MULTIPLICITIES OF HIGHER LIE CHARACTERS

MANFRED SCHOCKER
(Received 17 June 2001; revised 26 April 2002)

Communicated by Jie Du

Abstract

The higher Lie characters of the symmetric group S_{n} arise from the Poincaré-Birkhoff-Witt basis of the free associative algebra. They are indexed by the partitions of n and sum up to the regular character of S_{n}. A combinatorial description of the multiplicities of their irreducible components is given. As a special case the Kraśkiewicz-Weyman result on the multiplicities of the classical Lie character is obtained.

2000 Mathematics subject classification: primary 20C30*, 05E10, 17B99.
Keywords and phrases: symmetric group, general linear group, free Lie algebra, tableau, major index.

1. Introduction

At the beginning of the last century Schur studied the structure of the tensor algebra $T(V)$ over a finite dimensional K-vector space V as a GL(V)-module. In his thesis ([13]) and a famous subsequent paper ([14]) he was able to describe the decomposition of the homogeneous components

$$
T_{n}(V):=\underbrace{V \otimes \cdots \otimes V}_{n}
$$

of degree n in $T(V)$ into irreducible $\mathrm{GL}(V)$-modules using the irreducible representations of the symmetric group S_{n}. The usual Lie bracketing $[x, y]:=x y-y x$ turns $T(V)$ into a Lie algebra. The Lie subalgebra $L(V)$ generated by V is free over any basis of V by a classical result of Witt ([17]), and $L_{n}(V):=T_{n}(V) \cap L(V)$ is a GL(V)-submodule of $T_{n}(V)$ for all n. Let $q=q_{1} \ldots . q_{k}$ be a partition of n, that is, $q_{1} \geq \cdots \geq q_{k}$ and $q_{1}+\cdots+q_{k}=n$. Then we define

$$
\left.L_{q}(V):=\left\langle\sum_{\pi \in S_{k}} P_{1 \pi} \cdots P_{k \pi}\right| P_{i} \in L_{q_{i}}(V) \text { for } 1 \leq i \leq k\right\rangle_{K}
$$

By the Poincaré-Birkhoff-Witt theorem, $T_{n}(V)$ is the direct sum of these subspaces:

$$
\begin{equation*}
T_{n}(V)=\bigoplus_{q \vdash n} L_{q}(V), \tag{1}
\end{equation*}
$$

and this decomposition is $\mathrm{GL}(V)$-invariant.
Meanwhile, different families of idempotents e_{q} in the group algebra $K S_{n}$ indexed by partitions have been introduced such that $L_{q}(V) \cong e_{q} T_{n}(V)$ for all q (see, for example, $[2,3,11]$). For any decomposition $e_{q} K S_{n}=\bigoplus_{p} a_{q, p} M_{p}$ into irreducible S_{n}-modules, we now have

$$
L_{q}(V)=e_{q} T_{n}(V) \cong e_{q} K S_{n} \otimes_{K S_{n}} T_{n}(V)=\bigoplus_{p} a_{q, p}\left(M_{p} \otimes_{K S_{n}} T_{n}(V)\right) .
$$

In this decomposition, by Schur's fundamental result, $M_{p} \otimes_{K S_{n}} T_{n}(V)$ is either 0 or an irreducible GL(V)-module. Hence the $\mathrm{GL}(V)$-module structure of $L_{q}(V)$ is completely determined by the multiplicities $a_{q, p}$ of the higher Lie module $e_{q} K S_{n}$ of S_{n}. In this vein, for the special case of $q=n$, the problem of describing the $\mathrm{GL}(V)$-module structure of $L_{n}(V)$ formulated by Thrall ([16]) could finally be solved in a satisfying way by works of Klyachko ([8]) and Kraśkiewicz and Weyman ([9]).

The higher Lie characters λ_{q} of S_{n} corresponding to the modules $e_{q} K S_{n}$ sum up to the regular character of S_{n}, by (1), and it is natural to ask for their multiplicities for arbitrary q. In this paper, a combinatorial description of these multiplicities is given in terms of alternating sums of numbers of standard tableaux with certain major index properties (Section 3). For $q=n$, we obtain the Kraśkiewicz-Weyman result mentioned above. Our approach is based on a generalization of Klyachko's result (Section 2) combined with the calculus of noncommutative character theory introduced in [6] (Section 4).

2. The reduction to partitions of block type

Let q be a partition of n. The higher Lie character λ_{q} is induced by a certain linear character of the centralizer of an element of cycle type q in S_{n}. For $q=n$, this result is due to Klyachko ([8]). In full generality, it is implicitly contained in [1] for the first time (for details, see [12, Section 8.5]) and will be briefly recalled in two steps in this section.

Let $\mathbb{N}\left(\mathbb{N}_{0}\right.$, respectively) be the set of all positive (nonnegative, respectively) integers and $\underline{n}_{\jmath}:=\{k \in \mathbb{N} \mid k \leq n\}$ for all $n \in \mathbb{N}_{0}$. Let \mathbb{N}^{*} be a free monoid over the alphabet \mathbb{N}. We write $q . r$ for the concatenation product of $q, r \in \mathbb{N}^{*}$ in order to avoid confusion with the ordinary product in \mathbb{N}. Accordingly, we denote by d^{k} the k-th power of a letter $d \in \mathbb{N}$ in \mathbb{N}^{*}, for all $k \in \mathbb{N}_{0}$. If $n \in \mathbb{N}$ and $q=q_{1} \ldots q_{k} \in \mathbb{N}^{*}$ such that
$q_{1}+\cdots+q_{k}=n$, we say that q is a composition of n of length $|q|:=k$, and write $q \models n$. If, additionally, $q_{1} \geq \cdots \geq q_{k}$ and hence q is a partition of n, we write $q \vdash n$.

