A sequence algebra associated with distributions

G.M. Petersen

If $A = (a_{m,n})$ is a regular summability matrix, the sequence $s = \{s_n\}$ is said to be A uniformly distributed (see L. Kuipers, H. Niederreiter, Uniform distribution of sequences, p. 221, John Wiley & Sons, New York, London, Sydney, Toronto, 1974), if

$$\lim_{m \to \infty} \sum a_{m,n} \exp(2\pi i h s_n) = 0$$

(h = 1, 2, ...). In this paper we examine sequences belonging to A*, where $t \in A^*$ if and only if t is bounded and s + tis A uniformly distributed whenever s is A uniformly distributed. By A' are denoted those members t of A* such that $at \in A^*$ for every real a. The members of A' form a Banach algebra, A* is not connected under the sup norm, but A' is a component.

1.

In this paper we shall write e(x) for $e^{2\pi ix}$. If $A = (a_{m,n})$ is a regular summability matrix, the sequence $s = \{s_n\}$ is said to be A uniformly distributed [1], if¹

Received 18 May 1978.

¹ All summation in this paper is over n = 1 to ∞ , unless otherwise indicated.

(1)
$$\lim_{m \to \infty} \sum_{m,n} a_{m,n} e(hs_n) = 0$$

40

(h = 1, 2, ...). By A_0 we denote the bounded sequences limited to zero by A and write $\xi \in A^0$ if ξ is bounded and $\xi x \in A_0$ for all $x \in A_0$. It is easy to show that A^0 is a Banach algebra; see [3]. In this paper we shall discuss sequences belonging to A^* , where $t \in A^*$ if and only if t is bounded and s + t is A uniformly distributed whenever s is Auniformly distributed. Such sequences are called *admissible* sequences.

It is easy to show [3] that

$$A^* \supset A^0$$
.

Also, if the sequences t^k (k = 1, 2, ...), belong to A* and $\lim \|t^k - t\| = 0$

(where $||x|| = \sup_{n} |x_n|$), then

$$\begin{aligned} \left| e\left(h\left[s_{n} + t_{n}^{k}\right]\right) - e\left(h\left[s_{n} + t_{n}\right]\right) \right| &= \left|e\left(hs_{n}\right)\right| \left|e\left(ht_{n}^{k}\right) - e\left(ht_{n}\right)\right| \\ &= \left|e\left(ht_{n}\right)\right| \left|e\left(h\left[t_{n}^{k} - t_{n}\right]\right) - 1\right| \\ &\leq \left|e(h\varepsilon) - 1\right| \end{aligned}$$

for a suitable choice of t^k . It is now clear that t is admissible and A* is closed.

We now prove:

THEOREM 1. If $0 \le t_n \le \beta < 1$ and $0 \le u_n \le \beta < 1$ (n = 1, 2, ...), and $t \in A^*$, $u \in A^*$ then $ut \in A^*$.

Proof. In the first place, if $t \in A^*$, $2t \in A^*$ and in general $kt \in A^*$ (k = 1, 2, ...). Hence

$$\lim_{m\to\infty} \sum_{m \neq \infty} a_{mn} e(kt) e(s_n) = 0 ,$$

and the same is true for any trigonometric polynomial, $p_k(t)$. Moreover

if f is continuous on $(0, \beta)$, f may be approximated uniformly by such a polynomial, so that

$$\left|\sum a_{m,n}|f(t_n)-p_k(t_n)|\right| \leq \epsilon \sum |a_{m,n}|$$
,

where

$$|f(x)-p_k(x)| < \varepsilon$$
,

 $x \in (0, \beta)$.

