v is the vector of all

the entries (M (j0)
i )k,l of the matrices M (j0)

i , has the form Λv =Nj0 , for a matrix Λ which is
independent of j0.

Unfortunately the matrix Λ does not have full rank in practice. To try to solve the above
system, we choose for j0 = 1 a matrix Λ′ of full rank extending Λ, and then solve iteratively
each step j0 by setting v = Λ′−1Nj0 . We thus get a representation of H(W, q) with coefficients
in C[[r]]; actually in K[[r]] if K is the field where the entries of the matrices M (0)

i lie.
In our computations it happened quite often that this representation is actually over

K(r) =K(q). This is the point of the method. To increase the probability that this happens,
we found a number of heuristics:

– as equations added to Λ to make Λ′, we first try to add equations specifying that
undetermined entries in M

(1)
i where the corresponding entry in M

(0)
i is 0 should also

be 0;
– if the chosen model of ρ1 given by the matrices M (0)

i does not give good results, change
the model randomly (but such that it is still ‘simple’) until a better result occurs.

5.2. Recognizing the entries

To recognize that the obtained series Mi ∈Ml×l(K[[r]]) lies in K(r), we use Padé
approximation: if a series h ∈K[[r]], which can be assumed to have a non-zero constant
coefficient, is the expansion of f/g ∈K(r) where f, g ∈K[r] are of degree less than d and
g(0) = 1, then f and g are determined by solving linear equations involving only the first 2d
terms of h. If these linear equations have a solution, we say that f/g is a Padé approximant
of h.

https://doi.org/10.1112/S1461157009000412 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157009000412


434 G. MALLE AND J. MICHEL

This is applied to the (approximate) entries of Mi as follows: we compute Padé approximants
for increasing d, until they become stationary, which generally means that we have found a
solution in K(r).

Note that it is very easy afterwards to check whether the result of our computations does
indeed define a representation of H(W, q), by just evaluating the relations of H(W, q).

The representations of H(W, q) are in general not defined over C(q) but over C(q1/e) where
e is the order of the group of roots of unity in KW . To handle this case it is sufficient to take
r := q1/e − 1 as a variable and apply the same construction.

5.3. Finding good models for representations of W

To start the process we needed to get a complete set of models for the irreducible representations
of W . For this, we used the following techniques:

– get new representations from known representations by tensoring by linear characters and
applying Galois actions;

– get new representations as Schur functors of known representations (when such Schur
functors happen to give an irreducible representation; an example is that the exterior
powers ΛiV are always irreducible and the symmetric square S2V is irreducible if W is
not real). We have written a Chevie-program to compute general Schur functors to do
this.

For example only seven of the 90 representations of dimension at most 60 of G32 cannot be
obtained by the above process starting from the reflection representation. To get the remaining
representations, we need one more technique:

– obtain the desired representation as a component of multiplicity 1 in the tensor product of
two known representations. Then compute a model by explicitly computing the projector
on the desired isotypic component.

It turns out that all irreducible representations of exceptional complex reflection groups
can be obtained from the reflection representation applying these three steps. To compute
the projector on the isotypic component, we explicitly compute the image of the class sums
of W in the representation, by enumerating the elements of W as words in the generators
and computing their images. We have carried out this computation for all groups considered
except G34 where this would need to add together billions of matrices of rank several tens of
thousands, which is a larger computation than those we have attempted.

For the questions to be considered below, but also for other computational purposes, it is
desirable to have a model with few non-zero entries, which are integral if possible. We try to
achieve this by performing suitable base changes on the first model. A good heuristic which
tends to simplify the model a lot is to use a basis consisting of one-dimensional intersections
of eigenspaces of the matrices M (0)

i .
An example of a representation obtained by the methods of this section and that we could

not obtain in another way is the representation φ8,5 of H(G24, {x, y}) (here v =
√
−xy, and

s, t, u are the generators in the presentation P1 given in § 6.1):

s 7→



. . . . . . . −x

. x+ y . . y . . .

. . x −vy + xy . . −x2 .

. . . y . . . .

. −x . . . . . .

. . . x . x −v − y .

. . . . . . y .
y . . . . . . x+ y


,
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t 7→



x . . v . . . −y
. x . v x . . .
. . x+ y . . . −xy .
. . . y . . . .
. . . . y . . .
. . −1 x −v x x v
. . 1 . . . . .
. . . . . . . y


,

u 7→



y . . . . . . .
. x . . x . −v .
−xy . x . −vy vy vy − xy − x2 .
. . . x . −y −v − y .
. . . . y . . .
. . . . . y . .
. . . . . . y .
x . . . . . x x


.

Another example is the representation φ8,6 of H(G27, {x, y}) where again v =
√
−xy, and

s, t, u are the generators in the presentation P1 given in § 6.2:

s 7→



x . −y . . . v − y 1 +
√

5
2

.

. x+ y . y . . . .

. . y . . . . .

. −x . . . . . .

. . . . . . . x

. . v + x
1 +
√

5
2

. . x x .

. . . . . . y .

. . . . −y . . x+ y


,

t 7→



x . −y y . v v −y

. x −x3 +
√

5
2

x . . . .

. . y . . . . .

. . . y . . . .

. . x . x . . y

. . . . . x+ y y .

. . . . . −x . .

. . . . . . . y


,

u 7→



. . −x . . . . .

. x . x . . −y 3 +
√

5
2

.

y . x+ y . . . . .
. . . y . . . .
. . . . y . . .
v . v −y v x x .
. . . . . . y .
. . . . −x . v x


.
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6. Presentations of B(G24) to B(G34)

In [5] we considered presentations of exceptional complex braid groups, and proposed several
presentations for B(G24), B(G27), B(G29), B(G33) and B(G34). In the context of our current
work, it will be important to consider alternative presentations, since at least two of the
properties we consider (the existence of W -graphs and the vanishing of the trace on minimal
length elements) turn out to depend on the presentation, with each time a presentation faring
better than the others with respect to these properties. We have noticed a framework in which
these various presentations fit and can be systematically recovered.