Let K be a field of characteristic 0 containing a primitive n-th root of unity ε_{n} for all $n \in \mathbb{N}$. For all $n \in \mathbb{N}_{0}$, we denote by $\mathrm{Cl}_{K}\left(S_{n}\right)$ the ring of class functions of the symmetric group S_{n}. Let C_{q} be the conjugacy class consisting of all permutations π whose cycle partition $z(\pi)$ is a rearrangement of q, for all $q \in \mathbb{N}^{*}$. Let $\mathrm{ch}_{q} \in \mathrm{Cl}_{K}\left(S_{n}\right)$ such that $\left(\chi, \mathrm{ch}_{q}\right)_{S_{n}}=\chi\left(C_{q}\right)$ is the value of χ on any element $\pi \in C_{q}$ for all $\chi \in \mathrm{Cl}_{K}\left(S_{n}\right)$. Then, up to a certain factor, ch_{q} is the characteristic function of C_{q} in $\mathrm{Cl}_{K}\left(S_{n}\right)$, and we have $C_{q}=C_{r}$ and $\mathrm{ch}_{q}=\mathrm{ch}_{r}$ whenever q is a rearrangement of r, for all $q, r \in \mathbb{N}^{*}$. The outer product \bullet on the direct sum $\mathrm{Cl}:=\bigoplus_{n \in \mathbb{N}_{0}} \mathrm{Cl}_{K}\left(S_{n}\right)$ may now be defined by

$$
\begin{equation*}
\mathrm{ch}_{q} \bullet \mathrm{ch}_{r}:=\mathrm{ch}_{q . r} \tag{2}
\end{equation*}
$$

for all $q, r \in \mathbb{N}^{*}$. It corresponds via Frobenius' characteristic mapping to the ordinary multiplication of symmetric functions.

Our starting point is the following part of [12, Theorem 8.23], which already occurs in [16, Section 8].

Lemma 2.1. Let $n \in \mathbb{N}$ and $q \vdash n$. Denote by a_{i} the multiplicity of the letter i in q, for all $i \in n_{\text {r }}$. Then we have $\lambda_{q}=\lambda_{n \cdot a_{n}} \bullet \cdots \bullet \lambda_{1 \cdot a_{1}}$.

Hence, with ζ^{p} denoting the irreducible character of S_{n} corresponding to p for $p \vdash n$, the problem of describing the multiplicities

$$
a_{q, p}:=\left(\lambda_{q}, \zeta^{p}\right)_{S_{n}}
$$

may be reduced to the case that q is of block type, that is, $q=d^{k}$ is the k-th power of a single letter d. Indeed, for partitions $q=q_{1} \ldots . q_{k} \vdash x, r=r_{1} \ldots . r_{l} \vdash y$ such that $q_{k}>r_{1}$ and $x+y=n$, we have

$$
\begin{equation*}
\left(\lambda_{q . r}, \zeta^{p}\right)_{s_{n}}=\left(\lambda_{q} \bullet \lambda_{r}, \zeta^{p}\right)_{s_{n}}=\sum_{s \vdash x} \sum_{t \vdash y} c_{s, t}^{p} a_{q, s} a_{r, t} \tag{3}
\end{equation*}
$$

by Lemma 2.1, where $c_{s, t}^{p}=\left(\zeta^{s} \bullet \zeta^{t}, \zeta^{p}\right)_{s_{n}}$ is the well-known Littlewood-Richardson coefficient.

For all $n, m \in \mathbb{N}_{0}, \psi \in S_{n}$ and $\sigma \in S_{m}$, we define $\psi \# \sigma \in S_{n+m}$ by

$$
i(\psi \# \sigma):= \begin{cases}i \psi & i \leq n \\ (i-n) \sigma+n & i>n\end{cases}
$$

for all $i \in \underline{n+m}$. Furthermore, for $d, k \in \mathbb{N}, n:=d k$ and $\pi \in S_{k}$, we define $\pi^{\left[d^{k}\right]} \in S_{n}$ by

$$
(d j-i) \pi^{\left[d^{, k}\right]}:=d(j \pi)-i
$$

for all $j \in \underline{k}_{b}, i \in \underline{d-1} \cup\{0\}$. That is, $\pi^{\left[d^{k}\right]}$ is permuting the k successive blocks of length d in n according to π. Now let $\tau_{d}:=(1, \ldots, d) \in S_{d}$ be the standard cycle of length d in S_{d} and put

$$
\sigma_{d^{k}}:=\underbrace{\tau_{d} \# \cdots \# \tau_{d}}_{k} \in C_{d^{k}} \subseteq S_{n} .
$$

Then the centralizer of $\sigma_{d^{k}}$ in S_{n} is a wreath product of the cyclic group generated by τ_{d} with S_{k} and may be described as

$$
C^{d^{k}}:=C_{S_{n}}\left(\sigma_{d^{k}}\right)=\left\{\pi^{\left[d^{k}\right]}\left(\tau_{d}^{i_{1}} \# \cdots \# \tau_{d}^{i_{k}}\right) \mid \pi \in S_{k}, i_{1}, \ldots, i_{k} \in \underline{d}\right\} .
$$

([5, Section 4.1]). With these notations, the remaining part of Theorem 8.23 in [12], transferred to Cl , reads as follows.

