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Abstract

The higher Lie characters of the symmetric group Sn arise from the Poincare-Birkhoff-Witt basis of the
free associative algebra. They are indexed by the partitions of n and sum up to the regular character of Sn.
A combinatorial description of the multiplicities of their irreducible components is given. As a special
case the Kraskiewicz-Weyman result on the multiplicities of the classical Lie character is obtained.
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1. Introduction

At the beginning of the last century Schur studied the structure of the tensor algebra
T( V) over a finite dimensional /T-vector space V as a GL( V)-module. In his thesis
([13]) and a famous subsequent paper ([14]) he was able to describe the decomposition
of the homogeneous components

y® V

of degree n in T( V) into irreducible GL( V)-modules using the irreducible represen-
tations of the symmetric group Sn. The usual Lie bracketing [x, y] := xy — yx turns
T( V) into a Lie algebra. The Lie subalgebra L( V) generated by V is free over any
basis of V by a classical result of Witt ([17]), and Ln(V) := Tn(V) n L(V) is a
GL( V)-submodule of Tn( V) for all n. Let q — qx qk be a partition of n, that is,
q\ > • • • > Qk and q\ + • • • + qk = n. Then we define

\n€Sk

for 1 <i<k) .
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10 Manfred Schocker [2]

By the Poincare-Birkhoff-Witt theorem, Tn( V) is the direct sum of these subspaces:

(1) 1
q\-n

and this decomposition is GL( V)-invariant.
Meanwhile, different families of idempotents eq in the group algebra KSn indexed

by partitions have been introduced such that Lq(V) = eqTn(V) for all q (see, for
example, [2, 3, 11]). For any decomposition eqKSn = 0 p aqiPMp into irreducible
5n-modules, we now have

LAV) = eqTAV) = eqKSn ®KSm TAV) = ff)aqAMp ®KSn Tn(V)).

In this decomposition, by Schur's fundamental result, Mp <g>KSn Tn(V) is either 0
or an irreducible GL( V)-module. Hence the GL(V)-module structure of Lq(V) is
completely determined by the multiplicities aqp of the higher Lie module eqKSn

of Sn. In this vein, for the special case of q = n, the problem of describing the
GL( V)-module structure of Ln( V) formulated by Thrall ([16]) could finally be solved
in a satisfying way by works of Klyachko ([8]) and Kraskiewicz and Weyman ([9]).

The higher Lie characters kq of Sn corresponding to the modules eq K Sn sum up
to the regular character of Sn, by (1), and it is natural to ask for their multiplicities
for arbitrary q. In this paper, a combinatorial description of these multiplicities
is given in terms of alternating sums of numbers of standard tableaux with certain
major index properties (Section 3). For q = n, we obtain the Kraskiewicz-Weyman
result mentioned above. Our approach is based on a generalization of Klyachko's
result (Section 2) combined with the calculus of noncommutative character theory
introduced in [6] (Section 4).

2. The reduction to partitions of block type

Let q be a partition of n. The higher Lie character X.q is induced by a certain linear
character of the centralizer of an element of cycle type q in Sn. For q = n, this result
is due to Klyachko ([8]). In full generality, it is implicitly contained in [1] for the first
time (for details, see [12, Section 8.5]) and will be briefly recalled in two steps in this
section.

Let N (No, respectively) be the set of all positive (nonnegative, respectively) integers
and rtj := [k e N | k < n) for all n e No. Let N* be a free monoid over the alphabet N.
We write q.r for the concatenation product of q, r e H* in order to avoid confusion
with the ordinary product in N. Accordingly, we denote by dk the k-i\\ power of a
letter d e N in N*, for all k e No. If n e N and q = qx qk e M* such that
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[3] Multiplicities of higher Lie characters 11

q\ + • • • + qk = n, we say that q is a composition of n of length \q\ := k, and write
q \= n. If, additionally, qx > • • • > qk and hence q is a partition of n, we write q \- n.