Since the groups above are well-generated, they have a unique maximal reflection degree h
called the Coxeter number of W . We proved in [5] that in each case, the product δ = s1 . . . sn
of the generators of the braid group in a certain order is an hth root of the generator of the
center of the pure braid group. The image c of δ in W is e2iπ/h-regular in the sense of Springer,
and if choosing for the basepoint a e2iπ/h-regular eigenvector x of c, the element δ corresponds
to a path joining x to e2iπ/hx (these two points coincide in V reg/W ).

We consider the Hurwitz action of the ordinary Artin braid group Bn, the group with
presentation

〈σ1, . . . , σn−1 | σiσj = σjσi if |i− j|> 1, σiσi+1σi = σi+1σiσi+1〉

on decompositions δ = s1 . . . sn of δ, given by

σi : (s1, . . . , sn) 7→ (s1, . . . , si+1, s
si+1
i , . . . , sn),

so that

σ−1
i : (s1, . . . , sn) 7→ (s1, . . . ,

sisi+1, si, . . . , sn).

We thus obtain new decompositions of δ into a product of n braid reflections.
Bessis has shown in [4] that the orbit of the Hurwitz action on decompositions of δ is finite,

of cardinality n!hn/|W |. What we noticed is that all the presentations of [5] correspond to
taking as a set of generators the ones which appear in one decomposition in the Hurwitz orbit;
in the case of G24 and G27 any element of a Hurwitz orbit corresponds up to some permutation
to one of the presentations given in [5]; in the other cases some other presentations may appear.

We now give the results in each case. We found that the ‘quality’ of a presentation seems
to be correlated to how ‘spread out’ their ‘Poincaré’ polynomial

∑
w∈W ql(w) is (where l(w) is

the minimal length in terms of the generators needed to write w); the presentations where the
Poincaré polynomial has a higher degree are better.

6.1. Presentations for B(G24)

A Hurwitz orbit of δ has 49 elements. Three different presentations appear along an orbit.

P1. The presentation P1 is

〈s, t, u | sts = tst, tutu = utut, sus = usu, (tus)3 = utu(stu)2〉.

It appears 21 times in a Hurwitz orbit. Its Poincaré polynomial is

q15 + 3q14 + 6q13 + 12q12 + 27q11 + 46q10 + 55q9 + 54q8 + 44q7

+ 31q6 + 22q5 + 15q4 + 10q3 + 6q2 + 3q + 1.

P2. The presentation P2 is

〈s, t, u | stst = tsts, tutu = utut, sus = usu, t(stu)2 = (stu)2s〉.
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We get P2 from P1 by taking {s, tut−1, t} as generators. It appears 21 times in a Hurwitz
orbit. Its Poincaré polynomial is

q13 + 4q12 + 16q11 + 39q10 + 56q9 + 58q8 + 52q7 + 42q6 + 29q5 + 18q4 + 11q3 + 6q2 + 3q + 1.

P3. The presentation P3 is

〈s, t, u | stst = tsts, tutu = utut, susu = usus, (tus)2t = (stu)2s = (ust)2u〉.

We get P3 from P1 by taking {t, u, u−1t−1stu} as generators. It appears seven times in a
Hurwitz orbit. Its Poincaré polynomial is

q13 + 5q12 + 12q11 + 24q10 + 45q9 + 54q8 + 59q7 + 57q6 + 36q5 + 21q4 + 12q3 + 6q2 + 3q + 1.

6.2. Presentations for B(G27)

A Hurwitz orbit of δ has 75 elements. Five different presentations appear along an orbit, each
fifteen times.

P1. The presentation P1 is

〈s, t, u | tst = sts, usu = sus, utut = tutu, utu(stu)3 = (tus)3tut〉.

Its Poincaré polynomial is

q25 + 5q24 + 12q23 + 26q22 + 51q21 + 88q20 + 125q19 + 150q18 + 168q17 + 191q16

+ 218q15 + 223q14 + 200q13 + 168q12 + 139q11 + 114q10 + 87q9 + 62q8

+ 44q7 + 31q6 + 22q5 + 15q4 + 10q3 + 6q2 + 3q + 1.

P2. The presentation P2 is

〈s, t, u | sus = usu, stst = tsts, tutut = ututu, (uts)2t = s(uts)2〉.

We get P2 from P1 by taking {t, tut−1, s} as generators. Its Poincaré polynomial is

q21 + 6q20 + 22q19 + 59q18 + 107q17 + 152q16 + 208q15 + 256q14 + 270q13

+ 255q12 + 218q11 + 177q10 + 137q9 + 100q8 + 71q7 + 49q6 + 32q5

+ 19q4 + 11q3 + 6q2 + 3q + 1.

P3. The presentation P3 is

〈s, t, u | sts = tst, tutut = ututu, sus = usu, tutu(stu)2 = u(tus)3〉.

We get P3 from P1 by taking {s, s−1us, t} as generators. Its Poincaré polynomial is

q23 + 3q22 + 6q21 + 21q20 + 60q19 + 121q18 + 164q17 + 192q16 + 228q15

+ 256q14 + 245q13 + 210q12 + 175q11 + 138q10 + 106q9 + 78q8

+ 57q7 + 38q6 + 25q5 + 16q4 + 10q3 + 6q2 + 3q + 1.

P4. The presentation P4 is〈
s, t, u

∣∣∣∣∣ stst = tsts, tutut = ututu, susus = ususu,

(tus)2t = s(tus)2, us(tus)2 = (stu)2su

〉
.