Theorem 2.2. Let $d, k \in \mathbb{N}$ and $n:=d k$. Then

$$
\psi_{d^{k}}: C^{d^{k}} \longrightarrow K, \quad \pi^{\left[d^{k}\right]}\left(\tau_{d}^{i_{1}} \# \cdots \# \tau_{d}^{i_{k}}\right) \longmapsto \varepsilon_{d}^{-\left(i_{1}+\cdots+i_{k}\right)}
$$

is a linear representation of $C^{d^{k}}$, and $\left(\psi_{d^{k}}\right)^{S_{n}}=\lambda_{d^{k}}$.

3. Multiplicities

In order to state our main result (Theorem 3.1), we need the notion of a standard Young tableau and its multi major index corresponding to a composition. Let $n \in \mathbb{N}$ and $p=p_{1} \ldots . p_{l} \vdash n$. The frame $R(p):=\left\{(i, j) \in \mathbb{N} \times \mathbb{N} \mid i \in \underline{l}, j \in \underline{p_{i j}}\right\}$ corresponding to p may be visualized by its Ferrers diagram, an array of boxes with p_{1} boxes in the first (top) row, p_{2} boxes in the second row and so on. For example, we have

The images $1 \pi, \ldots, n \pi$ of any permutation $\pi \in S_{n}$ may be entered into $R(p)$ row by row, starting at bottom left and ending at top right. Let SYT^{p} be the set of all permutations which are increasing in rows (from left to right) and columns (downwards) when entered into $R(p)$ in this way. The elements of SYT^{p} are called standard Young tableaux of shape p. In the above example, the elements of SYT ${ }^{3.2}$, entered into $R(3.2)$, are

1	2	3				
4	5		,	1	2	4
:---	:---	:---				
3	5		,	1	3	4
:---	:---	:---				
2	5		,	1	3	5
:---	:---	:---				
2	4		,	1	2	5
:---	:---	:---				
3	4		.			

Accordingly, we obtain

$$
\mathrm{SYT}^{3.2}=\left\{\binom{12345}{45123},\binom{12345}{35124},\binom{12345}{25134},\binom{12345}{24135},\binom{12345}{34125}\right\} \subseteq S_{5}
$$

For all $\pi \in S_{n}, D(\pi):=\{i \in \underline{n-1} \mid i \pi>(i+1) \pi\}$ is called the descent set of π. Let $q=q_{1} \ldots q_{k} \vDash n$ and put $s_{j}:=q_{1}+\cdots+q_{j}$ for all $j \in \underline{k}_{\mathrm{j}} \cup\{0\}$. Then the multi major index of π corresponding to q is defined as

$$
\begin{equation*}
\operatorname{maj}_{q} \pi:=m_{1} \ldots . m_{k} \in \mathbb{N}^{*} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{j}:=\sum_{\substack{s_{j-1}<i \leq s_{j} \\ i \in D(\pi)}}\left(i-s_{j-1}\right) \tag{5}
\end{equation*}
$$

for all $j \in k_{\text {. }}$. For $q=n$, we obtain the ordinary major index maj $\pi:=\operatorname{maj}_{n} \pi$ of π. If, additionally, $r=r_{1} \ldots . r_{k} \in \mathbb{N}^{*}$, we define

$$
\begin{equation*}
\operatorname{syt}_{q, r}^{p}:=\left|\left\{\pi \in \mathrm{SYT}^{p} \mid \forall j \in \underline{k}_{1}:\left(\operatorname{maj}_{q}\left(\pi^{-1}\right)\right)_{j} \equiv r_{j} \quad \bmod q_{j}\right\}\right| \tag{6}
\end{equation*}
$$

Here $\left(\operatorname{maj}_{q}\left(\pi^{-1}\right)\right)_{j}$ always denotes the j-th letter of $\operatorname{maj}_{q}\left(\pi^{-1}\right)$, for all $j \in k_{k}$. For arbitrary $r=r_{1} \ldots . r_{l}, q=q_{1} \ldots . q_{k} \in \mathbb{N}^{*}$ we write $r \mid q$ if and only if $l=k$ and r_{i} is a divisor of q_{i} for all $i \in \underline{k}_{\text {f }}$. In this case, we define furthermore the following extension of the number theoretic Möbius function μ :

$$
\begin{equation*}
\mu(q / r):=\prod_{i=1}^{|q|} \mu\left(q_{i} / r_{i}\right) \tag{7}
\end{equation*}
$$

Finally, for $k \in \mathbb{N}$ and $r=r_{1} \ldots . r_{l} \in \mathbb{N}^{*}$, we put $k \star r:=\left(k r_{1}\right) \ldots .\left(k r_{l}\right)$.
MAIN THEOREM 3.1. Let $d, k, n \in \mathbb{N}$ such that $d k=n$. Let $p \vdash n$. Then we have

$$
\left(\lambda_{d^{k}}, \zeta^{p}\right)_{S_{n}}=\frac{1}{k!} \sum_{q \vdash k}\left|C_{q}\right| \sum_{r \mid q} \mu(q / r) \operatorname{syt}_{d \star q, r}^{p}
$$

The proof will be given in Section 5. A description of the multiplicity $\left(\lambda_{q}, \zeta^{p}\right)_{S_{n}}$ for arbitrary $q \vdash n$ may be obtained from Theorem 3.1 via (3). For $k \leq 3$, we obtain the following specializations of Theorem 3.1, the first of which is due to Kraśkiewicz and Weyman (see the Remark at the end of this section).

