A sequence algebra associated with distributions

G.M. Petersen

If $A=\left(a_{m, n}\right)$ is a regular summability matrix, the sequence $s=\left\{s_{n}\right\}$ is said to be A uniformly distributed (see
L. Kuipers, H. Niederreiter, Uniform distribution of sequences,
p. 221, John Wiley ε_{c} Sons, New York, London, Sydney, Toronto, 1974), if

$$
\lim _{m \rightarrow \infty} \sum a_{m, n} \exp \left(2 \pi i h s_{n}\right)=0
$$

($h=1,2, \ldots$). In this paper we examine sequences belonging to A^{*}, where $t \in A^{*}$ if and only if t is bounded and $s+t$ is A uniformly distributed whenever s is A uniformly distributed. By A^{\prime} are denoted those members t of A^{*} such that $a t \in A^{*}$ for every real a. The members of A^{\prime} form a Banach algebra, A^{*} is not connected under the sup norm, but A^{\prime} is a component.

$$
1
$$

In this paper we shall write $e(x)$ for $e^{2 \pi i x}$. If $A=\left(a_{m, n}\right)$ is a regular summability matrix, the sequence $s=\left\{s_{n}\right\}$ is said to be A uniformly distributed [1], if ${ }^{1}$

Received 18 May 1978.
1 All summation in this paper is over $n=1$ to ∞, unless otherwise indicated.
(1)

$$
\lim _{m \rightarrow \infty} \sum a_{m, n} e\left(h s_{n}\right)=0
$$

$(h=1,2, \ldots)$. By A_{0} we denote the bounded sequences limited to zero by A and write $\xi \in A^{0}$ if ξ is bounded and $\xi x \in A_{0}$ for all $x \in A_{0}$. It is easy to show that A^{0} is a Banach algebra; see [3]. In this paper we shall discuss sequences belonging to A^{*}, where $t \in A^{*}$ if and only if t is bounded and $s+t$ is A uniformly distributed whenever s is A uniformly distributed. Such sequences are called admissible sequences.

It is easy to show [3] that

$$
A^{*} \supset A^{0}
$$

Also, if the sequences $t^{k}(k=1,2, \ldots)$, belong to A^{*} and

$$
\lim _{k \rightarrow \infty}\left\|t^{k}-t\right\|=0
$$

(where $\|x\|=\sup _{n}\left|x_{n}\right|$), then

$$
\begin{aligned}
\left|e\left(h\left[s_{n}+t_{n}^{k}\right]\right)-e\left(h\left[s_{n}+t_{n}\right]\right)\right| & =\left|e\left(h s_{n}\right)\right|\left|e\left(h t_{n}^{k}\right)-e\left(h t_{n}\right)\right| \\
& =\left|e\left(h t_{n}\right)\right|\left|e\left(h\left[t_{n}^{k}-t_{n}\right]\right)-1\right| \\
& \leq|e(h \varepsilon)-1|
\end{aligned}
$$

for a suitable choice of t^{k}. It is now clear that t is admissible and A* is closed.

We now prove:
THEOREM 1. If $0 \leq t_{n} \leq \beta<1$ and $0 \leq u_{n} \leq \beta<1 \quad(n=1,2, \ldots)$, and $t \in A^{*}, u \in A^{*}$ then $u t \in A^{*}$.

Proof. In the first place, if $t \in A^{*}, 2 t \in A^{*}$ and in general $k t \in A^{*}(k=I, 2, \ldots)$. Hence

$$
\lim _{m \rightarrow \infty} \sum a_{m n} e(k t) e\left(s_{n}\right)=0
$$

and the same is true for any trigonometric polynomial, $p_{k}(t)$. Moreover
if f is continuous on ($0, B$), f may be approximated uniformly by such a polynomial, so that

$$
\left|\sum a_{m, n}\right| f\left(t_{n}\right)-p_{k}\left(t_{n}\right)| | \leq \varepsilon \sum\left|a_{m, n}\right|
$$

where

$$
\left|f(x)-p_{k}(x)\right|<\varepsilon,
$$

$x \in(0, \beta)$.
From this we conclude that

$$
\lim _{m \rightarrow \infty} \sum a_{m, n} f\left(t_{n}\right) e\left(s_{n}\right)=0
$$

if $t \in A^{*}$ and f is continuous on $(0, B)$. Hence

$$
\lim _{m \rightarrow \infty} \sum a_{m n} t_{n}^{r} e\left(s_{n}\right)=0
$$

$(r=1,2, \ldots)$.
If $u \in A^{*}$, then

$$
\lim _{m \rightarrow \infty} \sum a_{m, n} t_{n}^{r} e\left(s_{n}+k u u_{n}\right)=0
$$