We get P4 from P1 by taking {t, u, u−1t−1stu} as generators. Its Poincaré polynomial is

q19 + 5q18 + 16q17 + 54q16 + 127q15 + 211q14 + 257q13 + 277q12 + 288q11 + 266q10

+ 217q9 + 164q8 + 117q7 + 73q6 + 42q5 + 23q4 + 12q3 + 6q2 + 3q + 1.
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P5. Finally, P5 just presents the opposite group to P2 (the first three relations are the same
and each side of the fourth is reversed). It is obtained from P2 by exchanging the generators u
and t.

6.3. Presentations for B(G29)

For B(G29), in [5] we considered two presentations on generators {s, t, u, v}. These
presentations actually correspond to two different presentations of the parabolic subgroup
generated by {t, u, v} which is of type B(G(4, 4, 3)), so we describe the situation for this last
group.

For B(G(4, 4, 3)) a Hurwitz orbit of δ has 32 elements; two presentations occur along the
orbit.

P1. The presentation P1 is

〈t, u, v | tvt = vtv, uvu = vuv, tutu = utut, (vut)2 = (utv)2〉.

It appears sixteen times in a Hurwitz orbit. Its Poincaré polynomial is

3q8 + 13q7 + 23q6 + 22q5 + 15q4 + 10q3 + 6q2 + 3q + 1.

P2. The presentation P2 is

〈t, u, v | tvt = vtv, uvu = vuv, tut = utu, vt(uvt)2 = (uvt)2uv〉.

We get P2 from P1 by taking {v−1tv, u, v} as generators. It appears eight times in a Hurwitz
orbit. Its Poincaré polynomial is

11q8 + 21q7 + 18q6 + 15q5 + 12q4 + 9q3 + 6q2 + 3q + 1.

A presentation of B(G29) can be obtained in each case by adding one generator s and the
extra relations sts = tst, su = us, sv = vs.

6.4. Presentations for B(G33) and B(G34)

For B(G33), in [5] we considered two presentations on generators {s, t, u, v,w} and for
B(G34) two presentations on generators {s, t, u, v,w, x}. These presentations differ only on
the parabolic subgroup generated by {t, u, v,w} which is of type B(G(3, 3, 4)), so we describe
the situation for this last group.

For B(G(3, 3, 4)) a Hurwitz orbit of δ has 243 elements. Five different presentations occur
along the orbit.

P1. The presentation P1 is〈
t, u, v,w

∣∣∣∣ utu = tut, vtv = tvt, vuv = uvu, vwv = wvw,
tw = wt, uw = wu, (vtu)2 = (uvt)2

〉
.

It appears 108 times in a Hurwitz orbit. Its Poincaré polynomial is

8q12 + 40q11 + 82q10 + 108q9 + 109q8 + 95q7 + 79q6 + 57q5 + 35q4 + 20q3 + 10q2 + 4q + 1.

P2. The presentation P2 is〈
t, u, v,w

∣∣∣∣wtw = twt, utu = tut, uvu = vuv,wvw = vwv,
tv = vt,wu = uw, v(wtuv)2 = (wtuv)2w

〉
.

It appears nine times in a Hurwitz orbit. Its Poincaré polynomial is

q12 + 20q11 + 74q10 + 128q9 + 130q8 + 100q7 + 74q6 + 52q5 + 34q4 + 20q3 + 10q2 + 4q + 1.

We get P2 from P1 by taking {t, v,w,w−1v−1uvw} as generators.
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P3. The presentation P3 is〈
t, u, v,w

∣∣∣∣ tw = wt, uwu = wuw, uvu = vuv, vwv = wvw, tut = utu,
tvt = vtv, uvwu = wuvw, (tuv)2 = (vtu)2

〉
.

It appears 72 times in a Hurwitz orbit. Its Poincaré polynomial is

34q10 + 88q9 + 122q8 + 132q7 + 111q6 + 75q5 + 45q4 + 25q3 + 11q2 + 4q + 1.

We get P3 from P1 by taking {t, v, v−1uv,w} as generators.

P4. The presentation P4 is〈
t, u, v,w

∣∣∣∣ tvt = vtv, uwu = wuw, twt = wtw, twvt = vtwv,wvuw = uwvu,
tut = utu,wvw = vwv, uvu = vuv, (tuw)2 = (wtu)2, (tuv)2 = (uvt)2

〉
.

It appears 36 times in a Hurwitz orbit. Its Poincaré polynomial is

6q10 + 40q9 + 98q8 + 148q7 + 149q6 + 102q5 + 58q4 + 30q3 + 12q2 + 4q + 1.

We get P4 from P1 by taking {t, u, v, vwv−1} as generators.

P5. The presentation P5 is〈
t, u, v,w

∣∣∣∣wu = uw, tvt = vtv, vuv = uvu, tut = utu, twt = wtw,
wvw = vwv, twvutw = utwvut, (vut)2 = (utv)2, (wvt)2 = (vtw)2

〉
.

It appears eighteen times in a Hurwitz orbit. Its Poincaré polynomial is

q10 + 28q9 + 97q8 + 163q7 + 162q6 + 104q5 + 52q4 + 25q3 + 11q2 + 4q + 1.

We get P5 from P1 by taking {t, v, u, uvwv−1u−1} as generators.
In each case we obtain a presentation of B(G33) by adding one generator s and the relations

sts = tst, su = us, sv = vs, sw = ws. We then obtain a presentation of B(G34) by adding one
generator x and the relations wxw = xwx, xs = sx, xt = tx, xu = ux, xv = vx, except for the
representation corresponding to P2 where the relations we should add are wx = xw, sxs = xsx,
xt = tx, xu = ux, xv = vx (this presentation can be obtained from the one corresponding to
P1 by taking stut−1s−1, s, t, v,w, x as generators).

7. Representations from W -graphs

The notion of a W -graph for a representation of a Weyl group originates from Kazhdan–Lusztig
theory. Here, we propose a generalization of this concept to the case of complex reflection
groups. We then deal with computational issues connected with this.