From this we conclude that

$$\lim_{m \to \infty} \sum a_{m,n} f(t_n) e(s_n) = 0 ,$$

if $t \in A^*$ and f is continuous on $(0, \beta)$. Hence

$$\lim_{m\to\infty}\sum a_{mn}t_n^r e(s_n) = 0$$

(r = 1, 2, ...). If $u \in A^*$, then

$$\lim_{m \to \infty} \sum_{m,n} t_n^r e(s_n + ku_n) = 0$$

(r, k = 1, 2, ...), and so

$$\lim_{m\to\infty} \sum_{m \neq n} a_{mn} t_n^r p_k(u_n) e(s_n) = 0 .$$

It then follows that

(2)
$$\lim_{m \to \infty} \sum a_{mn} t_n^{r_u} u_n^{r_e} (s_n) = 0 .$$

If g(x) is a polynomial,

$$\lim_{m\to\infty} \sum_{m,n} a_{m,n} g(t_n u_n) e(s_n) = 0 ,$$

so that, using the Stone-Weierstrass Theorem,

$$\left|\sum a_{m,n}(g(t_nu_n)-e(t_nu_n))e(s_n)\right| \leq \varepsilon \sum |a_{m,n}| .$$

From this it follows that

(3)
$$\lim_{m \to \infty} \sum a_{m,n} e\{s_n + t_n u_n\} = 0$$

Criterion (1) indicates that if $\{s_n\}$ is A uniformly distributed so are the sequences $\{hs_n\}$ (h = 1, 2, ...). Taking this into account and making a slight adjustment to our previous arguments,

$$\lim_{m\to\infty}\sum_{m,n}a_{m,n}h^{r}t_{n}^{r}u_{n}^{r}e(hs_{n})=0$$

and so as in (3),

$$\lim_{m \to \infty} \sum a_{m,n} e \left(h s_n + h t_n u_n \right) = 0 .$$

This implies that s + ut is A uniformly distributed, $ut \in A^*$. This proof breaks down for the interval $0 \le x < 1$ or $0 \le x \le 1$.

2.

It turns out there are two types of admissible sequences. If there exists an α , $0 < \alpha \le 1$, such that αt is admissible and $0 < \alpha t_n \le \rho < 1$ (n = 1, 2, ...), then t is said to be *non-singular*; if ... no such α exists then t is said to be *singular*.

THEOREM 2. If w and t are non-singular admissible sequences, then wt is a non-singular admissible sequence.

Proof. Since there exists an α , $0 < \alpha \leq 1$, such that αt is admissible, and $0 \leq \alpha t_n \leq \rho < 1$, from Theorem 1 (all constant sequences are admissible), it follows that $\beta \alpha t$ is admissible for any β , $0 \leq \beta \leq 1$. Hence γt is admissible, $0 \leq \gamma \leq \alpha$. Moreover, if w and t are non-singular, $\gamma'w$ is admissible, $0 \leq \gamma' \leq \alpha'$, and $\gamma \gamma'w t$ is admissible $0 \leq \gamma \gamma' \leq \alpha \alpha'$. Since wt is bounded, there exists an integer k such that $1/k < \alpha \alpha'$, and wt/k is admissible. By adding this k times we have wt is admissible, and of course non-singular.

This proof can also be used to show ηt and $\eta \omega t$ are admissible, $0 \leq \eta \leq 1 \ .$

We shall write $t \in A'$ if there exists a positive constant δ such that $t + \delta$ is non-singular.

42

For any β such that $0 \leq \beta \leq \alpha$, $0 \leq \beta(t_n + \delta) \leq \alpha(t_n + \delta) \leq \rho < 1$, and if β is chosen so that $0 \leq \beta(t_n + \mu) \leq \rho$ as well, then $\beta(t+\mu) = \beta(t+\delta) + \beta(\mu-\delta)$ is admissible. This implies that $(t+\mu)$ is non-singular for $\mu \geq \delta$.

THEOREM 3. A' is a Banach algebra.