$(r, k=1,2, \ldots)$, and so

$$
\lim _{m \rightarrow \infty} \sum a_{m n} t_{n}^{r} p_{k}\left(u_{n}\right) e\left(s_{n}\right)=0
$$

It then follows that
(2)

$$
\lim _{m \rightarrow \infty} \sum a_{m n} t_{n}^{r} u_{n}^{r} e\left(s_{n}\right)=0 .
$$

If $g(x)$ is a polynomial,

$$
\lim _{m \rightarrow \infty} \sum a_{m, n} g\left(t_{n} u_{n}\right) e\left(s_{n}\right)=0
$$

so that, using the Stone-Weierstrass Theorem,

$$
\left|\sum a_{m, n}\left(g\left(t_{n} u_{n}\right)-e\left(t_{n} u_{n}\right)\right) e\left(s_{n}\right)\right| \leq \varepsilon \sum\left|a_{m, n}\right|
$$

From this it follows that

$$
\lim _{m \rightarrow \infty} \sum a_{m, n} e\left(s_{n}+t_{n} u_{n}\right)=0
$$

Criterion (1) indicates that if $\left\{s_{n}\right\}$ is A uniformly distributed so are the sequences $\left\{h s_{n}\right\} \quad(h=1,2, \ldots)$. Taking this into account and making a slight adjustment to our previous arguments,

$$
\lim _{m \rightarrow \infty} \sum a_{m, n^{h^{r}}} t_{n}^{r} u_{n}^{r} e\left(h s_{n}\right)=0
$$

and so as in (3),

$$
\lim _{m \rightarrow \infty} \sum a_{m, n} e\left(h s_{n}+h t_{n}^{u_{n}}\right)=0
$$

This implies that $s+u t$ is A uniformly distributed, ut $\in A^{*}$.
This proof breaks down for the interval $0 \leq x<1$ or $0 \leq x \leq 1$.

2.

It turns out there are two types of admissible sequences. If there exists an $\alpha, 0<\alpha \leq 1$, such that αt is admissible and $0<\alpha t_{n} \leq \rho<1 \quad(n=1,2, \ldots)$, then t is said to be non-singular; if no such α exists then t is said to be singular.

THEOREM 2. If w and t are non-singular admissible sequences, then wt is a non-singular admissible sequence.

Proof. Since there exists an $\alpha, 0<\alpha \leq 1$, such that α is admissible, and $0 \leq \alpha t_{n} \leq \rho<1$, from Theorem 1 (all constant sequences are admissible), it follows that $\beta \alpha t$ is admissible for any β, $0 \leq \beta \leq 1$. Hence γt is admissible, $0 \leq \gamma \leq \alpha$. Moreover, if w and t are non-singular, $\gamma^{\prime} w$ is admissible, $0 \leq \gamma^{\prime} \leq \alpha^{\prime}$, and $\gamma^{\prime} w t$ is admissible $0 \leq \gamma \gamma^{\prime} \leq \alpha \alpha^{\prime}$. Since ωt is bounded, there exists an integer k such that $1 / k<\alpha \alpha^{\prime}$, and $w t / k$ is admissible. By adding this k times we have ωt is admissible, and of course non-singular.

This proof can also be used to show $n t$ and nut are admissible, $0 \leq \eta \leq 1$.

We shall write $t \in A^{\prime}$ if there exiscs a positive constant δ such that $t+\delta$ is non-singular.

For any β such that $0 \leq \beta \leq \alpha, 0 \leq \beta\left(t_{n}+\delta\right) \leq \alpha\left(t_{n}+\delta\right) \leq \rho<1$, and if β is chosen so that $0 \leq \beta\left(t_{n}+\mu\right) \leq \rho$ as well, then $\beta(t+\mu)=\beta(t+\delta)+\beta(\mu-\delta)$ is admissible. This implies that ($t+\mu)$ is nonsingular for $\mu \geq \delta$.

THEOREM 3. A^{\prime} is a Banach algebra.
Proof. If $t, u \in A^{\prime}$, there exist positive constant sequences δ, δ^{\prime} such that $t+\delta$ and $u+\delta^{\prime}$ are non-singular. Choose β so that $0 \leq \beta t_{n}+\beta \delta \leq \frac{3}{4}, \quad 0 \leq \beta u_{n}+\beta \delta^{\prime} \leq \frac{1}{4} \quad(n=1,2, \ldots)$. Then $0 \leq \beta\left(t_{n}+u_{n}+\delta+\delta^{\prime}\right) \leq \frac{z_{2}}{2}$ is admissible. This implies that $t+u+\delta+\delta^{\prime}$ is non-singular and that $t+u \in A^{\prime}$.