7.1. W -graphs

Let W 6 GL(V ) be a complex reflection group on V . We assume that W is well-generated;
that is, W can be generated by n := dim(V ) reflections s1, . . . , sn. We set I = {1, 2, . . . , n}
and we let dj denote the order of the reflection sj , j ∈ I, and d := max{dj}.

The following generalizes the concept of a W -graph for a representation of a finite Coxeter
group; see [12]. Let R :W →GLr(C) be an irreducible representation of W . A pre-W -graph Γ
for R is a sequence (γ1, . . . , γr) of r maps γk : I →{0, . . . , d− 1} satisfying γk(j) 6 dj − 1 for
all 1 6 k 6 r, j ∈ I. The maps γk are also called the nodes of Γ.

We now define the concept of an admissible pre-W -graph. If W is cyclic, then n= 1 and I =
{1}. Any irreducible representation is one-dimensional, so r = 1, and the generating reflection s1
acts by R(s1) = exp(2πim/d1) in R for some 1 6m6 d1. Then only the map γ1 with γ1(1) =m
is admissible. Now assume inductively that an admissible pre-W -graph has been chosen for each
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irreducible representation of each proper parabolic subgroup WJ = 〈sj | j ∈ J〉, where J ⊂ I.
The pre-W -graph Γ is then called admissible (with respect to the chosen admissible pre-W -
graphs of the parabolics), if for each parabolic subgroup WJ <W the restriction of Γ to WJ is
the union of the pre-W -graphs of the restriction of R to WJ . (Here, restriction to a parabolic
subgroup WJ , J ⊂ I, is obtained by restricting all γj to J .)

Let H(W, u) denote the generic cyclotomic Hecke algebra associated to W , where u =
(uj,m | 1 6 j 6 n, 0 6m6 dj − 1) with uj,0, . . . , uj,dj−1 corresponding to sj as above. For each
j we choose a total ordering on the variables uj,0, . . . , uj,dj−1; for example uj,0 > uj,1 >
. . . > uj,dj−1. We write Tj for the image in H(W, u) of a braid reflection mapping to sj ,
1 6 j 6 n. Given an admissible pre-W -graph Γ for a representation R of W , we associate
a pre-representation of H(W, u) as follows. For each j ∈ I, let Tj be an (r × r)-matrix with
diagonal entries Tj [k, k] = uj,γk(j). The off-diagonal entry Tj [k, l] is zero unless Tj [k, k]< Tj [l, l]
in the chosen ordering on u. The remaining entries of the Tj are independent indeterminates,
except that Tj [k, l] = Tm[k, l] if sj , sm are conjugate in W and both Tj [k, k] = Tm[k, k] and
Tj [l, l] = Tm[l, l], for k 6= l.

Any specialization of these matrices which define a representation of H(W, u) which is a
deformation of a conjugate of the given representation R of W is called a W -graph for R.
Note that, since W is admissible, the characteristic polynomials of the Tj are by construction
already as they should be if the Tj did define a representation of H(W ) specializing to R.

If all reflections of W are conjugate and of order two, such a representation can be encoded
in an actual labelled and directed graph as follows: the nodes of the graph are in bijection
with the set {1, . . . , r}, labelled by γk(1) (note that here γk is already uniquely determined by
γk(1)). There is a directed edge from j to k, labelled by Tm[j, k], if Tm[j, k] 6= 0 for some m with
γj(m) = 1 and γk(m)> 1. Note that the value of Tm[j, k] does not depend on the choice of m,
by our convention on pre-representations. Clearly the representation can be recovered from
this graph. Note also that there are just two possible total orderings of the two variables u0, u1

in this case, and changing the ordering amounts to transposing the representing matrices.
For instance, here is the graph for the representation of H(W, u) specializing to the reflection

representation, where W =G24, u = {u1,0, u1,1}= {x, y}.