Proof. If $t, u \in A'$, there exist positive constant sequences δ , δ' such that $t + \delta$ and $u + \delta'$ are non-singular. Choose β so that $0 \leq \beta t_n + \beta \delta \leq \frac{1}{4}$, $0 \leq \beta u_n + \beta \delta' \leq \frac{1}{4}$ (n = 1, 2, ...). Then $0 \leq \beta (t_n + u_n + \delta + \delta') \leq \frac{1}{4}$ is admissible. This implies that $t + u + \delta + \delta'$ is non-singular and that $t + u \in A'$.

Examination of the real and imaginary parts of (1) shows that if s is A uniformly distributed, -s is A uniformly distributed, and subsequently if $t \in A^*$, then $-t \in A^*$. If $t \in A'$, our remarks at the end of Theorem 2 show $\eta t \in A'$ for $0 \le \eta \le 1$, and hence $\eta t \in A'$ for all positive real η . Choose δ so that $\delta - t$ is a positive sequence and β so that $0 \le \beta$, $0 \le \beta (\delta - t_n) \le \rho < 1$. Then $\beta \delta$ is admissible, $-\beta t$ is admissible, $\beta(\delta - t)$ is admissible and $\delta - t$ is non-singular. It follows that $\eta t \in A'$ for all real η .

If $t, u \in A'$, then if δ, δ' are chosen as before, $(t+\delta)(u+\delta') \in A'$. However $ut = (u+\delta')(t+\delta) - k't - ku - kk'$, and since all four terms are in A', our linearity condition implies $ut \in A'$.

The unit sequence belongs to A^{\prime} . We have already seen that A^{\star} is closed. Suppose

$$\lim_{n\to\infty} \|t^n - t\| = 0 ,$$

where $t^n \in A'$; then $t \in A^*$ and is admissible. Also, $\alpha t^n \in A'$ for all real α . Hence

...

$$\lim_{n\to\infty} \|\alpha t^n - \alpha t\| = 0 ,$$

and $\alpha t \in A^*$ for all real α . A few easy steps now show that $t \in A'$ and A' is a Banach algebra. We have seen that

 $A^0 \subset A' \subset A^*$,

where A^0 and A' are Banach algebras. Of course A^* is not an algebra. In fact, if $t \in A^* \setminus A'$ (we shall continue to call these sequences singular) there are only finitely many α , $0 < \alpha \leq 1$, such that αt is admissible. Otherwise, α_1 and α_2 could be found such that $0 \leq \alpha_1 - \alpha_2 < \varepsilon$ for any $\varepsilon > 0$ and since $(\alpha_1 - \alpha_2)t$ would be admissible, would in fact belong to A'. Also these α must be rational, for $n\alpha - [n\alpha]$ is dense in the unit interval, and if αt is admissible, so is $(n\alpha - [n\alpha])t$. For a finite set of fractions there is always a fraction p/q. Also p/q is either a member of the set or can be obtained from the set by linear operations. Thus, if t is singular, there exists a t' such that $\alpha t'$ is not admissible, $0 < \alpha < 1$, and nt' (n = 1, 2, ...) includes (indeed comprises) all of the admissible multiples of t.

We now see:

THEOREM 4. If $B \subset A^{\star}$ is an algebra that includes the constant sequences, $B \subset A'$.

Indeed we have just seen that no member of $A^*\setminus A'$ can be part of such an algebra containing all of the constant sequences.

3.

If there are no A uniformly distributed sequences, then A^* has no meaning.

THEOREM 5. If there is at least one A uniformly distributed sequence then $A^{A'}$ is non-empty.

Proof. We can clearly assume that s is A uniformly distributed and bounded. Moreover, all sequences of 1's and 0's belong to A^* . If all of these belong to A', then all linear combinations or all sequences with finitely many values are in A' (or A^*). Since such sequences are dense in the bounded sequences and A^* is closed then all bounded sequences including -s are in A^* . This is a contradiction and our assertion is proved. If $A = (a_{m,n})$ satisfies

$$\lim_{m\to\infty} \sum |a_{m,n} - a_{m,n+1}| = 0 ,$$

for example, all well distributed sequences are A uniformly distributed; see [1].