Corollary 3.2. Let $d \in \mathbb{N}$.
(a) For all $p \vdash d$, we have $\left(\lambda_{d}, \zeta^{p}\right)_{s_{d}}=\operatorname{syt}_{d, 1}^{p}$.
(b) For all $p \vdash 2 d$, we have $\left(\lambda_{d . d}, \zeta^{p}\right)_{s_{2 d}}=1 / 2\left(\operatorname{syt}_{d . d, 1.1}^{p}+\operatorname{syt}_{2 d, 2}^{p}-\operatorname{syt}_{2 d, 1}^{p}\right)$.

Table 1.

π		π^{-1}	$\operatorname{maj}_{6} \pi^{-1}$	$\operatorname{maj}_{3.3} \pi^{-1}$	$\operatorname{maj}_{2.2 .2} \pi^{-1}$
1 $\underline{2}$ 3 $\underline{4}$ 5 6	$\binom{123456}{563412}$	6	2.1	0.0 .0	2.0
1 $\underline{2}$ $\underline{3}$ $\underline{5}$ 4 6	$\binom{123456}{563142}$	10	2.2	0.1 .1	5.1
$\underline{1}$ $\underline{3}$ 2 $\underline{4}$ 5 6	$\binom{123456}{536412}$	8	1.1	1.1 .0	4.0
$\underline{1}$ $\underline{3}$ 2 $\underline{5}$ 4 6	$\binom{123456}{536142}$	9	1.2	1.1 .1	4.1
$\underline{1}$ $\underline{4}$ 2 $\underline{5}$ 3 6	$\binom{123456}{531642}$	12	3.3	1.0 .1	3.1

(c) For all $p \vdash 3 d$, we have

$$
\left(\lambda_{d . d . d}, \zeta^{p}\right)_{S_{3, d}}=\frac{1}{6}\left(\operatorname{syt}_{d . d . d .1 .1 .1}^{p}+3\left(\operatorname{syt}_{(2 d) . d, 2.1}^{p}-\operatorname{syt}_{(2 d), d, 1.1}^{p}\right)+2\left(\operatorname{syt}_{3 d, 3}^{p}-\operatorname{syt}_{3 d, 1}^{p}\right)\right)
$$

We will illustrate Corollary 3.2 in the case of $p=2.2 .2$. The standard Young tableaux π of shape p are listed in Table 1 together with their multi major indices in question. The descents of π^{-1} are underlined in each case.

By Corollary 3.2, we obtain $\left(\lambda_{6}, \zeta^{2.2 .2}\right)_{S_{6}}=0$ and furthermore

$$
\left(\lambda_{3.3}, \zeta^{2.2 .2}\right)_{S_{0}}=\frac{1}{2}(1+1-0)=1
$$

and

$$
\left(\lambda_{2.2 .2}, \zeta^{2.2 .2}\right)_{S_{6}}=\frac{1}{6}(1+3(0-1)+2(1-0))=0
$$

For $p \vdash d \in \mathbb{N}$ and $\pi \in \mathrm{SYT}^{p}$, note that $i \in d-1$ is a descent of π^{-1} if and only if i stands strictly above $i+1$ in π, entered into $R(p)$. Hence Corollary 3.2 (a) indeed coincides with the original result of Kraśkiewicz and Weyman on the Lie character λ_{d} ([9]).

4. Noncommutative character theory

Let $n \in \mathbb{N}$. The descent algebra \mathscr{D}_{n} is defined as the linear span of the elements $\delta^{D}:=\sum\left\{\pi \in S_{n} \mid D(\pi)=D\right\}(D \subseteq \underline{n-1})$ in $K S_{n}$. Due to Solomon ([15]), \mathscr{D}_{n} is a subalgebra of $K S_{n}$, and there exists a certain epimorphism of algebras $c_{n}: \mathscr{D}_{n} \rightarrow$ $\mathrm{Cl}_{K}\left(S_{n}\right)$, for all n. The direct sum $K S:=\bigoplus_{n \in \mathbb{N}} K S_{n}$ is a graded algebra with respect to the convolution product \bullet (see [6,1.3] for a combinatorial description), and $\mathscr{D}:=\bigoplus_{n \in \mathbb{N}} \mathscr{D}_{n}$ is a \bullet-subalgebra of $K S$ (see [12]). In [6], a (noncommutative) \bullet-subalgebra \mathscr{R} of $K S$ and a \bullet-homomorphism $c: \mathscr{R} \rightarrow \mathrm{Cl}$ are introduced such that $\mathscr{D} \subseteq \mathscr{R}$ and $\left.c\right|_{\mathscr{D}_{n}}=c_{n}$ for all n. Furthermore, a (bilinear) scalar product (\cdot, \cdot) on $K S$ is defined by

$$
(\pi, \sigma):= \begin{cases}1 & \pi=\sigma^{-1} \\ 0 & \pi \neq \sigma^{-1}\end{cases}
$$

for all permutations π, σ, and it is shown that

$$
\begin{equation*}
(\varphi, \psi)=(c(\varphi), c(\psi))_{s} \tag{8}
\end{equation*}
$$

for all $\varphi, \psi \in \mathscr{R}$, where the scalar product on the right hand side is the canonical orthogonal extension of the ordinary scalar products $(\cdot, \cdot)_{S_{n}}$ on $\mathrm{Cl}_{K}\left(S_{n}\right), n \in \mathbb{N}$. For any partition $p \in \mathbb{N}^{*}, Z^{p}:=\sum_{\pi \in S \mathrm{ST}^{p}} \pi$ is an element of \mathscr{R} such that

$$
\begin{equation*}
c\left(Z^{p}\right)=\zeta^{p} \tag{9}
\end{equation*}
$$

is the irreducible character of S_{n} corresponding to p. For example, for $p=3.2$, we
 following general concept for describing multiplicities: Given an arbitrary character $\chi \in \mathrm{Cl}_{K}\left(S_{n}\right)$, any inverse image $\varphi \in \mathscr{R}$ of χ under c may be understood as a noncommutative character corresponding to χ. By (8) and (9), for each such φ, it follows that

$$
\begin{equation*}
\left.\left(\chi, \zeta^{p}\right)_{s_{n}}=\left(c(\varphi), c\left(Z^{p}\right)\right)\right)_{s_{n}}=\left(\varphi, Z^{p}\right) \tag{10}
\end{equation*}
$$

The right-hand side of (10) gives different combinatorial descriptions of the multiplicity on the left-hand side, according to the choice of φ, simply by the definition of Z^{p} and the scalar product on \mathscr{R}.