Examination of the real and imaginary parts of (1) shows that if s is A uniformly distributed, $-s$ is A uniformly distributed, and subsequently if $t \in A^{*}$, then $-t \in A^{*}$. If $t \in A^{\prime}$, our remarks at the end of Theorem 2 show $\eta t \in A^{\prime}$ for $0 \leq \eta \leq 1$, and hence $\eta t \in A^{\prime}$ for all positive real η. Choose δ so that $\delta-t$ is a positive sequence and β so that $0 \leq \beta, 0 \leq \beta\left(\delta-t_{n}\right) \leq \rho<1$. Then $\beta \delta$ is admissible, $-\beta t$ is admissible, $\beta(\delta-t)$ is admissible and $\delta-t$ is non-singular. It follows that $\eta t \in A^{\prime}$ for all real η.

If $t, u \in A^{\prime}$, then if δ, δ^{\prime} are chosen as before, $(t+\delta)\left(u+\delta^{\prime}\right) \in A^{\prime}$. However $u t=\left(u+\delta^{\prime}\right)(t+\delta)-k^{\prime} t-k u-k k^{\prime}$, and since all four terms are in A^{\prime}, our linearity condition implies $u t \in A^{\prime}$.

The unit sequence belongs to A^{\prime}. We have already seen that A^{*} is closed. Suppose

$$
\lim _{n \rightarrow \infty}\left\|t^{n}-t\right\|=0
$$

where $t^{n} \in A^{\prime}$; then $t \in A^{*}$ and is admissible. Also, $\alpha t^{n} \in A^{\prime}$ for all real α. Hence

$$
\lim _{n \rightarrow \infty}\left\|\alpha t^{n}-\alpha t\right\|=0
$$

and $\alpha t \in A^{*}$ for all real α. A few easy steps now show that $t \in A^{\prime}$ and A^{\prime} is a Banach algebra.

We have seen that

$$
A^{0} \subset A^{\prime} \subset A^{*}
$$

where A^{0} and A^{\prime} are Banach algebras. Of course A^{*} is not an algebra. In fact, if $t \in A^{*} \backslash A^{\prime}$ (we shall continue to call these sequences singular) there are only finitely many $\alpha, 0<\alpha \leq 1$, such that α is admissible. Otherwise, α_{1} and α_{2} could be found such that $0 \leq \alpha_{1}-\alpha_{2}<\varepsilon$ for any $\varepsilon>0$ and since $\left(\alpha_{1}-\alpha_{2}\right) t$ would be admissible, would in fact belong to A^{\prime}. Also these α must be rational, for $n \alpha-[n \alpha]$ is dense in the unit interval, and if αt is admissible, so is $(n \alpha-[n \alpha]) t$. For a finite set of fractions there is always a fraction p / q such that all of the members of the set are integral multiples of p / q. Also p / q is either a member of the set or can be obtained from the set by linear operations. Thus, if t is singular, there exists a t^{\prime} such that αt^{\prime} is not admissible, $0<\alpha<1$, and $n t^{\prime} \quad(n=1,2, \ldots)$ includes (indeed comprises) all of the admissible multiples of t.

We now see:
THEOREM 4. If $B \subset A^{*}$ is an algebra that includes the constant sequences, $B \subset A^{\prime}$.

Indeed we have just seen that no member of $A^{*} \backslash A^{\prime}$ can be part of such an algebra containing all of the constant sequences.

3.

If there are no A uniformly distributed sequences, then A^{*} has no meaning.

THEOREM 5. If there is at least one A uniformly distributed sequence then $A^{*} \backslash A^{\prime}$ is non-empty.

Proof. We can clearly assume that s is A uniformly distributed and bounded. Moreover, all sequences of $l^{\prime} s$ and $O^{\prime} s$ belong to A^{*}. If all of these belong to A^{\prime}, then all linear combinations or all sequences with finitely many values are in A^{\prime} (or A^{*}). Since such sequences are dense in the bounded sequences and A^{*} is closed then all bounded sequences including $-s$ are in A^{*}. This is a contradiction and our assertion is proved.