12
x(−1−

√
−7)/2 //

−y

  AAAAAAAAAAAAAAAAAA 13
y(1−

√
−7)/2

oo

−y

~~~~~~~~~~~~~~~~~~~~

23

x

`̀AAAAAAAAAAAAAAAAAA

x

>>~~~~~~~~~~~~~~~~~~

(7.1)

We consider the matrices for the three generators for presentation P1 in § 6.1. We have d= 2,
r = 3.

Remark 7.2. Assume for a moment that W is a real reflection group, that is, a finite
Coxeter group. In this case Gyoja has shown [12] that any irreducible representation has a
model which comes from a pre-representation of a W -graph of W .

In general, for arbitrary complex reflection groups, admissible pre-W -graphs need not always
exist. But in cases where pre-W -graphs do exist, examples show that:

(a) often, there exist corresponding representations;
(b) these representations tend to be very sparse;
(c) often the entries can be chosen to be Laurent-polynomials in the parameters;
(d) all n matrices are equally sparse.
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7.2. Existence of pre-W -graphs and W -graphs

We say that a representation of W has an admissible pre-W -graph if there exists one for
some presentation of the braid group and for some ordering of the variables. It is pretty
straightforward to write a program which enumerates all admissible pre-W -graphs for W ,
given those of the proper parabolic subgroups. In order for this inductive process to work, we
have to also consider some rank two groups.

It is much more difficult in general to find, given a pre-representation for a pre-W -graph
of W , specializations of the entries so that it actually defines a representation of H(W ) (which
specializes to the representation R of W we started with).

Let us give some indications on how the W -graphs presented below were constructed. For
small representations (of dimension at most four) this is straightforward, and is done by solving
the non-linear system of equations obtained by requiring that the given pre-representation
satisfies the relations of H :=H(W, u). For larger dimensions, this system becomes too large:
if the representation R has dimension r and H has n generators, then the matrices of
the generators for the pre-representation involve at least roughly nr2/4 unknowns. A braid
relation of length m in the generators produces algebraic equations of degree m between these
unknowns. Furthermore, the coefficients in the equations involve all the parameters u of the
Hecke algebra. A simple minded application of the Buchberger algorithm to such a system of
equations is bound to fail.

Therefore, we had to use several tricks. A look at the final representations shows that they
are very sparse, containing many more zero-entries than required by the definition of pre-
representation. Knowing the positions of these zeros in advance would allow us to solve the
system of equations easily. Thus, in a first step, we tried to conjugate the given representation
of W into the form of a W -graph, with as many zeros as possible. Note that the conditions
on the entries of such a conjugating matrix are linear, hence this system is easy to solve. In
general, there will not be a unique solution, but we chose a solution with as many zeros as
possible. Then we looked for a W -graph representation of H with zero entries in the same
positions.

Alternatively, we started from a representation of H obtained by the methods of § 5, for
example, and tried to conjugate this to a W -graph representation.

For dimensions larger than ten, say, even the determination of such a conjugating matrix
becomes too difficult. Here, one successful approach used information from maximal parabolic
subgroups. Let WJ be a maximal parabolic subgroup of W , and assume that the restriction of
R to WJ splits as

R|WJ
=R1 ⊕ . . .⊕Rt

into a sum of irreducible representations Ri of WJ . By induction, we may assume that
W -graphs of the Ri for H(WJ) are already known. In order to use this information we made
the additional assumption that the block diagonal part of the Tj , with j ∈ J , agrees with the
W -graphs of the Ri. (This does not follow from our axioms on pre-W -graphs, and it is in
fact not always satisfied.) This ‘Ansatz’ again reduces the number of unknowns considerably.
Clearly, the larger the dimensions of the Ri are, that is, the fewer constituents occur, the more
information we obtain.

7.2.1. Some rank-two groups. We describe the situation in some detail for the case of
the smallest well-generated exceptional group G4. There is for each representation exactly one
W -graph, as given in Table 2. The labelling of characters is as in [15], for example.

Each two-dimensional representation admits one further pre-W -graph, for instance φ2,5

admits (.1.2, .2.1); however the only W -graph corresponding to it is a non-irreducible represent-
ation (which has the same restriction to parabolic subgroups). For the three-dimensional
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representation, there are five more pre-W -graphs:

(..12, .12., 12..), (..12, 1.2., 2.1.), (.1.2, .2.1, 12..), (.1.2, 1.2., 2..1), (.2.1, 1..2, 2.1.).

The first three give rise to non-irreducible representations, and the last two do not give rise to
any representation.

Similarly, for the group G3,1,2, each representation admits one pre-W -graph which is a W -
graph, except for the two-dimensional representations which also admit another pre-W -graph
giving rise to a non-irreducible representation. The same situation holds for the Coxeter groups
A2, B2 and I2(5).

7.2.2. Pre-W -graphs for G25. The inductive approach now gives the following proposition.

Proposition 7.3. For G25, each irreducible representation admits a single pre-W -graph
whose restriction to each parabolic subgroup G4 is an actual W -graph. For each pre-W -graph,
there exists a corresponding W -graph.

Table 3 contains these W -graphs for one representation in each orbit under Galois
automorphisms on the parameters.

7.2.3. Pre-W -graphs for G26.

Proposition 7.4. For G26, all but two six-dimensional irreducible representations admit