5. Klyachkos's idempotent and Ramanujan sums

In the sequel, following the concept described in Section 4, an inverse image of $\lambda_{d^{k}}$ under c in \mathscr{D} is constructed. It leads to a short proof of our main result Theorem 3.1, by means of (10).

Let $n \in \mathbb{N}$. We put $\kappa_{n}(x):=\sum_{\pi \in S_{n}} x^{\operatorname{maj} \pi} \pi(x$ a variable) and

$$
M_{n, i}:=\sum_{\substack{\pi \in S_{n} \\ \operatorname{maj} \pi \equiv i{ }^{\bmod n}}} \pi \in \mathscr{D}_{n}
$$

for all $i \in \mathbb{N}_{0}$. Then, up to the factor $1 / n, \kappa_{n}\left(\varepsilon_{n}\right)=\sum_{i=1}^{n} \varepsilon_{n}^{i} M_{n, i} \in \mathscr{D}_{n}$ is a Lie idempotent, that is, $\kappa_{n}^{2}=n \kappa_{n}$ and $L_{n}(V)=\kappa_{n} T_{n}(V)$. This remarkable result is due to Klyachko ([8]).

Lemma 5.1. Let $n, i \in \mathbb{N}$ and d be the order of ε_{n}^{i}. Then we have

$$
\kappa_{n}\left(\varepsilon_{n}^{i}\right)=\underbrace{\kappa_{d}\left(\varepsilon_{n}^{i}\right) \bullet \cdots \bullet \kappa_{d}\left(\varepsilon_{n}^{i}\right)}_{n / d}
$$

In particular, $c\left(\kappa_{n}\left(\varepsilon_{n}^{i}\right)\right)=\mathrm{ch}_{d^{n / / d}}$.
The main part of the preceding lemma is a special case of [10, Proposition 4.1], while the additional claim on the c-image follows from [7, Proposition 1]. For $n, m \in \mathbb{N}$, we denote by $\operatorname{gcd}(n, m)$ the greatest common divisor of n and m.

Corollary 5.2. Let $n \in \mathbb{N}$ and $i, j \in \mathbb{N}_{0}$ such that $\operatorname{gcd}(i, n)=\operatorname{gcd}(j, n)$. Then $c\left(M_{n, i}\right)=c\left(M_{n, j}\right)$.

Proof. As $\operatorname{gcd}(i, n)=\operatorname{gcd}(j, n)$, we can find an integer $m \in \mathbb{N}$ such that $i \equiv j m$ modulo n and $\operatorname{gcd}(m, n)=1$. For all $k \in \mathbb{N}$, we have $\operatorname{gcd}(k m, n)=\operatorname{gcd}(k, n)$ and hence $c\left(\kappa_{n}\left(\varepsilon_{n}^{k}\right)\right)=c\left(\kappa_{n}\left(\varepsilon_{n}^{m k}\right)\right)$, by Lemma 5.1. It follows that

$$
\begin{aligned}
n c\left(M_{n, i}\right) & =c\left(\sum_{l=1}^{n} \sum_{k=1}^{n}\left(\varepsilon_{n}^{l-i}\right)^{k} M_{n, l}\right)=c\left(\sum_{k=1}^{n} \varepsilon_{n}^{-i k} \kappa_{n}\left(\varepsilon_{n}^{k}\right)\right) \\
& =c\left(\sum_{k=1}^{n} \varepsilon_{n}^{-i k} \kappa_{n}\left(\varepsilon_{n}^{m k}\right)\right)=c\left(\sum_{l=1}^{n} \sum_{k=1}^{n}\left(\varepsilon_{n}^{l m-i}\right)^{k} M_{n, l}\right) \\
& =c\left(\sum_{l=1}^{n} \sum_{k=1}^{n}\left(\left(\varepsilon_{n}^{m}\right)^{l-j}\right)^{k} M_{n, l}\right)=n c\left(M_{n, j}\right) .
\end{aligned}
$$

Let $n, m \in \mathbb{N}$. The Ramanujan sum corresponding to n and m is defined by

$$
\varrho(n, m):=\sum \varepsilon^{m},
$$

where the sum is taken over all primitive n-th roots of unity ε. In the particular case of $m=1$ ($m=n$, respectively), $\varrho(n, m)$ yields the Möbius function $\mu(n)=\varrho(n, 1)$
(Euler's function $\varphi(n)=\varrho(n, n)$, respectively). We write $x \mid m$, if $x \in \mathbb{N}$ is a divisor of m, and put

$$
\begin{equation*}
R(n, m):=\sum_{x \mid m} \varrho(n, x) \varrho(m / x, 1) \tag{11}
\end{equation*}
$$

Now, for all $d, k \in \mathbb{N}$ and $p=p_{1} \ldots . p_{l} \in \mathbb{N}^{*}$, let

$$
\begin{equation*}
M_{d}(k):=\sum_{y \mid d k} R(d k / y, d) M_{d k, y} \tag{12}
\end{equation*}
$$

and

$$
M_{d}(p):=M_{d}\left(p_{1}\right) \bullet \cdots \bullet M_{d}\left(p_{l}\right)
$$

Note that $M_{d}(p) \in \mathscr{D}$, as \mathscr{D} is closed under the convolution product.