If $A=\left(\alpha_{m, n}\right)$ satisfies

$$
\lim _{m \rightarrow \infty} \sum\left|a_{m, n^{-}} a_{m, n+1}\right|=0
$$

for example, all well distributed sequences are A uniformly distributed; see [1].

THEOREM 6. A^{*} is non-connected; one of its components is a maximum subalgebra A^{\prime}.

Proof. We first show that $A^{*} \backslash A^{\prime}$ is a closed set. We already know that if $t^{k} \in A^{*}$ and

$$
\lim _{k \rightarrow \infty}\left\|t^{k}-t\right\|=0
$$

then $t \in A^{*}$. Suppose

$$
\left\|t^{k_{0}}-t\right\|<1 / 10
$$

then $x \in A^{\prime}$, where $x=t^{k_{0}}-t$. If $\alpha t^{k_{0}} \notin A^{*}, 0 \leq \alpha \leq \beta<1$, then since $\alpha t^{k_{0}}=\alpha t+\alpha x, \quad \alpha t k^{*} A^{*}\left(\alpha x \in A^{*}\right)$. Hence $t \in A^{*} \backslash A^{\prime}$. Both $A^{*} \backslash A^{\prime}$ and A^{\prime} are non-empty, A^{\prime} is closed. This shows that A^{*} is non-connected.

Since $x \in A^{\prime}$ implies $\alpha x \in A^{\prime}$ for all real α, it is easy to show that A^{\prime} is connected.
4.

Suppose $A=\left(a_{m, n}\right)$ satisfies (4); then it is said to be strongly regular. A sequence $\left\{s_{n}\right\}$ is said to be well distributed if

$$
\frac{1}{n+1} \sum_{k=p}^{n+p} e\left(h s_{n}\right) \quad(h=1,2, \ldots)
$$

has limit zero uniformly in p. The well distributed sequences consist of precisely those which are A uniformly distributed for all strongly regular A; see [1].

Admissible sequences for well distributed sequences may be defined;
we shall denote these by C^{*}. In [4], the following theorem is proved:
THEOREM 7. If $\left|t_{n}{ }^{-t}{ }_{n-1}\right| \leq \frac{1}{2} \quad(n=1,2, \ldots)$, then $t \in C^{*}$ if and only if

$$
\begin{equation*}
\frac{1}{n+1} \sum_{k=p}^{n+p}\left|t_{n}-t_{n-1}\right| \rightarrow 0 \tag{5}
\end{equation*}
$$

uniformly in p (that is, is almost convergent to zero).
A sequence $\left\{s_{n}\right\}$ is said to be thin with respect to the matrix $A=\left(a_{m, n}\right)$ if $s_{n}=0, n \notin E$, where

$$
\lim _{m \rightarrow \infty} \sum_{n \in E}\left|a_{m, n}\right|=0
$$

We shall prove:
THEOREM 8. If $A=\left(a_{m, n}\right)$ is a regular matrix, $a_{m, n} \geq 0$ $(m, n=1,2, \ldots)$, which satisfies (4), then if $\left|t_{n}-t_{n-1}\right| \leq \frac{1}{2}$ $(n=1,2, \ldots), t \in A^{*}$ only if $t=u+v$, where $u \in C^{*}$ and v is thin.

Proof. The matrix $A=\left(a_{m, n}\right)$ may be adjusted by multiplying the row elements so that

$$
\sum a_{m, n}=1 \quad(m=1,2, \ldots)
$$

without affecting its other properties.
As in [4], we see that if (5) is not satisfied, there is a sequence n_{i} and a δ such that $t_{n_{i}}-t_{n_{i}-1}>\delta(i=1,2, \ldots)$. We shall suppose that $\left\{t_{n_{i}}\right\}$ is not thin. Then we choose the well distributed sequences x and y, and construct z as follows:
(6)

$$
z_{n}= \begin{cases}y_{j} & \text { if } n \in\left(r_{j}\right) \\ x_{i}\left(\bmod \frac{1}{2}\right)-t_{n_{i}-1} & \text { if } n \in\left(n_{i}\right) \\ \frac{3}{2}+x_{i}\left(\bmod \frac{2}{2}\right)-t_{n_{i}-1} & \text { if } n \in\left(n_{i}-1\right)\end{cases}
$$

where $\left(r_{j}\right)=Z \backslash\left(\left(n_{i}\right) \cup\left(n_{i}-1\right)\right)$. The above construction is identical with that in [4], pp. 154, 155, where it is also shown that z is well distributed but $z+t$ is not. This is done by showing that if $I_{(0, \delta)}$ is the characteristic function for $(0, \delta)$, then

$$
I_{(0, \delta)}\left(z_{n_{i}}+t_{n_{i}}\right)=I_{(0, \delta)}\left(z_{n_{i}-1}+t_{n_{i}^{-1}}\right)=0 \quad(i=1,2, \ldots)
$$