at least one pre-W -graph whose restrictions to both parabolic subgroups of type G4 and G3,1,2

are actually W -graphs. For each pre-W -graph, there exists a corresponding W -graph.

Table 4 contains the unique pre-W -graph for the given representatives of the Galois orbits.

Table 2. W -graphs for G4.

Character W -graph Character W -graph

φ1,0 (12..) φ2,1 (.12., 12..)
φ1,4 (.12.) φ2,3 (..12, 12..)
φ1,8 (..12) φ2,5 (..12, .12.)
φ3,2 (.12., 1..2, 2..1)

Table 3. W -graphs for G25.

Character W -graph

φ1,0 (123..)
φ2,3 (13.2., 2.13.)
φ3,6 (.123., 13..2, 2..13)
φ3,1 (12.3., 13.2., 23.1.)
φ6,2 (1.23., 12..3, 13..2, 2.13., 23..1, 3.12.)
φ′′

6,4 (.123., 1.23., 13..2, 2.1.3, 2.3.1, 3.12.)
φ8,3 (1.23., 12..3, 13..2, 13..2, 2.1.3, 2.3.1, 23..1, 3.12.)
φ9,5 (.123., 1.2.3, 1.3.2, 13..2, 2..13, 2.1.3, 2.3.1, 3.1.2, 3.2.1)

Table 4. W -graphs for G26.

Character W -graph

φ1,0 (123..)
φ2,3 (12.3., 13.2.)
φ3,1 (12.3., 13.2., 23.1.)
φ3,6 (1.23., 12..3, 13..2)
φ6,2 (1.23., 12..3, 13..2, 13.2., 2.13., 23.1.)
φ8,3 (1.23., 12..3, 13..2, 13.2., 2.1.3, 2.13., 23.1., 3.1.2)
φ9,5 (1.2.3, 1.23., 1.3.2, 12..3, 13..2, 13.2., 2.1.3, 2.13., 3.1.2)
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7.2.4. Pre-W -graphs for G24. For G24, the situation depends on the presentation of the
braid group B(G24) considered; see § 6.1.

Proposition 7.5. For G24, for each of the presentations P1 to P3, each representation
admits at most one pre-W -graph whose restrictions to parabolic subgroups of type A2 and B2

are W -graphs. But for P2 and P3 (the same) eight of the twelve representations admit such a
graph, while for P1 two more representations admit such pre-W -graphs. For each pre-W -graph
for P1, there exists a corresponding W -graph.

Table 5 contains the pre-W -graphs for the given representatives of the Galois orbits and
presentation P1.

The representations φ8,4 and φ8,5 do not admit any pre-W -graph.
A W -graph for φ3,1 has been given in (7.1). With the same conventions, here is a W -graph

for φ6,2:

23
x //

x

  AAAAAAAAAAAAAAAAAA 12
−y

oo

x

��

2x //
13

x

��

−x

  AAAAAAAAAAAAAAAAAA

13

−y

`̀AAAAAAAAAAAAAAAAAA
12

−y
oo

−2y

OO

−y //
23

x
oo

y

`̀AAAAAAAAAAAAAAAAAA

and here is a W -graph for φ7,6.

3

−y
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−y
,,

12−xoo x //

x���������

�����������
x
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��?????????
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__>>>>>>>>
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��?????????

x
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−y���������

??���������

−y���������

�����������

−y
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1

x
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−x?????????

__?????????

13

−x????????

__?????????

−x

OO

−yoo

Together with the matrices given above for φ8,5, this completes the description of the
representations of the Hecke algebra of G24.

Table 5. W -graphs for G24, presentation P1.

Character W -graph

φ1,0 (132)
φ3,1 (13, 12, 32)
φ6,2 (13, 13, 12, 12, 32, 32)
φ7,6 (1, 13, 12, 3, 3, 2, 2)
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7.2.5. Pre-W -graphs for G27.

Proposition 7.6. For the presentations P1 to P5 of G27, each representation admits at
most one pre-W -graph whose restrictions to parabolic subgroups of type A2, B2 and I2(5) are
W -graphs. For P1 26 out of 34 representations admit such a graph, while for P2 (respectively
P3, P4, P5) just sixteen (respectively twenty, fourteen, sixteen) admit such a graph. Moreover,
any representation which admits such a graph for any of P2–P5 admits one for P1. For each
pre-W -graph for P1, there exists a corresponding W -graph.

Table 6 contains the pre-W -graphs for P1 for representatives of the Galois orbits. The eight-
and fifteen-dimensional representations do not admit any pre-W -graph.

Here is a W -graph for φ3,1, where c= 1 + ζ2
3 (1−

√
5)/2.

12
−c //

−2

  AAAAAAAAAAAAAA 23
xy/c

oo

−y

~~}}}}}}}}}}}}}}

13

xy

`̀AAAAAAAAAAAAAA

x

>>}}}}}}}}}}}}}}

Here is a W -graph for φ′5,6:
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~~}}}}}}}}}}}}}}
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��
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>>}}}}}}}}}}}}}} x //
2

−y
oo

and here is one for φ6,2.

2
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−x

����������������
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��

3
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��>>>>>>>>>>>>>>

−x

��

1

y

??��������������
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��>>>>>>>>>>>>>> 1

ζ3y

__>>>>>>>>>>>>>>
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����������������

3
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__>>>>>>>>>>>>>>
2

2x
oo

2y

OO

−y

??��������������

Interchanging the generators u,t in the presentation P1 obviously defines an antiautomorphism
of B(W ). It can be checked that composition of this antiautomorphism with transposition
interchanges the representations φ′5,6 and φ′′5,6, so we need not give a W -graph for the latter.
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We now give a W -graph for φ9,6 as the union of the following pieces. The nodes are 1, 2,
3, 12, 12 , 13, 13 , 23, 23 (the last three occur twice and we box one of the occurrences to
distinguish it from the other). Here we set u= 3

√
x and v = 3

√
y.

3 u3

←−−− 12 v2−uv−−−−−→ 13 −u3v−−−−→ 12
(u−v)(u2+v2)−−−−−−−−−−→ 1 −u3v3−−−−−→ 23 1−−→ 2

(u−v)2←−−−−−− 23

13 −v2←−−−− 2
v2(u−v)←−−−−−− 12 −uv2−−−−→ 13

v2(u−v)−−−−−−→ 1 1←−− 23 −1−−−→ 3
v(2u−v)←−−−−−− 23 −u2v2←−−−−− 12

13 −u2v2−−−−−→ 23 uv−−−→ 12 v2−−−→ 13
u2v(v−u)−−−−−−−→ 3

v2(u−v)−−−−−−→ 2

2 u3v←−−− 13 u−v←−−−− 23 uv−−−→ 13 u2v−−−→ 12
u(uv−u2−v2)−−−−−−−−−−→ 1

2
u2(v−u)←−−−−−− 13

u2(u−v)−−−−−−→ 3 −v3−−−−→ 12

Here is, following the same conventions, a W -graph for φ10,3. The nodes are 13, 12, 13 , 12 ,
13 , 12 , 3, 2, 23, 23 .

13