Let £ be a field of characteristic 0 containing a primitive n-th root of unity sn for
all n e N. For all n e No, we denote by C\K(Sn) the ring of class functions of the
symmetric group Sn. Let Cq be the conjugacy class consisting of all permutations n
whose cycle partition z(n) is a rearrangement of q, for all q 6 N*. Let ch9 e Cl*: (Sn)
such that (x,ch9)sn = x(Cq) is the value of x o n a ny element 7r e Cq for all
X e 01^(5,,). Then, up to a certain factor, ch9 is the characteristic function of Cq in
C\K(Sn), and we have Cq = Cr and ch9 = chr whenever q is a rearrangement of r, for
all q, r € N*. The outer product • on the direct sum Cl := ®n€No C\K(Sn) may now
be defined by

(2) chg • chr := ch9.r

for all g, r e N*. It corresponds via Frobenius' characteristic mapping to the ordinary
multiplication of symmetric functions.

Our starting point is the following part of [12, Theorem 8.23], which already occurs
in [16, Section 8].

LEMMA 2.1. Let n e N and q \- n. Denote by at the multiplicity of the letter i in
q, for all i 6 ry Then we have Xq = kn.an • • • • • k\.<-i.

Hence, with £p denoting the irreducible character of Sn corresponding to p for
p h n, the problem of describing the multiplicities

aq,P := (A.,, nsn

may be reduced to the case that q is of block type, that is, q = dk is the A>th power of
a single letter d. Indeed, for partitions q = q\ qk \- x, r = r\ r/ h v such
that qk > rx and x + y = n, we have

(3) ( V , Kp)s. = (K • K, Sp)sn =
s\-x t\-y

by Lemma 2.1, where c£, = (£s • £', %p)sn is the well-known Littlewood-Richardson
coefficient.

For all n,m e No, ^ e Sn and a e Sm, we define \(r#ae Sn+m by

i\l/ i < n\
/
(i — n)o + n i > n

for all / € n + m,. Furthermore, for d, k e H, n := J/: and n e Sk, we define
€ 5B by

-i)7t[dk]:=d(j7t)-i
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for all j e kfr i e d — 1, U {0}. That is, n[dk] is permuting the k successive blocks of
length d innj according to n. Now let xd := ( 1 , . . . , d) e Sd be the standard cycle of
length d in Sd and put

'•= Jd #

Then the centralizer of crrf.* in Sn is a wreath product of the cyclic group generated by
xd with Sk and may be described as

£) \ n e Sk, / , , . . . , i* e

([5, Section 4.1]). With these notations, the remaining part of Theorem 8.23 in [12],
transferred to Cl, reads as follows.

THEOREM 2.2. Letd,k e N and n := dk. Then

is a linear representation of Cd , and (\l/dt)
Sn = kd.k.

,-(«l+•••+!*)

3. Multiplicities

In order to state our main result (Theorem 3.1), we need the notion of a standard
Young tableau and its multi major index corresponding to a composition. Let n e N
and p = p\ pi h n. The frame R(p) := {(i,j) e N x M \ i e U e p^}
corresponding to p may be visualized by its Ferrers diagram, an array of boxes
with p\ boxes in the first (top) row, p2 boxes in the second row and so on. For
example, we have

The images In, ... , nn of any permutation n e Sn may be entered into R(p)
row by row, starting at bottom left and ending at top right. Let SYTP be the set
of all permutations which are increasing in rows (from left to right) and columns
(downwards) when entered into R(p) in this way. The elements of SYTP are called
standard Young tableaux of shape p. In the above example, the elements of SYT32,
entered into /?(3.2), are

1
4

2
5

3 1
3

2
5

4 1
2

3
5

4 1
2

3
4

5 1
3

2
4

5
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Accordingly, we obtain

SYT3.2 K12345\ /12345\ /12345\ /12345\ /12345\1
45123/' V35124/' \25134y' V24135/' V34125/J " ^

For all n e Sn, D(n) := {i e n — 1, | in > (i + 1)TT } is called the descent set of n.
Let q = q\ qk \= n and put Sj := qx + • • • + q^ for all j e £, U {0}. Then the
multi major index of n corresponding to q is defined as