Lemma 5.3. For all $d, k \in \mathbb{N}$, we have

$$
\lambda_{d^{k}}=c\left(\frac{1}{k!} \sum_{\pi \in S_{k}} \frac{1}{d^{|z(\pi)|}} M_{d}(z(\pi))\right)
$$

(Recall that $z(\pi)$ denotes the cycle partition of π for any permutation π.)

Proof. We write

$$
z\left(\pi ; i_{1}, \ldots, i_{k}\right):=z\left(\pi^{\left[d^{k}\right]}\left(\tau_{d}^{i_{1}} \# \cdots \# \tau_{d}^{i_{k}}\right)\right)
$$

for all $\pi \in S_{k}, i_{1}, \ldots, i_{k} \in \underline{d-1} \cup\{0\}$. By Theorem 2.2 , we then have

$$
\begin{aligned}
\lambda_{d^{k}} & =\frac{1}{\left|C^{d^{k}}\right|} \sum_{q \vdash d k}\left(\sum_{\substack{\varphi \in C^{d^{k}} \\
z(\varphi)=q}} \psi_{d^{k}}(\varphi)\right) \operatorname{ch}_{q} \\
& =\frac{1}{k!} \sum_{\pi \in S_{k}} \frac{1}{d^{k}} \sum_{i_{1}, \ldots, i_{k}=0}^{d-1} \varepsilon_{d}^{-\sum i_{j}} \operatorname{ch}_{z\left(\pi ; i_{1}, \ldots, i_{k}\right)}
\end{aligned}
$$

By induction on the number $z=|z(\pi)|$ of cycles in $\pi \in S_{k}$, we show that

$$
\begin{equation*}
\frac{1}{d^{k}} \sum_{i_{1}, \ldots, i_{k}=0}^{d-1} \varepsilon_{d}^{-\sum i_{j}} \operatorname{ch}_{z\left(\pi ; i_{1}, \ldots, i_{k}\right)}=c\left(\frac{1}{d^{z}} M_{d}(z(\pi))\right) \tag{*}
\end{equation*}
$$

which implies our claim. We will use some basic facts about cycle partitions of elements of $C^{d^{k}}$ which can be found in [5,4.2]. Let $z=1$. Then $\pi \in S_{k}$ is a long
cycle. Putting $\eta:=\varepsilon_{k d}$ and applying [5, 4.2.17], Lemma 5.1 and Corollary 5.2, we obtain

$$
\begin{aligned}
& \frac{1}{d^{k}} \sum_{i_{1}, \ldots, i_{k}=0}^{d-1} \varepsilon_{d}^{-\sum^{i_{j}}} \operatorname{ch}_{z\left(\pi ; i_{1}, \ldots, i_{k}\right)} \\
& \quad=\frac{1}{d} \sum_{i=0}^{d-1} \varepsilon_{d}^{-i} \operatorname{ch}_{k * z\left(\tau_{d}^{d}\right)}=\frac{1}{d} \sum_{x \mid d} \varrho(d / x, 1) \operatorname{ch}_{k * z\left(\tau_{d}^{x}\right)} \\
& \quad=c\left(\frac{1}{d} \sum_{x \mid d} \varrho(d / x, 1) \kappa_{k d}\left(\eta^{x}\right)\right)=c\left(\frac{1}{d} \sum_{x \mid d} \sum_{j=0}^{d k-1} \varrho(d / x, 1) \eta^{j x} M_{d k}^{(j)}\right) \\
& \quad=c\left(\frac{1}{d} \sum_{y \mid d k} M_{d k}^{(y)} \sum_{x \mid d} \varrho(d / x, 1) \varrho(d k / y, x)\right)=c\left(\frac{1}{d} \sum_{y \mid d k} M_{d k}^{(y)} R(d k / y, d)\right) \\
& \quad=c\left(M_{d}(k) / d\right)
\end{aligned}
$$

Now let $z>1$, say, $\pi=\tilde{\pi} \sigma$ for a cycle σ of length l in π. Then we have, by [5, 4.2.19], (2) and our induction hypothesis,

$$
\begin{aligned}
& \frac{1}{d^{k}} \sum_{i_{1}, \ldots, i_{k}=0}^{d-1} \varepsilon_{d}^{-\sum i_{j}} \operatorname{ch}_{z\left(\pi ; i_{1}, \ldots, i_{k}\right)} \\
& \quad=\left(\frac{1}{d^{k-l}} \sum_{i_{1}, \ldots, i_{k-l}=0}^{d-1} \varepsilon_{d}^{-\sum i_{j}} \operatorname{ch}_{z\left(\tilde{\pi} ; i_{1}, \ldots, i_{k-l}\right)}\right) \bullet\left(\frac{1}{d^{l}} \sum_{i_{k-l+1}, \ldots, i_{k}=0}^{d-1} \varepsilon_{d}^{-\sum i_{j}} \operatorname{ch}_{z\left(\sigma ; i_{k-l+1}, \ldots, i_{k}\right)}\right) \\
& \quad=c\left(\frac{1}{d^{z-1}} M_{d}(z(\tilde{\pi})) \bullet \frac{1}{d} M_{d}(z(\sigma))\right)=c\left(\frac{1}{d^{z}} M_{d}(z(\pi))\right)
\end{aligned}
$$

This completes the proof of $(*)$.
The inverse image of $\lambda_{d^{k}}$ under constructed in the preceding lemma may be simplified by means of a short analysis of the numbers $R(n, m)$. This will be done in three steps.