y−−→ 3 −1−−−→ 12

−y−−−→ 13
xy+x2+y2

−−−−−−−−→ 12 x−−→ 23 −1−−−→ 13 x−−→ 12
x−y−−−−→ 2

−x+2y←−−−−−− 23

13 −1−−−→ 23
−xy−y2

−−−−−−→ 12
2x2+y2

←−−−−−− 13 x−−→ 12
xy−−−→ 3 1−−→ 2

−y−−−→ 13
3y←−−− 12

xy+x2

−−−−−→ 23

2 x←−− 13 x2

−−−→ 3 2x2

←−−− 13
−2y←−−−− 12 −x−−−→ 23

−y−−−→ 12
xy+x2+y2

−−−−−−−−→ 13 x−−→ 23
−y−−−→ 12

13 2x−−−→ 2
−xy−−−−→ 3

xy←−−− 12
xy+x2

−−−−−→ 13
xy←−−− 23 2x−−−→ 13 x−−→ 12

12
x+y−−−−→ 2 −1←−−− 23

xy←−−− 13 −x←−−− 23
y−−→ 12

23
y2

−−−→ 3 23 2−−→ 13

We have found a model for φ15,5 by Hensel lifting with coefficients in FracÃ, that with
meataxe techniques we could reduce to have coefficients in Ã.

We now give some information on higher-dimensional primitive groups.

7.2.6. Pre-W -graphs for G(4, 4, 3) and G29. For the presentation of G(4, 4, 3)
corresponding to P1 the six-dimensional representation does not admit a pre-W -graph while

Table 6. W -graphs for G27.

Character W -graph

φ1,0 (132)
φ3,1 (12, 13, 23)
φ′′

5,6 (12, 13, 13, 2, 23)
φ′

5,6 (12, 12, 13, 23, 3.12)
φ6,2 (13, 13, 12, 12, 23, 23)
φ9,6 (1, 12, 12, 13, 13, 2, 23, 23, 3)
φ10,3 (12, 12, 12, 13, 13, 13, 2, 23, 23, 3)
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for the presentation corresponding to P2 it is the two-dimensional representation which does
not admit one.

Proposition 7.7. For the presentation corresponding to P1 of G29, fifteen representations
admit a pre-W -graph, while for that corresponding to P2, 27 (out of 37) admit one. The two
representations φ5,8 and φ5,16 admit a pre-W -graph for P1 and not for P2.

All together, all representations of W admit a pre-W graph except for two of the four of
dimension fifteen, and for those of dimension twenty. We have found actual W -graphs for all
the pre-W -graphs except the last three of Table 7.

Table 7 contains pre-W -graphs for representatives of Galois orbits of representations of the
Hecke algebra. The first seven graphs in the table correspond to P1 and the rest to P2. To
condense the table, repeated nodes are represented once, the multiplicity being given by an
exponent.

7.2.7. Pre-W -graphs for G32. For G32, 57 of the 102 irreducible representations admit
a pre-W -graph. If one includes the Galois-conjugates of these representations, one gets
all representations but twelve: the missing ones are three of the 60-dimensional ones, the
64-dimensional and the 81-dimensional ones.

7.2.8. Pre-W -graphs for G33. For the presentation P1 of § 6.4 we find that fourteen
representations admit a pre-W -graph, and for presentation P2 we find that fourteen more
admit one, for a total of 28 out of 40. The set of representations which admit a pre-W -graph
is stable under Galois action, so we do not get new ones. For the other presentations P3 to P5

the representations which admit a pre-W -graph are a subset of the fourteen which have one
for P1.

7.2.9. Pre-W -graphs for G34. For the presentation corresponding to P1 of § 6.4 we find
that eighteen representations admit a pre-W -graph, and for the presentation corresponding to
P2 we find that thirteen more admit one, for a total of 31 out of 169. The set of representations
which admit a pre-W -graph is stable under Galois action, so this does not give new ones. For
the presentations corresponding to P3, P4, P5 the representations which admit a pre-W -graph
are a subset of the eighteen which have one for P1.

Table 7. Pre-W -graphs for G29.

Character W -graph

φ1,0 (1234)
φ4,4 (123, 124, 134, 234)
φ4,1 (123, 124, 134, 234)
φ5,8 (123, 134, 14, 23, 24)
φ6,12 (12, 13, 14, 23, 24, 34)
φ′′′

6,10 (12, 13, 14, 23, 24, 34)

φ10,2 (1232, 1242, 1343, 23, 234, 24)

φ′
6,10 (13, 134, 142, 32, 4, 2)
φ10,6 (13, 134, 132, 14, 142, 12, 34, 342, 32, 42)
φ′

15,4 (13, 1343, 1322, 14, 1422, 34, 322, 422, 2)

φ16,3 (13, 1343, 1322, 14, 1422, 12, 34, 342, 322, 422)
φ24,6 (133, 1342, 132, 143, 142, 122, 3, 342, 323, 4, 423, 22)
φ24,7 (133, 1342, 132, 143, 142, 122, 3, 342, 323, 4, 423, 22)
φ30,8 (134, 1342, 132, 144, 142, 123, 3, 343, 324, 4, 424, 22)
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8. Checking the conjectures of § 2

We now use the representations obtained above for two- and three-dimensional exceptional
groups in order to verify some of the conjectures on the structure of cyclotomic Hecke algebras
stated in § 2 for some of the primitive complex reflection groups.

8.1. Computational difficulties

The main problem in carrying out the computations implied by, for example Proposition 2.10
is to compute the form t on a large set of images of elements of B(W ) (a set of cardinality
r|W |2, where r is the rank of W ).

To compute t, we use formula (2.4), where the Schur elements are taken from [15] and χ(x)
is computed using the matrices for the representation of character χ that we computed in the
previous sections.

To minimize the computations, we use a few tricks:
– we compute the orbits of the set of words we consider under the braid relations and

rotations (which give a conjugate element in the braid group). It is sufficient to compute
the trace on one element of each orbit;

– when all generators of W are of order two, if in one of the orbits we have a word of length
k where there is a repetition . . . ss . . . , using the quadratic defining relation of the Hecke
algebra (Ts − us,0)(Ts − us,1) = 0 we can reduce the computation to that for one word of
length k − 1 and one word of length k − 2.

For instance, for G24 to compute the matrix {t(Tww′)} we have to compute the trace
on 3362 = 112 896 elements; they fall into 14 334 orbits under rotations and braid relations,
and after taking into account quadratic relations we still have to handle 327 elements. For
computing the matrix products corresponding to these words, we look for the occurrence of
common subwords so as to never compute the same product twice, which means that for
each representation we have about 600 matrix products to effect. We also take into account
the Galois action on representations so we need to compute the character value only for one