THEOREM 6. A* is non-connected; one of its components is a maximum subalgebra A'.

Proof. We first show that $\mathsf{A}^*\backslash\mathsf{A}'$ is a closed set. We already know that if $t^k\in\mathsf{A}^*$ and

$$\lim_{k\to\infty} ||t^k - t|| = 0 ,$$

then $t \in A^*$. Suppose

 $||t^{k_{0}}-t|| < 1/10$;

then $x \in A'$, where $x = t^{k_0} - t$. If $\alpha t^{k_0} \notin A^*$, $0 \le \alpha \le \beta < 1$, then since $\alpha t^{k_0} = \alpha t + \alpha x$, $\alpha t \notin A^* (\alpha x \in A^*)$. Hence $t \in A^* \setminus A'$. Both $A^* \setminus A'$ and A' are non-empty, A' is closed. This shows that A^* is non-connected.

Since $x \in A'$ implies $\alpha x \in A'$ for all real α , it is easy to show that A' is connected.

4.

Suppose $A = (a_{m,n})$ satisfies (4); then it is said to be strongly regular. A sequence $\{s_n\}$ is said to be *well distributed* if

$$\frac{1}{n+1} \sum_{k=p}^{n+p} e(hs_n) \quad (h = 1, 2, \ldots)$$

has limit zero uniformly in p. The well distributed sequences consist of precisely those which are A uniformly distributed for all strongly regular A; see [1].

Admissible sequences for well distributed sequences may be defined;

we shall denote these by C^* . In [4], the following theorem is proved:

THEOREM 7. If $|t_n - t_{n-1}| \le \frac{1}{2}$ (n = 1, 2, ...), then $t \in C^*$ if and only if

(5)
$$\frac{1}{n+1} \sum_{k=p}^{n+p} |t_n - t_{n-1}| \neq 0$$

uniformly in p (that is, is almost convergent to zero).

A sequence $\{s_n\}$ is said to be *thin* with respect to the matrix $A = (a_{m,n})$ if $s_n = 0$, $n \notin E$, where

$$\lim_{m \to \infty} \sum_{n \in E} |a_{m,n}| = 0$$

We shall prove:

THEOREM 8. If $A = (a_{m,n})$ is a regular matrix, $a_{m,n} \ge 0$ (m, n = 1, 2, ...), which satisfies (4), then if $|t_n - t_{n-1}| \le \frac{1}{2}$ (n = 1, 2, ...), $t \in A^*$ only if t = u + v, where $u \in C^*$ and v is thin.

Proof. The matrix $A = (a_{m,n})$ may be adjusted by multiplying the row elements so that

$$\sum a_{m,n} = 1 \quad (m = 1, 2, \ldots) ,$$

without affecting its other properties.

As in [4], we see that if (5) is not satisfied, there is a sequence n_i and a δ such that $t_{n_i} - t_{n_i-1} > \delta$ (i = 1, 2, ...). We shall suppose that $\{t_{n_i}\}$ is not thin. Then we choose the well distributed sequences x and y, and construct z as follows:

(6)
$$z_{n} = \begin{cases} y_{j} & \text{if } n \in (r_{j}), \\ x_{i} \pmod{\frac{1}{2}} - t_{n_{i}-1} & \text{if } n \in (n_{i}), \\ \frac{1}{2} + x_{i} \pmod{\frac{1}{2}} - t_{n_{i}-1} & \text{if } n \in (n_{i}-1), \end{cases}$$

where $(r_j) = Z \setminus \{(n_i) \cup (n_i^{-1})\}$. The above construction is identical with that in [4], pp. 15⁴, 155, where it is also shown that z is well distributed but z + t is not. This is done by showing that if $I_{(0,\delta)}$ is the characteristic function for $(0, \delta)$, then

$$I_{(0,\delta)}(z_{n_{i}}+t_{n_{i}}) = I_{(0,\delta)}(z_{n_{i}}-1+t_{n_{i}}-1) = 0 \quad (i = 1, 2, ...) .$$