(4)

where

(5)

for all j e £,. For q = n, we obtain the ordinary major index maj n := majn n of n.
If, additionally, r = rx rk e N*, we define

(6) sytjir := |{TT e SYT' | V; e £ : (maj^Tr"1)), = 0 mod

Here (maj^Tr"1)), always denotes the y'-th letter of maj^C^"1), for all j e &,. For
arbitrary r = rx rt, q = qx qk € N* we write r j q if and only if / = k and
r, is a divisor of g, for all / € Aj. In this case, we define furthermore the following
extension of the number theoretic Mobius function /x:

(7)

Finally, for k e M and r — rx rt e N*, we put k* r := (krx) (krt).

MAIN THEOREM 3.1. Let d, k,n e N such thatdk = n. Let p h n. Then we have

nSn
• q\-k r\q

The proof will be given in Section 5. A description of the multiplicity (kq, k,p)sn

for arbitrary q\- n may be obtained from Theorem 3.1 via (3). For k < 3, we obtain
the following specializations of Theorem 3.1, the first of which is due to Kraskiewicz
and Weyman (see the Remark at the end of this section).

COROLLARY 3.2. Let d e N.

(a) For all p h d, we have (kd, t;p)stl = syt^,.
(b) For all p h Id, we have (kd.d, ^)Su = l /2(syt^ , , + ^ ^
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1
3
5

2
4
6

1
3
4

2
5
6

i
2
5

3
4
6

I
2
4

3
5
6

I
2
3

4
5
6

Manfred Schocker

TABLE 1.

[6]

71 - l

/123456N

V563412,

/123456X

V563142/

'123456X
,536412/

'123456X

,536142/

'123456\

,531642/

maj6 TT

10

8

12

maj3 3 n
- l

2.1

2.2

1.1

1.2

3.3

m aJ2.2.2
. - i

0.0.0

0.1.1

1.1.0

1.1.1

1.0.1

maj4 2
. - i

2.0

5.1

4.0

4.1

3.1

(c) For all p \- 3d, we have

2(syt?rfi3 -

We will illustrate Corollary 3.2 in the case of p = 2.2.2. The standard Young
tableaux n of shape p are listed in Table 1 together with their multi major indices in
question. The descents of n~l are underlined in each case.

By Corollary 3.2, we obtain (A6, S"2'2"2)^ = 0 and furthermore

and

(A.2.2.2,

1
2

7(l + 3(0-l) + 2(l-0)) = 0.
6

For p h d e N and n e SYTP, note that i e d — 1, is a descent of n ' i f and only
if / stands strictly above / + 1 in n, entered into R(p). Hence Corollary 3.2 (a)
indeed coincides with the original result of Kraskiewicz and Weyman on the Lie
character kd ([9]).
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4. Noncommutative character theory

Let n e N. The descent algebra @n is defined as the linear span of the elements
8D := £ {n 6 Sn | D(n) = D] (D c n - 1.) in KSn. Due to Solomon ([15]), 9n is
a subalgebra of KSn, and there exists a certain epimorphism of algebras cn : @n —>
Cl*:(5n), for all n. The direct sum KS := 0 n e N #S n is a graded algebra with
respect to the convolution product • (see [6, 1.3] for a combinatorial description),
and $) := 0n e N I 3ln is a «-subalgebra of KS (see [12]). In [6], a (noncommutative)
•-subalgebra & of KS and a •-homomorphism c : ^ —>• Cl are introduced such that
Q c ^ and c|^n = cn for all n. Furthermore, a (bilinear) scalar product (•, •) on KS
is defined by

I 1 7r=cr"1'
0 TT^Cr"1

for all permutations it, a, and it is shown that

(8) (<P

for all <p, i/f € ^ , where the scalar product on the right hand side is the canonical
orthogonal extension of the ordinary scalar products (•, -)Sn on C\K(Sn), n e N. For
any partition p e N*, Zp := J^TX^SYT' n ^s a n element of & such that

(9) c(Z') = y

is the irreducible character of Sn corresponding to p. For example, for p = 3.2, we

obtain Z" = CD + O + O + O + O - These results Pro«de the
following general concept for describing multiplicities: Given an arbitrary character
X e C\K(Sn), any inverse image <p € ffi of x under c may be understood as a
noncommutative character corresponding to x- By (8) and (9), for each such (p, it
follows that

(10) (X, nSn = (cftO, c(Z'))* = (<p, Zp).