It then followed that $z+t$ was not well distributed, and so $t \notin C^{*}$. We denote $\left(n_{i}\right) \cup\left(n_{i}-1\right)$ by $\left(g_{k}\right)$. If A satisfies (4), then since z is well distributed it is also A uniformly distributed; see [1]. Let us choose m_{v} so that

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{m_{v}, g_{k}} \geq \varepsilon_{0}>0 \tag{7}
\end{equation*}
$$

$(v=1,2, \ldots)$; then

$$
\sum_{k=1}^{\infty} a_{m_{v}, g_{k}} I_{(0, \delta)}\left(z_{g_{k}}+t_{g_{k}}\right)=0
$$

$(\nu=1,2, \ldots)$, and $z+t$ wili not be A uniformly distributed, unless

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \sum_{j=1}^{\infty} a_{m_{v}, r_{j}} I_{(0, \delta)}\left(z_{r_{j}}+t_{r_{j}}\right)=\delta . \tag{8}
\end{equation*}
$$

However it is also clear that

$$
\lim \sup _{v \rightarrow \infty} \sum_{k=1}^{\infty} a_{m_{v}, g_{k}} I_{(a, b)}\left(z_{g_{k}}+t_{g_{k}}\right) \neq 0
$$

for all intervals $(a, b),|b-a|=\delta$, as otherwise a simple addition of finitely many characteristic functions would contradict (7). But then, it is clear from the proof of Theorem 7 in [4] that we can construct z^{\prime} such that $z_{r_{j}}^{\prime}=z_{r_{j}}$ and $z_{g_{k}}^{\prime}=z_{g_{k}}+\alpha$, where α is some constant; and z^{\prime} will be well distributed. We can choose this constant α so that

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \sup _{k=1}^{\infty} a_{m_{v}, g_{k}} I_{(0, \delta)}\left(z_{g_{k}^{\prime}}+t_{g_{k}}\right) \neq 0 \tag{9}
\end{equation*}
$$

From (8) and (9), it then follows that

$$
\lim _{m \rightarrow \infty} \sum a_{m, n} I_{(0, \delta)}\left(z_{n}+t_{n}\right) \neq \delta,
$$

and t is not admissible.
In [4] it is remarked that if t is admissible, then by translation and addition of integer sequences to t, we obtain t^{\prime} such that $\left|t_{n}^{\prime}-t_{n-1}^{\prime}\right| \leq \frac{1}{2}$. The same may be said for members of A^{*} and we have

THEOREM 9. If $A=\left(a_{m n}\right)$ is a positive regular matrix satisfying (4), then $t \in A^{*}$ only if $t=u+v$, where $u \in C^{*}$ and v is thin.

It is also easy to show that if (5) is satisfied then $t=u+v$, where

$$
\begin{equation*}
\lim \left|u_{n}-u_{n+1}\right|=0 \tag{10}
\end{equation*}
$$

and v is thin, so that if $t \in A^{*},\left|t_{n}-t_{n-1}\right| \leq \frac{1}{2}(n=1,2, \ldots)$, then $t=u+v$, where u satisfies (10) and v is thin.

Of course $A^{\prime} \subset A^{*}$, but if $t \in A^{\prime}$, then there exists a $t^{\prime} \in A^{\prime}$, $\left|t_{n}^{\prime}-t_{n-1}^{\prime}\right| \leq \frac{1}{2}$ obtained from t by algebraic operations. From this it follows:

THEOREM 10. If $A=\left(a_{m, n}\right)$ is positive, regular, and satisfies (4), then $t \in A^{\prime}$ only if $t=u+v$, where u satisfies (10) and v is thin.

References

[1] L. Kuipers, H. Niederreiter, Uniform distribution of sequences (John Wiley \& Sons, New York, London, Sydney, 1974).
[2] Gordon M. Petersen, "Factor sequences for summability matrices", Math. Z. 112 (1969), 389-392.
[3] G.M. Petersen, "Factor sequences and their algebras", Jber. Deutsch. Math.-Verein. 74 (1972/73), 182-188.
[4] G.M. Petersen and A. Zame, "Summability properties for the distribution of sequences", Monatsh. Math. 73 (1969), 147-158.

Department of Mathematics, University of Canterbury,
Christchurch,
New Zealand.