PROPOSITION 5.4. Let $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{N}$ such that

$$
\operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(m_{1}, m_{2}\right)=\operatorname{gcd}\left(n_{1}, m_{2}\right)=\operatorname{gcd}\left(n_{2}, m_{1}\right)=1
$$

Then we have $R\left(n_{1} n_{2}, m_{1} m_{2}\right)=R\left(n_{1}, m_{1}\right) R\left(n_{2}, m_{2}\right)$.

Proof. By [4, Theorem 67], the Ramanujan sums have the following factorizing property: $\varrho\left(a_{1} a_{2}, b\right)=\varrho\left(a_{1}, b\right) \varrho\left(a_{2}, b\right)$ for all $a_{1}, a_{2}, b \in \mathbb{N}$ such that $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$. Furthermore, we have $\varrho\left(a, b_{1} b_{2}\right)=\varrho\left(a, b_{1}\right)$ for all $a, b_{1}, b_{2} \in \mathbb{N}$ such that $\left(a, b_{2}\right)=1$,
as in this case taking the b_{2}-th power induces an automorphism of the group of a-th roots of unity. These two observations imply that

$$
\begin{aligned}
R\left(n_{1} n_{2}, m_{1} m_{2}\right) & =\sum_{x_{1} \mid m_{1}} \sum_{x_{2} \mid m_{2}} \varrho\left(n_{1} n_{2}, x_{1} x_{2}\right) \varrho\left(\frac{m_{1}}{x_{1}} \frac{m_{2}}{x_{2}}, 1\right) \\
& =\sum_{x_{1} \mid m_{1}} \sum_{x_{2} \mid m_{2}} \varrho\left(n_{1}, x_{1} x_{2}\right) \varrho\left(n_{2}, x_{1} x_{2}\right) \varrho\left(\frac{m_{1}}{x_{1}}, 1\right) \varrho\left(\frac{m_{2}}{x_{2}}, 1\right) \\
& =\sum_{x_{1} \mid m_{1}} \varrho\left(n_{1}, x_{1}\right) \varrho\left(\frac{m_{1}}{x_{1}}, 1\right) \sum_{x_{2} \mid m_{2}} \varrho\left(n_{2}, x_{2}\right) \varrho\left(\frac{m_{2}}{x_{2}}, 1\right) \\
& =R\left(n_{1}, m_{1}\right) R\left(n_{2}, m_{2}\right) .
\end{aligned}
$$

Let \mathbb{P} be the set of all prime numbers.
Proposition 5.5. For all $a, b \in \mathbb{N}_{0}$ and $p \in \mathbb{P}$, we have

$$
R\left(p^{a}, p^{b}\right)= \begin{cases}\mu\left(p^{a-b}\right) p^{b} & b \leq a \\ 0 & b>a\end{cases}
$$

Proof. For all $n, m \in \mathbb{N}$, the Ramanujan sum corresponding to n and m may be expressed in terms of the Möbius and the Euler function as follows:

$$
\varrho(n, m)=\mu(n / \operatorname{gcd}(n, m)) \frac{\varphi(n)}{\varphi(n / \operatorname{gcd}(n, m))}
$$

([4, Theorem 272]). Let $c:=\min \{a, b\}$ and $d:=\min \{a, b-1\}$. Then

$$
\begin{aligned}
R\left(p^{a}, p^{b}\right) & =\sum_{i=0}^{b} \varrho\left(p^{a}, p^{i}\right) \varrho\left(p^{b-i}, 1\right) \\
& =\varrho\left(p^{a}, p^{b}\right)-\varrho\left(p^{a}, p^{b-1}\right) \\
& =\mu\left(p^{a-c}\right) \frac{\varphi\left(p^{a}\right)}{\varphi\left(p^{a-c}\right)}-\mu\left(p^{a-d}\right) \frac{\varphi\left(p^{a}\right)}{\varphi\left(p^{a-d}\right)}
\end{aligned}
$$

and hence $R\left(p^{a}, p^{b}\right)=0$ for $b>a$, as $c=d=a$ in this case. Let $b \leq a$. Then we have $c=b$ and $d=b-1$, that is,

$$
R\left(p^{a}, p^{b}\right)=\mu\left(p^{a-b}\right) \frac{\varphi\left(p^{a}\right)}{\varphi\left(p^{a-b}\right)}-\mu\left(p^{a-b+1}\right) \frac{\varphi\left(p^{a}\right)}{\varphi\left(p^{a-b+1}\right)} .
$$

For $b<a-1$, this shows $R\left(p^{a}, p^{b}\right)=0$ as asserted. For $b=a-1$ it follows that $R\left(p^{a}, p^{b}\right)=-\varphi\left(p^{b+1}\right) / \varphi(p)=-p^{b}$, while, for $b=a$, we may conclude that $R\left(p^{a}, p^{b}\right)=\varphi\left(p^{b}\right)-\varphi\left(p^{b}\right) / \varphi(p)=p^{b}$.