The right-hand side of (10) gives different combinatorial descriptions of the multi-
plicity on the left-hand side, according to the choice of <p, simply by the definition of
Zp and the scalar product on ^ .

5. Klyachkos's idempotent and Ramanujan sums

In the sequel, following the concept described in Section 4, an inverse image of Xdk
under c in @ is constructed. It leads to a short proof of our main result Theorem 3.1,
by means of (10).
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Let n e N. We put Kn(x) := J2neS xm^nn (x a variable) and

11

maJ7r=/ mod n

for all i e No. Then, up to the factor 1/n, Kn(sn) = ]T"=] e'nMnJ e *2)n is a Lie
idempotent, that is, K\ = «/<•„ and Ln( V) = Kn Tn( V). This remarkable result is due to
Klyachko ([8]).

LEMMA 5.1. Let n, i e N and d be the order ofel
n. Then we have

n/d

In particular, c(icn(e'n)) = chd.n/j.

The main part of the preceding lemma is a special case of [10, Proposition 4.1],
while the additional claim on the c-image follows from [7, Proposition 1]. For
n, m e N, we denote by gcd(n, m) the greatest common divisor of n and m.

COROLLARY 5.2. Let n e N and i,j e No such that gcd(/, n) = gcd(j,n). Then

PROOF. AS gcd(/, n) — gcd(/, n), we can find an integer m e M such that / = j m
modulo n and gcd(m, n) = 1. For all k e N, we have gcd(km, n) = gcd(/:, n) and
hence c{Kn(e

k
n)) = c(Kn(s™k)), by Lemma 5.1. It follows that

n n \ / n

nc(MnJ) = c MT J^ie'-YMtj )= c
/ = l *=1

= C
\ L-~l " " - " ' / \

/ = 1 * = 1

/=i k=\ /

Let n, m e N. The Ramanujan sum corresponding to n and m is defined by

where the sum is taken over all primitive n-th roots of unity e. In the particular case
of m — 1 (m = n, respectively), g(n, m) yields the Mobius function /x(n) = g(n, 1)
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[9] Multiplicities of higher Lie characters 17

(Euler's function (p(n) = g(n, ri), respectively). We write x \ m, if x e N is a divisor
of m, and put

(11) R(n,m) :=
x\m

Now, for all d, k e M and p = p\ pi e N*, let

(12) M

and
y\dk

Md(p) •= Mdip{) Md{pi).

Note that Md(p) e @, as @ is closed under the convolution product.

LEMMA 5.3. For alld,k e N, we have

(Recall that z(n) denotes the cycle partition of n for any permutation n.)

PROOF. We write

for all n e Sk, i\,.. • , 4 e d — 1, U {0}. By Theorem 2.2, we then have

\

ch,

/
qhdk

d-\

By induction on the number z = \z(n)\ of cycles in n e Sk, we show that

d-\ , . N

( * )

ii i*=0

which implies our claim. We will use some basic facts about cycle partitions of
elements of Crf* which can be found in [5, 4.2]. Let z = 1. Then n e Sk is a. long
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cycle. Putting r\ := skd and applying [5, 4.2.17], Lemma 5.1 and Corollary 5.2, we
obtain

1 d~l

~jl /-*> £d ' chz(>r;<i '*)
h '*=0

/=0 x\d

=c ( i E C^A. IKW(̂ ) ) = c (- £ E

y\dk

= c(Md(k)/d).