It then followed that z + t was not well distributed, and so $t \notin \mathbb{C}^*$. We denote $(n_i) \cup (n_i-1)$ by (g_k) . If A satisfies (4), then since z is well distributed it is also A uniformly distributed; see [1]. Let us choose m_i so that

(7)
$$\sum_{k=1}^{\infty} a_{m_{\mathcal{V}}} g_k \ge \varepsilon_0 > 0$$

(v = 1, 2, ...); then

$$\sum_{k=1}^{\infty} a_{m_{v}}, g_{k}^{I}(0,\delta) \left(z_{g_{k}} + t_{g_{k}} \right) = 0$$

(v = 1, 2, ...), and z + t will not be A uniformly distributed, unless

(8)
$$\lim_{v \to \infty} \sum_{j=1}^{\infty} a_{m_v, r_j} I_{(0,\delta)} \left(z_{r_j} + t_{r_j} \right) = \delta .$$

However it is also clear that

$$\limsup_{v \to \infty} \sum_{k=1}^{\infty} a_{m_v, g_k}^{I}(a, b) \left(z_{g_k}^{+t} g_k \right) \neq 0$$

for all intervals (a, b), $|b-a| = \delta$, as otherwise a simple addition of finitely many characteristic functions would contradict (7). But then, it is clear from the proof of Theorem 7 in [4] that we can construct z' such that $z'_{j} = z_{j}$ and $z'_{g_k} = z_{g_k} + \alpha$, where α is some constant; and z'

will be well distributed. We can choose this constant $\,\alpha\,$ so that

(9)
$$\limsup_{v \to \infty} \sum_{k=1}^{\infty} a_{m_v, g_k}^{I}(0, \delta) \left(z'_{g_k} + t_{g_k} \right) \neq 0 .$$

From (8) and (9), it then follows that

$$\lim_{m\to\infty} \sum_{m,n} a_{m,n} I_{(0,\delta)}(z_n + t_n) \neq \delta ,$$

and t is not admissible.

In [4] it is remarked that if t is admissible, then by translation and addition of integer sequences to t, we obtain t' such that $|t'_n - t'_{n-1}| \leq \frac{1}{2}$. The same may be said for members of A^* and we have

THEOREM 9. If $A = (a_{mn})$ is a positive regular matrix satisfying (4), then $t \in A^*$ only if t = u + v, where $u \in C^*$ and v is thin.

It is also easy to show that if (5) is satisfied then t = u + v, where

(10)
$$\lim |u_n - u_{n+1}| = 0$$

and v is thin, so that if $t \in A^*$, $|t_n - t_{n-1}| \le \frac{1}{2}$ (n = 1, 2, ...), then t = u + v, where u satisfies (10) and v is thin.

Of course $A' \subset A^*$, but if $t \in A'$, then there exists a $t' \in A'$, $|t'_n - t'_{n-1}| \leq \frac{1}{2}$ obtained from t by *algebraic* operations. From this it follows:

THEOREM 10. If $A = (a_{m,n})$ is positive, regular, and satisfies (4), then $t \in A'$ only if t = u + v, where u satisfies (10) and v is thin.

References

- [1] L. Kuipers, H. Niederreiter, Uniform distribution of sequences (John Wiley & Sons, New York, London, Sydney, 1974).
- [2] Gordon M. Petersen, "Factor sequences for summability matrices", Math.Z. 112 (1969), 389-392.
- [3] G.M. Petersen, "Factor sequences and their algebras", Jber. Deutsch. Math.-Verein. 74 (1972/73), 182-188.

48

[4] G.M. Petersen and A. Zame, "Summability properties for the distribution of sequences", Monatsh. Math. 73 (1969), 147-158.

Department of Mathematics, University of Canterbury, Christchurch, New Zealand.