Lemma 5.6. For all $n, m \in \mathbb{N}$, we have

$$
R(n, m)= \begin{cases}\mu(n / m) m & m \mid n \\ 0 & \text { otherwise }\end{cases}
$$

PROOF. Choose $a_{p}, b_{p} \in \mathbb{N}_{0}$ for all $p \in \mathbb{P}$ such that $n=\prod_{p \in \mathbb{P}} p^{a_{p}}$ and $m=\prod_{p \in \mathbb{P}} p^{b_{p}}$. Applying Propositions 5.4 and 5.5 we obtain

$$
\begin{aligned}
R(n, m) & =\prod_{p \in \mathbb{P}} R\left(p^{a_{p}}, p^{b_{p}}\right) \\
& = \begin{cases}\prod_{p \in \mathbb{P}} \mu\left(p^{a_{p}-b_{p}}\right) p^{b_{p}} & \forall p \in \mathbb{P}: b_{p} \leq a_{p} \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\mu(n / m) m & m \mid n ; \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Corollary 5.7. Let $d, k \in \mathbb{N}$. Then $M_{d}(k)=d \sum_{y \mid k} \mu(k / y) M_{d k, y}$.
Proof. Let y be a divisor of $d k$. Then Lemma 5.6 implies that

$$
R(d k / y, d)=\left\{\begin{array}{ll}
\mu(d k / d y) d & d \mid d k / y \\
0 & \text { otherwise }
\end{array}= \begin{cases}\mu(k / y) d & y \mid k \\
0 & \text { otherwise }\end{cases}\right.
$$

We are now in a position to give the proof of the Main Theorem 3.1.

Proof of the Main Theorem 3.1. By Lemma 5.3 and (10), we have

$$
\left(\lambda_{d^{k}}, \zeta^{p}\right)_{S_{n}}=\frac{1}{k!} \sum_{\pi \in S_{k}} \frac{1}{d^{|z(\pi)|}}\left(M_{d}(z(\pi)), Z^{p}\right)
$$

But, for $\pi \in S_{k}$ and $q=q_{1} \ldots q_{k}:=z(\pi)$, we may conclude from Corollary 5.7 that

$$
\begin{align*}
\frac{1}{d^{|z(\pi)|}}\left(M_{d}(z(\pi)), Z^{p}\right) & =\frac{1}{d^{k}}\left(M_{d}\left(q_{1}\right) \bullet \cdots \bullet M_{d}\left(q_{k}\right), Z^{p}\right) \\
& =\sum_{r_{1} \mid q_{1}} \cdots \sum_{r_{k} \mid q_{k}} \mu\left(q_{1} / r_{1}\right) \cdots \mu\left(q_{k} / r_{k}\right)\left(M_{d q_{1}, r_{1}} \bullet \cdots \bullet M_{d q_{k}, r_{k}}, Z^{p}\right) \tag{p}\\
& =\sum_{r \mid q} \mu(q / r)\left(M_{d q_{1}, r_{1}} \bullet \cdots \bullet M_{d q_{k}, r_{k}}, Z^{p}\right)
\end{align*}
$$

This completes the proof, as $\left(M_{d q_{1}, r_{1}} \bullet \cdots \bullet M_{d q_{k}, r_{k}}, Z^{p}\right)=\operatorname{syt}_{d \star q, r}^{p}$ for all $r \mid q$, simply by definition of the scalar product (\cdot, \cdot) and the convolution product \bullet in $[6,1.3]$.

References

[1] F. Bergeron, N. Bergeron and A. M. Garsia, 'Idempotents for the free Lie algebra and q enumeration', in: Invariant theory and tableaux (Minneapolis, MN, 1988), IMA Vol. Math. Appl. 19 (Springer New York, 1990) pp. 166-190.
[2] D. Blessenohl and H. Laue, 'On the descending Loewy series of Solomon's descent algebra', J. Algebra 180 (1996), 698-724.
[3] A. M. Garsia and C. Reutenauer, 'A decomposition of Solomon's descent algebra', Adv. in Math. 77 (1989), 189-262.
[4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th Edition (Oxford University Press, Oxford, 1960).
[5] G. James and A. Kerber, The representation theory of the symmetric group (Addison-Wesley, Reading, Massachusetts, 1981).
[6] A. Jöllenbeck, 'Nichtkommutative Charaktertheorie der symmetrischen Gruppen', Bayr. Math. Schr. 56 (1999), 1-41.
[7] A. Jöllenbeck and M. Schocker, 'Cyclic characters of symmetric groups', J. Algebraic Combin. 12 (2000), 155-161.
[8] A. A. Klyachko, 'Lie elements in the tensor algebra', Siberian Math. J. 15 (1974), 914-920.
[9] W. Kraśkiewicz and J. Weyman, 'Algebra of invariants and the action of a Coxeter element', Bayr. Math. Schr. 63 (2001), 265-284.
[10] B. Leclerc, T. Scharf and J.-Y. Thibon, 'Noncommutative cyclic characters of symmetric groups', J. Combin. Theory Ser. A (1) 75 (1996), 55-69.
[11] F. Patras and C. Reutenauer, 'Higher Lie Idempotents', J. Algebra 222 (1999), 51-64.
[12] C. Reutenauer, Free Lie algebras, London Math. Soc. Monographs 7 (Oxford University Press, Oxford, 1993).
[13] I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen (Dissertation, Berlin, 1901).
[14] ___ 'Über die rationalen Darstellungen der allgemeinen linearen Gruppe', Sitzungsber. Pr. Akad. Wiss. (1927), 58-75.
[15] L. Solomon, 'A Mackey formula in the group ring of a Coxeter group', J. Algebra 41 (1976), 255-268.
[16] R. Thrall, 'On symmetrized Kronecker powers and the structure of the free Lie ring', Amer. J. Math. 64 (1942), 371-388.
[17] E. Witt, 'Treue Darstellung Liescher Ringe', J. Reine Angew. Math. 177 (1937), 152-160.

Mathematical Institute

24-29 St Giles

Oxford OX1 3LB
UK
e-mail: schocker@maths.ox.ac.uk