Now let z > 1, say, n = no for a cycle a of length / in n. Then we have, by [5,
4.2.19], (2) and our induction hypothesis,

j i

1

i, u=0

v - ^ -T.h i. I I * V ^ -Hh u
jk-l Z ^ d LI1z(»;'i ' * - / ) ! 1 ^/ Z ^ rf "iz(ff;it_/+,

(i it-/=0 / \

= c (-^-rMAzin)) • ^Md(z((T))) = c (^
\dz-1 a ) \dL

This completes the proof of (*). •

The inverse image of Xd.k under c constructed in the preceding lemma may be
simplified by means of a short analysis of the numbers R(n, m). This will be done in
three steps.

PROPOSITION 5.4. Letnl,n2,mi,m2 e N such that

gcd(n,, n2) = gcd(m,, w2) = gcd(n,, m2) = gcd(n2, mx) = 1.

Then we have R(n\ri2, m\ni2) = R(n\, m\)R{ni, mi).

PROOF. By [4, Theorem 67], the Ramanujan sums have the following factorizing
property: Q(axa2, b) = Q(ax, b)g(a2, &)forallai, a2, b e N such that gcd(a,, a2) = 1.
Furthermore, we have Q (a, b\b2) = g(a, b\) for all a, bu b2 e M such that (a, b2) = 1,
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as in this case taking the Z?2-th power induces an automorphism of the group of a-th
roots of unity. These two observations imply that

V~* V^ ( m\ m2 \
R(n]n2, mxm2) = ) ) Q{nxn2, XXX2)Q I , 1

i i \X\ X2 J
xi\mix2\m2

 x '

Q(nu xxx2)Q(n2, XXX2)Q ( — , 1 ) Q I — , 1 )
\X\ J \X2 Jxi\mix2\m2

)
, \x2 J

x2\m2
 s '

= R(n\,mx)R(n2,m2). •

Let IP be the set of all prime numbers.

PROPOSITION 5.5. For all a,b e No and p e P, we have

0 b > a.

PROOF. For all n, m e N, the Ramanujan sum corresponding to n and m may be
expressed in terms of the Mobius and the Euler function as follows:

(p(n)
Q(n, m) - /x(n/gcd(n, m))

<p(n/gcd(n,m))

([4, Theorem 272]). Let c := minfa, b) and d := min{a, b — 1}. Then

b

/=0

a-C VW) . a-d
) u ( p

and hence R(pa, pb) = 0 for b > a, as c = d = a in this case. Let b < a. Then we
have c = b and d = b — 1, that is,

For b < a — 1, this shows R(pa,pb) = 0 as asserted. For & = a — 1 it follows
that R(pa, pb) = —<p(pb+l)/<p(p) = —pb, while, for b = a, we may conclude that

; P
b) = <p(P

b) - <p(pb)/<p(P) = P
b. u
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LEMMA 5.6. For all n,m e N, we have

R(n,m) =
ix{n/m)m m \ n;

0 otherwise.

PROOF. Choose ap, bpeN0 for all p e P such that n= Y\pe?p
a" and m

Applying Propositions 5.4 and 5.5 we obtain

0 otherwise

ix{n/m)m m \ n;

0 otherwise.

COROLLARY 5.7. Letd, k e N. Then Md{k) = d^ {kii(k/y)Mdkty.

PROOF. Let y be a divisor of dk. Then Lemma 5.6 implies that

R(dk/y,d) =
fi(dk/dy)d d \ dk/y;

0 otherwise 0

y\k\

otherwise.

We are now in a position to give the proof of the Main Theorem 3.1.

PROOF OF THE MAIN THEOREM 3.1. By Lemma 5.3 and (10), we have

[12]

D

But, for n € Sk and q = qx q^ := z(n), we may conclude from Corollary 5.7
that

^n, Zp)
rk\qk

ktn, Zp).

This completes the proof, as (Mdquri • • • • • Mdqk,rk, Z
p) = sy t^ r for all r \ q, simply

by definition of the scalar product (•,•) and the convolution product • in [6, 1.3]. D
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