representation in each Galois orbit; for G24 there are five such orbits.

Even with these simplifications, the matrix products for algebras which have many
parameters get very costly, as well as the final step of evaluating the right-hand side of (2.4),
since the gcd of the Schur elements is a large polynomial. In quite a few cases we could only
make a heuristic check, by computing in the algebra where the parameters are specialized to
prime powers (to primes taken to the eth power, so the algebra splits over Q). The heuristic
check for belonging to A becomes to belong to Z localized at the chosen primes, and to be a
unit in A becomes being an integer with only prime factors the chosen primes.

8.2. Finding a section such that t(Tw) = 0

In order to find a section W ⊂B(W ) such that t(Tw) = 0 for any w 6= 1, our first idea was,
mimicking the case of finite Coxeter groups, to lift elements of W by lifting minimal length
expressions for them as positive words in the generators s1, . . . , sn. However, though this almost
works, it does not always work; we manage with a slight variation on this, as we shall explain.

Obtaining all minimal length expressions for elements of W is quite easy using standard
methods for enumerating elements of a group, and is feasible for all exceptional complex
reflection groups but G34.

Tables 8 and 9 collect in the column ‘t(Tw) 6= 0’ the results we obtained by computing the
trace on minimal length elements. The number in the column is the number of elements w ∈W
such that some minimal word w for w has t(Tw) 6= 0. If this number is not 0, the second number
separated by a / is the number of elements w ∈W such that no minimal word w for w has
t(Tw) = 0.
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When some minimal word for any w ∈W has zero trace, we build a section by choosing
arbitrarily such a word for each element. We now describe how to build a section in the other
cases.

For G11, with the notation of § 4, all minimal length expressions of the two elements
s23(s2s1s3)2, (s2s1s3)2s3s2 have non-zero trace; but the longer lifts s1s2s1s3s2s1s2

3s1s3,
s1s3s2s1s2

3(s2s1)2 have a zero trace. By making these picks, we can find a section which satisfies
t(Tw) = t(Tw−1π) = 0.

For G15, all minimal length expressions of the two elements s2(s1s3)2s2, s2s1(s3s2)2 have
t(Tw) 6= 0; but the longer lifts (s2s2s3)2s2, s2(s1s3)2s1s2

2 have a zero trace. All minimal
expressions of s1s2(s3s2)2, s1s2(s2s3)2, (s3s2)2s1s2 have t(Tw−1π) 6= 0. But the longer lifts
s1(s3s2)3s3, (s3s2)3s3s1, s3(s2s1)3s3 work. By making these picks, we can find a section which
satisfies t(Tw) = t(Tw−1π) = 0 and t(Tww′) ∈A, but unfortunately det{t(Tww′)}w,w′ is not
invertible in A for this choice.

However, there is another way to build a section which leads to a good section. Since G11

and G15 have the same hyperplane arrangements, the braid group B(G15) is a subgroup of
index 2 of B(G11), generated by s1, s2, s2

3. The elements in the above section for G11 where s3

occurs an even number of times form a section for G15 which turns out to be good.
For G24 and G27 we only consider the presentation P1 as it is the best behaved. For G27, all

minimal length expressions of the element (sut)5 have non-zero trace. The center of B(W ) is
generated by the element z = (stu)5. The ‘bad’ element (sut)5 is a lift of z−1. The lift z5 of
z−1, which is much longer, satisfies t(Tz5) = 0.

Table 8. Hecke algebras for two-dimensional primitive groups.

W |W | |u| Algebra t(Tw) 6= 0 t(Tw−1π) 6= 0 Good Rank [18] Form [18]

G4 24 3 + 0 0 + + +
G5 72 6 Specialized 0 0 + + +
G6 48 5 Specialized 0 0 + + +
G7 144 8 Specialized 3/0 1/0 + + +
G8 96 4 Specialized 0 0 + + +
G9 192 6 Specialized 0 0 + + +
G10 288 7 Specialized 2/0 2/0 + + +
G11 576 9 Specialized 22/2 12/0 + + ?
G12 48 2 + 0 0 + + +
G13 96 4 Specialized 1/0 0 + + +
G14 144 5 Specialized 0 0 + + +
G15 288 7 Specialized 11/2 11/3 + + ?
G16 600 5 Specialized 11/0 11/0 ? + ?
G20 360 3 Specialized 2/0 2/0 + + ?
G21 720 5 Specialized 6/0 6/0 ? + ?
G22 240 2 + 1/0] 4/0 + + ?

Table 9. Hecke algebras for three-dimensional primitive groups.

W |W | |u| Algebra t(Tw) 6= 0 t(Tw−1π) 6= 0 Good Rank [18]

G24, P1 336 2 + 0 0 + +
G24, P2 2 + 3/0 4/0 + +
G24, P3 2 + 0 0 + +
G25 648 3 Specialized 0 0 + +
G26 1296 5 Specialized 0 0 ? +

G27, P1 2160 2 + 1/1 30/6 ?
G27, P2 2 + 41/1 97/28 ? +
G27, P3 2 + 31/9 44/24 ? +
G27, P4 2 + 19/2 42/1 ?
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8.3. Checking that the section is good

To check (2.8) we avoid having to give an expression for w−1π in terms of the generators by
using that χ(Tw−1π) = χ((Tw)−1)ωχ(Tπ), where ωχ(Tπ) is easy to compute using, for example,
the formula [8, 1.22].

In the column ‘Good’ in Tables 8 and 9 we have recorded with a ‘+’ if we could check
that the section built in the previous subsection is good, and satisfies the assumptions of
Proposition 2.10, thus providing an A-basis of H(W, u).

8.4. Tables

In Tables 8 and 9 we collect the computational results that we have obtained so far, together
with results from an unpublished note of Müller [18]. Here, we write ‘Specialized’ in the column
‘Algebra’ when we had to do the computation with parameters specialized to prime powers.

Müller used Linton’s vector enumerator to construct the regular representation of some
cyclotomic Hecke algebras H(W ). From that, he is able to verify Conjecture 2.2(a) in several
cases by exhibiting an A-basis, marked by a ‘+’ in the column ‘Rank’ of our tables. Furthermore,
he can construct a symmetrizing form over A satisfying Conjecture 2.2(b) in the cases marked
‘+’ in the column ‘Form’.

Neither Müller nor we have been able to check any of the cases G17, G18, G19, for which the
number of parameters is at least seven and the order of W at least 1200.

In his computations, Müller only looked at the presentations P2, P3 for the group G27.
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